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Abstract: We discuss aspects of numerical methods for the computation of Gerber-Shiu or discounted
penalty-functions in renewal risk models. We take an analytical point of view and link this function to
a partial-integro-differential equation and propose a numerical method for its solution. We show weak
convergence of an approximating sequence of piecewise-deterministic Markov processes (PDMPs)
for deriving the convergence of the procedures. We will use estimated PDMP characteristics in
a subsequent step from simulated sample data and study its effect on the numerically computed
Gerber-Shiu functions. It can be seen that the main source of instability stems from the hazard rate
estimator. Interestingly, results obtained using MC methods are hardly affected by estimation.
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1. Introduction

In this article we study the computation of Gerber-Shiu functions. These functions—or more
precisely functionals—have been established in Gerber and Shiu (1998) in the context of the classical
risk model, with the goal to study ruin relevant quantities in an universal manner. Subsequently, the
derived results have been extended to the Sparre-Andersen risk model (see Sparre Andersen (1957))
by the same authors; see Gerber and Shiu (2005). We refer to well-established techniques and results
for this particular class of risk models: Schmidli (2017) and Asmussen and Albrecher (2010).

Our contribution considers the Sparre-Andersen (or renewal) risk model as a basis to describe the
evolution of an insurance portfolio surplus. But we take the perspective of piecewise-deterministic
Markov processes (PDMPs) such that in our theoretical treatment we can also incorporate a
state-dependent premium rate, which corresponds to a non-constant drift of the surplus process.
Hence, we can exploit the theory of PDMPs to study Gerber-Shiu functions and generalizations of
them; see Section 2. The by now classical reference on PDMPs is Davis (1993).

Going one step further means literally going back in time, since in our approach we are going to
incorporate collected data from the surplus process in order to estimate its respective characteristics.
Based on these estimators, we in turn determine the desired functional; e.g., the ruin probability.
From this perspective—using estimated characteristics—one could say that we are dealing with doubly
stochastic random quantities; consult Brémaud (1981). Given the non-parametric estimators in our
approach, we use a numerical scheme for the computation of expected values associated with PDMPs,
in which we discretize the state and time variable in order to solve the related partial-integro-differential
equation (PIDE). In providing the basis for this numerical and statistical procedure, we first of all verify
that the Gerber-Shiu functional can be identified with the solution of the associated PIDE. In a next
step, we show that our approximation converges to the exact functional by showing that the related
generators of the PDMPs also converge in an appropriate sense and applying techniques from the
theory of Markov processes in addition to results from Kritzer et al. (2019).
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The numerical procedure is necessary, since Gerber-Shiu functions in the renewal risk model admit
explicit representations only under restrictive assumptions on the distributions of the inter-jump times
and claims. Such assumptions are typically violated if estimated characteristics are used. Certainly,
in such situations one can apply specialized simulation techniques, either based on Monte Carlo or
quasi-Monte Carlo methods. In a risk theoretic context these methods are analyzed for example in
Preischl et al. (2018) and Kritzer et al. (2019). Another method, mentioned before, is based on the
numerical solution of associated PIDEs. This is built to a great extent upon properties of PDMPs and a
general guideline for the design of a numerical schema is illustrated in Davis (1993). In this a specific
implementation in a health insurance application can also be found.

In our contribution we use non-parametric statistical estimators of the risk model’s characteristics
which rely on the particular feature of iid inter-jump times and jump sizes; see Section 5. In this context
one can also certainly use methods based on techniques from survival analysis. Such an approach
is recommended for quite general PDMPs in Azaïs et al. (2013, 2014). In recent years phase-type
approximations have also been used in risk theory with a similar purpose. In the classical risk model
the claims’ distribution can be approximated in such a way. The effect of such an approximation
on the resulting ruin probability is discussed by Vatamidou et al. (2013, 2014) on the basis of the
Pollaczek-Khintchine formula. A similar approach is also feasible in the Sparre-Andersen model;
see Albrecher and Vatamidou (2019). In the last references the approximation is used for theoretical
distribution functions, but certainly one can approximate empirical distribution functions based on a
sample by means of the EM-algorithm; see Asmussen et al. (1996). Another non-parametric approach
in the classical risk model works on the level of Laplace or Fourier transforms of the ruin probability
or even the Gerber-Shiu function. Several results in this direction are presented by Shimizu (2012) and
Shimizu and Zhang (2017), who apply kernel estimators for the claims’ distribution and investigate
their properties on the level of the transforms.

2. Model Setup

We fix an underlying complete probability space (Ω,F , P) on which the following probabilistic
ingredients are defined. We consider a renewal process N = (Nt)t≥0 for determining the number of
claims that occurred up to and including time t. The inter-arrival times of N are given by a sequence
{Ti}i∈N of positive, independent and identically distributed random variables. We assume that their
distribution function FT is absolutely continuous. The jump times {σi}i∈N of the process are given by
σi = σi−1 + Ti for i ∈ N and for the moment we set σ0 = 0. Notice, that the existence of a density fT

of the distribution of T ∼ Ti ensures that a jump intensity λ(·) = fT(·)
F̄T(·)

of the to be defined surplus
process X exists; see Rolski et al. (1999, p. 480).

The claim sizes are modeled by a sequence {Yi}i∈N of positive iid random variables with
continuous distribution function FY. We assume independence between {Yi}i∈N and the process
N as is commonly done. For the incoming premiums in a time interval [0, t) we use the relatively

general term
t∫

0
c(Xs−)ds, i.e., a state dependent premium rate c(·), which is assumed to be positive,

bounded and Lipschitz continuous. Note that this is the driving component keeping the particular line
of business of the insurer alive. Denoting the initial capital with x ∈ R+, we obtain the surplus process
(Xt)t≥0 as a solution to

Xt = x +

t∫
0

c(Xs−)ds−
Nt

∑
i=1

Yi. (1)

This stochastic process generates the filtration {FX
t }t≥0 with the available information at time t.

In particular, we set FX
t = σ

{
FN

t , {Y1, Y2, . . . , YNt} ∪N
}

, where FN is the filtration generated by the
process N. In addition, N denotes the sets of measure zero from F .
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Since the process X itself is not a Markov process, we will use the technique of backward
Markovization, see Rolski et al. (1999, p. 480), in order to modify the process X such that we arrive at a
piecewise-deterministic Markov process. For an introduction to processes of this kind, see for instance,
Davis (1993) or Rolski et al. (1999). This technique basically demands an enlarged state space. In this,
we consider the process X̃t = (Xt, t′t), where t′t = t− σNt represents the time since the last jump. X̃
is now a time-homogeneous PDMP. In the PDMP setting we see that the deterministic evolution of
the component X between jumps is described via the ordinary differential equation ∂

∂t y(t) = c(y(t)),
the solution of which incorporating the boundary condition y(0) = x is denoted by φ(t, x).

