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Abstract: One of the key components of counterparty credit risk (CCR) measurement is generating
scenarios for the evolution of the underlying risk factors, such as interest and exchange rates, equity
and commodity prices, and credit spreads. Geometric Brownian Motion (GBM) is a widely used
method for modeling the evolution of exchange rates. An important limitation of GBM is that, due to
the assumption of constant drift and volatility, stylized facts of financial time-series, such as volatility
clustering and heavy-tailedness in the returns distribution, cannot be captured. We propose a model
where volatility and drift are able to switch between regimes; more specifically, they are governed
by an unobservable Markov chain. Hence, we model exchange rates with a hidden Markov model
(HMM) and generate scenarios for counterparty exposure using this approach. A numerical study is
carried out and backtesting results for a number of exchange rates are presented. The impact of using
a regime-switching model on counterparty exposure is found to be profound for derivatives with
non-linear payoffs.

Keywords: Counterparty Credit Risk; Hidden Markov Model; Risk Factor Evolution; Backtesting;
FX rate; Geometric Brownian Motion

1. Introduction

One of the main factors that amplified the financial crisis of 2007–2008 was the failure to capture
major risks associated with over-the-counter (OTC) derivative-related exposures (Basel Committee on
Banking Supervision 2010a). Counterparty exposure, at any future time, is the amount that would be
lost in the event that a counterparty to a derivative transaction would default, assuming zero recovery
at that time. Banks are required to hold regulatory capital against their current and future exposures to
all counterparties in OTC derivative transactions.

A key component of the counterparty exposure framework is modeling the evolution of
underlying risk factors, such as interest and exchange rates, equity and commodity prices, and credit
spreads. Risk Factor Evolution (RFE) models are, arguably, the most important part of counterparty
exposure modeling, since small changes in the underlying risk factors may have a profound impact on
the exposure and, as a result, on the regulatory and economic capital buffers. It is, therefore, crucial
for financial institutions to put significant effort in the design and calibration of RFE models and, in
addition, have a sound framework in place in order to assess the forecasting capability of the model.

Although the Basel Committee on Banking Supervision has stressed the importance of the ongoing
validation of internal models method (IMM) for counterparty exposure (Basel Committee on Banking
Supervision 2010b), there are no strict guidelines on the specifics of this validation process. As a result,
there is some degree of ambiguity regarding the regulatory requirements that financial institutions are
expected to meet. In an attempt to reduce this ambiguity, Anfuso et al. (2014) introduced a complete
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framework for counterparty credit risk (CCR) model backtesting which is compliant with Basel III and
the new Capital Requirements Directives (CRD IV). A detailed backtesting framework for CCR models
was also introduced by Ruiz (2014), who expanded the corresponding framework for Value-at-Risk
(VaR) models by the Basel Committee (Basel Committee on Banking Supervision 1996).

The most ubiquitous model for the evolution of exchange rates is Geometric Brownian Motion
(GBM). Under GBM, the exchange rate dynamics are assumed to follow a continuous-time stochastic
process, in which the returns are log-normally distributed. Although simplicity and tractability
render GBM a particularly popular modeling choice, it is generally accepted that it cannot adequately
describe the empirical facts exhibited by real exchange rate returns (Boothe and Glassman 1987).
More specifically, exchange rate returns can be leptokurtic, exhibiting tails that exceed those of
the normal distribution. As a result, a scenario-generation framework based on GBM may assign
unrealistically low probabilities to extreme scenarios, leading to the under-estimation of counterparty
exposure and, consequently, regulatory and economic capital buffers.

The main reason for the inability of GBM to produce return distributions with realistically heavy
tails is the assumption of constant drift and volatility parameters. In this paper, we present a way to
address this limitation without entirely departing from the convenient GBM framework. We propose
a model where the GBM parameters are allowed to switch between different states, governed by an
unobservable Markov process. Thus, we model exchange rates with a hidden Markov model (HMM)
and generate scenarios for counterparty exposure using this approach.

A HMM is a mathematical model in which the system being modeled is assumed to follow
a Markov chain whose states are hidden from the observer. HMMs have a broad range of applications,
in speech recognition (Juang and Rabiner 1991), computational biology (Krogh et al. 1994), gesture
recognition (Wilson and Bobick 1999), and in other areas of artificial intelligence and pattern recognition
(Ghahramani 2001). HMMs have gained significant popularity in the mathematical and computational
finance fields. The application of HMMs in financial and economic time-series was pioneered by
Hamilton in Hamilton (1988; 1989). Since then, a significant amount of literature has been published,
focusing on the ability of HMMs to reproduce stylized facts of asset returns (Bulla et al. 2011; Nystrup
et al. 2015; Rydén et al. 1998), asset allocation (Ang and Bekaert 2004; Guidolin and Timmermann 2007;
Nystrup et al. 2015), and option pricing (Bollen 1998; Guo 2001; Naik 1993).

