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Abstract: We propose an alternative approach to the modeling of the positive dependence between
the probability of default and the loss given default in a portfolio of exposures, using a bivariate
urn process. The model combines the power of Bayesian nonparametrics and statistical learning,
allowing for the elicitation and the exploitation of experts’ judgements, and for the constant update of
this information over time, every time new data are available. A real-world application on mortgages
is described using the Single Family Loan-Level Dataset by Freddie Mac.
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1. Introduction

The ambition of this paper is to present a new way of modeling the empirically-verified positive
dependence between the Probability of Default (PD) and the Loss Given Default (LGD) using a
Bayesian nonparametric approach, based on urns and beta-Stacy processes (Walker and Muliere 1997).
The model is able to learn from the data, and it improves its performances over time, compatibly with
the machine/deep learning paradigm. Similarly to the recent construction of Cheng and Cirillo (2018)
for recovery times, this learning ability is mainly due to the underlying urn model.

The PD and the LGD are two fundamental quantities in modern credit risk management. The PD
of a counterparty indicates the likelihood that such a counterparty defaults, thus not fulfilling its debt
obligations. The LGD represents the percent loss. In terms of the notional value of the exposure
known as the Exposure-at-Default or EAD, one actually experiences when a counterparty defaults
and every possible recovery process is over. Within the Basel framework (BCBS 2000, 2011), a set of
international standards developed by the Basel Committee on Banking Supervision (BCBS) to harmonize
the banking sector and improve the way banks manage risk, the PD and the LGD are considered pivotal
risk parameters for the quantification of the minimum capital requirements for credit risk. In particular,
under the so-called Internal Rating-Based (IRB) approaches, both the PD and the LGD are inputs of the
main formulas for the computation of the risk-weighted assets (BCBS 2005, 2006).

Surprisingly, in most theoretical models in the literature, and most of all in the formulas suggested
by the BCBS, the PD and the LGD are assumed to be independent, even though several empirical
studies have shown that there is a non-negligible positive dependence between them (Altman 2006;
Altman et al. 2001; Frye 2005; Miu and Ozdemir 2006; Witzany 2011). Borrowing from the terminology
developed in the field of credit valuation adjustment (CVA) (Hull 2015), this dependence is often
referred to as wrong-way risk (WWR). Simply put, WWR is the risk that the possible loss generated by

Risks 2019, 7, 76; doi:10.3390/risks7030076 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0002-7711-049X
http://dx.doi.org/10.3390/risks7030076
http://www.mdpi.com/journal/risks
https://www.mdpi.com/2227-9091/7/3/76?type=check_update&version=2


Risks 2019, 7, 76 2 of 21

a counterparty increases with the deterioration of its creditworthiness. Ignoring this WWR can easily
lead to an unreliable estimation of credit risk for a given counterparty (Witzany 2011).

The link between the PD and the LGD is particularly important when dealing with mortgages,
as shown by the 2007–2008 financial crisis, which was triggered by an avalanche of defaults in the US
subprime market (Eichengreen et al. 2012), with a consequent drop in estate prices, and thus in the
recovery rates of the defaulted exposures (Hull 2015). The financial crisis was therefore one of the
main drivers for the rising interest in the joint modeling of PD and LGD, something long ignored both
in the academia and in the practice, including regulators. In the paper, we show how the model we
propose can be used in the field of mortgages with a real-world application.

The first model implicitly dealing with the dependence between the PD and the LGD was Merton’s
one. In his seminal work, Merton (1974) introduced the first structural model of default, developing
what we can consider the Black and Scholes model for credit risk. In that model, the recovery rate
RR (with RR = 1− LGD), conditionally on the credit event, follows a lognormal distribution (Resti
and Sironi 2007), and it is negatively correlated with the PD. While not consistent with later empirical
findings (Altman et al. 2005; Jones et al. 1984) on WWR, Merton’s model remained for long time the
only model actually dealing with this problem.

Many models have been derived from Merton’s original construction, both in the academic
and in the industrial literature, think for example of Geske (1977); Kim et al. (1993); Longstaff and
Schwartz (1995); Nielsen et al. (2001) and Vasicek (1984). During the 1990s, on the wake of the—at
the time—forthcoming financial regulations (Basel I and later Basel II), several new approaches were
introduced, like the so-called reduced-form family (Duffie 1998; Duffie and Singleton 1999; Lando 1998)
and the VaR (Value-at-Risk) methodology (JP Morgan 1997; Wilde 1997; Wilson 1998). However, and
somehow surprisingly, the great majority of these models, while solving other problems of Merton’s
original contribution—like the fact that default could only happen at predetermined times—often
neglected the dependence between PD and LGD, sometimes even explicitly assuming independence,
as in the Credit Risk Plus case (Wilde 1997), where LGD is mainly assumed deterministic.

In the new century, given the rising interest of regulators and investors, especially after the 2007
crisis, a lot of empirical research has definitely shown the positive dependence—in most cases, positive
correlation, hence linear dependence–between PD and LGD. For example, Frye (2000) proposed a
standard one-factor model, becoming a pivotal reference in the modeling of the WWR between PD
and LGD. The paper focuses on the PD and the Market LGD of corporate bonds on a firm level,
assuming dependence on a common systematic factor, plus some other independent idiosyncratic
components to deal with marginal variability.

Witzany (2011) moved forward, proposing a two-factor model on retail data, looking at the overall
economic environment as the source of dependence between PD and LGD. Then, for the LGD only,
a second component accounts for the conditions of the economy during the workout process. Other
meaningful constructions in the common factor framework are Hamerle et al. (2011) and Yao et al. (2017).
The latter is also interesting for the literature review, together with Altman et al. (2005).

Using a two-state latent variable construction, Bruche and Gonzalez-Aguado (2010) introduced
another valuable model. The time series of the latent variable is referred to as credit cycle, and it
is represented by a simple Markov chain. Interestingly, this credit cycle variable proves to be able
to better capture the time variation in the joint distribution of the PD and the LGD, with respect to
observable macroeconomic factors.

Notwithstanding the importance of the topic, and despite the notable efforts cited above,
it seems that there is still a lot to do in the modeling of the PD/LGD dependence, which remains
a yet-to-be-developed part of credit risk management; see the discussions in Altman (2006) and
Maio (2017), and the references therein.

Our contribution to this open problem is represented by the present paper, which finds its root in
the recent literature about the use of urn models in credit risk management (Amerio et al. 2004; Cheng
and Cirillo 2018; Cirillo et al. 2010; Peluso et al. 2015), and more in general in the Bayesian modeling



Risks 2019, 7, 76 3 of 21

of credit risk—see, for example, Baesens et al. (2016); Cerchiello and Giudici (2014); Giudici (2001);
Giudici et al. (2003); McNeil and Wendin (2007).