We are now able to write down the infinitesimal generatorA of this process; see Rolski et al. (1999,
pp. 449, 480) or Davis (1993, p. 70). For an appropriate function h ∈ D(A), we have that the generator
of X̃ is given by

(Ah)(x, s) = c(x)
∂

∂x
h(x, s) +

∂

∂s
h(x, s) + λ(s)

 ∞∫
0

h(x− v, 0)− h(x, s)dFY(v)

 . (2)

In this context appropriate means that the function h is in the domain D(A) of the generator.
Furthermore, we obtain some useful consequences for the process under consideration. Firstly,

Yt = h(X̃t)− h(X̃0)−
t∫

0

Ah(X̃s−)ds, Y0 = h(X̃0), (3)

is Dynkin’s martingale. Secondly, if we can find a function h with Ah = 0, we deduce that h(X̃t) itself
is a martingale. Conditions which ensure that h belongs to D(A) are stated in Rolski et al. (1999, p. 449,
Thm. 11.2.2) and Davis (1993, p. 69, Thm. 26.14). The following theorem restates these results in our
framework.

Theorem 1. Let X̃ be the PMDP defined above. Let h : R×R+
0 → R be a measurable function such that

1. The function s 7→ h(φ(s, x), s) is absolutely continuous on (0, ∞),
2. ∀t ≥ 0 it holds that

Ex,t′

[
∑

i:σi≤t
|h(Xσi , 0)− h(Xσi−, t− σi−1)|

]
< ∞.

Then, h ∈ D(A), where Ah is given by (2).

The theoretical basis has now been prepared. In the remainder of this contribution we are
concerned with the analysis of a combination of a Gerber-Shiu and a running reward functional

g(x, t′) = Ex,t′

 τ∫
0

e−δsl(Xs−)ds + e−δτψ(Xτ−, |Xτ |)I{τ<∞}

 . (4)

In (4) τ = inf{t ≥ 0 |Xt < 0} denotes the time of ruin, δ > 0 is a discount or preference rate,
l : R+ → R+ represents a running reward function and ψ : R+ ×R+ → R+ can play the role of a
terminal reward function or a penalty function; see Gerber and Shiu (2005). Of course, if we use g as
an optimization criterion, i.e., maximization of a running reward with a penalty at ruin, then ψ should
assume negative values instead.

3. Analytic Properties

In order to guarantee that our function of interest (4) is the solution to a particular
partial-integro-differential equation, we must first verify several statements concerning its regularity.
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Since we are going to compute (4) by means of a numerical method which is designed to solve this
PIDE, a representation of this kind is essential. Subsequently, we will demonstrate that this approach
is also able to incorporate statistically estimated characteristics.

3.1. Feynman-Kac Formulation

We now formulate and prove a Feynman-Kac type equation for our problem. This result states
that if a function is smooth enough, it admits a representation by means of a conditional expectation
involving the respective function, where in turn we must plug in the underlying stochastic process
X as its argument. An analogous result can be found in Fleming and Soner (1993, p. 407), where
the process is given as the solution of a particular SDE. A similar result—but in slightly a different
form—concerning PDMPs is derived in Davis (1993, p. 92) and in Rolski et al. (1999, p. 454, Thm. 11.2.3).

Theorem 2. If for a given function h : R×R+
0 → R it holds that h ∈ D(A). Then, we obtain the following

representation for h:

h(x, t′) = Ex,t′

[
−

S∫
0

e−δs [(Ah)(Xs−, t′s−)− δh(Xs−, t′s−)
]

ds + e−δSh(XS, t′S)

]
, (5)

where S is a bounded {F X̃
t }t≥0 stopping time.

Proof. At first we apply the partial integration formula to the process e−δSh(XS, t′S) to obtain

e−δSh(XS, t′S) = h(x, t′) +
S∫

0

(−δ)e−δsh(Xs−, t′s−)ds +
S∫

0

e−δsdh(Xs, t′s).

Exploiting the assumption h ∈ D(A), which ensures that (3) is a martingale, leads us to the
desired result (5).

As an immediate consequence we obtain the following lemma.

Lemma 1. If a function h fulfills the assumptions of Theorem 2 and satisfies

Ah(x, t′)− δh(x, t′) + l̃(x, t′) = 0

then

h(x, t′) = Ex,t′

[ S∫
0

e−δs l̃(Xs−, t′s−)ds + e−δSh(XS, t′S)

]
,

for a bounded {F X̃
t }t≥0 stopping time S.

If, additionally l̃(x, t′) = l(x) + λ(t′)
∞∫
x

ψ(x, y− x)dFY(y), ψ(x, z) = 0 for z < 0 and h(x, ·) = 0 for

x < 0, together with lim
t→∞

Ex,t′ [e−δ(t∧τ)h(Xt∧τ , t′t∧τ)I{τ>t}] = 0 holds, we obtain the result that h = g as

in (4).

Remark 1. Note that we have fixed both l and ψ to be positive such that we can formally send t→ ∞ in t ∧ τ

using monotone convergence later. For having Ex,t′

[
τ∫
0

e−δsl(Xs−)ds + e−δτψ(Xτ−, |Xτ |)I{τ<∞}

]
< ∞, we

certainly need to ask for a growth condition for l and an integrability condition for ψ. Common assumptions in

the literature would be to choose l bounded and
∞∫
0

∞∫
0

ψ(x, y) fY(x + y)dydx < ∞ if FY admits a density fY. But
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in specific situations one can relax these assumptions. For example, if c is bounded it suffices for l to fulfill a
polynomial growth condition.

Proof. The first statement follows by an application of Theorem 2. In order to prove the specific second
statement, we have to use the same line of arguments as in the proof of the previous theorem. In fact,
using the result for the bounded stopping time S = t ∧ τ and the choice of l̃ we get

h(x, t′) = Ex,t′

[ t∧τ∫
0

e−δsl(Xs−)ds +
t∧τ∫
0

e−δsλ(t′s−)
∞∫

Xs−

ψ(Xs−, y− Xs−)dFY(y)ds + e−δ(t∧τ)h(Xt∧τ , t′t∧τ)

]
.

For the limit t→ ∞ using the assumptions made on the function h, we see that the last part of the
sum in the expectation disappears. Hence, it remains to be shown that

lim
t→∞

Ex,t′

 (t∧τ)∫
0

e−δs
∞∫

Xs−

ψ(Xs−, y− Xs−)dFY(y)λ(t′s)ds

 = Ex,t′
[
e−δτψ(Xτ−, |Xτ |)I{τ<∞}

]
.