Our paper expands the counterparty exposure literature by introducing a hidden Markov model
for the evolution of exchange rates. We provide a detailed description of HMMs and their estimation
process. In our numerical experiments, we use GBM and HMM to generate scenarios for the Euro
against two major and two emerging currencies. We perform a thorough backtesting exercise, based on
the framework proposed by Ruiz (2014), and find similar performances for GBM and a two-state HMM.
Finally, we use the generated scenarios to calculate credit exposure for foreign exhange (FX) options,
and find significant differences between the two models, which are even more pronounced for deep
out-of-the-money instruments.

The remainder of the paper is organized as follows. Section 2 provides the fundamentals of
HMMs, along with the algorithms for determining their parameters from data. Section 3 gives
background information on modeling the evolution of exchange rates. Section 4 outlines the framework
for performance evaluation of RFE models. A numerical study is presented in Section 5. Finally,
in Section 6, we draw conclusions and discuss future research directions.

2. An Introduction to Hidden Markov Models

The hidden Markov model (HMM) is a statistical model in which a sequence of observations is
generated by a sequence of unobserved states. The hidden state transitions are assumed to follow
a first-order Markov chain. The theory of hidden Markov models (HMMs) originates from the work
of Baum et al. in the late 1960s (Baum and Petrie (1966), Baum and Eagon (1967)). In the rest of this
section, we introduce the theory of hidden Markov models (HMMs), following Rabiner (1990).
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2.1. Formal Definition of a HMM

In order to formally define a hidden Markov model (HMM), the following elements are required:

1. N, the number of hidden states. Even though the states are not directly observed, in many practical
applications they have some physical interpretation. For instance, in financial time-series, hidden
states may correspond to different phases of the business cycle, such as prosperity and depression.
We denote the states by X = {X1, X2, . . . , XN}, and the state at time t by qt.

2. M, the number of distinct observation symbols per state. These symbols represent the physical
output of the system being modeled. The individual symbols are denoted by V = {vl , v2, . . . , vM}.

3. The transition probability distribution between hidden states, A = {aij}, where

aij = P
[
qt+i = Xj|qt = Xi

]
, 1 ≤ i, j ≤ N. (1)

4. The observation symbol probability distribution in state j, B = {bj(k)}, where

bj(k) = P
[
vk at t|qt = Xj

]
, 1 ≤ j ≤ N, 1 ≤ k ≤ M. (2)

5. The initial distribution of the hidden states, π = {πi}, where

πi = P [q1 = Xi] , 1 ≤ i ≤ N. (3)

The parameter set of the model is denoted by λ = (A, B, π). A graphical representation of a
hidden Markov model with two states and three discrete observations is given by Figure 1.

X1 X2

a12

v1

b1(1)

v2 v3

Figure 1. A hidden Markov model (HMM) with two states and three discrete observations, where aij is
the probability of transition from state Xi to state Xj and bj(k) is the emission probability for symbol vk
in state Xj.

In the case where there are an infinite amount of symbols for each hidden state, vk is omitted and
the observation probability bj(k), conditional on the hidden state Xj, can be replaced by

bj(Ot) = P(Ot|qt = Xj).

If the observation symbol probability distributions are Gaussian, then bj(Ot) = φ(Ot|uj, σj),
where φ(·) is the Gaussian probability density function, and uj and σj are the mean and standard
deviation of the corresponding state Xj, respectively. In that case, the parameter set of the model is
λ = (A, u, σ, π), where u and σ are vectors of means and standard deviations, respectively.

2.2. The Three Basic Problems for HMMs

The idea that HMMs should be characterized by three fundamental problems originates from the
seminal paper of Rabiner Rabiner (1990). These three problems are the following:

Problem 1 (Likelihood). Given the observation sequence O = O1O2 . . . OT and a model λ = (A, B, π),
how do we compute the conditional probability P(O|λ) in an efficient manner?
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Problem 2 (Decoding). Given the observation sequence O = O1O2 . . . OT and a model λ, how do we determine
the state sequence Q = q1q2 . . . qT which optimally explains the observations?

Problem 3 (Learning). How do we select model parameters λ = (A, B, π) that maximize P(O|λ)?

2.3. Solutions to the Three Basic Problems

2.3.1. Likelihood

Our objective is to calculate the likelihood of a particular observation sequence, O = O1O2 · · ·OT ,
given the model λ. The most intuitive way of doing this is by summing the joint probability of O and
Q for all possible state sequences Q of length T:

P(O|λ) = ∑
all Q

P(O|Q, λ) · P(Q|λ). (4)

The probability of a particular observation sequence O, given a state sequence Q = q1q2 · · · qT , is

P(O|Q, λ) =
T

∏
t=1

P(Ot|qt, λ)

= bq1(O1) · bq2(O2) · · · bqT (OT), (5)

as we have assumed that the observations are independent. The probability of a state sequence Q can
be written as

P(Q|λ) = πq1 aq1q2 aq2q3 · · · aqT−1qT . (6)

The joint probability of O and Q is the product of the above two terms; that is,

P(O, Q|λ) = P(O|Q, λ) · P(Q|λ). (7)

Although the calculation of P(O|λ) using the above definition is rather straightforward, the
associated computational cost is huge.

Thankfully, a dynamic programming approach, called the Forward Algorithm, can be
used instead.