For the reader’s convenience, we here summarise the main findings of the paper:

• An intuitive bivariate model is proposed for the joint modeling of PD and LGD. The construction
exploits the power of Polya urns to generate a Bayesian nonparametric approach to
wrong-way risk. The model can be interpreted as a mixture model, following the typical credit
risk management classification (McNeil et al. 2015).

• The proposed model is able to combine prior beliefs with empirical evidence and, exploiting the
reinforcement mechanism embedded in Polya urns, it learns, thus improving its performances
over time.

• The ability of learning and improving gives the model a machine/deep learning flavour. However,
differently from the common machine/deep learning approaches, the behavior of the new model
can be controlled and studied in a rigorous way from a probabilistic point of view. In other words,
the common “black box” argument (Knight 2017) of machine/deep learning does not apply.

• The possibility of eliciting an a priori allows for the exploitation of experts’ judgements, which can
be extremely useful when dealing with rare events, historical bias and data problems in general
(Cheng and Cirillo 2018; Derbyshire 2017; Shackle 1955).

• The model we propose can only deal with positive dependence. Given the empirical literature,
this is not a problem in WWR modeling; however, it is important to be aware of this feature,
if other applications are considered.

The paper develops as follows: Section 2 is devoted to the description of the theoretical framework
and the introduction of all the necessary probabilistic tools. In Section 3, we briefly describe the Freddie
Mac data we then use in Section 4, where we show how to use and the performances of the model,
when studying the dependence between PD and LGD for residential US mortgages. Section 5 closes
the paper.

2. Model

The main idea of the model we propose was first presented in Bulla (2005), in the field of survival
analysis, and it is based on powerful tools of Bayesian nonparametrics, like the beta-Stacy process
of Walker and Muliere (1997). Here, we give a different representation in terms of Reinforced Urn
Processes (RUP), to bridge towards some recent papers in the credit risk management literature like
Peluso et al. (2015) and Cheng and Cirillo (2018).

2.1. The Two-Color RUP

An RUP is a combinatorial stochastic process, first introduced in Muliere et al. (2000). It can be
seen as a reinforced random walk over a state space of urns, and depending on how its parameters
are specified, it can generate a large number of interesting models. Essential references on the topic
are (Muliere et al. 2000, 2003) and Fortini and Petrone (2012). In this paper, we need to specify an
RUP able to generate a discrete beta-Stacy process, a particular random distribution over the space of
discrete distributions.

Definition 1 (Discrete beta-Stacy Process (Walker and Muliere 1997)). A random distribution function F
is a beta-Stacy process with jumps at j ∈ N0 and parameters {αj, β j}j∈N0 , if there exist mutually independent
random variables {Vj}j∈N0 , each beta distributed with parameters (αj, β j), such that the random mass assigned
by F to {j}, written F({j}), is given by Vj ∏i<j(1−Vi).

Consider the set of the natural numbers N0, including zero. On each j ∈ N0, place a Polya urn
U(j) containing balls of two colors, say blue and red, and reinforcement equal to 1. A Polya urn is
the prototype of urn with reinforcement: every time a ball is sampled, its color is recorded, and the
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ball is put back into the urn together with an extra ball (i.e., the reinforcement) of the same color
(Mahmoud 2008). This mechanism clearly increases the probability of picking the sampled color again
in the future. We assume that all urns U(j) contain at least a ball of each color, but their compositions
can be actually different. As the only exception, the urn centered on 0, U(0), only contains blue balls,
so that red balls cannot be sampled.

Let n = 0, 1, 2, . . . represent time, which we take to be discrete. A two-color reinforced urn process
{Zn}n≥0 is built as follows. Set Z0 = 0 and sample urn U(0): given our assumptions, the only color
we can pick is blue. Put the ball back into U(0), add an extra blue ball, and set Z1 = 1. Now, sample
U(1): this urn contains both blue and red balls. If the sampled ball is blue, put it back, add an extra
blue ball and set Z2 = 2. If the sampled balls is red, put it back in U(1), add an extra red ball and set
Z2 = 0. In general, the value of Zn will be decided by the sampling of the urn visited by Zn−1. If a blue
ball is selected at time n− 1, then Zn = Zn−1 + 1, otherwise Zn = 0. Blue balls thus make the process
{Zn}n≥0 go further in the exploration of the natural numbers, while every red ball makes the process
restart from 0.

If one is interested in defining a two-color RUP only on a subset of N0, say {0, 1, . . . , k}, it is
sufficient to set to zero the number of blue balls in all urns U(k), U(k + 1), U(k + 2) and so on.
For the rest, the mechanism stays unchanged.

It is not difficult to verify that, if all urns U(j), j = 1, 2, . . . , contain a positive number of red balls,
the process {Zn}n≥0 is recurrent, and it will visit 0 infinitely many times for n→ ∞.

A two-color recurrent RUP clearly generates sequences of nonnegative natural numbers,
like the following

{Z0, Z1, Z2, Z3, Z4, Z5, Z6, . . . , Z10, Z11, Z12, . . . , Z15, . . . } = {0, 1, 2︸ ︷︷ ︸
Block 1

, 0, 1, 2, 3, . . . , 7︸ ︷︷ ︸
Block 2

, 0, 1, . . . , 4︸ ︷︷ ︸
Block 3

, . . . }. (1)

These sequences are easily split into blocks, each starting with 0, as in Equation (1). In terms of
sampling, those 0s represent the times the process has been reset after the extraction of a red ball from
the urn centered on the natural number preceding that 0. Notice that by construction no sequence can
contain two contiguous 0s. In the example above, the process is reset to 0 after the sampling of U(2) in
n = 2, U(7) in n = 10, and U(4) in n = 15. Muliere et al. (2000) have shown that the blocks–or the
0-blocks in their terminology–generated by a two-color RUP are exchangeable, and that their de Finetti
measure is a beta-Stacy process.

Exchangeability means that, if we take the joint distribution of a certain number of blocks,
this distribution is immune to a reshuffling of the blocks themselves, i.e., we can permute them,
changing their order of appearance, and yet the probability of the sequence containing them will be the
same; for instance P(Block 1, Block 2, Block 3) = P(Block 1, Block 3, Block 2) in Equation (1). Notice
that the exchangeability of the blocks does not imply the exchangeability of the single states visited;
in fact, one can easily check that each block constitutes a Markov chain. This implies that the RUP can
be seen as a mixture of Markov chains, while the sequence of visited states is partially exchangeable in
the sense of Diaconis and Freedman (1980).

Given their exchangeability, de Finetti’s representation theorem guarantees that there exists a
random distribution function F such that, given F, the blocks generated by the two-color RUP are
i.i.d. with distribution F. Theorem 3.26 in Muliere et al. (2000) tells us that such a random distribution
is a beta-Stacy process with parameters {αj, β j}j∈N0 , where αj and β j are the initial numbers of red,
respectively blue, balls in urn U(j), prior to any sampling. In other words, F(0) = 0 with probability 1
and, for j ≥ 1, the increment [F(j)− F(j− 1)] has the same distribution as Vj ∏

j−1
i=1(1−Vi), where {Vj}

is a sequence of independent random variables, such that Vj ∼ beta
(
αj, β j

)
. For a reader familiar

with urn processes, each beta distributed Vj is clearly the result of the corresponding Polya urn U(j)
(Mahmoud 2008).