In the following few lines we set H(x, z) = ψ(x, z)I{z>0}, and for the sake of clarity we abbreviate
the condition σ0 = t′, Xσ0 = x with I(t′ ,x):

Ex,t′
[
e−δτψ(Xτ−, |Xτ |)I{τ<∞}

]
= Ex,t′

[
e−δτψ(Xτ−, YNτ − Xτ−)I{τ<∞}

]
=

E

 ∞

∑
k=1

E

e−δσk ψ(φ(σk − σk−1︸ ︷︷ ︸
Tk

, Xσk−1), Yk − φ(σk − σk−1︸ ︷︷ ︸
Tk

, Xσk−1))I{σk=τ} I{σk<∞}

∣∣∣∣∣∣∣Fσk−1


∣∣∣∣∣∣∣I(t′ ,x)

 =

E
[

∞

∑
k=1

e−δσk−1E
[
e−δTk H(φ(Tk, Xσk−1), Yk − φ(Tk, Xσk−1))I{σk<∞}

∣∣∣Fσk−1

]∣∣∣∣∣I(t′ ,x)
]
=

lim
t→∞

E

 ∞

∑
k=1

e−δσk−1E


Tk∧(t−σk−1)∧(τ−σk−1)∫

0

e−δsE
[

H(φ(s, Xσk−1), Yk I{s=Tk} − φ(s, Xσk−1))
]

dI{Tk≤s}︸ ︷︷ ︸
λ(s)ds

∣∣∣∣∣∣∣∣Fσk−1


∣∣∣∣∣∣∣∣I(t′ ,x)

 =

lim
t→∞

E

 ∞

∑
k=1

E

 σk∧t∧τ∫
σk−1∧t∧τ

e−δsE
[

H(Xs−, Yk I{s=σk} − Xs−)
]

λ(t′s)ds

∣∣∣∣∣∣Fσk−1

∣∣∣∣∣∣I(t′ ,x)
 =

lim
t→∞

Ex,t′

 (t∧τ)∫
0

e−δsE [H(Xs−, Y− Xs−)] λ(t′s)ds

 =

lim
t→∞

Ex,t′

 (t∧τ)∫
0

e−δs
∞∫

Xs−

ψ(Xs−, y− Xs−)dFY(y)λ(t′s)ds

 .

3.2. Regularity of Gerber-Shiu Functions

In this paragraph we treat the regularity of g from (4) and demonstrate that it really does fulfill
the associated partial-integro-differential equation.

Theorem 3. The Gerber-Shiu function g from (4) lies in the domain of the generator of (X, t′), i.e., g ∈ D(A),
and fulfills

Ah(x, t′)− δh(x, t′) + l̃(x, t′) = 0, (6)
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where l̃(x, t′) = l(x) + λ(t′)
∞∫
x

ψ(x, y− x)dFY(y).

Proof. We begin by splitting up the integral associated with the running reward functional and
condition on the next jump time, in which r > 0 and σ1 = T1 is the upcoming jump of the claims
process. We define v := r ∧ T1 and get

g(x, t′) = Ex,t′

 r∧T1∫
0

e−δsl(Xx,t′
s− )ds +

τ∫
r∧T1

e−δsl(Xx,t′
s− )ds + e−δτψ(Xx,t′

τ− , |Xx,t′
τ |)I{τ<∞}


= Ex,t′

 v∫
0

e−δsl(Xx,t′
s− )ds + e−δvE

 τ∫
v

e−δ(s−v)l(Xx,t′
s− )ds + e−δ(τ−v)ψ(Xx,t′

τ− , |Xx,t′
τ |)I{τ<∞}

∣∣∣∣∣∣Fv

 .

Then, we separate these terms in turn as follows:

g(x, t′) = e
−

t′+r∫
t′

λ(z)dz r∫
0

e−δsl(Xx,t′
s− )ds +

r∫
0

λ(t′ + s)e
−

t′+s∫
t′

λ(z)dz s∫
0

e−δul(Xx,t′
u− )duds

+e
−

t′+r∫
t′

λ(z)dz
e−δrg

x +

r∫
0

c(Xx,t′
u− )du, t′ + r



+

r∫
0

λ(t′ + s)e
−

t′+s∫
t′

λ(z)dz

e−δs

x+
s∫

0
c(Xx,t′

u− )du∫
0

g

x +

s∫
0

c(Xx,t′
u− )du− y, 0

 dFY(y)

+e−δs
∞∫

x+
s∫

0
c(Xx,t′

u− )du

ψ

x +

s∫
0

c(Xx,t′
u− )du, y− x−

s∫
0

c(Xx,t′
u− )du

 dFY(y)

 ds.

After rearranging some terms we obtain the following equation,

0 = e
−

t′+r∫
t′

λ(z)dz r∫
0

e−δsl(Xx,t′
s− )ds +

e
−

t′+r∫
t′

λ(z)dz
e−δr − 1

 g(x, t′)

+ e
−

t′+r∫
t′

λ(z)dz
e−δr

g

x +

r∫
0

c(Xx,t′
u− )du, t′ + r

− g(x, t′)

+

r∫
0

H(s)ds. (7)



Risks 2020, 8, 24 7 of 20

The function H(s) represents the remaining part of the original expression,

H(s) = λ(t′ + s)e
−

t′+s∫
t′

λ(z)dz


s∫

0

e−δul(Xx,t′
u− )du+

e−δs

x+
s∫

0
c(Xx,t′

u− )du∫
0

g

x +

s∫
0

c(Xx,t′
u− )du− y, 0

 dFY(y)

+

∞∫
x+

s∫
0

c(Xx,t′
u− )du

ψ

x +

s∫
0

c(Xx,t′
u− )du, y− x−

s∫
0

c(Xx,t′
u− )du

 dFY(y)

 .

Since H(s) is continuous in s ∈ [0, ∞), we have the result that (7) implies continuity of g along the
integral curve (φ(t, x), t′ + t) from the right (in 0+). If we now divide the above equation by r and
take the limit r ↘ 0, we obtain

0 = l(x)− (λ(t′) + δ) g(x, t′) + lim
r↘0

1
r

g

x +

r∫
0

c(Xx,t′
u− )du, t′ + r

− g(x, t′)


+ λ(t′)

 x∫
0

g(x− y, 0)dFY(y) +
∞∫

x

ψ(x, y− x)dFY(y)

 .

Consequently, lim
r↘0

1
r

[
g

(
x +

r∫
0

c(Xx,t′
u− )du, t′ + r

)
− g(x, t′)

]
exists and equals ∂

∂t′ g(x, t′) +

c(x) ∂
∂x g(x, t′). The same arguments can be applied for showing left continuity and differentiability for

(x, t′) ∈ R+ ×R+ along the deterministically given integral curves.
The integrability of g follows from Remark 1.