Consider the forward variable αi(t), defined as

αt(i) = P(O1O2 · · ·Ot, qt = Xi|λ). (8)

We can solve for αt(i) inductively using Algorithm 1.
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Algorithm 1 The Forward Algorithm.

1. Initialization:

α1(i) = πibi(O1), 1 ≤ i ≤ N. (9)

2. Induction:

αt+1(j) =

[
N

∑
i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1

1 ≤ j ≤ N. (10)

3. Termination:

P(O|λ) =
N

∑
i=1

αT(i). (11)

Correspondingly, we can define a backward variable βt(i) as

βt(i) = P(Ot+1Ot+2 · · ·OT |qt = Xi, λ). (12)

Again, we can solve for βt(i) inductively using Algorithm 2.

Algorithm 2 The Backward Algorithm.

1. Initialization:

βT(i) = 1, 1 ≤ i ≤ N. (13)

2. Induction:

βt(i) =
N

∑
j=1

aij bj(Ot+1)βt+1(j), t = T − 1, T − 2, . . . , 1

1 ≤ i ≤ N. (14)

2.3.2. Decoding

In order to identify the best sequence Q = {q1q2 · · · qT} for the given observation sequence
O = {O1O2 · · ·OT}, we need to define the quantity

δt(i) = max
q1,q2,...,qt−1

P(q1q2 · · · qt = i, O1O2 · · ·Ot|λ). (15)

By induction, we have

δt+1(j) =
[

max
i

δt(i)aij

]
· bj(Ot+1). (16)

To actually retrieve the state sequence, it is necessary to keep track of the argument which
maximizes Equation (16), for each t and j. We do so via the array ψt(j). The complete procedure for
finding the best state sequence is presented in Algorithm 3.
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Algorithm 3 Viterbi algorithm.

1. Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N (17)
ψ1(i) = 0. (18)

2. Recursion:

δt(j) = max
1≤i≤N

[
δt−1(i)aij

]
bj(Ot), 2 ≤ t ≤ T

1 ≤ j ≤ N (19)

ψt(j) = arg max
1≤i≤N

[
δt−1(i)aij

]
2 ≤ t ≤ T

1 ≤ j ≤ N. (20)

3. Termination:

P∗ = max
1≤i≤N

[δT(i)]

q∗T = arg min
1≤i≤N

[δT(i)] . (21)

4. Sequence back-tracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, · · ·, 1. (22)

2.3.3. Learning

The model which maximizes the probability of an observation sequence O, given a model
λ = (A, B, π), cannot be determined analytically. However, a local maximum can be found using an
iterative algorithm, such as the Baum-Welch method or the expectation-maximization (EM) method
(Dempster et al. 1977). In order to describe the iterative procedure of obtaining the HMM parameters,
we need to define ξt(i, j), the probability of being at the state Xi at time t, and the state Xj at time t + 1,
given the model and observation sequence; that is,

ξt(i, j) = P(qt = Xi, qt+1 = Xj|O, λ). (23)

Using the earlier defined forward and backward variables, ξt(i, j) can be rewritten as

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P(O|λ) . (24)

We define

γt(i) =
N

∑
j=i

ξt(i, j) (25)

as the probability of being in state Xi at time t. It is clear that

T−1

∑
t=i

γt(i) = expected number of transitions from Xi, and (26)

T−1

∑
t=i

ξt(i, j) = expected number of transitions from Xi to Xj. (27)
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Using these formulas, the parameters of a HMM can be estimated, in an iterative manner, as follows:

π̂i = γ1(i) = expected number of times in state Xi at time t = 1; (28)

âij =

T−1

∑
t=i

ξt(i, j)

T−1

∑
t=i

γt(i)

=
expected number of transitions from Xi to Xj

expected number of transitions from Xi
; (29)

b̂j(k) =

T

∑
t=1

1{Ot=vk}γt(j)

T

∑
t=1

γt(j)

=
expected number of times in state j and observing symbol vk

expected number of times in state j
. (30)

If λ = (A, B, π) is the current model and λ̂ = (Â, B̂, π̂) is the re-estimated one, then it has been
shown, by Baum and Eagon (1967); Baum and Petrie (1966), that P(O|λ̂) ≥ P(O|λ).

In case the observation probabilities are Gaussian, the following formulas are used to update the
model parameters u and σ:

ûj =

T

∑
t=1

γt(j)Ot

T

∑
t=1

γt(j)

, (31)

σ̂j =

√√√√√√√√√
T

∑
t=1

γt(j)(Ot − uj)
2

T

∑
t=1

γt(j)

. (32)

3. Modelling the Evolution of Exchange Rates

As discussed in the introduction, the first step in calculating the future distribution of counterparty
exposure is the generation of scenarios using the models that represent the evolution of the underlying
market factors. These factors typically include interest and exchange rates, equity and commodity
prices, and credit spreads. This article is concerned with the modeling of exchange rates.

3.1. Geometric Brownian Motion

In mathematical finance, the Geometric Brownian Motion (GBM) model is the stochastic process
which is usually assumed for the evolution of stock prices (Hull 2009). Due to its simplicity and
tractability, GBM is also a widely used model for the evolution of exchange rates.