Let B1, B2, . . . , Bm be the first m blocks generated by a two-color RUP {Zn}n≥0. With Ti, we indicate
the last state visited by {Zn} within block i. Coming back to Equation (1), we would have T1 = 2,
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T2 = 7 and T3 = 4. Since the random variables T1, . . . , Tm are measurable functions of the exchangeable
blocks, they are exchangeable as well, and their de Finetti measure is the same beta-Stacy governing
B1, B2, . . . , Bm. In what follows, a sequence {Ti}m

i=1 is called LS (Last State) sequence. In terms of
probabilities, for T1, . . . , Tm, one can easily observe that

P[T1 = j] =
αj

αj + β j

j−1

∏
i=0

βi
αi + βi

, (2)

and, for m ≥ 1,

P[Tm+1 = j|T1, T2, . . . , Tm] =
αj + rj

αj + β j + rj + sj

j−1

∏
i=0

βi + si
αi + βi + ri + si

, (3)

while

P[Tm+1 ≥ j|T1, T2, . . . , Tm] =
j

∏
i=0

βi + si
αi + βi + rj + si

, (4)

where rj = ∑m
i=1 1{Ti=j} and sj = ∑m

i=1 1{Ti>j}. From Equations (3) and (4), we see that, every time it is
reset to 0 creating a new block, an RUP remembers what happened in the past thanks to the Polya
reinforcement mechanism of each visited urn. The process thus learns, combining its initial knowledge,
as represented by the quantities {αj, β j}j∈N0 , with the additional balls that are introduced in the system,
to obtain the predictives in Equations (3) and (4).

Regarding the initial knowledge, notice that, when we choose the quantities αj and β j, for j =
0, 1, 2, . . . , from a Bayesian point of view, we are eliciting a prior. In fact, by setting

αj = cj(G({j}) and β j = cj

(
1−

j

∑
i=0

(G({i})
)

, j ∈ N0, (5)

we are just requiring E[F({j})] = G({j}), so that the beta-Stacy process F–a random distribution on
discrete distributions–is centered on the discrete distribution G, which we guess may correctly describe
the phenomenon we are modeling. The quantity cj ≥ 0 is called strength of belief, and it represents
how confident we are in our a priori. Given a constant reinforcement, as the one we are using here
(+1 ball of the same color), a cj > 1 reduces the speed of learning of the RUP, making the evidence
emerging from sampling less relevant in updating the initial compositions. In other terms, cj helps in
controlling the stickiness of F({j}) to G({j}). For more details, we refer to (Muliere et al. 2000, 2003).

2.2. Modeling Dependence

Consider a portfolio P containing m exposures. For i = 1, . . . , m, let Xi and Yi represent the PD,
respectively the LGD, of the i-th counterparty, when discretised and transformed into levels, in a
way similar to what Cheng and Cirillo (2018) propose in their work. In other terms, one can split
the PD and the LGD into l = 0, . . . , L levels, such that for example l = 0 indicates a PD or LGD of
0%, l = 1 something between 0% and 5%, l = 2 a quantity in (5%, 17%], and so on until the last
level L. The levels do not need to correspond to equally spaced intervals, and this gives flexibility
to the modeling. Clearly, the larger L, the finer the partition we obtain. As we will see in Section 4,
convenient ways of defining levels are through quantiles, via rounding and, when available, thanks to
experts’ judgements.

As observed in Altman et al. (2005), discretisation is a common and useful procedure in risk
management, as it reduces the noise in the data. The unavoidable loss of information is more than
compensated by the gain in interpretability, if levels are chosen in the correct way. From now on,
the bivariate sequence {(Xi, Yi)}m

i=1 is therefore our object of interest in studying the dependence
between the PD and the LGD. Both Xi and Yi will take values in {0, 1, . . . , L}.
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Let {Ai}m
i=1, {Bi}m

i=1 and {Ci}m
i=1 be three independent LS sequences generated by three

independent two-color RUPs {ZA
j }j≥0, {ZB

j }j≥0, {ZC
j }j≥0. As we know, the sequence {Ai}m

i=1 is

exchangeable, and its de Finetti measure is a beta-Stacy process FA of parameters {αA
j , βA

j }j∈N0 .

Similarly, for {Bi}m
i=1 and {Ci}m

i=1, we have FB with {αB
j , βB

j }j∈N0 , and FC with {αC
j , βC

j }j∈N0 .
Now, as in Bulla et al. (2007), let us assume that, for each exposure i = 1, . . . , m, we have

Xi = Ai + Bi, (6)

Yi = Ai + Ci.

This construction builds a special dependence between the discretised PD and the discretised
LGD: we are indeed assuming that, for each counterparty i, there exists a common factor Ai influencing
both, while Bi and Ci can be seen as idiosyncratic components. Observe that, conditionally on Ai, Xi
and Yi are clearly independent. Since both X and Y are between 0 and 100%1, the compositions of
the urns defining the processes {ZA

j }j≥0, {ZB
j }j≥0, {ZC

j }j≥0 can be tuned so that it is not possible to
observe values larger than 100%.

From Equation (6), we can derive important features of the model we are proposing. Since we can
write Yi = Xi − Bi + Cn, it is clear that we are assuming a linear dependence between Xi and Yi. This is
compatible with several empirical findings, like Altman et al. (2005) or Miu and Ozdemir (2006).

Furthermore, given Equation (6) and the properties of the sequences {Ai}m
i=1, {Bi}m

i=1 and {Ci}m
i=1,

we can immediately observe that

Cov(X1, Y1) = Var(A1) ≥ 0, (7)

Cov(Xm+1, Ym+1|Am, Bm, Cm) = Var(Am+1|Am) ≥ 0, for m ≥ 2,

where Var is the variance, Cov the covariance, Am = [A1, . . . , Am], and similarly Bm, Cm. Therefore,
with the bivariate urn construction, we can only model positive dependence. Again, this is totally in
line with the purpose of our analysis—the study of wrong-way risk that, by definition, is a positive
dependence between PD and LGD—and, with the empirical literature, as discussed in Section 1.
However, it is important to stress that the model in Equation (6) cannot be used when negative
dependence is possible.

Always from Equation (6), we can verify that the sequence {(Xi, Yi)}m
i=1 is exchangeable2.

