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Abstract: In the past two decades increasing computational power resulted in the development
of more advanced claims reserving techniques, allowing the stochastic branch to overcome the
deterministic methods, resulting in forecasts of enhanced quality. Hence, not only point estimates,
but predictive distributions can be generated in order to forecast future claim amounts. The significant
expansion in the variety of models requires the validation of these methods and the creation of
supporting techniques for appropriate decision making. The present article compares and validates
several existing and self-developed stochastic methods on actual data applying comparison measures
in an algorithmic manner.

Keywords: stochastic claims reserving; probabilistic forecast; comparison metrics; credibility;
Monte Carlo

1. Introduction

Insurance and reinsurance institutions, particularly property and casualty insurers, put a
considerable amount of effort into the understanding of outstanding claims reserves. These amount to
the most material proportion of technical provisions, hence, their volume and uncertainty are critical
to be controlled well by actuaries and management. Not only the measure and pattern of future cash
outflows and metrics of associated risks play a role in the insurance business, but also management
decisions are triggered by the outcome of calculations.

Scholars and industry professionals have been studying different estimation models in the past
decades extensively. Interest in stochastic models has outgrown the interest in deterministic ones,
shifting from simple point estimations to approximation of probability distributions, enabling the
calculation of features of the examined object with more insight into the nature of the underlying
phenomenon. The demand for forecasts embodied in distributional forms rather than point estimates
has grown rapidly along with the growth of computational power, simultaneously allowing for the
pragmatic implementation of Monte Carlo type algorithms. This increasing interest has emerged not
only in insurance but in several other disciplines, such as meteorology or finance, demanding a more
meaningful prediction of future outcomes. England and Verrall (2002); Wüthrich and Merz (2008)
contain comprehensive overviews of reserving methods. In our view, the validation of the models
on actual industrial data and the comparison of these models’ appropriateness is a crucial question.
In spite of the relevance of model suitability, proportionally to the size of existing literature on models,
even more attention has to be given to the substantiation of model quality and to the comparison of
methodologies. Professionals who are offered countless different models need guidelines that can
support an optimal selection. A more recent work, Meyers (2015) performs investigation on bootstrap
and Bayesian models using publicly available claims data from American insurance companies.
The work also proposes new methods practically solved through MCMC simulations.

Risks 2019, 7, 62; doi:10.3390/risks7020062 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
http://dx.doi.org/10.3390/risks7020062
http://www.mdpi.com/journal/risks
https://www.mdpi.com/2227-9091/7/2/62?type=check_update&version=2


Risks 2019, 7, 62 2 of 27

A case study is performed in Wüthrich (2010) in order to analyse the accounting year effects
in the triangles. This study compares Bayesian models with mean square error of prediction
(MSEP) and deviance information criterion (DIC). Shi and Frees (2011) and Shi et al. (2012) provide
another comparison alternative with QQ-plots and PP-plots. Nevertheless, the first one focusses on
understanding the dependency among the triangles of different business lines with a copula regression
model, and the second one describes retrospective tests on the models proposed. Even more focus is
put on the validation of methods in Martínez-Miranda et al. (2013), evaluating which methodology
should be preferred. Three methods, the double chain ladder, the Bornhuetter–Ferguson and the
incurred double chain ladder methods are compared through two real data sets from property and
casualty insurers, and the metrics used are call error, calendar year error and total error. Supported by
real-life claims data, Tee et al. (2017) compares three models with different residual adjustments using
the Dawid–Sebastiani scoring rule (DSS).

This paper analyses diverse stochastic claims reserving methods by means of several
goodness-of-fit measures. In a game-theoretic interpretation of forecasts, it sets up a ranking framework
selecting from competing models. Certainly, there is hardly any manner of ranking methodology which
all actuaries would unanimously agree with, as a peremptory selector of the most proper prediction
models. However, it is reasonable to define and observe the important characteristics of estimations,
which put together may support the decision-making process and the validation of the applied methods.
In the assessment of reserving models, there is a strong intention to promote measures originally
used in stochastic forecasting. Another objective of the paper is to support the methodological
background and perform assessments of diverse sets of models on actual data. Probability integral
transform (PIT) provides more justification on the predictive distribution appropriateness, while the
Kolmogorov–Smirnov or Cramér–von Mises statistics would fail to shed light on what exactly goes
wrong with the hypothesis. Established scores compare and verify qualities of rival probabilistic
forecasting models on the basis of estimation and real outcomes.

From the wide range of scoring rules, we apply the continuous ranked probability scores (CRPS)
due to their flexible applicability on differing distributions, see Gneiting and Raftery (2007). Coverage
shows the central prediction interval of a prediction given a real governing distribution. Sharpness,
a related metric is the width as expected difference between lower and upper p-quantiles, the narrower
the better expressed in payment, see Gneiting et al. (2007). Alternatively, sharpness is also called
average width. For backtesting the stochastic reserving models we apply these five metrics on the full
quadrangles, i.e., on the run-off tringles completed with the lower part. In several cases, when the
prediction model is distribution-free, the empirical forecast has been drawn through bootstrapping.
This makes an empirical predictive distribution uniformly available.