A stochastic process, St, is said to follow a GBM if it satisfies the following stochastic
differential equation:

dSt = µStdt + σStdWt, (33)

where Wt is a Wiener process, and µ and σ are constants representing the drift and
volatility, respectively.
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The analytical solution of Equation (33) is given by:

St = S0 exp
((

µ− σ2

2

)
t + σWt

)
. (34)

With this expression in hand, and knowing that Wt ∼ N(0, t), one can generate scenarios simply
by generating standard normal random numbers.

3.2. A Hidden Markov Model for Drift and Volatility

One of the main shortcomings ofthe GBM model is that, due to the assumption of constant drift
and volatility, some important characteristics of financial time-series, such as volatility clustering
and heavy-tailedness in the return distribution, cannot be captured. To address these limitations, we
consider a model with an additional stochastic process. The observations of the exchange rates are
assumed to be generated by a discretised GBM, in which both the drift and volatility parameters are
able to switch, according to the state of an unobservable process which satisfies the Markov property.
In other words, the conditional probability distribution of future states depends solely upon the current
state, not on the sequence of states that preceded it. The observations also satisfy a Markov property
with respect to the states (i.e., given the current state, they are independent of the history).

Thus, we consider a hidden Markov model with Gaussian emissions λ = (A, u, σ, π), as was
presented in Section 2.1. We denote the hidden states by X = {X1, X2, . . . , XN}, and the state at
time t as qt. The unobservable Markov process governs the distribution of the log-return process

Y = {Y2, . . . , YT}, where Yt = log
St

St−1
, t = 2, . . . , T. The dynamics of Y are then as follows:

Yt = u(qt) + σ(qt)Zt, (35)

where u(qt) =

(
µ(qt)−

σ2(qt)

2

)
and Zt ∼ N(0, 1) are independent standard normal

random numbers.
The transition probabilities of the hidden process, as well as the drift and volatility of the GBM,

can be estimated from a series of observations, using the algorithms presented in Section 2. The number
of hidden states has to be specified in advance. In many practical applications, the number of hidden
states can be determined based on intuition. For example, stock markets are often characterized as
“bull” or “bear”, based on whether they are appreciating or depreciating in value. A bull market
occurs when returns are positive and volatility is low. On the other hand, a bear market occurs
when returns are negative and volatility is high. It would, therefore, be in line with intuition to
assume that stock market observations are driven by a two-state process. The number of states can
also be determined empirically; for example, using the Akaike information criterion (AIC) or the
Bayesian information criterion (BIC). Once the model parameters have been estimated, scenarios
can be generated by generating the hidden Markov chain and sampling the log-returns from the
corresponding distributions.

4. RFE Model Performance Evaluation

4.1. Backtesting

In this sub-section, we give a brief overview of a framework for the backtesting of RFE models.
For a more detailed description, the reader is referred to Ruiz (2014). Backtesting is the process of
comparing the distributions given by the RFE models with the realized history of the corresponding
risk factors. In accordance with regulatory requirements, RFE models have to be backtested at



Risks 2019, 7, 66 9 of 22

multiple forecasting horizons, making use of various distributional tests (Basel Committee on Banking
Supervision 2010b).

To test whether a set of realizations can reasonably be modeled as arising from a specific
distribution, we use the Probability Integral Tranform (PIT) (see (Diebold et al. 1997)), defined as

F(xn) =
∫ xn

−∞
f (u)du, (36)

where xn is the realization of a random variable and f (·) is its predicted density. Note that, if one
applies PIT using the true density of xn to construct a set of values, it follows that the distribution
of the constructed set will simply be U (0, 1). As a result, one is able to evaluate the quality of the
model f (·) for xn, simply by measuring the distance between the distribution of the constructed set
and U (0, 1).

For a given set of realizations xti of the risk factor to be tested, we set a starting point tstart and
an ending point tend. The size of the backtesting window is then Tb = tend − tstart. If the time horizon
over which we want to test our model is ∆, we proceed as follows:

1. We set t1 = tstart. We, then, calculate the PIT F(xt1+∆) of the realized value at t1 + ∆ using
the model risk factor distribution for that point. If an analytical expression is not available,
the distribution can be approximated numerically. This yields a value F1.

2. We, then, move forward to t2 = t1 + ∆. We calculate F(xt2+∆) using the model risk factor
distribution at t2 + ∆ and obtain a value F2.

3. We repeat the above, until ti + ∆ = tend.

This exercise yields a set {Fi}K
i=1, where K is the number of steps taken. As mentioned previously,

if the empirical distribution of the realizations is the same as the predicted distribution, then the
constructed set {Fi}K

i=1 will be uniformly distributed.
In order to measure the distance d between the distribution of the constructed set and U (0, 1) we

can use a number of metrics, such as:
The Anderson–Darling metric:

dAD =
∫ ∞

−∞
(Fe(x)− F(x))2 ω(F(x))dF(x)

ω(x) =
1

x(1− x)
, (37)

the Cramer–von Mises metric:

dCVM =
∫ ∞

−∞
(Fe(x)− F(x))2 ω(F(x))dF(x)

