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Abstract: The misestimation of rating transition probabilities may lead banks to lend money
incoherently with borrowers’ default trajectory, causing both a deterioration in asset quality and
higher system distress. Applying a Mover-Stayer model to determine the migration risk of small and
medium enterprises, we find that banks are over-estimating their credit risk resulting in excessive
regulatory capital. This has important macroeconomic implications due to the fact that holding a large
capital buffer is costly for banks and this in turn influences their ability to lend in the wider economy.
This conclusion is particularly true during economic downturns with the consequence of exacerbating
the cyclicality in risk capital that therefore acts to aggravate economic conditions further. We also
explain part of the misevaluation of borrowers and the actual relevant weight of non-performing
loans within banking portfolios: some of the prudential requirements, at least as regards EMS
credit portfolios, cannot be considered effective as envisaged by the regulators who developed
the “new” regulation in response to the most recent crisis. The Mover-Stayers approach helps to
reduce calculation inaccuracy when analyzing the historical movements of borrowers’ ratings and
consequently, improves the efficacy of the resource allocation process and banking industry stability.

Keywords: credit risk; Markov chains; absorbing state; rating migration

1. Introduction

Credit risk transition probabilities are the key to improving forward-looking risk management
for investors and commercial banks. This is true for listed bonds whose risk is generally estimated
by rating agencies (Lando and Skødeberg 2002; Gabbi and Sironi 2005; D’Amico et al. 2016), and
for loans that are more frequently analyzed through banks’ internal models. The deterioration of
mortgage and loan became a contributing source to different phases of the most recent financial
crisis. Unreliable migration metrics can be considered as a serious model risk factor with systemic
consequences, particularly due to the fact that most of the rating models are based on Markov chain
assumptions to estimate transition matrices.

One of the issues embedded in pure Markov chains is the possible presence of an absorbing state
that is a state in which all the individuals will fall sooner or later. In a chain applied to credit risk
estimation, the absorbing state means a default. This raises the interesting question: Why should banks
trust models based on the assumption that all their counterparts will fail sooner or later? The issue is
based on the incoherency affecting credit risk transition matrix estimates when they are based on this
pure Markovian assumption, since if the absorbing state is incorporated, then all the borrowers move,
at least in the long run, to the default state. A second relevant question relates to the estimation of the
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rating migration risk for the banks’ economic capital: to be effective, internal rating models should
be designed coherently not only with the actual borrowers’ standing, but also with their expected
assessment pattern (Gabbi et al. 2019). As a matter of fact, companies are characterized by different
propensities to change and some of them could be defined as stayers, as opposed to movers. A good
transition estimate should be able to differentiate the two clusters and recognize the trajectories of
movers. An inconsistent rating transition model inevitably affects the robustness of capital absorption.
Finally, we question whether the credit risk approximation due to the migration risk could increase the
cyclicality and consequent probability of crisis.

Our paper focuses on the issue especially for SMEs that are not listed or issue bonds to improve
their funding; SMEs play a significant role as key generators of employment and income, and as
drivers of innovation and growth. SMEs constitute about 99% of all euro area firms, and employ
around two-thirds of the workforce, generating approximately 60% of value added. Their economic
contribution is particularly relevant in the Mediterranean countries, particularly Italy, Spain, and
Portugal. In Italy, during the crisis, the uncertainty and the reduced prospects for growth in the real
economy reduced firms’ profitability worsening their creditworthiness. At the same time, in presence
of problems of budget sustainability, Italian banks have become more cautious in granting credit.
This occurred mainly from the end of 2008 till the beginning of 2009 and in the last months of 2011,
when sovereign debt turmoil has worsened the capitalization of banks in the countries most affected.

Regardless of the historical period, SMEs suffer lower credit availability compared with large
companies that usually benefit with the support of skilled experts. As a result, larger firms generally
benefit with favorable credit lines (Lin et al. 2011). Conversely, banks usually suffer higher information
asymmetries when lend to SMEs (Berger and Udell 1995; Degryse and Van Cayseele 2000). Accounting
requirements for SMEs are relatively soft, so their managers have only small incentives to deliver
detailed information (Baas and Schrooten 2006). Due to the relatively limited available information
about SMEs, banks usually are reluctant to provide credit to SMEs and often they shy away from
financing firms directly or indirectly by pricing higher spreads (Ivashina 2009).

Small firms are also vulnerable because of their dependency on financial institutions for external
funding. These firms simply do not have access to public capital markets. As a result, shocks
to the banking system can have a significant impact on the supply of credit to small businesses
(Berger and Udell 2002).

To fill this gap, banks can opt for a relational approach with non-financial firms. The available
studies emphasize the advantages of relationship lending in terms of credit availability and
explicit lending terms and conditions e.g., (Petersen and Rajan 1994, 1995; Berger and Udell 1995;
Cole et al. 2004; Elsas and Krahnen 1998; Harhoff and Körting 1998). Boot (2000) defines RL approach
as an organizational model of relational nature between banks and customers that meet the following
conditions: (i) the bank, in the course of the relationship with customers-firm, makes investments
aimed to the acquisition of soft information, that is its exclusive ownership, functional to a more
accurate definition of the creditworthiness; (ii) the bank recovers these costs realizing profits through
repeated interactions with its customers.

The basic literature on this topic suggests that relationship lending mainly aims to resolve agency
problems and informational asymmetries. Economic literature states that a closer relationship reduces
agency and asymmetric information problems due to the quality of the information flow that occurs
when the relationship is closer. The basic variables generally used in the literature are the duration of
the relationship, distance, frequency of contacts exclusivity, cross-selling, and organizational structure
of the bank. Our paper presents the originality of comparing all these factors simultaneously in order
to assess how they can influence banks’ willingness to grant credit even in times of crisis.

To address these issues in depth, we focus our analysis on transition matrices applied to credit
risk which show the pattern of changes for different borrowers over time from one rating notch to
another. Every row of the matrix can be defined as a set of probabilities describing the likelihood of
credit quality staying unchanged or moving to any of the other rating classes over a given time horizon,
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conditioned to the starting state. In most applications, matrices are based on a Markov transition
probability model.