In order to measure according to real scenarios, the database published in Meyers and Shi (2011)
has been used. Paid and incurred claims data originate from the National Association of Insurance
Commissioners (NAIC), and contain tables for six different lines of business, encompassing (1)
commercial auto and truck liability and medical, (2) medical malpractice, (3) private passenger auto
liability and medical, (4) product liability, (5) workers’ compensation and (6) other liability. Lines of
business are homogeneous groups of policies with identical coverage. Data are segmented into these
clusters in order to avoid the amalgamation of claim payment run-offs with significantly different
characteristics. Leong et al. (2014) evaluates backtesting on the referred data with respect to the
application of bootstrap overdispersed Poisson model.

Simulations have been carried out with R, using packages ChainLadder Gesmann (2018) and
rjags for the MCMC simulations. Besides the self-written program codes, scripts published in
association with Meyers (2015) have been embedded into the calculations.

The primary objective of the present article is to support decision making among several available
models applied on run-off triangles, by defining and calculating measures of the actual and predictive
distributions. Given that actual distributions can hardly be extracted, we have used empirical
distributions from real ultimate claims data.
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To the authors’ knowledge, neither the credibility bootstrap method in Section 3.3, nor the
collective semi-stochastic model in Section 3.5 have ever been discussed in peer-reviewed journals.
Two of the models incorporate experience ratemaking from the claims history of an entire community
of companies. One step further is exploiting collective data to improve individual (insurance company
level) prediction reliabilities, requiring the coordination of regulatory authorities as data collectors
and processors.

To summarise the novelties communicated by the present paper: (1) Metrics in actuarial reserving
such as CRPS, coverage and sharpness of several models to analyse their performance and determine
an order of appropriateness have been presented by Arató et al. (2017) on simulated data. Here we
apply all the calculations on actual triangles from multiple risk groups. (2) PIT has already been
applied by Meyers (2015) on stochastic models, here we continue presenting the calculations involving
further methods not covered elsewhere (credibility bootstrap, bootstrap Munich, semi-stochastic). (3)
Two new models are introduced, credibility bootstrap in Section 3.3 and collective semi-stochastic
in Section 3.5. (4) We emphasise the importance of an algorithmic way of model selection from
competing peers in Section 4. (5) Models based on internal information only (single triangle) are also
compared with collective ones (multiple triangles and credibility), and the article intends to convey
the potential of oversight data collection and possible application on multiple triangles. (6) Scripts
published by Meyers (2015) are developed further with new code chunks and made available in the
paper’s supplement.

The article is structured as follows: Section 2 contains the expository description of insurance data
published by the NAIC and used for comparative analysis, consisting of observations of claims and
premiums from hundreds of insurance institutions. Section 3 enumerates of methodologically distinct
and diverse reserving models, a number of which are applied widely in the insurance industry. Having
approached the original, claims reserving problem as a probabilistic forecast, Section 4 provides insight
into five measures. The section includes the validation of individual models from the angle of the five
indicators. Section 5 concludes the paper.

2. Data

Open source data enables the validation of methodologies on real loss figures. The National
Association of Insurance Commissioners (NAIC) published data tables consisting of the names of
insurance institutions, incurred and paid loss per accident year and per development year, and earned
premiums per contract year. Meyers and Shi (2011) published these tables along with the article.

Historical values applied in the present paper concern the run-off triangles built up by paid
and incurred losses. Six different lines of business can be distinguished; (1) commercial auto and
truck liability and medical, (2) medical malpractice, (3) private passenger auto liability and medical,
(4) product liability, (5) workers’ compensation and (6) other liability, with a variable number of
corporations contributing to the data set. Business lines correspond to homogeneous segments of
insurance portfolios, which are addressed separately for the reason that they generally show distinct
run-off behaviour. Hence, clusters on the basis of coverage type are made in order not to amalgamate
different run-off characteristics. Let one observation mean the loss triangle associated to one insurance
company, see Table 1.

Table 1. Number of observations (insurance institutions) in the data sets.

Business Line Number of Observations

(1) commercial auto and truck liability and medical 158
(2) medical malpractice 34
(3) private passenger auto liability and medical 146
(4) product liability 70
(5) workers’ compensation 132
(6) other liability 239
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In fact, accident years cover a 10-year time span between 1988 and 1997, with a 10-year
development lag for each accident year. In other words, not only the triangle values above
(and including) the anti-diagonal are available (Table 2), but the entire rectangle in each case. From a
validation perspective, it is crucial that the actual ultimate claim values, i.e., the lower triangles are
known (Table 3).

Table 2. Cumulative paid loss triangle observed in the past (commercial auto data set, group code 2712).

1 2 3 4 5 6 7 8 9 10

1988 5407 14422 19063 22447 24142 25404 26829 27202 27443 27449
1989 6279 15031 21203 25697 27807 28726 29173 29375 29444
1990 7256 15923 20701 24963 27847 29274 30163 30656
1991 5028 10345 15042 18837 21708 22808 23465
1992 5712 11809 18198 22000 26306 27168
1993 7413 16798 24570 30420 33803
1994 10868 23205 31171 39702
1995 10143 24336 32406 ?
1996 9596 21831
1997 9076

Table 3. Cumulative paid loss triangle observed in the future (commercial auto data set, group
code 2712).