This comes directly from the exchangeability of {Ai}m
i=1, {Bi}m

i=1 and {Ci}m
i=1 and the fact that

(Xi, Yi) is a measurable function of (Ai, Bi, Ci). An implicit assumption of our model is therefore
that the m counterparties in P are exchangeable. As observed in McNeil et al. (2015), exchangeability
is a common assumption in credit risk, for it is seen as a relaxation of the stronger hypothesis
of independence (think about Bernoulli mixtures and the beta-binomial model). All in all, what
we ask is that the order in which we observe our counterparties is irrelevant to study the joint
distribution of their PDs and LGDs, which is therefore immune to changes in the order of appearance
of each exposure. Exchangeability and the fact that Xi and Yi are conditionally independent given Ai
suggest that the methodology we are proposing falls under the larger umbrella of mixture models
(Duffie and Singleton 2003; McNeil et al. 2015).

Since {(Xi, Yi)}m
i=1 is exchangeable, de Finetti’s representation theorem guarantees the existence

of a bivariate random distribution FXY, conditionally on which the couples are i.i.d. with distribution
FXY. The properties of FXY have been studied in detail in Bulla (2005).

1 In reality, as observed in Zhang and Thomas (2012), the LGD can be slightly negative or slightly above 100% because of fees
and interests; however, we exclude that situation here. In terms of applications, all negative values can be set to 0, and all
values above 100 can be rounded to 100.

2 Please observe that exchangeability only applies among the couples {(Xi , Yi)}m
i=1, while within each couple there is a clear

dependence, so that Xi and Yi are not exchangeable.
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Let FX and FY be the marginal distributions of Xi and Yi. Clearly, we have

FX = FA × FB,

FY = FA × FC,

so that both FX and FY are convolutions of beta-Stacy processes. The dependence between X and Y,
given FXY and FA is thus simply

CovFXY (X, Y) = VarFA(A) = σ2
A. (8)

Furthermore, if P is the probability function corresponding to F, one has

PXY(x, y) =
min(x,y)

∑
a=0

PA(a)PB(x− a)PC(y− a), ∀x, y ∈ N2
0.

Assume now that we have observed m exposures, and we have registered their actual PD
and LGD, which we have discretised to get {(Xi, Yi)}m

i=1. The construction of Equation (6), together
with the properties of the beta-Stacy processes involved, allows for a nice derivation of the predictive
distribution for a new exposure (Xm+1, Ym+1), given the observed couples (Xm = xm, Ym = ym).
This can be extremely useful in applications, when one is interested in making inference about the PD,
the LGD and their relation.

In fact,

P[Xm+1 = x, Ym+1 = y|Xm = xm, Ym = ym] =
P[Xm+1 = x, Ym+1 = y, Xm = xm, Ym = ym]

P[Xm = xm, Ym = ym]
. (9)

Given Equation (6), Equation (9) can be rewritten as follows:

P[Xm+1 = x, Ym+1 = y|Xm = xm, Ym = ym]

= ∑
am

P[Xm+1 = x, Ym+1 = y | Am = am, Bm = bm, Cm = cm] (10)

×P[Am = am | Xm = xm, Ym = ym],

where bm = xm − am and cm = ym − am.
From a theoretical point of view, computing Equation (10) just requires counting the balls in the

urns behind {Ai}m
i=1, {Bi}m

i=1 and {Ci}m
i=1, and then to use formulas like those in Equations (2) and (3),

something that for a small portfolio can be done explicitly. However, when m is large, it becomes
numerically unfeasible to perform all those sums and products.

Luckily, developing an alternative Markov Chain Monte Carlo algorithm is simple and effective.
It is sufficient to go through the following steps:

(1) Given the observations Xm = xm and Ym = ym, the sequence Am = (A1, . . . , Am) is generated via
a Gibbs sampling. The full conditional of Am, P[Am = am | Am−1 = am−1, Xm = xm, Ym = ym],
is such that

P[Am = am | Am−1 = am−1, Xm = xm, Ym = ym] ∝ P[Am = am | Am−1 = am−1]

×P[Xm − Am = xm − am | Bm−1 = bm−1]

×P[Ym − Am = ym − am | Cm−1 = cm−1].

Since {Aj}m
j=1 is exchangeable, all the other full conditionals, P[Aj = aj | A−j = a−j, Xm =

xm, Ym = ym], where A−j = (A1, . . . , Aj−1, Aj+1, . . . , Am), have an analogous form.
(2) Once Am is obtained, compute Bm = Xm −Am and Cm = Ym −Am.
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(3) The quantities Am+1, Bm+1, and Cm+1 are then sampled according to their beta-Stacy predictive
distributions P(Am+1 | Am), P(Bm+1 | Bm), and P(Cm+1 | Cm) as per Equation (3).

(4) Finally, set Xm+1 = Am+1 + Bm+1 and Ym+1 = Am+1 + Cm+1.

3. Data

We want to show the potentialities of the bivariate urn construction of Section 2 in modeling the
dependence between PD and LGD in a large portfolio of residential mortgages. The data we use come
from Maio (2017).

Maio’s dataset is the result of cleaning operations (treatment of NA’s, inconsistent data, etc.)
on the well-known Single Family Loan-Level Dataset Sample by Freddie Mac, freely available
online (Freddie Mac 2019a). Freddie Mac’s sample contains 50,000 observations per year over the
period 1999–2017. Observations are randomly selected, on a yearly basis, from the much larger Single
Family Loan-Level Dataset, covering approximately 26.6 million fixed-rate mortgages. Extensive
documentation about Freddie Mac’s data collections can be found in Freddie Mac (2019b).

Maio’s dataset contains 383,465 loans over the period 2002–2016. Each loan is uniquely identified
by an alphanumeric code, which can be used to match the data with the original Freddie Mac’s source.

For each loan, several interesting pieces of information are available, like its origination date,
the loan age in months, the geographical location (ZIP code) within the US, the FICO score of the
subscriber, the presence of some form of insurance, the loan to value, the combined loan to value,
the debt-to-income ratio, and many others. In terms of credit performance, quantities like the unpaid
principal balance and the delinquency status up to termination date are known. Clearly, termination
can be due to several reasons, from voluntary prepayment to foreclosure, and this information is also
recorded, following Freddie Mac (2019b). A loan is considered defaulted when it is delinquent for
more than 180 days, even if it is later repurchased (Freddie Mac 2019c). In addition to the information
also available in the Freddie Mac’s collection, Maio’s dataset is enriched with estimates of the PD and
the LGD for each loan, obtained via survival analysis3. It is worth noticing that both the PD and the
LGD are always contained in the interval [0, 1].

If one considers the pooled data, the correlation between the PD and the LGD is 0.2556.
The average PD is 0.0121 with a standard deviation of 0.0157, while, for LGD, we have 0.1494 and
0.0937, respectively. Regarding the minima and the maxima, we have 2.14× 10−5 and 0.3723 for PD,
and 0 and 0.5361 for LGD.