4. Numerical Procedure

From the above results we obtain that the Gerber-Shiu function g as given in (4) is of adequate
regularity, so that it can be represented as a solution to a partial-integro-differential equation. In this
section we intend to derive a numerical method for solving such PIDEs, which will later be the
basis for a benchmark when discussing statistical effects on Gerber-Shiu functions. We start with
the inspection of a particular toy problem. This will subsequently be extended to cover the original
problem. The proposed method is universal in the sense that it applies for positive and Lipschitz c(·).
But one needs to be carefull with the analysis of the associated boundary conditions. They do heavily
depend on the concrete choice of c(·).

4.1. Gambler’s Ruin Problem

Despite the fact that this procedure works in greater generality, as can be seen below, we consider
as a first illustration the computation of the probability that our process X hits a value a > 0 before
falling below zero. This is known as the Gambler’s ruin problem. We therefore denote the first exit time
of the interval [0, a) by τ0,a = inf{t ≥ 0 |Xt /∈ [0, a)}. We can now immediately apply Theorem 2
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and Lemma 1 with this special exit time. We obtain the result that a function q which satisfies the
requirements of Lemma 1, and in addition to solving the equation

Aq(x, t′)− δq(x, t′) = 0, (8)

obeying the boundary conditions

q(x, t′) = 0 for x < 0 and q(x, t′) = 1 for x ≥ a,

admits the following representation:

q(x, t′) = Ex,t′
[
e−δτa I{τa<τ}

]
= P(τa = τ0,a).

Here τa = inf{t ≥ 0 |Xt ≥ a}, such that q : R+ ×R+ → [0, 1]. Note, that the preference δ is set to
be zero in order to really obtain the pure probability of the considered event.

Our goal now is to reveal such a function q by solving the associated PIDE, but since this
equation contains a non-local term, we have to apply a numerical approximation procedure for general
parameter constellations. Namely, we first consider a sequence {qn}n∈N of solutions, where each
qn is the respective expected value, in case we allow the process X to face at most n jumps. Since
inter-arrival times are a.s. positive we have the result that limn→∞ qn = q pointwise.

In order to allow c to be non-constant, we use c(x) = κ(b1 − x)(x − a1)I{a1<x<b1}, where we
assume 0 ≤ a1 < a < b1 and κ > 0. In Remark 2 we give motivation for this particular choice.
As mentioned above, this only affects boundary conditions and the initial value of the recursive
procedure. To start we set q0(x, t′) := I{x>a1}, since if there are no further jumps we arrive at the
upper threshold a with probability 1—provided we start above a1. We now iterate over the number
of remaining jumps n ∈ N. For every n we discretize the state space [a1, a] into N ∈ N equidistant
points {xi} and use finite differences to approximate the state derivative, whereas we do not touch the
t′ direction. Hence, the Equation (8) transforms to the following discretized counterpart:

∂

∂t′
qn(x, t′) + c(x)

qn(x + h, t′)− qn(x, t′)
h

+ λ(t′)
x∫

0

qn−1(x− y, 0)dFY(y)− (λ(t′) + δ)qn(x, t′) = 0.

Consequently, we have to solve on every grid line (along t′) the corresponding ordinary differential
equation. We make use of qn−1 here by inserting it in the non-local part. Hence, we have to start at
xN = a with qn(xN , t′) = 1, since if the initial surplus is equal to a, then the desired probability is
already 1. Further, qn(xi, t′), where xi = a1 + ih for fixed i ∈ {1, . . . , N − 1} and h = a−a1

N , solves as a
function in t′ ∈ [0, tend] the ODE:

∂

∂t′
qn(xi, t′)− qn(xi, t′)

(
c(xi)

h
+ λ(t′)

)
= Hi(t′)

qn (xi, tend) =

xi∫
0

qn−1(xi − y, 0) fY(y)dy.

Due to the special choice of our drift function c, we have to fix a time horizon tend, such that we
can solve the considered differential equations on a finite time interval. Note that the above equality

in tend holds only asymptotically; actually we have lim
tend→∞

qn (xi, tend) =
xi∫
0

qn−1(xi − y, 0) fY(y)dy.
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The corresponding imprecision stems from the truncation of the tail jump distribution; namely, we use
above F̄tend

T (t′) = F̄T(t′)I{t′<tend}. The inhomogeneity for every i has the form

Hi(t′) = −
c(xi)

h
qn(xi+1, t′)− λ(t′)

xi∫
0

qn−1(xi − y, 0) fY(y)dy.

This term is known at step n and state xi. Note that due to the features of the function c, if the
process arrives at a state smaller or equal to a1, then the process remains at this state. Hence, we have the
boundary condition qn(a1, t′) = 0 ∀n ∈ N. Moreover, one can show that q(x, t′) is rightly-continuous
in a1. Finally, we interpolate across the grid points {xi} the numerically determined functions in t′ to
obtain a function qn(x, t′).

Remark 2. In our numerical examples we use the drift function c(x) = κ(b1 − x)(x− a1)I{a1<x<b1}, where
0 ≤ a1 < b1 and κ > 0. Despite the fact that this function appears to be quite specific, it turns out that
—modifying the parameters and without the indicator—it is able to cover various practical situations.
First of all, this function can be used to approximate a reflecting barrier at level b1 in a continuous way. Such a
feature is of interest, in case the insurance company is willing to pay out dividends, or otherwise if large cash
holdings are penalized. Those situations are nowadays quite reasonable, since negative interest rates are more
and more common.

Furthermore, if we increase κ, then the deterministic path approximates an indicator function. Hence, it can
mimic deterministic jumps of the surplus process which arise in problems with capital injections. In case we
allow c—canceling the indicator—to be negative, then the resulting decreasing paths approach either levels b1 or
zero from above. This corresponds to a post-dividend surplus approaching the dividend barrier b1 (especially if κ

is chosen to be large, this would approximate a jump downwards; i.e., a lump sum dividend), or to a liquidation
of the portfolio due to inefficiency of the insurance line.

Overall, if we combine such functions to a piecewise drift with an additional positive constant we are able
to reproduce continuous versions of a variety of common dividend strategies (barrier and band type). Another
nice application arises for a small choice of κ. We can fix b1 > 0 and a1 < 0 such that

−a1b1κ + (a1 + b1)κx− κx2 = c + rx− κx2,

and choose κ appropriately small enough to get a local approximation of the classical drift rate with investment
return r ∈ R. Here a1 = −((−r +

√
r2 + 4cκ)/(2κ)) < 0 and b1 = (r +

√
r2 + 4cκ)/(2κ) tend to zero and

infinity as κ ↘ 0, thereby capturing the natural boundaries of the surplus.
Beyond the insurance context, such drift functions are frequently used to describe the growth of a population;

see Alvarez and Shepp (1998).