1 2 3 4 5 6 7 8 9 10

1988
1989 29459
1990 30691 30749
1991 24243 25020 25061
1992 27525 27888 27951 28042
1993 34881 35984 36313 36509 36524
1994 43225 45450 46662 47034 47027 47186
1995 38533 42552 44730 45197 45362 45516 45765
1996 27594 31228 33710 36683 36417 37068 37086 37141
1997 17689 23270 29846 33532 35205 35410 35443 35501 35540

Ultimate claim values range from zero to millions in extreme cases, see Table 4 for paid losses,
implying magnitudinal diversity in the set of companies in terms of reserves. In fact, only few outliers
can be found with negative total claims, which we consider the less reliable part of the data set. These
instances have been taken out of the analysis. Hence, a natural and far not trivial question is whether
or not to apply a normalisation on the run-off triangles, in order to make reserving models reasonably
comparable with each other by mitigating the heterogeneity of the underlying figures. For instance, this
can be achieved by multiplying each triangle by different constants to make ultimate reserves equal to a
unit value. Several pitfalls accompany the scaling: applying a discrete model such as the overdispersed
Poisson model (family) on triangles consisting of small numbers, the estimation will be useless if
the Poisson parameter is close enough to zero to make future claim increments equal to zero with
high probability. As a matter of fact, this issue can be remediated by choosing an appropriately large
normalising constant. The standardisation of such overdispersed Poisson data has been extensively
discussed in the past in connection with stochastic reserving. Each of the run-off triangle elements
are normalised by a volume measure related to the accident year, i.e., each incremental or cumulative
claim in row i is divided by a weight wi > 0. This exposure volume can be the number of reported
claims in accident year i, see Wüthrich (2003). Another convention is to choose the earned premium
volume or the number of policies, see Shi and Frees (2011).

The second and more contradictory argument against scaling is embedded in the data: large
companies likely provide more robust claim records than their smaller counterparts, i.e., it is rational
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to take them into account with larger weights, which is ensured by the larger reserve values. Hence,
the question is whether to allow institutions to contribute to the total loss values according to their
reserve volumes, or compose a democratic aggregate observation set with a similar contribution from
each institution in terms of ultimate claim. An intermediate solution can be a nonconstant rescaling of
data, which might be considered by the reader. In loss reserving calculations, the author in Shi (2015)
applies normalisation in order to mitigate the heterogeneity of the data. Present calculations leave
original figures as they are, as a consequence of our entirely arbitrary choice. Normalised calculations
might be replicated easily based on the supplied scripts.

Table 4. Ranges of paid losses per business line.

Min. Median Mean Max.

commercial auto and truck liability and medical −1 3906 50,820 2,227,000
medical malpractice 0 15,600 95,370 883,900

private passenger auto liability and medical 0 19,810 818,100 91,360,000
product liability 0 316 19430 750,300

workers’ compensation 0 8828 101,900 1,837,000
other liability −115 913 20,460 2,191,000

3. Claims Reserving Models

In this section five conceptually distinct modelling approaches are enumerated in claims reserving,
where in some of the cases, the model refers to a method family rather than a single one. These
are the (1) bootstrap models with Gamma and overdispersed Poisson background, (2) Bayesian
models using MCMC techniques, (3) credibility models, including a newly introduced one combined
with bootstrapping, (4) original Munich Chain Ladder and its bootstrapped modification and (5) a
semi-stochastic model.

Notations the reader frequently encounters in this section are the following: I and J denote the
number of occurrences and development years in the triangles (and quadrangles), i.e., they stand for
the dimensions. Let CI and CP denote the incurred and paid triangles in Section 3.4. Avoid confusing
the superscript in CI , which stands for ’Incurred’, with the I number of rows in the triangle. If the
paid or incurred indicatives are not relevant from a technical perspective, they will not be marked.
Superscript (k) in connection with cumulative triangle element Ci,j means that the value is related to
company k. Dj stands for the upper run-off triangle of the jth company, i.e., the claims data acquired
until the time of reserve calculation.

3.1. Bootstrap Models

Bootstrapping in the mathematical sense has a proper literature and has been studied for almost
four decades, well before applications in insurance emerged. The original introduction dates back
to Efron (1979b, 1979a) as a generalisation of jackknife, enhancing the power of available sample by
resampling. Introducing an application of bootstrapping in insurance, Ashe (1986) was among the first
papers, estimating distribution error. Later, England and Verrall (1999) analyses the prediction error in
conjunction with generalised linear models (GLMs) with bootstrapping, whilst Pinheiro et al. (2003)
proposes an alternative bootstrap procedure to the previous one, using corrected residuals. The
capability of error prediction was the primary feature of the concept which has driven the development
of such models in the actuarial field. Contrary to the simple chain ladder model, it allows to capture
the variability of the outcome. More recent achievements are Björkwall et al. (2009); Leong et al. (2014)
and a more practical guide is Shapland (2016). Thus, models using bootstrapping have become widely
applied in actuarial practice, and studied in numerous works. In this paper we apply the overdispersed
Poisson and gamma bootstrap models. For more comprehensive works that describe the underlying
GLM and residuals, the reader is advised to see England and Verrall (2002); Wüthrich and Merz (2008).
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3.2. Bayesian Models Using MCMC

Two methods based on Markov Chain Monte Carlo simulation that follow a Bayesian concept are
presented by Meyers (2015). The author made the self-prepared R codes public in order to facilitate the
replication of results. These code chunks have been embedded into the set of codes supporting the
analysis in the present article. Models with MCMC sampling are the most computation-intensive ones
among the modelling principles the reader encounters here.