Nevertheless, the pure Markov approach is unable to model the increasing probability
for companies to stay within a rating class once they have been rated for a long period in
that notch (Lando and Skødeberg 2002; Altman 1998 and Figlewski et al. 2006). Moreover, if
individuals are heterogeneous, migration probabilities may depend on their individual characteristics
(Gómez-González and Kiefer 2009). Finally, transition matrices computed within a pure Markovian
approach, are affected by the presence of an absorbing state that dictates that sooner or later, rated
companies will be attracted by the “black hole” of the default state (Kremer and Weißbach 2013).

Our paper helps overcome all of these drawbacks, as it applies the mover-stayers model to the
estimation of rating migration matrices. Nevertheless the mover-stayer model generalizes the Markov
chain model, and it is based upon two types of agents: (a) the “stayers” who are assumed to remain
in the same category during the period; (b) the “movers” which are expected to move from a rating
class to another with a probability described by a pure Markov chain. The empirical evidence of the
existence of stayers allows us to solve the issue of an absorbing default state for borrowers.

The economic issue about the estimations of transition matrices pertains to the structural impact
of financial crisis on the estimations, and the implications for regulators and credit policy makers.
Since the crisis has potentially changed the patterns of defaults experienced before, all the matrices
were biased by different estimates. Moreover, the regulatory response, particularly the introduction of
the Incremental Risk Charge for the trading book (Basel Committee on Banking Supervision 2009), was
based on the Markov way of estimating the migration risk.

One of the most important goals behind the current debate aimed at revising the Basel Capital
Accord (Basel Committee on Banking Supervision 2011) is to replace the existing risk weights with a
system which more clearly recognizes the differences in risk of various instruments. It is likely that
rating systems will play a larger role in quantifying these differences. This is particularly relevant for
small and medium enterprises (SMEs), without an external rating, that are generally rated by banks’
internal rating models (Angilella and Mazzù 2019). To capture this factor, we apply a statistical model
calibrated to assess SMEs ratings as used by financial institutions.

Our prediction is that when banks accept to lend money incoherently with the borrowers’ trajectory,
this inevitably contributes to worsen asset quality which leads to a hyper-speculative position and,
within an origination-to-distribute model with a large credit risk transfer via securitization, also
to a highly distressed system. Moreover, the application of incorrect transition matrices causes
over-estimated credit risk, a consequent capital misallocation and an inefficient increase, with the
perspective that the loan process will be affected by growing transaction costs and bounded rationality.
Our research question is to prove that this scenario particularly affects small and medium enterprises
search for credit. Our contribution differs from existing research because it estimates how the estimation
of the transition matrices of SMEs in relatively stable periods can be perfected by banks by replacing
the pure Markovian method with the movers-stayers approach.

The remainder of this paper is organized as follows. Section 2 explains how we construct the
Movers Stayers model compared with pure Markov chains that are applied to the transition matrices.
Section 3 describes the database. In Section 4 we present the results. Section 5 concludes.

2. Markov Chains and the Movers Stayers Model

Our study has been designed to compare the credit transition approach based upon the pure
Markovian model against the Movers-Stayers approach in order to verify whether commercial banks
could optimize their credit risk portfolio models when lending to small and medium enterprises.
The research design aims to verify the robustness of the Mover-Stayer model (MS) compared to the
classical Markov Chain (MC), especially when applied to SMEs judgement.
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In the classical Markov Chain (MC), single names are supposed to move from state i to state j with a
given probability pi j = Pr(Xt = j

∣∣∣Xt−1 = i) , depending only on i and j. Individuals are then homogeneous
since they move according to only with their starting state i, and not with some idiosyncratic features.

The Mover-Stayer model (MS) arises from the mixture of two different Markov chains, one of
which degenerates with transition probabilities pi j = δi j, for i, j = 1, . . . , k (the Kronoecker Delta, equal
to 1 of i = j, 0 otherwise). Then individuals are actually divided in two subsets: the set of Movers
(M), following a classical MC with transition probabilities mi j, and the set of Stayers (S), constantly
living in their initial state. This model is introduced in Blumen et al. (1955) with the aim of including
heterogeneity among individuals. Furthermore, MS avoids some problems related to the simple MC,
for example the tendency to underestimate the probability pii to remain in the same state.

For any individual, we consider the probability si to be a Stayer, given the starting state i. Note
that this probability depends again only on i, and not on individual factors. The global transition
probability is then given by:

pi j = si × δi j + (1− si) ×mi j, (1)

where δij is the Kronoecker’a Delta defined before.
The main difference with the MC model relates to the computation of the transition probabilities

after s steps: if pi j
(s) = Pr(Xt = j

∣∣∣Xt−s = i) and P(s) =
{
pi j

(s)
}

is the corresponding matrix, then:

P(s) = Ps (2)

in the classical MC, and
P(s) = S + (I − S) ×Ms (3)

in the MS model (with S = diag{s1, . . . , sk}).
When banks monitor their borrowers, they collect data which are characterized by a continuous

stream over the lending period. Measuring credit transitions in the continuous time has a number of
advantages: (i) it allows a rigorous formulation and testing of assumptions ‘rating drift’ and other
non-Markov type behavior (Altman and Kao 1992a, 1992b; Lucas and Lonski 1992; and Carty and
Fons 1993); (ii) it permits us to formulate and test the dependence on external covariates, and quantify
changes in regimes either due to business cycles (Nickell et al. 2000), or changes in rating policies
(Blume et al. 1998); (iii) it leads to better estimates of rating-based term structure modeling by different
rating classes, especially when their slopes are un-orthodox (Jarrow et al. 1997; Lando 1998; and
Das and Tufano 1996).

In this regard, we note that in the aforementioned models, transitions are allowed to happen only
at equispaced instants of time t, t + 1, t + 2, . . . , t + n. The “continuous-in-time” version of MC (CTMC)
instead permits to model the continuous stream of transitions at any point of time t in R. It means that
pi j is actually a continuous function of t:

pi j(t) = Pr(Xt = j
∣∣∣X0 = i) (4)

for every t in R.
The continuous version of MS (CTMS herein, see for example (Frydman and Kadam 2002) is

defined in the same way: Movers may move at any instant t, and the global transition probabilities are:

pi j = si × δi j + (1− si) ×mi j(t). (5)

The continuous time models are characterized by the existence of a matrix Q describing the rate of
transitions among the states. Q is this generating matrix and satisfies the following properties:

1. qi j ≥ 0 ∀i , j and qii < 0;

2.
∑k

j=1 qi j = 0 ∀i;

3. M(t) = exp(tQ) for all t > 0, where exp(.) stands for the exponential matrix function (Golub and
Van Loan 1996).
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The MS version of this property will be:

P(t) = S + (I − S) × exp(tQ). (6)

As we will see in the subsequent sections, Q is beneficial to obtain additional information about
the persistence of borrowers (single names) in every state.