In the parametric approach proposed by Maio (2017), the covariates which affect both the PD
and LGD, possibly justifying their positive dependence, are the unpaid principal balance (UPB) and
the debt-to-income ratio (DTI). Other covariates, from the age of the loan to the ZIP code, are then
relevant in explaining the marginal behaviour of either the PD or the LGD. In modeling both the PD
and the LGD, Maio (2017) proposes the use of two Weibull accelerated failure time (AFT) models,
following a recent trend in modern credit risk management (Narain 1992). The dependence between
PD and LGD is then modelled parametrically using copulas and a brand new approach involving a
bivariate beta distribution. For more details, we refer to Maio (2017).

A correlation around 0.26 clearly indicates a positive dependence between PD and LGD, and it is in
line with the empirical literature we have mentioned in Section 1. However, considering all mortgages
together may not be the correct approach, as we are pooling together very different counterparties,
possibly watering down more meaningful areas of dependence.

Given the richness of the dataset, there are many ways of disaggregating the data. For example,
one can compute the correlation between PD and LGD for different FICO score classes. The FICO

3 To avoid any copyright problem with Freddie Mac, which already freely shares its data online, from Maio’s dataset (here
attached), we only provide the PD and the LGD estimates, together with the unique alphanumeric identifier. In this way,
merging the data sources is straightforward.
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score, originally developed by the Fair Isaac Corporation (https://www.fico.com), is a leading credit
score in the US, and one of the significant covariates for the estimation of PD in Maio’s survival model
(Maio 2017). In the original Freddie Mac’s sample, it ranges from 301 to 850.

Following a common classification (Experian 2019), we can define five classes of creditworthiness:
Very poor, for a FICO below 579; Fair, for 580–669; Good, for 670–739; Very good, for 740–799;
and Exceptional, with a score above 800. Table 1 contains the number of loans in the different classes,
the corresponding average PD and LGD, and naturally their correlation ρ. As expected, the average PD
is higher when the FICO score is lower, while the opposite is observable for the average LGD. This is
probably due to the fact that, for less creditworthy counterparties, stronger insurances are generally
required, as compensation for the higher risk of default. Moreover, in terms of recovery, in putting the
collateral on the market, it is probably easier to sell a house with a lower value than a very expensive
property, for which discounts on the price are quite common (Eichengreen et al. 2012). Interestingly,
in disaggregating the data, we see that the PD–LGD correlation is always above 0.3, with the only
exception being the most reliable FICO class (≈0.19).

Table 1. Some descriptive information about the data used in the analysis. Loans are collected in terms
of FICO score.

Class Number of Loans Avg. PD Avg. LGD ρ

Very Poor 1627 0.0378 0.1013 0.3370
Fair 46,720 0.0238 0.1237 0.4346
Good 124,824 0.0138 0.1409 0.3159
Very good 177,891 0.0083 0.1574 0.3599
Exceptional 32,403 0.0080 0.1777 0.1858

As an example, Figure 1 shows two plots of the relation between PD and LGD for the “Very poor”
class. On the left, a simple scatter plot of PD vs. LGD. On the right, to deal with the large number of
overlapping points, thus improving interpretability, we provide a hexagonal heatmap with counts.
To obtain this plot, the plane is divided into regular hexagons (20 for each dimension), the number of
cases in each hexagon is counted, and it is then mapped to a color scale. This second plot tells us that
most of the PD–LGD couples lie in the square [0, 0.1]2.
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Figure 1. Plots of PD vs. LGD for mortgages in the “Very poor” (FICO score below 579) class—on the left, a
simple scatter plot; on the right, a hexagonal heatmap with counts. (a) scatter plot; (b) hexagonal heatmap.

In Figure 2, the two histograms of the marginal distributions of PD and LGD in the “Very poor”
rating class are shown. While for PD the distribution is unimodal, for LGD, we can clearly see
bimodality (a second bump is visible around 0.25). These behaviours are present among the different
classes and at the pooled level.

https://www.fico.com
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Figure 2. Histograms of the marginal distributions of PD and LGD in the “Very poor” rating class.
(a) PD; (b) LGD.

4. Results

In this section, we discuss the performances of the bivariate urn model on the mortgage data
described in Section 3. For the sake of space, we show the results for “Very poor” and the “Exceptional”
FICO score classes, as per Table 1.

In order to use the model, we need (1) to transform and discretise both the PD and the LGD into
levels, and (2) to define an a priori for the different beta-Stacy processes involved in the construction of
Equation (6).

The results we obtain are promising and suggest that the bivariate urn model can represent an
interesting way of modeling PD and LGD dependence for banks and practitioners.

Please notice that our purpose is to show that the bivariate urn model actually works. The present
section has no ambition of being a complete empirical study on the PD–LGD dependence in the Freddie
Mac’s or Maio’s datasets.

4.1. Discretisation

In order to discretise the PD and LGD into X and Y, it is necessary to choose the appropriate
levels l = 0, 1, . . . , L. In the absence of specific ranges, possibly arising from a bank’s business practice
or imposed by a regulator, a convenient way for defining the levels is through quantiles (Cheng and
Cirillo 2018).

For example, let dv
1, . . . , dv

9 be the deciles for the quantity v ∈ {PD, LGD}. We can set levels
l = 0, 1, . . . , 10, where

L1 := {0 : 0; 1 : (0, dv
1]; 2 : (dv

1, dv
2]; . . . ; 9 : (dv

8, dv
9]; 10 :> dv

9}. (11)

Such a partition guarantees that each level, apart from l = 0, contains 10% of the values for
both PD and LGD. Notice that the thresholds are not the same, for example, when focusing on the
“Very poor” class, dPD

1 = 0.0099, while dLGD
1 = 0.0030. A finer partition can be obtained by choosing

other percentiles. Clearly, in using a similar approach, one should remember that she is imposing a
uniform behaviour on X and Y, in a way similar to copulas (Nelsen 2006). However, differently from
copulas, the dependence between X and Y is not restricted to any particular parametric form (the
copula function): dependence will emerge from the combination of the a priori and the data.

Another simple way for defining levels is to round the raw observations to the nearest largest
integer (ceiling) or to some other value. For instance, we can consider:

L2 := {0 : 0; 1 : (0, 1%]; 2 : (1, 2%]; . . . ; 100 : (99, 100%]}. (12)



Risks 2019, 7, 76 11 of 21

Even if it is not a strong requirement, given the meaning of the value 0 in an RUP (recall the
0-blocks), we recommend to use 0 as a special level, not mapping to an interval. Moreover, as already
observed, equally-spaced intervals are easier to implement and often to interpret, but again this is not
a necessity: levels can represent intervals of different sizes.

Notice that, if correctly applied, discretisation maintains the dependence structure between the
variables. For the “Very poor” class, using the levels in Equation (11) in defining X and Y, we find that
cor(X, Y) = 0.3348, in line with the value 0.3370 in Table 1. For the “Exceptional” group, using the
levels in Equation (12), we obtain 0.2080, still comparable.