4.2. Extended Gerber-Shiu Functional

As another example, we want to compute (4) in a more general setting including running reward
and a Gerber-Shiu function. Here qn

GS(x, t′) denotes the functional comprising at most n ∈ N jumps.
We proceed in a manner analogous to that above. For the sake of clarity we assume that l(x) ≡ L,
whereas the function c remains the same as in the previous case, namely, c(x) = κ(b1 − x)(x −
a1)I{a1<x<b1}, where 0 ≤ a1 < a < b1 and κ > 0. Note that we have chosen a1 to be zero in our
subsequent example. For bounding the state space we choose a cut-off value a. This ensures that
the computations are feasible; i.e., we have given boundary values and do not need to solve integral
equations to obtain these. We denote with t∗(a, x) the point in time when we reach the value a if we
start in x by following the deterministic ODE path. In fact this function is just the inverse in t′ of the
deterministic path function φ(x, t′).
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The initial value of the approach is

q0
GS(x, t′) := I{0≤x≤a1}

L
δ
+ I{a1<x<a}e

−t∗(a,x)δ L
δ
+ I{a≤x}

L
δ

.

For the further iterative procedure we have at xN = a that qn
GS(xN , t′) = L

δ , since if we start at
the cut-off value we just obtain the discounted reward continuously and forever. Analogously as
above, qn

GS(xi, t′), where xi = a1 + ih for fixed i ∈ {1, . . . , N − 1} and h = a−a1
N , solves for t′ ∈ [0, tend]

the ODE:
∂

∂t′
qn

GS(xi, t′)− qn
GS(xi, t′)

(
c(xi)

h
+ λ(t′) + δ

)
= HGS

i (t′)

qn
GS(xi, tend) =

xi∫
0

qn−1
GS (xi − y, 0) fY(y)dy +

∞∫
xi

ψ(xi, y− xi) fY(y)dy.

As above we consider a finite time interval and therefore make use of tend. In this case the
inhomogeneity admits the following form for every i

HGS
i (t′) = −L− c(xi)

h
qn

GS(xi+1, t′)− λ(t′)

 xi∫
0

qn−1
GS (xi − y, 0) fY(y)dy +

∞∫
xi

ψ(xi, y− xi) fY(y)dy

 .

Doing this for every point xi results in a discretized approximation of qn
GS, which one may denote

by qn,h
GS for highlighting the dependence on the step width h > 0 (here h = a−a1

N ). In contrast to the
previous problem, we have in this case that at a1 the function qn

GS(x, t′) must be determined. In our
numerical example we assume that a1 = 0; hence, we obtain the boundary condition

qn
GS(0, t′) =

∞∫
0

∞∫
0

 t1∫
0

e−δsLds + e−δt1 ψ(0, y)

 fT(t1 + t′)
F̄T(t′)

dt1 fY(y)dy,

which can be computed explicitly.
Again, interpolation leads to a function qn

GS(x, t′) on the whole domain which approximates
(4). Note, that in the case of a non-constant reward l the boundary values need to be replaced by
∞∫
0

e−δtl(φ(t, x)) dt.

4.3. Convergence of Numerical Scheme

Consider a PDMP X̃h = (Xh, t′) with state space Eh = {k h : k ∈ Z} ×R+
0 ⊂ E = R×R+

0 for
some h > 0. We identify Xh

t = k with the actual position k h; i.e., the first component of X̃h describes
an external discrete state. For suitable g : Eh → R, this process is described by its generator

Ahg(k, t′) =
∂

∂t′
g(k, t′) +

k

∑
l=−∞

λ(t′)ph
kl g(l, 0) +

c(k)
h

g(k + 1, t′)−
(

λ(t′) +
c(k)

h

)
g(k, t′),

where ph
kl = FY((k− l)h)− FY((k− l − 1)h) = P [kh−Y ∈ [lh, (l + 1)h)]. Note that this process has

its origins in the numerical procedure presented in the section above. In a next step we will apply
Theorem 5.16 from Kritzer et al. (2019) or directly Theorem 19.25 from Kallenberg (2002) to show

that X̃h d→ X̃ = (X, t′), our original process. As a consequence, we get that expected values of
certain functionals of the underlying processes, X̃h, X̃, converge against each other. Lemma 5.14 of
Kritzer et al. (2019) tells us that the relevant ingredients of qn and qn

GS are appropriately continuous if
ψ and l are bounded.
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Fix kx(h) :=
⌊ x

h
⌋

for x ∈ R such that Xh
0 = kx(h)h→ x = X0 as h→ 0. Furthermore, let f ∈ C∞

b (E,R)
which is certainly an element of D(A) and D(Ah). We need to focus on∣∣∣A f (x, t′)−Ah f (kx(h)h, t′)

∣∣∣ ≤ ∣∣ ft′(x, t′)− ft′(kx(h)h, t′)
∣∣

+ |λ(t′)|

∣∣∣∣∣∣
∞∫

0

f (x− y, 0)dFY(y)−
kx(h)−1

∑
l=−∞

f (lh, 0)ph
kx(h)l

∣∣∣∣∣∣+ |λ(t′)| ∣∣ f (x, t′)− f (kx(h)h, t′)
∣∣

+

∣∣∣∣ c(x) fx(x, t′)− c (kx(h)h)
(

f ((kx(h) + 1)h, t′)− f (kx(h)h, t′)
h

) ∣∣∣∣
≤ ‖ ft′x‖∞ h + |λ(t′)|

∞∫
0

kx(h)−1

∑
l=−∞

I{(kx(h)−l−1)h<y≤(kx(h)−l)h} | f (x− y, 0)− f (lh, 0)| dFY(y)

+
(∣∣λ(t′)∣∣+ Lc

)
‖ fx‖∞ h + ‖c‖∞

3
2
‖ fxx‖∞ h

≤ ‖ ft′x‖∞ h + |λ(t′)| ‖ fx‖∞ 2h +
(∣∣λ(t′)∣∣+ Lc

)
‖ fx‖∞ h + ‖c‖∞

3
2
‖ fxx‖∞ h,

where Lc denotes the Lipschitz constant of c(·). The remaining terms, which bound the difference of
the two generators, converge to zero uniformly in (x, t′) if we assume a bounded jump intensity λ and
a differentiable, bounded and Lipschitz function c. Therefore, Kritzer et al. (2019, Theorem 5.16) tells
us that X̃h and X̃ converge weakly against each other as h → 0 and the associated Gerber-Shiu and
reward functions do as well, if ψ and l are bounded—as previously mentioned.

This is certainly a qualitative and not a quantitative statement (involving convergence rates
depending on the discretization h), but it shows that the schema are correctly designed.