In our research we focus on the continuous version of MC and MS. In this sense it is worth noting two
different problems affecting such models: embeddability and aliasing (Fougère and Kamionka 2003).
Indeed, from the estimated one-year transition matrix M̂ (for the Movers) we obtain the estimated Q̂
as a solution of M = exp(Q). Two cases may happen:

1. Embeddability: there is no solution Q̂ which also satisfies the aforementioned properties of a
generating matrix. This drawback arises because not every discrete time Markov chain can be
realized as a discretized continuous-time chain (Israel et al. 2001). Hence, it may be impossible
from a one-year transition matrix (for example, if it contains zeros in some of the non-default rows)
to structure a continuous-time chain which has the one-year transition matrix as its “marginal”.

2. Aliasing: more than one continuous time chain exists, from which the discrete process arises.
This drawback is caused by the fact that the equation M = exp(Q) may have different solutions.

If one of the aforementioned problems occurs, we cannot find the right estimates for MS parameters:
in the first case the underlying continuous-in-time model does not exist, and in the second case we
have to choose among several models, all of them fitting the observed data.

In Fougère and Kamionka (2003), a method is proposed to check if embeddability or aliasing arise
from our data. In particular to estimate the parameters s, M and Q they proposed a Bayesian framework,
later re-elaborated in Cipollini et al. (2013), which is based on the Gibbs Sampling algorithm. Shortly,
given the starting values M0, S0, and defining Z as the random variable describing the number of
Stayers in every state, at the l-th iteration the algorithm is based on the following steps more details are
in (Cipollini et al. 2013):

1. it randomly draws Zl from a binomial distribution depending on Sl−1, Ml−1;
2. it updates Sl−1, Ml−1 to Sl, Ml randomly drawing from a probability density function which is a

sort of multivariate Dirichlet distribution, with parameters depending on Zl and on the observed
starting distribution and the total observed number of transition from i to j, for every couple i and j.

The algorithm allows us to estimate also the standard error for Ŝ and M̂, and the matrix Q̂ The
same procedure permits us to estimate the probability that an underlying continuous model exists
(if it is <1 then embeddability may occur) and also the number of existing models (if it is >1 then
aliasing occurs). We will see in the following section that neither embeddability nor aliasing affect
our estimates.

3. Data Description

We study the Italian loan market, as it is peculiar for three reasons: only a small number of very
large companies are rated by rating agencies; Italian GDP is strongly dependent on the output of SMEs;
finally, the high bank dependent liability rate of Italian firms, which enforces credit institutions to
improve their internal rating models.

The database is composed of the balance sheets and income statements recorded for a large set of
Italian corporate firms collected from Aida-Bureau van Dijk. The sample contains 44,192 firms over the
11-year period from 1999 to 2010. We do not incorporate new companies into the sample that are not built
present at the starting period: in this way, we do not allow the cross-section to vary over time. One of
the original contributions of our research is that for the first time, to our knowledge, the issue of pure
Markovian weaknesses has been addressed specifically with regard to small and medium sized companies
that are without an external rating and any bond issuance. This allows us to compare our sample to
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the credit portfolios of retail and commercial banks with an internal rating-based model. Consequently,
we run an internal rating approach to all the companies of the sample for every year of our time series.
Ratings are grouped into six rating notches from A, characterized by the lowest level of probability of
default, to F. The default state is added and quantitative data are collected at the end of the year.

Another key point of our approach is that a sample of small/medium companies rated with
an internal model allows us to control for the issue of movements to the not-rated category. Some
researchers (Carty 1997; Nickell et al. 2000) suggest that issuers who experience a transition to the
not-rated category should be excluded from samples to calibrate the transition matrices. With our
approach theses event do not occur and we can manage a complete credit analysis, keeping the number
of rated companies constant over time.

The design of an internal rating system is an original component of our study because, in contrast
to other research, it offers the opportunity to endogenously assign the probability of default.

Through an extraction of sound firms with the same characteristics (base upon industry, size, time
availability and geographical area) of defaulted companies, we generated 50 matched samples of firms.
Finally, we randomly split each of the 50 samples into equally sized sub samples: a learning sample,
from which we derive the classification model, and a control sample, used to select the best model
(out of sample forecast). Once we have obtained the final database, we compute a set of financial
ratios to cover the most relevant areas of a firm’s activity such as leverage, profitability, and solvency.
Moreover, we proceeded to add Altman et al. (1977) ratios.

The logistic regression (LR) methodology was used to develop the model which not only allows
us to derive models at different points in time before failure to estimate the chances of a firm going
bankrupt, but it also enables the detection of the probability of default as it approaches. To select
the best model, we ran a logistic regression on the selected ratios for each of the 50 learning samples.
Finally, the model with the best classification in the respective control sample was selected.

The main characteristics of the model can be summarized as follows: (i) the discriminatory power
of the model in the control sample to classify the bankrupt firms was around 80%; (ii) the error of
classifying an insolvent firm as financially sound (I type) was less than the error of classifying a sound
firm as insolvent; and (iii) the accuracy ratio, measured with an ROC (receiver operating characteristic)
curve, was more than 85%.

Table 1 shows the absolute and percentage distribution for the entire sample of firms, respectively,
by year and rating class.