3.2.1. Correlated Chain Ladder Model

In the correlated chain ladder (CCL) model incurred claims are the basis of calculation, in the
form of cumulative losses. The motivation is to address the possible underestimation of ultimate
claim variability in the original Mack model Mack (1993). The underlying assumption is that the
unknown losses C̃i,j are governed by the log-normal distribution. See Meyers (2015) for the detailed
model assumptions.

3.2.2. Correlated Incremental Trend Model

The second model is built on the incremental paid loss amounts rather than the incurred claims,
and has a distribution skewed to the right. For the introduction of skew-normal distribution see
Frühwirth-Schnatter and Pyne (2010).

Meyers (2015) points to the issue that skew-normal distribution has a skewness of a truncated
normal variable in the extreme case, which still may not reflect the real skewness stemming from the
loss data, creating the demand for an even more skewed distribution to be applied instead of the
truncated normal.

Note that another model in the referred monograph, called changing settlement rate model, may
address the phenomenon of accelerating claim settlements, driven by technological changes.

3.3. Credibility Models

The present subsection contains the basic idea of credibility theory and its connection with claims
reserving. By combining this idea with the methodology of bootstrapping, a new reserving model
is introduced.

Papers Bühlmann (1967, 1969) contain the original concept of experience ratemaking. The core
principle is to exploit the available information from sources outside of the sample, but somehow
related to it, and combine the two data sets in order to get a more reliable approximation of unknown
characteristics. Considering one business line, in order to create the claim forecast of one particular
triangle, the other run-off triangles of the same group are also taken into account. From another angle,
the model consists of 2 urns, where we pick the risk parameter ϑ from the first one, which determines
the value sampled from the second urn. Shi and Hartman (2016) proposes credibility based stochastic
reserving driven by the idea that data from peer counterparty insurers can lead to an improvement of
prediction reliability.

To the analogy of the Mack Chain Ladder methodology Mack (1993), construct the following
model assumptions in a Bayesian thinking.

Assumptions 1. (C 1) Let each unknown chain ladder factor be a positive random variable Fj for ∀j ∈
{1, . . . , J − 1}, Fi independent of Fj for ∀i 6= j.

(C 2) C1,j, . . . , CI,j are conditionally independent of F.

(C 3) The conditional distribution of
Ci,j+1

Ci,j
under the constraint σ

(
{F1, . . . , Fj, Ci,1, . . . , Ci,j}

)
depends only on

σ
(
{Fj, Ci,j}

)
. Furthermore, conditional expectation and variance are

E

[
Ci,j+1

Ci,j
|Fj, Ci,j

]
= Fj
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and

Var

[
Ci,j+1

Ci,j
|Fj, Ci,j

]
=

σ2
j (Fj)

Ci,j
.

Recall from Bayesian statistics that for an arbitrary random variable ξ and array of observations
X, the linear Bayesian estimator satisfies arg min

ξ̂:ξ̂=∑
i

aiXi+const
E
[
(ξ̂ − ξ)2|X

]
. Also recall from Gisler and

Wüthrich (2008) the Definition 2 of the credibility based predictor and a relevant Theorem 3.

Definition 2. The credibility based predictor of the ultimate claim Ci,J given DI is

Ccred
i,J = Ci,I−i+1

J−1

∏
j=I−i

Fcred
j ,

where
Fcred

j = arg min

F̂j :F̂j=
I−j
∑

i=1
ai,jYi,j+const

E
[
(F̂j − Fj)

2|B(j)
]

and Yi,j =
Ci,j+1

Ci,j
, B(j) = {Ci,k : i + k ≤ I + 1, k ≤ j} ⊂ DI the subset of upper triangle information.

Given the multiplicative structure of the ultimate claim estimator it may not be appropriate to call
it simply a credibility estimator, which is by definition a linear function of the observations, hence the
credibility based appellation.

Theorem 3. The credibility estimators of the development factors are given by

Fcred
j = αj F̂j + (1− αj) f j,

where F̂j =

I−j
∑

i=1
Ci,j+1

I−j
∑

i=1
Ci,j

, f j = E[Fj], αj =

I−j
∑

i=1
Ci,j

I−j
∑

i=1
Ci,j+

σ2
j

τ2
j

, σ2
j = E[σ2

j (Fj)] and τ2
j = Var[Fj]. The latter two are the

structural parameters (or credibility factors and their quotient, κj =
σ2

j

τ2
j

is the credibility coefficient).

For the mean square error of prediction it is also true that msep(Fcred
j ) = (1− αj)τj, see Definition 17.

Proof: See Gisler and Wüthrich (2008).

Data concerning the credibility factor in particular are not available in general. In the
present article these parameters are approximated on the basis of claim triangles published by
several companies.