Remark 3. Moreover, compare Fleming and Soner (1993)[ch. IX] where they use techniques based on viscosity
solutions in order to verify the convergence of the numerical state and time discretization scheme. The basis for
such results, as well as for our own, is certainly provided in Kushner and Dupuis (2001) where Markov chain
approximations of continuous time stochastic processes are extensively discussed.

5. Statistical Complement

In this part of the manuscript we will discuss the effect of estimated parameters on the
aforementioned numerical methodology for the computation of functionals of X̃. We place our
focus on the jump intensity λ and jump size distribution FY. Naturally, the estimators used are based
on a sample {(Yi, Ti)}i∈N of (iid) claims and inter-arrival times (or—practically correct—a finite sub-set
is used).

5.1. Kernel Estimator

Our main goal is to compute (4), which will allow us to make a quantitative valuation of the
underlying insurance line. In order to determine the function (4) according to the specifics of a
given insurance line, we have to use statistical methods to incorporate the behavior of important
characteristics; i.e., the distribution of the inter-arrival time FT and the distribution of the claim
height FY.

For this purpose we apply a non-parametric approach; namely, we use the kernel method to
estimate the respective densities fT and fY. This is necessary, since we want to apply our approximation
procedure for the construction of PDMPs later. Therefore, we need to have smooth estimates for these
densities and for the associated jump rate λ(t′) = fT(t′)

∞∫
t′

fT(s)ds
in particular.

Given the respective data we use the kernel method—after a logarithmic transformation of it,
as described in the monograph Silverman (1986, p. 30)—to estimate the required probability densities.
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The approach works as follows: since we want to estimate densities with support on the positive half
line, we take the logarithms of the data and apply the common kernel estimator for the transformed
data to obtain a function f̂ log(z), where we denote the given data points by data1, . . . dataν, the sample
size by ν, the bandwidth by h and the kernel by K. We obtain that

f̂ log(z) =
1

νh

ν

∑
i=1

K
(

z− log(datai)

h

)
.

The estimator of the actual data is then given by f̂ (z) = 1
z f̂ log(log(z)) for z > 0. For our numerical

considerations we use Wolfram Mathematica, which in turn uses for the density at point z a linearly

interpolated version of the kernel estimator 1
νh

ν

∑
i=1

K
(

z−datai
h

)
. Added to this, the used kernel K is the

density of the standard normal distribution and in order to determine the bandwidth h, the Silverman
rule is applied. Note that it is mentioned in Silverman (1986, p. 45 et seqq.) that using this rule for the
bandwidth can lead to overly smooth results, if the underlying distribution is multimodal.

5.2. Uniform Consistency

Of course we have to make sure that an increase of the number ν of sample points will lead to a
decrease of the estimation error. Following again the lines of Silverman (1986, pp. 71–74) we obtain that

sup
x
| f̂ (x)− f (x)| → 0 as ν→ ∞

with probability one; if the kernel K is bounded, or has a bounded variation, it holds that
∫
|K(t)|dt < ∞

and
∫

K(t)dt = 1, in addition to the property that the set of discontinuities of K is a Lebesgue null set.
Furthermore, the true density f has to be uniformly continuous on (−∞, ∞) and the bandwidth has to
fulfill hν → 0 and νhν

log(ν) → ∞ as ν→ ∞.
Fulfilling the above assumptions ensures that the estimators of the density converge uniformly

against the true density. In order to make sure that we can apply Theorem 5.16 from Kritzer et al.
(2019) we have to estimate the jump rate λ(t) for FT(t) < 1 in such a way that the estimator converges
uniformly. With regard to the special form of λ(t) = fT(t)

1−FT(t)
we consider the estimation on a compact

interval; compare to (Liu and Van Ryzin 1985, p. 600, Thm. 3.4).
For that purpose, we choose an analogous starting point as in Antoniadis et al. (1999, pp. 65–66).

First of all, we set ΘFT = sup{t : FT(t) < 1} and restrict our estimation procedure to the finite interval
[0, Θ̄], where Θ̄ < ΘFT holds. Let now F̂ν

T be the empirical distribution function of T using ν data
points; we obtain with ΘF̂ν

T
= sup{t : F̂ν

T(t) < 1} that ΘF̂ν
T
= T(ν). Here T(ν) denotes the νth order

statistic of a sequence of length ν, and thus, the largest element. In the implementation of the statistical
procedure one can take Θ̄ = T(ν), since it can be shown that ΘF̂ν

T
= T(ν) → ΘFT almost surely if ν→ ∞.

The uniform convergence of the jump rate estimator can then be verified analogously as described in
Liu and Van Ryzin (1985, p. 600). For further results on uniform consistency, see for example, Einmahl
and Mason (2005).

Remark 4. Note that the above requirements for uniform convergence are fulfilled using for example the
Gaussian kernel in combination with the Silverman rule, which yields a bandwidth proportional to ν−

1
5 .

5.3. Convergence of Estimated Gerber-Shiu Functions

Complementing the discussion about the convergence above, we now investigate the respective
behaviors of the generator Âh when we replace λ, FY and c by their estimated counterparts λ̂, F̂Y
and ĉ in Ah. Note that concerning the estimation of the function c we demand that the respective
estimator ĉ has to converge uniformly to the true c. In our numerical examples we try to mirror real-life
applications. This leads to the fact that the premium rate c underlies the estimation procedure in such
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a way that it depends on the first moments of Y and T. Hence, we assume that c = E[Y]E[T](1− 0.1),
which is a quite standard approach. Another established option for a common premium principle
would be the variance premium principle.

We can directly tie in with the line of arguments provided in Section 4.3. This will yield the
convergence of our computational procedure. Hence, let again Eh = {kh : k ∈ Z} ×R+

0 ⊂ E denote
the state space of the associated Markov chain. For the starting value Xh

0 = kx(h)h, where kx(h) :=
⌊ x

h
⌋

we have that Xh
0 → X0 if h → 0 as above. Here h again denotes the step size of the discretization,

and moreover, ν denotes the sample size. Finally, let f ∈ C∞
b (E,R); then, we have to show that the

following difference tends to zero:∣∣∣A f (x, t′)− Âh f (kx(h)h, t′)
∣∣∣

≤
∣∣∣A f (x, t′)−Ah f (kx(h)h, t′)

∣∣∣ + ∣∣∣Ah f (kx(h)h, t′)− Âh f (kx(h)h, t′)
∣∣∣ . (9)

Since we know from Section 4.3 that the first summand tends to zero uniformly in (x, t′), the same
remains to be shown for the second one. Hence, we obtain for the second term