Table 1. Companies’ distribution. Absolute and relative values by year (1999–2010) and by rating
classes. Rating classes range from A (lowest probability of default, PDs) to F (highest PDs). To maintain
the total number of firms, equal each year we cumulate defaults which appear to increase over time. By
“default” we mean all the firms in legal bankruptcy.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

A
absolute 19,265 17,950 12,433 13,136 13,194 13,298 13,367 13,136 13,565 16,860 17,297 16,892
relative 43.6% 40.6% 28.1% 29.7% 29.9% 30.1% 30.2% 29.7% 30.7% 38.2% 39.1% 38.2%

B
absolute 7804 7906 9457 9346 9275 9208 9152 8940 8709 8581 7954 8044
relative 17.7% 17.9% 21.4% 21.1% 21.0% 20.8% 20.7% 20.2% 19.7% 19.4% 18.0% 18.2%

C
absolute 8313 8715 10679 9930 9571 9508 9490 9500 9212 7431 6896 6984
relative 18.8% 19.7% 24.2% 22.5% 21.7% 21.5% 21.5% 21.5% 20.8% 16.8% 15.6% 15.8%

D
absolute 7268 7551 9188 8579 8471 8129 7764 7804 7373 5482 5506 5601
relative 16.4% 17.1% 20.8% 19.4% 19.2% 18.4% 17.6% 17.7% 16.7% 12.4% 12.5% 12.7%

E
absolute 975 966 1062 1168 1135 973 950 956 1012 965 1220 1186
relative 2.2% 2.2% 2.4% 2.6% 2.6% 2.2% 2.1% 2.2% 2.3% 2.2% 2.8% 2.7%

F
absolute 567 468 147 270 290 250 263 281 201 317 303 414
relative 1.3% 1.1% 0.3% 0.6% 0.7% 0.6% 0.6% 0.6% 0.5% 0.7% 0.7% 0.9%

Default
absolute 0 636 1226 1763 2256 2826 3206 3575 4120 4556 5016 5071
relative 0.0% 1.4% 2.8% 4.0% 5.1% 6.4% 7.3% 8.1% 9.3% 10.3% 11.4% 11.5%

TOT 44,192 44,192 44,192 44,192 44,192 44,192 44,192 44,192 44,192 44,192 44,192 44,192



Risks 2019, 7, 109 7 of 18

Most of the companies have been rated within the A, B, or C rating notches whereas a lower
percentage falls within the speculative or non-investment grades (i.e., D or below). This fact depends
on the logic applied to fit the rating model. First, the probability of default estimated for firms is
drawn by a model calibrated on this sample and does not come from rating agencies or large banking
institutions, as shown in previous studies1. Moreover, in our study, we refer to not listed companies
that contrast to firms issuing publicly traded debt that are usually rated by the large international
rating agencies.

A company’s score provided by the model cannot be used directly as a probability of default.
For this purpose, we applied cluster analysis and 15 clusters were obtained. We then computed the
expected default frequency (EDF), i.e., the ratio between the number of failed enterprises and the
number of total enterprises within each cluster and, in order to make it easier to reading, we grouped
clusters into a granular rating system with six rating notches by mapping the S&P scale. Mapping is
done looking at the ranges of expected default frequencies derived from our credit risk model and
assigning each of them to one of the classes of S&P master scale. Doing a mechanical comparison
between the S&P scale and the one derived from our analysis, we observe that even the best firms
within of the data set will receive only a BBB+ rating.

As a result of the mapping process, the probabilities of default of our class A do not match with that
of the international rating agencies. Indeed, the lowest probability of default drawn from our model
(0.26 percent) corresponds, approximately, to a BBB+/BBB notch. Similarly, the B risk class includes
more than one notch where the highest probability to default is close to 1 percent, corresponding to a
BB/BB− notch. This fact explains why more than 50% of firms fall within the best two classes. It is
worth highlighting that the distribution of our sample is in line with the real distribution of Italian
small and medium enterprises.

Table 2 reports the evolution of firms leaving their risk rating states each year, those never moving
from the starting state, and defaults over the sample period 2000–2010. Table 2 Panel 1 confirms
the expected monotonic pattern of defaults by rating notches. The dynamic is recorded at year 11
(2010) for the bankruptcy procedures length, even though corporate failures significantly decrease.
This problem does not corrupt the purpose of our analysis, that is unconditioned by the probability
of default. Panel 2 shows the share of firms that at time (t + 1) recorded a change (upgrading or
downgrading) compared to time t. Unsurprisingly, the percentage of shifts across rating notches is not
only high throughout the observed period but it increases as credit quality deteriorates. Finally, Panel
3 shows the percentage of firms for every state that have never changed their rating over the sample
period (potential stayers). The introduction of this category of firms suggests that, in contrast to the
pure Markov chains that implicitly assume the default as an absorbing state, a non-pure Markovian
behaviour in ratings migrations occurs. Modeling the existence of this kind of companies allows us to
manage most of the pure Markovian assumptions implied in the transition matrices usually computed
within external and internal credit or bond portfolio models.

1 In Fei et al. (2012) data are derived from the S&P CreditPro 7.7 database. In Dietsch and Petey (2004), relating to the empirical
studies on asset correlation, data were collected from the internal rating system of Coface for France and Creditform for
Germany. Similarly, in Bandyopadhyay et al. (2007), results were based on CRISIL’s (a lending credit rating agency in India)
annual ratings of long-term bonds. For more details on the process we applied to compute PD, see (Gabbi and Vozzella 2013).
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Table 2. Structure of the firms’ states evolution (relative values). Panel 1 shows the pattern of failed
firms over time. Panel 2 contains the incidence of companies moving from one notch to another. Panel
3 shows the incidence of stayers, that is companies whose rating has never changed over the 11 years.

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11

Panel 1: Failed firms over time by rating class

A 0.0055 0.0045 0.0020 0.0013 0.0015 0.0011 0.0004 0.0014 0.0010 0.0008 0.0002
B 0.0083 0.0072 0.0027 0.0031 0.0049 0.0025 0.0027 0.0044 0.0032 0.0044 0.0005
C 0.0123 0.0114 0.0124 0.0088 0.0101 0.0074 0.0060 0.0107 0.0100 0.0100 0.0013
D 0.0359 0.0335 0.0290 0.0277 0.0290 0.0201 0.0222 0.0237 0.0308 0.0275 0.0047
E 0.0615 0.0621 0.0593 0.0634 0.0793 0.0586 0.0674 0.0868 0.0445 0.0736 0.0082
F 0.0741 0.0855 0.1701 0.1778 0.2483 0.2120 0.1711 0.4199 0.1493 0.3565 0.0099

Panel 2: Firms leaving their states (up and downgrading)

A 0.2309 0.5871 0.1226 0.1411 0.1217 0.1186 0.1282 0.0986 0.0616 0.0861 0.1024
B 0.4231 0.3368 0.3956 0.3808 0.3556 0.3502 0.3596 0.3656 0.4881 0.4192 0.3306
C 0.3920 0.2997 0.4360 0.4037 0.3644 0.3552 0.3399 0.3669 0.6303 0.4427 0.3475
D 0.3361 0.2512 0.3537 0.3146 0.3147 0.3105 0.2727 0.3134 0.6240 0.3320 0.2933
E 0.6190 0.5169 0.5394 0.6352 0.7657 0.6137 0.5554 0.5247 0.6363 0.4369 0.5919
F 0.9573 2.8299 0.3667 0.6724 0.8200 0.5817 0.5409 1.1045 0.3785 0.7690 0.4251

Panel 3: Firms never moving from their starting state (“potential stayers”)

A B C D E F
0.3009 0.0160 0.0206 0.0527 0.0308 0.0000

4. Results

The application of the MS approach to Italian data allows the estimation of model parameters
along with the transition matrix. It is therefore possible to compare the results from both the pure
Markovian chain and Movers-Stayers models. The latter shows its performance in terms of equilibrium
distribution, persistence and mobility measures.