ω(x) = 1, or (38)

the Kolmogorov–Smirnov metric:

dKS = sup
x
|Fe(x)− F(x)|, (39)

where Fe is the empirical and F is the theoretical cumulative distribution function. Note that each of
these metrics provides a single distance value d̃ between the distribution of the realized set and U (0, 1).
To obtain an understanding of whether this distance is acceptable, we simulate time-series using the
model being tested. Although the simulated time-series will follow the model by definition, there will
still be some distance, d, due to numerical noise. By repeating this experiment a sufficiently large
number of times (say, M), we can obtain a set {di}M

i=1 and approximate, numerically, its cumulative
distribution function ψ(d). With ψ(d) in hand, we can assess the distance d̃, as follows: If d̃ falls in
a range with high probability with respect to ψ(d), then the probability of the model being accurate is
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high. By defining dy and dr as the 95th and the 99.99th percentiles, respectively, we can obtain three
color bands for model performance:

• Green band: d̃ ∈ [0, dy);
• Yellow band: d̃ ∈ [dy, dr); and
• Red band: d̃ ∈ [dr, ∞).

An example of the three-color scoring scheme is shown in Figure 2. The backtesting process can
be carried out for a set of time horizons, and for every horizon a single result can be produced, in
terms of a probability ψ(d̃) and a color band.

4.2. Long-Term Percentiles of Distribution Cones

Backtesting provides a statistical judgement of the performance of the model for relatively
short-term forecast horizons. Assessing the distribution cones of the risk factor evolution provides
insight into the behavior of the model for long forecast horizons. The high and low percentiles of
the distribution cones need to be compared to the long-term percentiles of the observed risk factor
data. Please note that assessing the long-term percentiles needs expert judgement to some extent, as it
is difficult to statistically unambiguously state what the long-term percentile of a distribution cone
should be.
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Figure 2. Examples of the three-color scoring scheme. The model in the example receives yellow scores
for all three metrics, as dy < d̃ < dr.

5. Numerical Experiments

5.1. Overview of Data Selections

In order to evaluate the performance of the HMM approach, we used the foreign exchange rates of
the Euro against two G10 and two emerging-market currencies. We used daily observations, between
1 January 2004 and 31 December 2016, for the following FX rates:
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• USD/EUR,
• GBP/EUR,
• RUB/EUR, and
• MXN/EUR.

5.2. Selection of the Number of Hidden States

Choosing the appropriate number of hidden states for a HMM is not a trivial task. Two commonly
used criteria for model comparison are the Akaike information criterion (AIC):

AIC = −2 log L + 2p, (40)

and the Bayesian information criterion (BIC):

BIC = −2 log L + p log T, (41)

where L is the likelihood of the fitted model, p is the number of free parameters in the model, and T
denotes the number of observations (Zucchini et al. 2016). The number of free parameters in a HMM
with a Gaussian distribution for each hidden state is:

p = N2 + 2N − 1, (42)

where N is the number of hidden states. Thus, in both criteria, the second term is a penalty term which
increases with increasing N. Compared to the AIC, the penalty term of the BIC has more weight when
T > e2 and, therefore, the BIC often favors models with fewer parameters than the AIC does.

A bank that uses internal models to measure exposure for capital purposes must use at least three
years of historical data for calibration, where the parameters have to be updated quarterly or more
frequently, if market conditions warrant. During the course of backtesting, re-calibration of the RFE
model parameters needs to be done at the same frequency as for production to make the re-calibration
effects visible (Basel Committee on Banking Supervision 2010b). Consequently, in the backtesting
exercise that follows (in Section 5.3), we use calibration blocks of three years and move the block
forward by one quarter every time.

To choose the appropriate number of hidden states, we calibrate HMMs with 2–5 states for
each of the three-year blocks and calculate the AIC and BIC. The results are shown in Figures 3–6.
Based on the AIC results, the performance of HMMs with 2, 3, 4, or 5 states is almost the same for the
emerging-market currencies. For USD/EUR, models with higher number of hidden states seem to
perform better while, for GBP/EUR, the two-state model is preferable. However, based on the BIC,
the HMM with two states is the best candidate for all four currency pairs. Therefore, we focus on the
HMM with two states for the rest of our numerical experiments.
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Figure 3. Akaike information criterion (AIC) and Bayesian information criterion (BIC) for HMMs
calibrated using USD/EUR time-series.
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Figure 5. AIC and BIC for HMMs calibrated using RUB/EUR time-series.
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Figure 6. AIC and BIC for HMMs calibrated using MXN/EUR time-series.

5.3. Model Backtesting

We applied the backtesting algorithm (presented in Section 4) using observations between 1
January 2004 and 31 December 2016 for the selected FX rates. We used a calibration window Tc of three
years with quarterly re-calibration (δc = 3 months). The length of the backtesting window was Tb = 10
years and we tested model performance for time horizons ∆ of length 1 week, 2 weeks, 1 month, and
3 months.

In order to generate scenarios of length ∆, the following steps were taken. At every time point
t with 1 ≤ t ≤ ∆ and, given the current hidden state qt = Xi, the next hidden state qt+1 = Xj was
chosen using the transition probability matrix A. The observation Ot was then generated, according to
the corresponding emission probability distribution bj. The initial hidden state q0 was assumed to be
the most probable state at the end of the learning procedure.