From regulatory perspective it is extremely important to understand how the inflowing data
can be exploited in order to support the insurance institutions with reliable information. Financial
regulatory authorities tend to collect an increasing amount of detailed data for the purpose gaining
insight into the insurance institutions’ solvency. In Europe, for instance, the European Insurance and
Occupational Pensions Authority (EIOPA) shows guidance to local regulators and collects submissions
of statistical and financial data from several countries. Besides transparency, the information enables
the adequate support of corporations by providing them with processed data to their benefit. This is
where credibility models have an untapped potential. The question whether or not to use collective
experience to improve individual approximations is particularly relevant due to the fact that regulatory
authorities collect vast amount of information from insurance companies. Thus, the processed data
might be of value to share with the contributors, enabling more precise solvency evaluations.
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Let C(k)
i,j stand for the cumulative payment or incurred claim value with occurrence year i and

development year j with respect to company k. In general, for simplicity’s sake it is supposed that for
each insurance institution the triangle dimensions are equal, moreover, I = I(1) = I(2) = . . . = I(n).
n denotes the number of companies observed in a homogeneous risk group and I(k) the dimension
of the kth triangle. The parameter estimation of credibility factors is constructed in accordance with
Section 4.8 in Bühlmann and Gisler (2006). Let index j be fixed and let S(k)

j k ∈ {1, . . . , n} be defined
for each triangle as

S(k)
j =

1
I − j− 1

I−j

∑
i=1

C(k)
i,j

C(k)
i,j+1

C(k)
i,j

−

I−j
∑

r=1
C(k)

r,j+1

I−j
∑

r=1
C(k)

r,j


2

.

Observe that

S(k)
j =

1
I − j− 1

I−j

∑
i=1

C(k)
i,j

C(k)
i,j+1

C(k)
i,j

− Fj + Fj −

I−j
∑

r=1
C(k)

r,j+1

I−j
∑

r=1
C(k)

r,j


2

=

=
1

I − j− 1

I−j

∑
i=1

C(k)
i,j

C(k)
i,j+1

C(k)
i,j

− Fj

2

−
I−j

∑
r=1

C(k)
r,j


I−j
∑

r=1
C(k)

r,j+1

I−j
∑

r=1
C(k)

r,j

− Fj


2 ,

which implies that E[S(k)
j |Fj] = σ2

j (Fj) in line with Assumption 1. Hence, E[S(k)
j ] = E[E[Sk|Fj]] =

E[σ2
j (Fj)] = σ2

j for each j, i.e., S(k)
j provides an unbiased estimator for σ2

j . Taking the average of S(k)
j

values for all the companies results in an unbiased estimator of σ2
j :

σ̂2
j =

1
n

n

∑
k=1

1
I − j− 1

I−j

∑
i=1

C(k)
i,j

C(k)
i,j+1

C(k)
i,j

−

I−j
∑

l=1
C(k)

l,j+1

I−j
∑

l=1
C(k)

l,j


2

. (1)

It can also be shown with further calculations that ˆ̂τ2
j is an unbiased estimator of τ2

j :

ˆ̂τ2
j = cj

 n
n− 1

n

∑
k=1

I−j
∑

i=1
C(k)

i,j

n
∑

l=1

I−j
∑

i=1
C(l)

i,j


I−j
∑

i=1
C(k)

i,j+1

I−j
∑

i=1
C(k)

i,j

−

n
∑

l=1

I−j
∑

i=1
C(l)

i,j+1

n
∑

l=1

I−j
∑

i=1
C(l)

i,j


2

−
n · σ̂2

j

n
∑

k=1

I−j
∑

i=1
C(k)

i,j

 (2)

with cj =
n−1

n

 n
∑

k=1

I−j
∑

i=1
C(k)

i,j

n
∑

l=1

I−j
∑

i=1
C(l)

i,j

·

1−

I−j
∑

i=1
C(k)

i,j

n
∑

l=1

I−j
∑

i=1
C(l)

i,j



−1

.

Parameter τj needs extra attention having observed that the estimator below can attain negative
values, not only in an extremely theoretical sense, but on the real world trajectories, as well. For that
reason, let the approximation be capped by 0 from below.

τ̂2
j = max

(
0, ˆ̂τ2

j

)
. (3)



Risks 2019, 7, 62 9 of 27

Furthermore, let the estimator of f j = E[Fj] be

f̂ j =
n

∑
k=1

α
(k)
j

n
∑

l=1
α
(l)
j

·

I−j−1
∑

i=1
C(k)

i,j+1

I−j−1
∑

i=1
C(k)

i,j

(4)

In the following model we assume the r(P)
i,j =

Xi,j−X̂i,j√
X̂i,j

Pearson residuals, where increment

X̂i,j stems from the cumulative values Ĉi,j = 1
f̂ j+1 ... f̂ I−i+1

Ci,I−i+1. Residuals radj
i,j =

√
(I+1

2 )

(I+1
2 )−(2I−1)

r̂P
ij

are adjusted for bias correction by multiplying the Pearson residulals with a proportion of all the
underlying data points and estimated parameters. This adjustment remains similar to the standard

bootstrap method, as well as the φ̂P =
∑

i+j≤I+1

(
r̂P

ij

)2

(I+1
2 )−(2I−1)

scale parameter estimation.

Method 4 (Credibility Bootstrap).

(Step 1) Take the pool of D1,D2, . . . ,Dn run-off triangle observations. Estimate f j, σ2
j , τ2

j for each j according
to Equations (1), (3) and (4).

(Step 2) With respect to each company, exchange the chain ladder factors with the credibility chain ladder
factors.

(Step 3) Apply the bootstrap overdispersed Poisson model with the credibility chain ladder factors.