4.1. Estimated Parameters

We apply the Gibbs sampling algorithm to our data with 50,000 iterations. The convergence is
reached by cutting away a burn-in period of 10,000 iterations. The fundamental parameters to be
shown for the MS models are S and Q, since from Q we can obtain the transition matrix M(t) for any
time t. The probability of embeddability results to be 1 for every iteration, as for the number of possible
models (Table 3).

Table 3. Estimated generating matrix for the Markov Chain (MC) model (panel 1) and estimated
generating matrix and probability to be a ‘Stayer’ for the Mover-Stayer (MS) model (panel 2). Panel
1 shows the estimated generating matrix for the Markov Chain model. Panel 2 shows the estimated
generating matrix and the probability to be a ‘Stayer’ according to the Movers-Stayers model.

Panel 1: Estimated generating matrix for the MC model

A B C D E F Default

A −0.1853 0.1376 0.0195 0.0213 0.0022 0.0037 0.0010
Se 0.0012 0.0012 0.0007 0.0005 0.0002 0.0002 0.0001

B 0.2532 −0.5433 0.2776 0.0000 0.0063 0.0031 0.0030
Se 0.0020 0.0031 0.0024 0.0000 0.0005 0.0004 0.0003

C 0.0081 0.2934 −0.5676 0.2461 0.0080 0.0048 0.0072
Se 0.0009 0.0025 0.0032 0.0022 0.0008 0.0005 0.0004

D 0.0182 0.0066 0.2893 −0.4541 0.1010 0.0124 0.0267
Se 0.0007 0.0012 0.0026 0.0030 0.0018 0.0009 0.0007

E 0.0276 0.0360 0.0272 0.6555 −0.9634 0.1525 0.0646
Se 0.0030 0.0038 0.0061 0.0117 0.0129 0.0072 0.0037

F 0.1762 0.0955 0.1402 0.2190 0.3870 −1.3138 0.2959
Se 0.0113 0.0111 0.0135 0.0179 0.0211 0.0301 0.0131

Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 −0.0002
Se 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 3. Cont.

probability of embeddability = 1
number of possible models (aliasing) = 1

Panel 2: Estimated generating matrix and probability to be a Stayers for the MS model

A B C D E F Default

A −0.2978 0.2223 0.0300 0.0346 0.0034 0.0060 0.0016
Se 0.0023 0.0021 0.0011 0.0008 0.0004 0.0004 0.0002

B 0.2721 −0.5661 0.2818 0.0000 0.0065 0.0027 0.0030
Se 0.0022 0.0033 0.0024 0.0000 0.0005 0.0004 0.0003

C 0.0071 0.3015 −0.5828 0.2550 0.0072 0.0048 0.0072
Se 0.0010 0.0026 0.0033 0.0023 0.0009 0.0005 0.0004

D 0.0203 0.0047 0.3075 −0.4824 0.1093 0.0125 0.0280
Se 0.0008 0.0013 0.0029 0.0034 0.0020 0.0009 0.0008

E 0.0297 0.0372 0.0209 0.7006 −1.0165 0.1611 0.0670
Se 0.0034 0.0041 0.0063 0.0131 0.0141 0.0075 0.0039

F 0.1876 0.0855 0.1392 0.2122 0.3971 −1.3175 0.2959
Se 0.0122 0.0110 0.0138 0.0190 0.0221 0.0305 0.0135

Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 −0.0002
Se 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Stayers 0.2625 0.0115 0.0167 0.0424 0.0318 0.0018 0.5015
Se 0.0036 0.0014 0.0016 0.0027 0.0056 0.0019 0.2884

probability of embeddability = 1
number of possible models (aliasing) = 1

4.2. The Estimated Annual Transition Matrix

The second step of the analysis is the estimation of the annual transition matrix given the existence
of the continuous-time Markov chain (Table 4, panel 1) and the annual global matrix obtained from the
Movers-Stayers model (Table 4, panel 2).

Table 4. Estimated annual transition matrices.

Panel 1: Estimated annual transition matrix P̂ for the MC

A B C D E F Default

A 84.46% 10.02% 2.89% 1.94% 0.27% 0.22% 0.19%
B 18.13% 61.68% 16.67% 2.43% 0.49% 0.22% 0.40%
C 3.24% 17.52% 61.28% 15.53% 1.15% 0.35% 0.93%
D 1.92% 3.24% 18.23% 67.70% 5.36% 0.91% 2.64%
E 3.02% 3.12% 7.22% 34.67% 40.79% 5.22% 5.96%
F 10.14% 6.17% 8.93% 15.97% 13.32% 27.92% 17.54%

Default 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Panel 2: Estimated annual transition matrix P̂ for the MS

A B C D E F Default

A 82.62% 11.19% 3.22% 2.19% 0.30% 0.25% 0.22%
B 18.04% 61.63% 16.62% 2.61% 0.49% 0.22% 0.40%
C 3.23% 17.48% 61.33% 15.54% 1.15% 0.35% 0.93%
D 1.92% 3.24% 18.19% 67.76% 5.36% 0.91% 2.63%
E 3.01% 3.11% 7.21% 34.56% 40.98% 5.20% 5.93%
F 10.11% 6.16% 8.92% 15.95% 13.29% 28.06% 17.51%

Default 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

As expected, both credit migration matrices are diagonally dominant implying a relatively large
ratings stability over a one-year horizon. However, the diagonal entries are smaller for speculative grade
ratings than for investment grade ones, confirming that low ratings are more volatile. Unsurprisingly,
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the probability of default increases monotonically as credit quality deteriorates. Also, in the case of
SMEs, our estimates confirm the stylized row monotonicity in rating migrations, as frequently observed
for ratings assigned by rating agencies (Nickell et al. 2000; Bangia et al. 2002; Lando and Skødeberg
2002; and Fuertes and Kalotychou 2007). However, contrary to the values generally observed in the
transition matrices of international rating agencies for listed companies, within both our estimated
matrices, with the exception of the F notch the immediate off-diagonal elements are generally larger for
upgrades than downgrades. Moreover, both estimated annual transition matrices MC and MS, suggest
a non-zero probability to default for “A” firms however this is approximately 0.20 percent higher than
of that commonly found by rating agencies. This result is consistent with the fact that our notch “A” is
PD-equivalent to BBB in S&Ps scale where the transition probability to default is substantially similar.