∣∣∣Ah f (kx(h)h, t′)− Âh f (kx(h)h, t′)
∣∣∣ ≤ ∣∣∣∣∣ λ(t′)

kx(h)−1

∑
l=−∞

f (lh, 0)ph
kx(h)l − λ̂(t′)

kx(h)−1

∑
l=−∞

f (lh, 0) p̂h
kx(h)l

∣∣∣∣∣
+
∣∣ λ(t′)− λ̂(t′)

∣∣ ∣∣ f (kx(h)h, t′)
∣∣ + | c(kx(h)h)− ĉ(kx(h)h)|

∣∣∣∣ f ((kx(h) + 1)h, t′)− f (kx(h)h, t′)
h

∣∣∣∣
≤
∣∣ λ(t′)− λ̂(t′)

∣∣ ∣∣∣∣∣ kx(h)−1

∑
l=−∞

f (lh, 0)ph
kx(h)l

∣∣∣∣∣ + ∣∣ λ̂(t′)
∣∣ ∣∣∣∣∣ kx(h)−1

∑
l=−∞

f (lh, 0)ph
kx(h)l −

kx(h)−1

∑
l=−∞

f (lh, 0) p̂h
kx(h)l

∣∣∣∣∣
+
∣∣ λ(t′)− λ̂(t′)

∣∣ ‖ f ‖∞ + | c(kx(h)h)− ĉ(kx(h)h)| ‖ fx‖∞ .

In fact, the above terms tend to zero uniformly in (x, t′) on compacts for t′ a.s., because of the
aforementioned convergence of the estimators λ̂, F̂Y and ĉ as ν→ ∞.

Note that we use the following estimate for the series term∣∣∣∣∣ kx(h)−1

∑
l=−∞

f (lh, 0)ph
kx(h)l −

kx(h)−1

∑
l=−∞

f (lh, 0) p̂h
kx(h)l

∣∣∣∣∣ ≤ 2K ‖ f ‖∞
∥∥FY − F̂Y

∥∥
∞ + ‖ f ‖∞

[
F̄Y(K) + ˆ̄FY(K)

]
,

where K has to be chosen such that max
(

F̄Y(K), ˆ̄FY(K)
)
< ε

2‖ f ‖∞
for a given ε > 0.

Overall, if we take the limits h ↘ 0 and ν → ∞, then we obtain that the left-hand side of (9)
converges a.s. to zero uniformly on compacts in t′ and uniformly in x.

Remark 5. In order to meet the requirements of the above statistical procedure, we denote with (ΘN,GN,P)
the sample space such that for ω ∈ ΘN we have that {Yi(ω), Ti(ω)}i∈N denotes one sample. Given such an
ω ∈ ΘN and a sample size ν ∈ N we have that ĉ = ĉ(ω, ν), λ̂ = λ̂(ω, ν) and F̂Y = F̂Y(ω, ν). Note that
the dependence on ν expresses that the estimators only use the first ν claim heights and inter-arrival times,
respectively, for the estimation. Hence, following the previous lines, this yields that ∃N ∈ GN with P(N) = 0
such that ∀ω ∈ ΘN \ N

ĉ(ω, ν) → c uniformly,
λ̂(ω, ν) → λ uniformly on compacts in t′ and
F̂Y(ω, ν) → FY uniformly

for ν→ ∞. Furthermore, for each ω ∈ ΘN \ N we have that

Â(ω, ν) f =
∂

∂t′
f (x, t′) + ĉ(x, ω, ν)

∂

∂x
f (x, t′)− λ̂(t′, ω, ν) f (x, t′) + λ̂(t′, ω, ν)

∞∫
0

f (x− y, 0)dF̂Y(y, ω, ν)
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is generator of a sequence of PDMPs on E with index ν ∈ N. These converge as ν→ ∞ toA f uniformly in (x, t′)
on compacts for t′. Notice that incorporating the statistical procedure we use G0 = σ({(Yi, Ti) : i ∈ N}) ⊆ F0

in order to face fixed characteristics as an underlying basis of our considered renewal risk model. Above we have
shown that for each such ω, and the discrete version of Â, Âh converges in the appropriate sense to A.

At this point we are again in the situation to use Kritzer et al. (2019, Theorem 5.16), which yields
a.s. weak convergence of the approximated and estimated process against its underlying counterpart.

6. Numerical Illustrations

Complementing the theoretical part, we illustrate in the subsequent paragraphs numerical results
for the two considered problems. In order to outline the exemplifications we want to point out that
there are four different approaches which result in four functions V(x, t), V̂(x, t), MC(x) and M̂C(x).
First of all V(x, t) denotes the solution we obtain following the lines in Section 4. On the other hand,
if we replace in this setup the respective characteristics by their estimated counterparts we end up
with the solution V̂(x, t). Furthermore, we computed via Monte-Carlo simulations the functions
MC(x) and M̂C(x) where we fixed t = 0, and for the latter we again made use of the estimated
ingredients. The simulated results are primarily needed for reasons of comparability and hence serve
as a benchmark.

6.1. Hitting Probabilities

In the following graphical illustrations we have applied the above described approach to compute
the hitting probability, here denoted by V(x, t). Note that the cut-off value a is natural for our choice
of non-constant drift c(x) for which ruin is certain. In the general situation—constant c or unbounded
ODE paths—the probability of hitting a finite level a before getting ruined serves as an approximation
for the ruin probability. Certainly, as a→ ∞ we would face a rare event problem. In such a situation,
one needs to fix an appropriate finite a. This is in order to not lose the focus of the method, since
otherwise there would be need to consider variance reduction methods or the like for dealing with this
additional feature.

We have used the set of parameters listed in Table 1.

Table 1. Set of parameters used in the first example.

κ a1 b1 h a n Y T ν tend

0.2 0 10 0.025 6 10 Γ(3, 3) Γ(2, 1) 1000 20

Furthermore, as mentioned above we assumed that c(x) = κ(b1 − x)(x − a1)I{a1<x<b1}.
A probabilistic reference solution is based on Monte Carlo simulation, where we used 10000 sample
paths of the renewal process, where we used 2000 random points in turn for every path to simulate the
inter-arrival time and the claim height, respectively; i.e., 1000 jump events. The solution after the 10th
jump iteration is shown in Figure 1. Moreover, the associated improvement, namely, the difference of
the last two iterations illustrated in the subsequent Figure 2, is already relatively small.

Figure 3 depicts this hitting probability for x = 1 as a function in t. The black curve V10(1, t)
corresponds to the numerical solution using the above mentioned distribution functions, and the
red curve V̂10(1, t) depicts the solution we obtain using their estimated counterparts with ν = 1000
given data points generated from the respective distribution. What we immediately observe is that
the accuracy of the latter method depends to an enormous extent on the quality of the estimator for
the hazard rate. This is explained by the fact that the ODE methods rely on smooth coefficients with
preferably low variation. In our approach we need to estimate the density fT in such a manner that the
associated hazard rate function is sufficiently regular; see Figure 4.