As an illustration of the outcome of the first two steps in the credibility bootstrap methodology,
consider a few arbitrarily selected companies in one business line. The cumulative product of the λi
development factors can be seen on Figure 1a for each, in the sense that the function value of the first
year is equal to 1, and 1 · λ1 · . . . · λk−1 for year k (k = 2, . . . , 10).

Figure 1b presents the same institutions as the previous figure, but with credibility adjustment,
i.e., instead of the original λi values, the Fcred

j developments in a similarly product based pattern.
Observe the narrowing range of individual patterns.
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Figure 1. Multiplicative accumulation of development factors (a) without and (b) with credibility adjustment.
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3.4. Munich Chain Ladder Model

3.4.1. Original Model

Observe that all the reserving models enumerated so far are operated with one run-off triangle,
be it either the paid or the incurred one. The question naturally arises why not to use both triangles
at the same time, doubling the volume of the information and, hopefully upgrading the quality of
prediction. Quarg and Mack (2004) introduced the Munich Chain Ladder (MCL) algorithm, which
takes into account both paid and incurred cumulative data, assuming correlation between paid and
incurred stemming from different accident years, but not in the same accident year for both. Here we
only mention the model assumptions and notations.

Notation 5. 1. Let FP
i,j =

CP
i,j+1

CP
i,j

stand for the regular chain ladder development factors in the paid, and

FI
i,j =

CI
i,j+1

CI
i,j

in the incurred triangle, where i = 1, . . . , I and j = 1, . . . , J − i. Let Qi,j =
CP

i,j

CI
i,j

and

Q−1
i,j =

CI
i,j

CP
i,j

, i = 1, . . . , I and j = 1, . . . , J − i + 1, be the ratios of paid and incurred claims, or (P/I) and

(I/P) ratios.
2. Let generated σ-fields Pi(k) = σ{CP

i,j : j ≤ k} and Ii(k) = σ{CI
i,j : j ≤ k} be the information acquired

until development year k related to claims in accident year i. Let Bi(k) denote the combined knowledge
σ{CP

i,j, CI
i,j : j ≤ k}.

Assumptions 6. (A) (Expectations) There exist positive development factors f P
j and f I

j such that
E[FP

i,j|Pi(j)] = f P
j and E[FI

i,j|Ii(j)] = f I
j ∀i ∈ {1, . . . , I} and ∀j ∈ {1, . . . , J}. Furthermore, there exist

qj and q−1
j such that E[Qi,j|Ii(j)] = qj and E[Q−1

i,j |Pi(j)] = q−1
j .

(B) (Variances) There exist non-negative constants σP
j and σI

j such that Var[FP
i,j|Pi(j)] =

(σP
j )

2

CP
i,j

and

Var[FI
i,j|Ii(j)] =

(σI
j )

2

CI
i,j
∀i ∈ {1, . . . , I} and ∀j ∈ {1, . . . , J}. Furthermore, there exist $I

j and $P
j

such that Var[Qi,j|Ii(j)] =
($I

j )
2

CI
i,j

and Var[Q−1
i,j |Pi(j)] =

($P
j )

2

CP
i,j

.

(C) (Independence) Occurrence years are independent, i.e., sets

{CP
1,j, CI

1,j : j = 1, . . . , J}, . . . , {CP
I,j, CI

I,j : j = 1, . . . , J}

are stochastically independent.
(D) (Correlations) Generally, let Res(ξ|A) = ξ−E[ξ|A]√

Var[ξ|A]
denote the conditional residual of random variable

ξ given σ-algebra A. There exist λP and λI constants such that E
[

Res(FP
i,j|Pi(j))|Bi(j)

]
=

λP · Res(Q−1
i,j |Pi(j)) and E

[
Res(FI

i,j|Ii(j))|Bi(j)
]
= λI · Res(Qi,j|Ii(j)). Rearranging the equations

results in forms

E[FP
i,j|Bi(j)] = f P

j + λP ·

√
Var[FP

i,j|Pi(j)]√
Var[Q−1

i,j |Pi(j)]
·
(

Q−1
i,j − E[Q−1

i,j |Pi(j)]
)

(5)

and

E[FI
i,j|Bi(j)] = f I

j + λI ·

√
Var[FI

i,j|Ii(j)]√
Var[Qi,j|Ii(j)]

·
(
Qi,j − E[Qi,j|Ii(j)]

)
. (6)
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3.4.2. Bootstrapping the Munich Chain Ladder

In its original form the MCL method fails to establish distributions for ultimate paid or incurred
claim values and thus to enable the analysis of their stochastic behaviour. Recalling the application of
bootstrap techniques, Liu and Verrall (2010) suggests a plausible solution to generate random outcomes
by drawing random samples from the four residual sets in the MCL procedure.

3.4.3. Applicability and Limitations

A practical drawback of the model which may materialise during reserve calculations is that
variance parameters σj and $j can attain extremely low values or even zero. It means that their ratio
can be a large number, which contributes to the conditional development factor, see Assumptions 6
(D), eventually resulting in unrealistic ultimate claims.

To give an example from the actually documented NAIC figures, see paid Table 5 and incurred
Table 6 triangles from the commercial automobile insurance claims of a company.

Table 5. Cumulative paid loss triangle observed in the past (commercial auto data set, group code 8079).