4.3. Comparison between the Markov Chain and Movers Stayers Models

Using Q̂ and Ŝ we are allowed to estimate the annual rating distribution for firms over the period
1999–2010. The comparison between estimated and observed distributions (Table 5) allows us to choose
the suitable model to adjust the pure Markovian limits. The estimated distribution for MC and MS is
respectively given by:

MC : d̂t = d1999 × P̂(t)MC,
MS : d̂t = d1999 ×

(
Ŝ +

(
I − Ŝ

)
× M̂(t)MS

)
,

(7)

where d̂t and d1999 are respectively the estimated distribution for any time t and the observed distribution
in the year 1999 (which corresponds to the starting distribution, being 1999 the first observed year).

Table 5. Estimated distribution for the MC and MS models.

Panel 1: Estimated distribution for the MC model

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

A 41.14% 39.32% 37.91% 36.77% 35.82% 35.01% 34.31% 33.68% 33.11% 32.58% 32.10%
B 19.24% 19.97% 20.27% 20.35% 20.30% 20.18% 20.02% 19.83% 19.64% 19.43% 19.23%
C 19.00% 19.26% 19.45% 19.57% 19.61% 19.59% 19.53% 19.43% 19.30% 19.16% 19.01%
D 16.30% 16.21% 16.15% 16.11% 16.07% 16.03% 15.97% 15.90% 15.82% 15.72% 15.61%
E 2.37% 2.38% 2.36% 2.34% 2.33% 2.32% 2.31% 2.30% 2.29% 2.27% 2.26%
F 0.82% 0.70% 0.67% 0.65% 0.65% 0.64% 0.64% 0.63% 0.63% 0.62% 0.62%

Default 1.12% 2.17% 3.19% 4.21% 5.22% 6.23% 7.23% 8.23% 9.22% 10.21% 11.18%

Panel 2: Estimated distribution for the MS model

A 40.32% 38.17% 36.68% 35.58% 34.74% 34.06% 33.50% 33.01% 32.59% 32.21% 31.85%
B 19.73% 20.54% 20.77% 20.72% 20.55% 20.32% 20.07% 19.80% 19.54% 19.27% 19.01%
C 19.14% 19.52% 19.79% 19.92% 19.94% 19.88% 19.77% 19.62% 19.44% 19.25% 19.04%
D 16.45% 16.46% 16.46% 16.46% 16.44% 16.40% 16.33% 16.24% 16.12% 16.00% 15.85%
E 2.39% 2.40% 2.39% 2.38% 2.37% 2.36% 2.35% 2.34% 2.32% 2.30% 2.28%
F 0.84% 0.72% 0.68% 0.67% 0.66% 0.65% 0.65% 0.64% 0.63% 0.63% 0.62%

Default 1.13% 2.19% 3.23% 4.27% 5.30% 6.32% 7.34% 8.35% 9.35% 10.35% 11.33%

Re-proposing (and re-elaborating) the method introduced in Frydman et al. (1985), we use the
estimated distributions to choose between MC and MS. Considering the 1999 observed distribution
among rating notches as starting probability distribution, and setting iteratively t = 2000, 2001, . . . ,
2010, we are able to calculate the expected distribution of firms provided by both MC and MS for every
year 2000, . . . , 2010, and to compare it with the corresponding empirical distribution. Indeed, we are
able to evaluate the error affecting our estimates by means of the following formula:

errt =

∣∣∣∣∣∣d̂t − dobs
t

∣∣∣∣∣∣∣∣∣∣∣∣dobs
t

∣∣∣∣∣∣ (8)
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where the symbol ||·|| stands for the vectorial norm defined by ||v|| =
√

v2
1 + . . .+ v2

k for every

k-coordinates vector v = (v1, . . . , vk). errt represents a sort of distance between the observed and
the estimated distributions for every year or, equivalently, the percentage error caused by using the
estimated distribution at time t (d̂t) instead the observed distribution at the same time (dobs

t ).
Table 6 shows the estimation errors for the estimated distributions of firms among the rating

notches, computed with the Markov chain assumption and with the Movers-Stayers model.

Table 6. Errors evaluated on the estimated frequency distributions among rating notches, provided by
Markov Chain (MC) and Movers-Stayers (MS) models.

Transition Matrix
Estimation Model 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

MC 3.58 25.49 18.21 15.36 12.80 10.62 10.36 6.93 12.94 16.22 14.75
MS 4.07 23.14 15.64 12.85 10.48 8.57 8.59 5.51 14.07 16.99 15.29

Error gap −0.49 2.35 2.57 2.51 2.32 2.05 1.77 1.42 −1.13 −0.77 −0.54

The mean error is 13.39 for MC and 12.29 for MS. The latter’s dominance deteriorates after the
beginning of the crisis (from 2007 to 2010), when MS errors are 0.255 larger than MC. This is due to the
increased instability of the ‘stayers’ structure because of the crisis shock and the unexpected increase of
default probabilities. Nevertheless, we observe that the error gap was particularly high in 2008 (1.13)
and that this reduces progressively when the MS model appears to become more reliable. Since MS,
like all the Markov models, suffers when there is a huge shock in credit markets and a turning point in
credit cycles given the lack of temporal homogeneity, their application in these cases could deviate
from picturing the transition risk as is.

4.4. The Equilibrium Distribution

When time t tends to infinity, individuals reach the equilibrium distribution among the states,
given that there exists the limit for t→∞ in Equation (7). Table 7 enlightens the implications of the
absorbing state, which in the case of MC matrices attracts all the existing firms to a default state.