In what follows, we discuss the results mainly using the levels in Equation (12). However,
our findings are robust to different choices of the partition. In general, choosing a smaller number of
levels improves fitting because the number of observations per level increases, reinforcing the Polya
learning process, ceteris paribus. Moreover—and this is why partitions based on quantiles give nice
performances—better results are obtained when intervals guarantee more or less the same number of
observations per level.

Choosing a very large L may lead to the situation in which, for a specific level, no transition
is observed, so that, for that level, no learning via reinforcement is possible, and, if our beliefs are
wrong—or not meant to compensate some lack of information in the data—this naturally has an impact
on the goodness of fit. Therefore, in choosing L, there is a trade-off between fitting and precision.
The higher L, the lower the impact of discretisation and noise reduction.

The right way to define the number of levels is therefore to look for a compromise between precision,
as required by internal procedures or the regulator, and the quantity and the quality of the empirical data.
The more and the better the observations, the more precise the partition can be because the higher is
the chance of not observing empty levels. In any case, each level should guarantee a minimum number
of observations in order to fully exploit the Bayesian learning mechanism. To improve fitting, rarely
visited levels should be aggregated. Once again, experts’ judgements could represent a possible solution.
We refer to Cheng and Cirillo (2018) for further discussion on level setting.

4.2. Prior Elicitation

In order to use the bivariate urn model, it is necessary to elicit an a priori for all its components,
namely {Ai}m

i=1, {Bi}m
i=1 and {Ci}m

i=1. This is fundamental for any computation and to initialise the
Markov Chain Monte Carlo algorithm discussed in Section 2.2.

Prior elicitation can be performed (1) in a completely subjective way, on the basis of one’s knowledge
of the phenomenon under scrutiny, (2) by just looking at the data in a fully empirical approach, or (3)
by combining data and beliefs, as suggested for example by Figini and Giudici (2011). In reality, a fully
data-driven approach based on the sole use of the empirical distribution functions, as for example the one
suggested in Cheng and Cirillo (2018), is not advisable for the bivariate urn construction. While there is no
problem in observing X and Y, thus exploiting their empirical distributions for prior elicitation, it is not
immediate to do the same for the unobserved quantity A, necessary to obtain both B and C. A possibility
could be to use the empirical Kendall’s function (Genest and Rivest 1993), but then one would end up
with a model not different from the standard empirical copula approach (Rueschendorf 2009), especially
if the number of observations used for the definition of the a priori is large. A compromise could thus be
to elicit a subjective prior for A only, and to combine this information with the empirical distributions of X
and Y, in order to obtain B and C. As common in Bayesian nonparametrics (Hjort et al. 2010), no unique
best way exists: everything depends on personal preferences—this is the unavoidable subjectivity of
every statistical model (Galavotti 2001)—and on exogenous constraints that, in credit risk management,
are usually represented by the actual regulatory framework (BCBS 2000; Hull 2015).

Recalling Equation (8), it seems natural to choose the prior for {Ai}m
i=1 so that its variance

coincides with the empirical covariance between X and Y. When looking at the “Very poor” and
“Exceptional” classes, this covariance is approximately 3 (i.e., 2.7345 and 3.2066, respectively), using
the levels in Equation (11). For the situation in Equation (12), conversely, we have a covariance of 10.28
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for the “Very poor” class, and 1.46 for the other. Apart from the reasonable constraint on the variance,
the choice of the distribution for A can be completely free.

Given the ranges of variation of X and Y, one can choose the appropriate supports for the three
beta-Stacy processes. Considering the levels in Equation (11), for {Ai}m

i=1, {Bi}m
i=1 and {Ci}m

i=1, it is
not rational to choose priors putting a positive mass above 10. Being the levels defined via deciles,
it is impossible to observe a level equal to 11 or more. Similarly, using the levels in Equation (12) and
recalling Figure 1, where neither the PD nor the LGD reach values above 40% (0.4), once can decide
not to allow large values of X and Y, initialising the RUP’s urns only until level 40.

Since we do not have any specific experts’ knowledge to exploit, we have tried different prior
combinations. Here, we discuss two possibilities:

• Independent discrete uniforms for {Ai}m
i=1, {Bi}m

i=1 and {Ci}m
i=1, where the range of variation

for B and C is simply inherited from X and Y (but extra conditions can be applied, if needed),
while for A the range is chosen to guarantee σ2

A = Cov(X, Y). For instance, if the covariance
between X and Y is approximately 3, the interval [0, 5] guarantees that σ2

A ≈ 3 as well. We can
simply use the formula for the variance of a discrete uniform, i.e.,

σ2 =
(b− a + 1)2 − 1

12
.

• Independent Poisson distributions, such that A ∼ Poi(λA = Cov(X, Y)), while for B and C
one sets Poi(X̄ − λA) and Poi(Ȳ − λA), where X̄ is the empirical mean of X. This guarantees,
for example, that X ∼ Poi(X̄). Recall in fact that, in a Poisson random variable, the mean and
the variance are both equal to the intensity parameter, and independent Poissons are closed
under convolution. Given our data, where the empirical variances of X and Y are not at all equal
to the empirical means, but definitely larger, the Poisson prior can be seen as an example of a
wrong prior.

Notice that the possibility of eliciting an a priori is an extremely useful feature of every urn
construction (Amerio et al. 2004; Cheng and Cirillo 2018; Cirillo et al. 2010). In fact, a good prior—when
available—can compensate for the lack of information in the data, and it can effectively deal with extremes
and rare events, a relevant problem in modern risk management (Calabrese and Giudici 2015; Hull 2015;
Taleb 2007). For example, if an expert believes that her data under-represent a given phenomenon, like for
example some unusual combinations of PD and LGD, she could easily solve the problem by choosing a
prior putting a relevant mass on those combinations, so that the posterior distribution will always take
into account the possibility of those events, at least remotely. This can clearly correct for the common
problem of historical bias (Derbyshire 2017; Shackle 1955).

Once the priors have been decided, the urn compositions can be derived via Equation (5). Different
values of cj have been tried in our experiments. Here, we discuss the cases cj = 1 and cj = 100 for
all values of j. The former indicates a moderate trust in our a priori, while the latter shows a strong
confidence in our beliefs. Cheng and Cirillo (2018) have observed that, in constructions involving the
use of reinforced urn processes, if the number of observations used to train the model is large, then
priors become asymptotically irrelevant, for the empirical data prevail. However, when the number of
data points is not very large, having a strong prior does make a difference. Given the set cardinalities,
we shall see that a strong prior has a clear impact for the “Very poor” rating class (“only” 1627
observations), while no appreciable effect is observable for the “Exceptional” one (32,403 data points).

As a final remark, it is worth noticing that one could take all the urns behind {Ai}m
i=1 to be empty.