It is important to note that the backtesting procedure provides a statistical assessment of the
model performance for relatively short-term forecast horizons. For instance, a backtesting window Tb
of 10 years and a time horizon ∆ = 1 year would translate to only 10 independent points. As a result,
the statistical relevance of the backtesting exercise would be limited. In order to gain an insight into
model behavior for longer forecast horizons, we consider the distribution cones of the risk factor
evolution. The high and the low percentiles of the distribution cones are compared to observed risk
factor data.

In the following, we discuss the results obtained for each of the FX rates.

5.3.1. USD/EUR

Table 1 summarizes the results of the backtesting exercise for USD/EUR, in terms of probabilities
as well as color bands. When the forecasting horizon was 1 week, both the GBM and the two-state
HMM scored yellow under the Anderson–Darling and the Cramerthree–von Mises metrics, and green
under the Kolmogorov–Smirnov metric. For the two-week forecasting horizon, both models obtained
a yellow score under all three metrics. Finally, for the longer horizons (1 and 3 months), both models
performed significantly better, with green scores under all metrics. The backtesting results do not
indicate any notable difference in performance between the HMM and the GBM.
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Table 1. Backtesting results for USD/EUR with calibration window Tc = 3 years, frequency
of re-calibration δc = 3 months, and backtesting window Tb = 10 years. GBM, Geometric
Brownian Motion.

Time Horizon GBM HMM2

AD CVM KS AD CVM KS
1W 0.9783 0.9709 0.9192 0.9884 0.9846 0.9189
2W 0.9553 0.9507 0.9831 0.9744 0.9662 0.9890
1M 0.4849 0.5829 0.5620 0.6486 0.6957 0.6023
3M 0.3476 0.2130 0.1156 0.6145 0.4968 0.3397

In order to gain an insight into the performance of the models for longer time horizons, we present,
in Figure 7, the 5th and 95th percentiles of the forecast distributions for a horizon of 7 years, between
2011 and end of 2016. It can be seen that the HMM gave slightly more conservative forecasts, compared
to the GBM, but the realized time-series fell within the 90% probability region under both models, at
the end of the 7 year period.

2011
2012

2013
2014

2015
2016

Year

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

US
D/

EU
R

Realized
GBM 95%ile
GBM 5%ile
HMM2 95%ile
HMM2 5%ile

Figure 7. Percentiles of long-term distribution cones for USD/EUR under GBM and HMM with
two states.

5.3.2. GBP/EUR

The backtesting results for GBP/EUR are summarized in Table 2. The two models achieved
similar performance when the time horizon was 2 weeks or longer. When the forecasting horizon was
2 weeks, both models scored yellow. In the 1-month horizon, both models had green scores under the
Anderson–Darling and Cramer–von Mises metrics, and a yellow score under the Kolmogorov–Smirnov
metric. The scores were green for both models under all metrics when the time horizon was 3 months.
The greatest difference between the two models was observed for the 1-week forecasting horizon,
where the two-state model performed significantly better, scoring green under all three metrics,
while the corresponding scores for GBM were yellow.
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Table 2. Backtesting results for GBP/EUR with calibration window Tc = 3 years, frequency of
re-calibration δc = 3 months, and backtesting window Tb = 10 years.

Time Horizon GBM HMM2

AD CVM KS AD CVM KS
1W 0.9861 0.9816 0.9820 0.8698 0.9280 0.6391
2W 0.9936 0.9919 0.9964 0.9934 0.9920 0.9952
1M 0.9085 0.8965 0.9594 0.9299 0.9140 0.9726
3M 0.8702 0.8273 0.8716 0.8573 0.8014 0.8535

Figure 8 shows the 5th and 95th percentiles of the forecast distributions between 2011 and end
of 2016. Similarly to the results for USD/EUR, HMM gave slightly more conservative forecasts and
the realized time-series fell within the 90% probability region under both models, at the end of the
7 year period. However, in 2016, the realized time-series fell outside the 95th percentile of the GBM
distribution, while it was still within this bound for the HMM.

2011 2012 2013 2014 2015 2016
Year

0.2
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0.6

0.8

1.0

1.2

1.4
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P/

EU
R
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GBM 95%ile
GBM 5%ile
HMM2 95%ile
HMM2 5%ile

Figure 8. Percentiles of long-term distribution cones for GBP/EUR under GBM and HMM with
two states.

5.3.3. RUB/EUR

Table 3 presents the results of the backtesting exercise for RUB/EUR. It can be seen that both GBM
and HMM did not perform very well when the forecasting horizon was 1 week, with HMM having
yellow scores under every metric. The results were similar for the 2 week forecasting horizon. In the
longer time horizons, however, both models performed better. HMM outperformed the one-state
model GBM, achieving green scores in the 1-month horizon. The scores were green for both models
when the forecasting horizon was 3 months.

Table 3. Backtesting results for RUB/EUR with calibration window Tc = 3 years, frequency of
re-calibration δc = 3 months, and backtesting window Tb = 10 years.