Table 7. Estimated equilibrium distributions (percentages). The table shows the probability to be
attracted in the default state. In the case of the MS model, we observe that stayer companies remain
stable within their rating notch.

A B C D E F Default

MC 0.00 0.00 0.00 0.00 0.00 0.00 100.00
MS 11.78 0.52 0.64 0.97 0.11 0.02 85.96

The equilibrium distribution highlights an important drawback of the MC model: since “default”
is by definition an absorbing state (at least for companies), estimating transition matrices with the
pure MC model, any firm will default sooner or later. On the other hand, the MS model facilitates the
appraisal of a cluster of firms (the Stayers), which are unlikely to fail. The same fact is supported by
Table 8, containing the last column of the transition matrix for different values of t. The distribution
of stayers is determined by the credit mapping by rating notch, which is highly concentrated within
the A-class. Since Table 8 is directly generated by Equation (5) when t→∞, this means that the real
credit state as observed over the period is coherently represented in the long run.

When the equilibrium distribution is run for all the rating classes, with t ranging from 1 to 1000
periods (Table 8), we can appreciate how the deterioration process, particularly for the best quality
borrowers, is differently designed. The adoption of MC models implies that lenders should be very
careful to maintain long-term investments, and mortgages (say between 20 and 50 years) are scarcely
“rational”, even when supplied to very good firms.
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Table 8. Estimated transition probabilities to default. Comparison of MC and MS models with
1 < t < 1000 (% values).

Time 1 2 3 4 5 10 20 50 100 500 1000

A
MC 0.19 0.53 0.98 1.53 2.15 6.1 15.33 39.28 65.18 99.59 100
MS 0.22 0.58 1.05 1.6 2.23 5.94 13.94 33.24 52.61 73.64 73.75

B
MC 0.4 0.96 1.66 2.47 3.34 8.15 17.69 41.03 66.19 99.6 100
MS 0.4 0.99 1.75 2.63 3.6 9.01 19.8 45.33 70.92 98.7 98.85

C
MC 0.93 2.11 3.4 4.71 6.01 11.91 21.62 43.91 67.84 99.62 100
MS 0.93 2.13 3.44 4.79 6.13 12.35 23.01 47.36 71.73 98.19 98.33

D
MC 2.63 5.08 7.27 9.2 10.93 17.6 27.07 47.86 70.1 99.65 100
MS 2.63 5.05 7.2 9.1 10.79 17.44 27.39 49.51 71.63 95.63 95.77

E
MC 5.96 10.3 13.36 15.64 17.47 23.88 32.65 51.85 72.39 99.68 100
MS 5.93 10.2 13.19 15.42 17.23 23.67 32.99 53.63 74.28 96.68 96.81

F
MC 17.53 23.77 26.65 28.42 29.75 34.54 41.8 58.36 76.12 99.72 100
MS 17.51 23.79 26.73 28.55 29.94 35.07 43.15 61.47 79.81 99.71 99.82

4.5. Time Persistence

One of the assumptions of the pure MC approach is that rating transitions in t only depend on the
t − 1 state which presumes that there is no path dependence over the long period. In our study we find
out whether, to the contrary, ratings follow a process whose direction could be differently explained
with the purpose to optimize the probability estimates of transition changes.

The analysis is based on the notion of persistence, defined as the random variable describing the
time that individuals spend in every state. It is possible to prove that a single company following a pure
MC process and being in i at time t, will leave such state after a random time T, which is distributed as
an exponential r, v, with parameter −qii (Grimmett et al. 1992). This means that the probability to leave
i after a time T > s is given by exp(−qiis ). From the properties of the exponential distribution, the mean
persistence time in i is given by − 1

qii
.

The difference of time persistence within rating notches gives rise to the question about the
existence of a path which is designed over time which contradicts the pure Markovian assumption
that any rating movement does not depend on time, but on the previous observation. We evaluate the
upgrading probability. In other terms, we estimate the probability for firms being in a rating lower than
A in 1999, to change their credit quality and to become classified in better rating notches (Figure 1).

Unsurprisingly, the upgrading probability is much higher the lower the start rating is. The figure
suggests that, starting from rating E or F, the probability of a firm to reach a better state is around 70
and 75 percent after five years respectively, upon which it tends to be smooth. This is a non-trivial
finding. It means that firms have a higher probability to improve their credit quality in the first phases
of their life. In particular, companies rated E and F are expected to improve with a high probability
(around 70%) within their 4–5 first years. Afterwards, the probability declines. This result underlines
the issue about the pure Markovian hypothesis, which is, in this case, adequately solved applying the
MS approach particularly for the existence of the absorbing state.
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4.6. Mobility Measurements

In Section 4.5, we showed that the way ratings change over time is not adequately captured by the
pure MC model. In order to measure this more fittingly, first the wavering of single firms and, second
the prevailing trajectory towards an upgrade or a downgrade rating notch, we introduce mobility
indices, defined as functions assigning to every transition matrix P a real value I(P). This addresses the
rating dynamics which transition matrices should exhibit. The aim is to obtain a univariate measure
allowing us to compare two different matrices. In this sense, the lower is I(P), the lower the mobility of
individuals is which move according to P.

We apply two mobility indices: the trace index, proposed in Shorrocks (1978) divided by k−1
k to

obtain values in [0, 1], defined in Equation (10):

Itr(P) =
1
k

k−
k∑

i=1

pii

 (9)

and the directional index, introduced in Ferretti and Ganugi (2013) as in Equation (11):

Idir(P) =
1
Z

k∑
i=1

ωi

k∑
j=1

pi j·sign( j− i)·v
(∣∣∣ j− i

∣∣∣) (10)

where (ω1, . . . , ωk) is a vector of weights to be attributed to the states (labeled with 1, . . . , k), sign(x)
is the sign function, equal to −1 if x < 0, +1 if x > 0 and 0 if x = 0, and ν is a function to measure the
magnitude of the jumps from the i-th to the j-th state, Z is a normalizing constant to have values among
−1 and +1. Since the directional index is defined supposing that states are ordered from the worst to
the best ones, while ratings are in the opposite order, we have changed the sign of the index.