This would correspond to assuming that no dependence is actually possible between PD and LGD,
so that Xi = Bi, Yi = Ci and Cov(X, Y) = 0. As discussed in Bulla et al. (2007), it can be shown that,
when A is degenerate on 0—and no learning on dependence is thus possible, given the infringement
of Cromwell’s rule (Lindley 1991)—the bivariate urn model simply corresponds to playing with the
bivariate empirical distribution and the bivariate Kaplan–Meier estimator. While certainly not useful
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to model a dependence we know is present, this possibility further props the flexibility of the bivariate
urn model up.

4.3. Fitting

Figure 3 shows, for the exposures in the “Very Poor” group, the very good fitting performances
of the model for the marginal distributions of X and Y, the discretised PD and LGD, respectively.
Each subfigure shows the elicited prior, the empirical cumulative distribution function (ECDF) and
the posterior, as obtained via learning and reinforcement. In the figure shown, the levels are given
by Equation (12), while the priors are discrete uniforms with cj = 1. Since the covariance between X
and Y is 10.28, the discrete uniform on A is on [0, 10]. For both B and C, the support is [0, 40]. A two
sample Kolmogorov–Smirnov (KS) test does not reject the null hypothesis of the same distribution
between the ECDFs and the relative posteriors (p-values stably above 0.05).

It is worth noticing that, qualitatively, the results we discuss here are robust to different choices of
the levels, until a sufficient number of observations is available for the update of the urns and hence
learning, as already observed at the end of Section 4.1. For example, we have tested the partitions
{0 : 0; 1 : (0, 2%]; 2 : (2, 4%]; . . . ; 50 : (98, 100%]} and {0 : 0; 1 : (0, 5%]; 2 : (5, 10%]; . . . ; 20 :
(95, 100%]}: all findings were consistent with what we see in these pages. An example of partition that
does not work is conversely the one based on increments equal to 0.1% per level, which proves to be
too fine, so that several urns are never updated and the posteriors do not pass the relative KS tests.

(a) (b)
Figure 3. Prior, posterior and ECDF for the discretised PD and LGD in the “Very poor” rating class,
when priors are uniform and levels are like those in Equation (12). The strength of belief is always set
to 1. (a) PD; (b) LGD.

Figure 4 is generated in the same way as Figure 3. The only difference is that now cj = 100,
indicating a strong belief on the uniform priors. In this case, it is more difficult for the bivariate urn
process to update the prior, and in fact the posterior distribution is not as close as before to the ECDF.
The effect is more visible for PD than for LGD; however, in both cases, the KS test rejects the null
(p-value 0.005 and 0.038). Please notice that this is not necessarily a problem, if one really believes
that the available data do not contain all the necessary information, thus correcting for historical bias,
or she wants to incorporate specific knowledge about future trends.

As anticipated, the number of observations available in the data plays a major role in
updating—and, in case of a wrongly elicited belief, correcting—the prior. Focusing on the PD, Figure 5
shows that, when the “Exceptional” rating class is considered, no big difference can be observed in
the obtained posterior, no matter the strength of belief cj. In fact, for both cases, a KS test does not
reject the null hypothesis with respect to the ECDF (p-values: 0.74 and 0.58). The reason is simple:
with more than 30,000 observations, the model necessarily converges towards the ECDF, even if the
prior distribution is clearly wrong and we put a strong belief on it (one needs cj > 500 to see some
difference). Similar results hold for the LGD. In producing the figure, A has a uniform prior on [0, 3],
while B and C on [0, 45].
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(a)
(b)

Figure 4. Prior, posterior and ECDF for the discretised PD and LGD in the “Very poor” rating class,
when priors are uniform and levels are like those in Equation (12). The strength of belief is always set
to 100. (a) PD; (b) LGD.

Figure 5. Prior, posteriors (cj = 1 and cj = 100) and ECDF for the discretised PD in the “Exceptional”
rating class, when priors are uniform.

Figure 6 shows the bivariate distribution we obtain for the discretised PD and LGD for the “Very
poor” FICO score group, when cj = 1 and we use the Poisson priors on the levels of Equation (12).
Figure 7 shows the case cj = 100. As one would expect, the strong prior provides a smoother joint
distribution, while the weak one tends to make the empirical data prevail, with more peaks, bumps
and holes. In Figure 8, the equivalent of Figure 6 is given for the “Exceptional” rating class.

Regarding the numbers, all priors and level settings are able to model the dependence between
X and Y. The correlation is properly captured (the way in which the prior on A is defined surely
helps), as well as the mean and the variances of the marginals, especially when the strength of beliefs
is small. The only problem is represented by the Poisson priors used on the “Very poor” class. In this
case, the number of observations is not sufficient to correct the error induced by the initial use of a
Poisson distribution, i.e., the same value for mean and variance, and the variance of both PD and LGD
is underestimated, while the mean is correctly captured. In particular, while the estimated and actual
means are 3.81 and 3.79 for X, and 10.61 and 10.12 for Y, in the case of the variances, the actual values
10.26 and 92.97 are definitely larger than the predicted ones, i.e., 5.88 and 22.50. This is a clear signal
that more data would be necessary to properly move away from the wrong prior beliefs, forgetting the
Poisson nature.
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In the case of Figure 6, the actual correlation is 0.3370, and the model estimates 0.3366. However,
under Poisson priors with strong degrees of belief, a certain overestimation is observable for the “Very
poor” rating group, in line with the underestimation of the variances.

The results we have just commented are all in sample: we have indeed used all the observations
available to verify how the model fits the data, and no out of sample performance was checked. Using
the Bayesian terminology of Jackman (2009) and Meng (1994), we have therefore performed a posterior
consistency check.

Figure 6. Bivariate density distribution of PD and LGD in the “Very poor” rating class, with Poisson
priors and strength of belief equal to 1.

Figure 7. Bivariate density distribution of PD and LGD in the “Very poor” rating class, with Poisson
priors and strength of belief equal to 100.
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Figure 8. Bivariate density distribution of PD and LGD in the “Exceptional” rating class, with Poisson
priors and strength of belief equal to 1.

Luckily, the out of sample validation of the bivariate urn model is equally satisfactory. To perform
it, we have used the Freddie Mac’s sampling year to create two samples. The first one includes all the
loans (362,104) sampled in the period 2002–2015 and we call it the training sample. The validation
sample, conversely, includes all the loans sampled in 2016, for a total of 21,321 data points. The samples
have then been split into FICO score groups, as before.