Time Horizon GBM HMM2

AD CVM KS AD CVM KS
1W 0.9991 0.9988 0.9988 0.9997 0.9996 0.9996
2W 0.9992 0.9989 0.9992 0.9996 0.9996 0.9988
1M 0.9830 0.9809 0.9446 0.9485 0.9457 0.8898
3M 0.5526 0.1406 0.0651 0.4399 0.3394 0.1624
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Figure 9 shows the percentiles of the long-term distribution cones for RUB/EUR. It is clear that
the difference between GBM and HMM was more pronounced, with the HMM yielding significantly
more conservative forecasts. The realized time-series was close to the 95th percentile of the GBM
distribution until mid-2014, exceeding it on a number of occasions in 2011 and in 2013. Despite a sharp
decline in 2015, the realized time-series remained above the 5th percentile for both models throughout
the 7 year period.
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Figure 9. Percentiles of long-term distribution cones for RUB/EUR under GBM and HMM with
two states.

5.3.4. MXN/EUR

Table 4 summarizes the results of the backtesting exercise for MXN/EUR, in terms of scores as
well as color bands. Both HMM and GBM had yellow scores for the shorter time horizons (1 and 2
weeks), under all metrics. The models performed better for the longer time horizons (1 and 3 months),
achieving green scores. Figure 10 shows the long-term distribution cones. Similar to the the GBP/EUR
case, we do not observe a clear difference in performance between GBM and HMM with two states.
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Figure 10. Percentiles of long-term distribution cones for MXN/EUR under GBM and HMM with two states.



Risks 2019, 7, 66 17 of 22

Table 4. Backtesting results for MXN/EUR, with a 3-year calibration window, quarterly re-calibration,
and a 10-year backtesting window.

Time Horizon GBM HMM2

AD CVM KS AD CVM KS
1W 0.9967 0.9955 0.995 0.9967 0.9956 0.9938
2W 0.9895 0.9864 0.9677 0.9841 0.9768 0.9742
1M 0.5185 0.5963 0.7136 0.5501 0.6071 0.6225
3M 0.7124 0.6643 0.4422 0.7045 0.7373 0.6563

5.4. Impact on Credit Exposure: A Case Study for FX Options

5.4.1. Exposure at Default (EAD)

Prior to presenting the case study on FX options, we provide a brief introduction to credit exposure
calculation. For a more detailed description, the reader is referred to Zhu and Pykhtin (2007) and
Gregory (2012).

When a financial institution is permitted to use the IMM to calculate credit exposure, the following
steps need to be taken:

1. Scenario Generation. Market scenarios are simulated for a fixed set of exposure dates {tk}N
k=1 in the

future, using the RFE models.
2. Instrument Valuation. Instrument valuation is performed for each exposure date and for each

simulated scenario.

The outcome of this process is a set of realizations of credit exposure at each exposure date in the
future. One can then estimate the expected exposure EEk as the average exposure at future date tk,
where the average is taken across all simulated scenarios of the relevant risk factors.

The Expected Positive Exposure (EPE) is defined as the weighted average of the EE over the
first year

EPE =
min(1 year, maturity)

∑
k=1

EEk × ∆tk, (43)

where the weights ∆tk = tk − tk−1 are the proportion that an individual expected exposure represents
over the entire one-year time horizon.

In order to account for potential non-conservative aging effects, a modification is necessary. First,
an Effective EE profile is obtained from the EE profile by adding the non-decreasing constraint for
maturities below one year. Effective EE can be calculated, recursively, as follows:

Effective EEk = max {Effective EEk−1 − EEk} , (44)

where the current date is denoted as t0 and EE0 equals the current exposure.
Effective EPE can, then, be calculated from the Effective EE profile, in the same way that EPE is

calculated from the EE profile:

Effective EPE =
min(1 year, maturity)

∑
k=1

Effective EEk × ∆tk. (45)

Finally, the Exposure at Default (EAD) is the product of a multiplier α and the Effective EPE

EAD = α× Effective EPE. (46)

The multiplier α, introduced by Picoult (2002), is a correction coefficient that accounts for
wrong-way risk. Under the IMM, α is fixed at a rather conservative level of 1.4. However, banks using
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the IMM have an option to use their own estimate of α, with the prior approval of the supervisor and a
floor of 1.2.

5.4.2. Results

In order to study the impact of using a two-state HMM, instead of a GBM, on regulatory and
economic capital, we consider the case of FX call options on the RUB/EUR rate. The rationale behind
this choice was that the Russian currency suffered a crisis in 2014, which will be included in our
calibration data set.

Our starting date was 2 Januray 2016. We estimated the parameters of a GBM and a two-state
HMM, using three years of data (between January 2013 and December 2015). Following the
methodology presented in Section 5.4.1, we generated market scenarios for the following set of
future exposure dates:

{tk}9
k=1 = {1 week, 2 weeks, 3 weeks, 4 weeks, 2 months, 3 months, 6 months, 9 months, 1 year} . (47)

For each generated scenario and each exposure date, option valuation was performed using the
Garman–Kohlhagen model (Garman and Kohlhagen (1983)).