The trace index and the directional index measure two different features of mobility: the former
one assumes values in [0, 1] and describes the turbulence of individuals, whereas the latter also
measures the prevailing direction towards an upgrade or a downgrade of firm ratings.
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Another important feature of both the aforementioned indices is that they can be decomposed as
a sum:

I(P) =
k∑

i=1

ωiIi(P) (11)

where Ii(P) measures the mobility of individuals starting from the i-th state (and ωi = 1/k for the trace
index), providing then additional information about the whole mobility.

In Table 9 we show the 1-year (panel 1) and 10-year (panel 2) transition matrices for both the
Movers and the whole set of firms estimated with the MS model. We also exhibit the results of the
global mobility indices. Firstly, we evaluate the mobility for every state, and the same indices on the
whole matrices (setting (ω1, . . . , ωk) = d1999 and v

(∣∣∣ j− i
∣∣∣) = ∣∣∣ j− i

∣∣∣ for the directional index).

Table 9. Mobility indices by starting rating and global mobility indices.

Panel 1: Mobility indices by starting rating (and global), for the annual estimated transition matrices
M̂ and P̂ (percentages)

Rating A B C D E F Default

Idir
(
M̂

)
−6.32 −1.65 0.68 5.35 13.76 25.98 0

Itr
(
M̂

)
23.56 38.82 39.33 33.66 60.96 72.07 0

Idir
(
P̂
)

−4.66 −1.63 0.67 5.12 13.32 25.93 0

Itr
(
P̂
)

17.38 38.37 38.68 32.24 59.03 71.94 0

Global
Mobility
Indices

Idir
(
M̂

)
−2.54

Itr
(
M̂

)
38.34

Idir
(
P̂
)

−1.67
Itr

(
P̂
)

36.8

Panel 2: Mobility indices by starting rating (and global), for the 10-years estimated transition matrices
M̂10 and ˆP10 (percentages)

Rating A B C D E F Default

Idir
(
M̂

)
−29.36 −17.42 −3.11 18.43 31.89 37.23 0

Itr
(
M̂

)
72.20 77.06 77.56 80.74 97.32 99.42 0

Idir
(
P̂
)

−21.65 −17.21 −3.06 17.65 30.88 37.17 0

Itr
(
P̂
)

53.25 76.17 76.28 77.32 94.24 99.25 0

Global
Mobility
Indices

Idir
(
M̂10

)
−16.71

Itr
(
M̂10

)
72.04

Idir
(

ˆP10
)

−12.56
Itr

(
ˆP10

)
68.07

The mobility of Movers is always higher (in absolute value) than the whole mobility (since Stayers
tend to slow down the movements). We also note that the turbulence in the dynamics of firms is quite
high, but the global directional mobility tends to be negative. This means that, on average, companies
are more likely to be downgraded. This is true not only for A-rated companies, but also for firms that
were originally B- and C-rated.

5. Conclusions

Through conducting the research in this paper, we reach two relevant conclusions. First, we find
that the rating trajectory cannot be estimated with a pure Markov chain without incurring the risk of
an absorbing state which stands for a bankruptcy. Therefore, banks are over-estimating their credit risk
resulting in excessive regulatory capital. This may have important macroeconomic implications since
holding a large capital buffer is costly for banks and this in turn influences their ability to lend. This
conclusion is particularly true during economic downturns with the consequence of exacerbating the
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cyclicality in risk capital which therefore further aggravates economic conditions. These implications
are confirmed also when we compared the pure Markov chain with the Mover-Stayer model. Our
analysis shows that not only is the default not an absorbing state, as assumed in the pure Markov chain
model, but also that the equilibrium distribution could be more adequately estimated through the MS
approach. Our analysis supports the idea that the MS approach, on average, is more efficient because
it provides a lower error than the Markov chain method. The results suggest that separate transition
matrices should be applied for small and medium enterprises, and that credit risk is statistically and
economically overestimated by the pure MC approach relative to the MS one. This implies that, if
employed for SMEs, the capital charges prescribed by the Markov chain approach are higher than
that drawn from the MS model, suggesting an increase of cyclicality especially during downturns.
Promoting the estimation of transition matrices through the MS method should be encouraged, in
order to adjust the procyclicality induced by the use of point-in-time ratings. In this light, we note that
the relevant results we obtain through the MS model are a first step in this research field and they are
not exhaustive. We indeed recognize that personal attributes such as the economic sectors in which
firms operate may be relevant in explaining, for example, the probability to be a Stayer. Nevertheless,
the resulting model is not trivial from a methodological point of view, and it has been only recently
solved by Frydman and Matuszyk (2018) and Frydman et al. (2019). Further research on this topic will
be relevant for future developments.

Second, we show that the immediate off-diagonal elements of the transition matrices for SMEs
confirm the ineffectiveness of the naïve transition matrix to estimate credit migration when we refer to
small and medium firms. Indeed, upgrades are generally larger than downgrades, suggesting greater
capital requirements in a one-year horizon when naïve transition matrices are applied. The mobility
indexes outcomes show that in the case of SMEs, the trace index increases along with the probability of
default, both when we take into consideration only movers and when we add stayers. These findings
confirm that asset correlations increase in the worst rating notches (Gabbi and Vozzella 2013). When
designed by regulators, the supervisory formula for concentration risk aimed to combat pro-cyclicality
with a negative link between asset correlations and probabilities of default. Our paper shows that this
mis-calibration could increase the pro-cyclical impact of the use of the wrong transition matrices. The
policy implication of our study is that regulators should take into consideration alternative approaches
to pure Markovian solutions for portfolio models.

Our findings also explain part of the misevaluation of borrowers and the actual relevant weight of
non-performing loans within banking portfolios: in stable periods, the approximation of pure-Markov
transition matrices increases the transaction costs and information costs involved with the lending
activity. Transaction costs include imperfect foresights, bounded rationality and their economic
consequences. The Mover-Stayers approach helps to reduce the rough calculation of historical
movements of borrowers’ rating and, consequently, the efficacy of their allocative process, and the
expected industry stability with a better capital absorption (Gabbi and Levich 2019). It remains to
be analyzed how MS behave in shock phases. Our results show that a structural shock in the credit
market can alter the predictive capacity of the migration of MS models companies, with the risk of
reducing the quality of the portfolio models that adopt them. As proved by Fei et al. (2012) and
Boreiko et al. (2018), estimations through the cycles can provide interesting outcomes.
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