1 2 3 4 5 6 7 8 9 10

1988 126 256 326 369 489 489 489 489 490 490
1989 169 313 364 501 561 573 573 557 557
1990 237 402 582 695 711 708 713 742
1991 461 602 643 764 804 815 815
1992 413 694 853 1204 1274 1352
1993 802 1171 1415 1643 1823
1994 1044 1528 1722 2002
1995 829 1320 1579
1996 1109 1786
1997 1443

Table 6. Cumulative incurred loss triangle observed in the past (commercial auto data set, group
code 8079).

1 2 3 4 5 6 7 8 9 10

1988 351 364 347 398 489 489 489 489 490 490
1989 294 436 617 611 573 573 573 557 557
1990 810 804 807 802 719 741 748 742
1991 860 852 918 840 814 815 815
1992 874 1276 1262 1400 1493 1444
1993 2031 1860 1963 1990 2005
1994 2293 2291 2222 2170
1995 2027 1901 1988
1996 2650 2833
1997 3379

Evaluating the variance parameters defined in Assumptions 6 (B), it becomes clear that for higher
js, $P

j and $I
j gets close to zero. The unbiased parameter estimators

(σ̂P
j )

2 =
1

I − j− 1

I−j

∑
i=1

CP
i,j(FP

i,j − f̂ P
j )

2, ($̂P
j )

2 =
1

I − j

I−j+1

∑
i=1

CP
i,j(Q

−1
i,j − q̂−1

j )2 (7)

and

(σ̂I
j )

2 =
1

I − j− 1

I−j

∑
i=1

CI
i,j(FI

i,j − f̂ I
j )

2, ($̂I
j )

2 =
1

I − j

I−j+1

∑
i=1

CI
i,j(Qi,j − q̂j)

2 (8)
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may result in almost zero numbers due to the fact that as index j approaches J, each sum of the

four estimators can be close or equal to zero, see Table 7. Thus, excessive fractions
σ̂P

j

$̂P
j

and
σ̂I

j

$̂I
j

yield

degenerate MCL development factor estimations f̂ P
j + λ̂P ·

σ̂P
j

$̂P
j
(Q−1

i,j − q̂−1
j ) and f̂ I

j + λ̂I ·
σ̂I

j

$̂I
j
(Qi,j − q̂j),

exceeding any upper bound.

Table 7. Variance assumption parameters. (Observe that the $P, $I parameters become zero for
development steps 8 and 9).

1 2 3 4 5 6 7 8 9

σP 3.40 2.43 3.51 1.99 0.708 0.507 0.982 1.04 0.981

σI 5.67 3.14 2.58 2.18 0.757 0.320 0.385 0.371 0.585

$P 7.81 4.80 3.96 1.88 2.17 0.978 0.644 3.55 × 10−15 3.55 × 10−15

$I 2.09 2.32 2.50 1.53 1.93 0.933 0.625 3.55 × 10−15 3.55 × 10−15

Such estimators contribute to the approximate reserves on Table 8, see columns MCL paid and
incurred. The astronomical values are the direct result of the parameter calculation according to the

closed formulas in Equations (7) and (8). Hence, as an alternative, change
σ̂P

j

$̂P
j

and
σ̂I

j

$̂I
j

to zero in case

they fall out of a pre-defined interval, which is in principle equivalent to applying simple chain ladder
development factors assigned to the last few development years. This kind of truncation practice is
followed in the present Bootstrap MCL calculations.

Table 8. Paid and incurred estimates divided into accident years (bootstrapped MCL, original MCL
and actual). Data used from commercial auto, group code 8079.

Boots. MCL Paid MCL Paid Realised Paid Boots. MCL Incur. MCL Incur. Realised Incur.

1 0.0 0.0 0.0 0.0 0.0 0.0
2 −5.5 × 10−6 2.1 0.0 −1.7 × 10−4 0.62 0.0
3 0.79 3.5 0.0 85.0 1.5 0.0
4 2.1 3.9 × 1026 0.0 −7.7 −1.2 × 1026 0.0
5 6.1 × 102 6.0 × 1025 1.2 × 102 −60.0 −1.8 × 1025 27.0
6 8.4 × 102 1.9 × 1026 1.6 × 102 −87.0 −5.7 × 1025 −20.0
7 4.4 × 102 5.6 × 1026 1.8 × 102 25.0 −1.7 × 1026 15.0
8 6.4 × 102 5.3 × 1026 3.5 × 102 12.0 −1.6 × 1026 −60.0
9 1.2×103 8.0 × 1026 8.6 × 102 2.2 × 102 −2.4 × 1026 −1.4 × 102

10 1.7 × 103 9.9 × 1026 1.9 × 103 3.8 × 102 −3.0 × 1026 −51.0
Total 5.4 × 103 3.5 × 1027 3.6 × 103 5.7 × 102 −1.0 × 1027 −2.3 × 102

3.5. Semi-Stochastic Models

A family of models with the idea that the chain ladder factors are bootstrapped directly is
presented in Faluközy et al. (2007).

Assumptions 7 (Base Semi-stochastic). (1) Suppose that each subsequent cumulative claim has a
multiplicative link to the previous one in development year j through a random variable αj. (2) Let αj random
variables be mutually independent and governed by the discrete uniform distribution on the set{

αj(i) =
Ci,j+1

Ci,j
: i = 1, . . . , I − j

}
.