Risks 2020, 8, 24 15 of 20

Figure 1. Hitting probability as a function of (x, t).

Figure 2. Difference of 9th and 10th iterations.

0 5 10 15
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V10(1,t)

V

10(1,t)

Figure 3. The hitting probabilities in x = 1—original and estimated.
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Figure 4. Comparison of the jump time density and its estimated analogue together with the used data
depicted in a histogram.

This is for the applicability of the above mentioned theoretical results. Using smooth kernel
estimators for the density leads to an appropriate estimator of the hazard rate—from an analytic point
of view. Nevertheless, the hazard’s estimation error explains the deviation of V10(x, t) and V̂10(x, t) for
large t values. This is an immediate consequence of our way of computing the desired quantities. The
difference of V10(x, t) and V̂10(x, t) as a function of x and t is shown in Figure 5. One can see clearly
that for increasing x the hazard’s impact declines.

Figure 5. Difference of V10(x, t) and V̂10(x, t).

The convergence regarding the discretization method described above is illustrated in Figure 6,
where we can see a sequence of solutions for decreasing step size h. The use of a step size h = 0.025
applied for the computation of V10(x, 0) results in a solution which is reasonably close to the
one obtained via a comparative MC-simulation (depicted as a dashed line together with its 95%
confidence intervals).
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0.5 1.0 1.5 2.0 2.5
x

0.7

0.8

0.9

1.0

h=0.5

h=0.25

h=0.1

h=0.05

V10(x,0)
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Figure 6. Improvement of the solution due to decrease of step size h.

In order to illustrate the development concerning the estimation as ν increases, we list in Table 2
the values of the function V10(x, t) and V̂10(x, t) for t = 0 and different values of x, in addition to the
results from the MC-simulation.

Table 2. Development of the solution with estimation due to variation of the sample size ν.

x = 0.5 x = 1 x = 1.5 x = 2 x = 2.5

MC(x) 0.9226 0.9817 0.9946 0.9991 0.9997

M̂C(x) 0.9228 0.9820 0.9961 0.9991 0.9998

V10(x, 0) 0.9102 0.9773 0.9938 0.9982 0.9995

V̂ν=1000
10 (x, 0) 0.8917 0.9698 0.9907 0.9969 0.9989

V̂ν=750
10 (x, 0) 0.8961 0.9712 0.9917 0.9977 0.9994

V̂ν=500
10 (x, 0) 0.9001 0.9733 0.9925 0.9980 0.9995

V̂ν=250
10 (x, 0) 0.9036 0.9732 0.9915 0.9972 0.9991

V̂ν=50
10 (x, 0) 0.9159 0.9778 0.9929 0.9982 0.9997

V̂ν=25
10 (x, 0) 0.8701 0.9620 0.9884 0.9973 0.9994

6.2. Gerber-Shiu Functions

As above, we provide some illustrations of the numerical computations concerning the
determination of the expectation (4) in this passage in a more general setting. We denote the solution
in this framework by VGS(x, t). We have made the following assumptions and used the parameters
given in Table 3.

Table 3. Set of parameters used in the second example.

κ a1 b1 l(x) δ ψ(x, z) β h a n Y T ν tend

0.2 0 10 2 0.05 e−βz 2 0.025 9 6 Γ(3, 3) Γ(2, 1) 1000 20

Moreover, we have again c(x) = κ(b1 − x)(x − a1)I{a1<x<b1}. In Table 4 we display values
obtained using the four different approaches described above for t = 0 and for several values of
x. An immediate observation is that the deviation declines while x increases, which is due to the
decreasing influences of the errors of estimation affecting the coefficients and the boundary conditions.
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Table 4. Comparison of results obtained via different approaches.

x = 0.5 x = 1 x = 1.5 x = 2 x = 2.5

MCGS(x) 37.0267 39.2955 39.7925 39.9658 39.9869

M̂C
GS

(x) 37.0351 39.3071 39.8494 39.9649 39.9903

VGS
6 (x, 0) 36.5443 39.1244 39.7592 39.9317 39.9802

V̂GS
6 (x, 0) 35.8309 38.8363 39.6413 39.8808 39.9577

Figure 7 illustrates the improvement of the solution of the GS function for different n.

VGS1(x,t)

VGS2(x,t)

VGS3(x,t)

VGS6(x,t)

Figure 7. Sequence of solutions for n = 1, 2, 3, 6.

Figure 8 shows the solution for the GS function compared to the version obtained using the
estimated parameters. In addition, the result of the MC-simulation and the respective confidence
intervals for both of the computations are included. Note that for the computation of the MC-simulated
counterpart MCGS(x) of VGS(x, 0), we have used the true distributions FT and FY, whereas for the

quantity M̂C
GS

(x) we generated the sample points from the estimated distributions given ν = 1000
data points each. In fact this corresponds to a bootstrap procedure. We can observe that the simulated
results are not very sensitive with respect to estimation, which can also be seen in Table 4 and that the
numerically calculated VGS(x, 0), with a grid size of h = 0.025, lies partly within the 95% confidence
band. In contrast to this, the numerically determined VGS(x, 0), with estimated coefficients, is not able
to reach the confidence band. This is because of the fact that the approximation error of the estimated
hazard rate is too significant here—even for a relatively large sample size of ν = 1000. This nicely
illustrates that the stated convergence results have a qualitative nature and hold asymptotically for
ν ↗ ∞ and h ↘ 0. At the same time one observes that this initial error becomes less influential for
increasing x.
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36
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VGS6(x,0)

V
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MCGS(x)

MC
GS

(x)

Figure 8. Comparison of solution with and without estimation together with their MC
simulated counterparts.

7. Conclusions and Discussions

In this contribution we present numerical and statistical methods for the computation of
Gerber-Shiu functions in general renewal risk models. The numerical method we provide incorporates
the fact that the underlying model itself faces stochastic ingredients, i.e., drift, estimated intensity
and distribution of claims, and thus takes the statistical aspect into account. In particular, we
have shown that the proposed schemata converge and illustrate these findings by means of two
informative examples. For practical applications we wish to point out that the solutions obtained
via MC methods are relatively robust with respect to estimation, whereas by nature of the scheme,
methods from numerical analysis are more sensitive. The main reason is typically the high variation
of the estimated hazard rate. Here, the fact that estimating derivatives is a relatively complex task
impacts on our approach. On the other hand, the computations are less affected by estimation of the
claims’ distribution FY.

Several directions are open for future research. Namely, the incorporation of estimation methods
such as the use of parametrized families or the direct usage of phase-type approximations for the
empirical distribution functions of observed inter-jump times and claims.
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