The value of a call option at time t is given by the analytical formula

Ct = Ste−r f (T−t)N(x + σ
√

T − t)− Ke−rd(T−t)N(x), (48)

where

x ≡
ln (St/K) +

(
rd − r f −

(
σ2/2

))
(T − t)

σ
√

T − t
,

St it the spot price of the deliverable currency at time t (domestic units per foreign unit),
K is the strike price of the option (domestic units per foreign unit),
T − t is the time to maturity,
rd is the domestic risk-free interest rate,
r f is the foreign risk-free interest rate,
σ is the volatility of the spot currency price, and
N(·) is the cumulative normal distribution function.

Note that, in the formula, both spot and strike price are quoted in units of domestic currency
per unit of foreign currency. As a result, the option price will be in the same units, as well. In order
to obtain the market value of a position in such an option, it is necessary to multiply by a notional
amount Λ in the foreign currency.

In our example, the foreign and domestic currencies are RUB and EUR, respectively. In order
to achieve a candid comparison of the two RFE models for the exchange rate, we do not consider
interest rate and volatility as risk factors for FX options. Instead, we make the simplistic assumptions
of rd = r f = 0 and constant volatility σ = 0.15 (equal to the supervisory volatility for foreign
exchange options in the standardised approach, see Basel Committee on Banking Supervision (2014)).
The notional amount Λ is set to RUB 100,000,000. The spot RUB/EUR exchange rate on 2 January 2016
was S0 = 0.01263.

The credit exposure values for out-of-the-money (OTM) call options on the RUB/EUR exchange
rate, for a range of strike prices, are illustrated in Figure 11a. The impact of using a two-state
HMM, instead of a GBM, is shown in Figure 11b. These results are summarized in Table 5. It is
clear that exposure values under HMM exceeded the exposure values under GBM markedly for
deep-out-the-money options. This difference would have a direct impact on how these positions
would be capitalized against counterparty default, with a difference that could exceed 400% for the
strike price K = 0.023. It is also important to note that, given the exchange rate movements over recent
years, it is not unrealistic for the moneyness of such options to change dramatically, leading to large
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unexpected losses. For in-the-money call options, the two models produced identical exposure values.
Thus, these results are omitted from this paper.
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Figure 11. Credit exposure values for out-of-the-money (OTM) call options on the RUB/EUR exchange
rate (a) and the impact of using a two-state HMM, instead of a GBM (b).
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Table 5. Credit exposure values for out-of-the-money (OTM) options on the RUB/EUR exchange rate.

Strike K
Credit Exposure

Impact (%)
GBM HMM2

0.014 29,507.54 29,013.22 −1.68
0.015 13,684.44 12,838.95 −6.18
0.016 5981.10 5939.89 −0.69
0.017 2598.64 3199.17 23.11
0.018 1207.04 1740.47 44.19
0.019 580.34 973.64 67.77
0.020 285.70 595.99 108.61
0.021 143.08 401.04 180.29
0.022 70.20 269.96 284.60
0.023 31.87 165.56 419.47

6. Conclusions

In this paper, we presented a hidden Markov model for the evolution of exchange rates with
regards to counterparty exposure. In the proposed model, the observations of the exchange rates were
assumed to be generated by a discretized GBM, in which both the drift and volatility parameters are
able to switch, according to the state of a hidden Markov process. The main motivation of using such
a model is the fact that GBM can assign unrealistically low probabilities to extreme scenarios, leading
to the under-estimation of counterparty exposure and the corresponding capital buffers. The proposed
model is able to produce distributions with heavier tails and capture extreme movements in exchange
rates without entirely departing from the convenient GBM framework.

We generated exchange rate scenarios for four currency pairs: USD/EUR, GBP/EUR, RUB/EUR,
and MXN/EUR. A risk factor evolution model backtesting exercise was performed, in line with
Basel III requirements, and the the percentiles of the long-term distribution cones were obtained.
The performances of the one-state and two-state models (GBM and the two-state HMM, respectively)
were found to be very similar, with the two-state model HMM being slightly more conservative.
However, when the generated scenarios were used to calculate exposure profiles for options on the
RUB/EUR exchange rate, we found significant differences between the results of the two models.
These differences were even more pronounced for deep out-of-the-money options.

Our study highlights some of the limitations of backtesting as a tool for comparing the
performance of RFE models. Backtesting can be a useful way to objectively assess model performance.
However, it can only be performed over short time horizons; with our available data, we could perform
a statistically sound test of modeling assumptions for a time horizon of maximum length three months.
It is, therefore, important to put effort into the interpretation of backtesting results, before they are
translated into conclusions about model performance. Our results show how two models with similar
performances in a backtesting exercise can result in very different exposure values and, consequently,
in very different regulatory and economic capital buffers. This can lead to regulatory arbitrage and
potentially weaken financial stability and, further, turn into a systemic risk.

The research presented in this paper can be extended in a number of ways, such as considering
the evolution of risk factors other than exchange rates. Another topic worthy of investigation is
the enhancement of the backtesting framework presented by Ruiz (2014), by considering statistical
tests similar to the ones presented by Berkowitz (2001) and Amisano and Giacomini (2007). Finally,
an interesting research direction is the development of an agent-based simulation model with
heterogeneous modeling approaches, with regards to the RFE models. This model could potentially
give valuable insights into the impact of heterogeneous models in financial stability.
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