For the “Very Poor” class, Figure 9 shows the predictive distribution of the PD as obtained by
training the bivariate urn construction (uniform priors) on the training sample (1590 loans) against the
ECDF of the corresponding validation sample (37 loans). The fit is definitely acceptable, especially if
we consider the difference in the sample sizes. The mean (level) of the predictive distribution is 3.85,
while that of the validation sample is 3.81. The standard deviations are 3.24 and 2.53. The median 3 in
both cases. Regarding dependence, a correlation of 0.3419 is predicted by the model, while the realised
one in the validation sample is smaller and equal to 0.1963. This difference is probably due to the fact
that in the validation set the PD never exceeds level 13, while in the training one the maximum level
reached is 31. When the validation set is larger, as in the case of the “Exceptional” class, the dependence
is better predicted: one has a correlation of 0.1855 against 0.1799. Similar or better results are obtained
for the other classes, using the different prior sets, once again with the only exception of the Poisson
priors with a large strength of belief, when applied to the “Very poor” class. In Table 2, we show the PD
and correlation results for all classes under uniform priors, while Table 3 deals with the LGD.

Table 2. PD values (%) and correlation. Some descriptive descriptive statistics (mean, median, standard
deviation, correlation for the joint) for the predictive distribution (P) and the validation set (V) for the
different FICO classes, under uniform priors.

Class meanP meanV medianP medianV SDP SDV ρP ρV

Very Poor 3.85 3.81 3.02 3.03 3.24 2.53 0.34 0.20
Fair 2.41 2.32 1.50 1.44 2.36 2.33 0.45 0.51
Good 1.43 0.49 0.83 0.25 0.71 0.66 0.34 0.38
Very good 0.36 0.32 0.62 0.64 0.14 0.16 0.38 0.42
Exceptional 0.16 0.18 0.60 0.54 0.82 0.83 0.19 0.18
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Table 3. LGD values (%). Some descriptive descriptive statistics (mean, median, standard deviation)
for the predictive distribution (P) and the validation set (V) for the different FICO classes, under
uniform priors.

Class meanP meanV medianP medianV SDP SDV

Very Poor 9.82 10.2 6.63 6.14 9.51 8.32
Fair 12.1 11.5 9.43 10.6 9.69 5.53
Good 13.8 19.8 14.5 19.2 5.70 5.26
Very good 15.6 18.5 18.7 18.0 5.27 5.13
Exceptional 17.8 17.2 20.4 19.7 8.00 4.99

It is important to stress that this simple out of sample validation does not guarantee that the
predictive distribution would be able to actually predict new data, in the case of a major change in
the underlying phenomenon—something not observed in Maio’s dataset—like a structural break,
to use the econometric jargon. This would be exactly the case in which the clever use of the prior
distribution—in the form of expert prior knowledge—could contribute in obtaining a better fit.

Figure 9. Predictive distribution generated by the bivariate urn model for the “Very poor” class when
trained on the training sample (1590 loans), against the empirical ECDF from the validation set (37 loans).

4.4. What about the Crisis?

In line with findings in the literature (Eichengreen et al. 2012; Ivashina and Scharfstein 2010;
Turlakov 2013; Witzany 2011), Maio’s dataset—as well as the original one by Freddie Mac—shows
that the financial crisis of 2007–2008 had a clear impact on the dependence between PD and LGD.
In particular, an increase in the strength of correlation is observable during the the crisis and in the
years after. In fact, we can observe an overall value of 0.11 before 2008, which grows up to 0.24 in 2011
and remains pretty stable after. A compatible behavior is observed for the different FICO classes.

When evaluated in-sample, the bivariate urn model, given the large number of observations is
always able to perform satisfactorily: this holds true for example when we restrict our attention on
the intervals [2002–2007], [2007–2010] or [2010–2016]. Performances are conversely not good when
the model trained on pre-crisis data is used to predict the post-crisis period, given the substantial
difference in the strength of the dependence, which is persistently underestimated. Clearly, we are
speaking about those situations in which the prior we elicited were not taking into consideration a
strong increase in correlation. An ad hoc modification of the support of A could represent a viable
solution, provided we could be aware of this ex ante, and not just ex post.
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An interesting thing, worth mentioning, happens when we focus our attention on the loans
originated (not defaulted) during the crisis and follow them. Here, the relation between PD and
LGD tends to 0 or, for some FICO classes, it becomes slightly negative, probably because of the stricter
selection the scared banks likely imposed on applicants, asking for more collateral and guarantees. While
the model is still capable of dealing with no dependence, a negative correlation cannot be studied.

5. Conclusions

We have presented a bivariate urn construction to model the dependence between PD and LGD,
also showing a promising application on mortgage data.

Exploiting the reinforcement mechanism of Polya urns and the conjugacy of beta-Stacy processes,
the Bayesian nonparametric model we propose is able to combine experts’ judgements, in the form
of a priori knowledge, with the empirical evidence coming from data, learning and improving its
performances every time new information becomes available.

The possibility of using prior knowledge is an important feature of the Bayesian approach. In fact,
it can compensate for the lack of information in the data with the beliefs of experienced professionals
about possible trends and rare events. For rare events in particular, the possibility of eliciting an
a priori on something rarely or never observed before can mitigate, at least partially, the relevant
problem of historical bias (Derbyshire 2017; Shackle 1955; Taleb 2007).

One could argue that nothing guarantees the ability of eliciting a reliable a priori: experts could
be easily wrong. The answer to such a relevant observation is that the bivariate urn model learns
over time, at every interaction with actual data. A sufficient amount of data can easily compensate
unrealistic beliefs. Moreover, as already observed in Cirillo et al. (2013), thanks to reinforcement,
urns are able to learn hidden patterns in the data, casting light on previously ignored relations and
features. Such a capability bridges towards the paradigm of machine/deep learning (Murphy 2012).
However, differently from standard machine/deep learning techniques, the combinatorial stochastic
nature of the bivariate urn model allows for a greater control of its probabilistic features. There is no
black box (Knight 2017).

Clearly, if an a priori cannot be elicited nor is desired, one can still use the model in a totally
data-driven way, building priors based on ECDFs (Cheng and Cirillo 2018). In such a case, however,
the results of the bivariate urn construction would not substantially differ from those of a more
standard empirical copula approach (Rueschendorf 2009), notwithstanding the difficulty of dealing
with non-directly (fully) observable quantities like the joint factor A. More interesting can therefore
be the “merging” methodology developed by Figini and Giudici (2011), in which the combination of
quantitative and qualitative information can (at least partially) solve the lack of experts’ priors.

Furthermore, thanks to its nonparametric nature, the model we propose does not require the
development of parametric assumptions, with the subsequent problem of choosing among them,
as one should for instance do in using copulas (Nelsen 2006).

As observed in Section 2, an important limitation of the bivariate urn model is the possibility of only
modeling positive linear dependence. Its use when dependence can be negative, or strongly nonlinear,
is not advised. However, this seems not to be the case with mortgages, and PD/LGD in general.

Finally, the bivariate urn model can be computationally intensive. For large datasets and portfolios,
a standard laptop may require from a few hours to a full day to obtain the posterior distribution.
Clearly the quality of coding, which was not our main investigation path, has a big impact on the
final performances.
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