The expectation of each αj is E[αj] =
1

I−j

I−j
∑

i=1

Ci,j+1
Ci,j

, equal to the average of the set of αj(i) values,

making the model of the type ’link ratios with simple average’ method.
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Method 8 (Base Semi-stochastic). In other words, this base model creates alternative lower triangles by
completing each row recursively, choosing from αj(i) =

Ci,j+1
Ci,j

factors randomly and processing Ci,j+1 = Ci,j · αj

for i + j ≥ I + 1. The ultimate claims are also random variables with parameters implied by the previous
random recursion.

The expectation of the ultimate claim is
I

∑
j=1

CI−j+1,j
I−1
∏
k=j

E[αk].

Instead of addressing each triangle separately, consider the possibility of using other companies’
data from a corresponding product group. Being able to do so may either reflect the perspective of a
regulatory organisation with collected data from insurance institutions, or data made publicly available
voluntarily by the insurance institutions for collective improvement purposes. Eventually, the NAIC
database is an example of the latter. The principle is similar to the above method, however, instead of

sampling from
C1,j+1

C1,j
, . . . ,

CI−j,j+1
CI−j,j

in one stand-alone run-off triangle, the new version is as follows.

Assumptions 9 (Collective Semi-Stochastic). (1’) As (1). (2’) αj random variables are discrete uniform on

the

I−j
∑

l=1
C(k)

l,j+1

I−j
∑

l=1
C(k)

l,j

k ∈ {1, . . . , n} set of development factors.

The assumption is similar to the one above Faluközy et al. (2007), however, now the cumulative
claims are driven recursively by aj random variables stemming from an unknown distribution,
identically distributed across the run-off triangles.

Method 10 (Collective Semi-stochastic). Step 1 Calculate chain ladder link ratios forD1, . . . ,Dn; aj,k j ∈
{1, . . . , I − 1}, k ∈ {1, . . . , n}.

Step 2 For each j sample from aj,1, . . . , aj,n with replacement; a′j,1, . . . , a′j,M, where M stands for an arbitrarily
large sample size. M equals to 5000 in the actual examples in Section 4.

Step 3 Perform the multiplication of last cumulative observations in order to get the randomly generated

ultimate claims. For a fixed company, Ĉ(s)
i,J = Ci,J−i

J−1
∏

j=J−i
a′j,s, s ∈ {1, . . . , M}.

4. Comparing Forecasts

Prediction of the uncertain future has been enjoying a growing interest in numerous disciplines in
the past decades, let it be meteorology, financial risk management or actuarial sciences. The demand
for forecasts embodied in distributional forms rather than point estimates has grown rapidly along
with the growth of computational power, simultaneously allowing for the pragmatic implementation
of Monte Carlo type algorithms.

The probabilistic forecast as distribution dates back at least to Dawid (1984), introducing the
prequential principle. The term stems from the words probabilistic forecasting with sequential prediction,
which refers to accumulating new observations from time to time, and implementing them into the
subsequent days’ estimations. A game-theoretic interpretation of probabilistic forecasts in the context
of meteorological applications (similarly to the previous one) is analysed in Gneiting et al. (2007),
guiding through the predicting performance of a set of climatological experts. Observe the analogy
between climate forecast experts and competing reserving methods. Both of these articles have a
wide range of applicability going beyond meteorology, selecting the better performers from several
rival models. Diebold et al. (1998) describes density forecast evaluation in a financial framework
with example application of probability integral transform on real S&P500 return data. Purely from a
conceptual perspective, market data between ’62 and ’78 are in-sample, whilst the ones between ’78
and ’95 are out-of-sample observations, splitting the set into these two parts in order to perform both a
model estimation and an evalution of the forecast. Drawing parallels between this financial example
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and our claims reserving task, the in-sample can be considered as the upper and the out-of-sample as
the lower run-off triangle.

In other words, when the insurer decides to involve all the past claim observations for the purpose
of claims reserving, the figures by definition build up an upper triangle. For this reason, the usage
of total quadrangles may seem to be counter-intuitive. However, in a longer run, the missing entries
are filled and can be used for backtesting. New rows are unavoidably born at the same time with
deficient elements on the right hand side of the row, which does not alter the fact that the older upper
triangle is completed with a lower one. Depending on the total run-off period of the claims of a
product, definite values become visible after 5 to 40 years, with the important discrepancy between
the duration of fire (short) or liability (long) claims. Regulators of insurance practice tend to use
complete claim data sets available to them, which can also mean the truncation of a large triangle
on its south-west and north-east part, where the north-west part tends to 0 for the reason of run-off.
In contrast to liability insurance with potentially long payout periods, in property insurance such as
motor vehicle or homeowners insurance the run-off is not more than 3–4 years, allowing for a full
quadrangle within 7 years of experience. Insurance companies do not usually have more triangles,
apart from arranging the observations according to homogeneous risk groups, whilst regulators or
oversight organisations do, see the example of NAIC. In the latter case it is of collective interest to use
the triangles for some benefit of the participating insurance institutions. In addition, Arató et al. (2017)
proposes a simulation-based technique to complete lower triangles, particularly for heavy-tailed
risk groups.

There is hardly any manner of ranking two forecasts in a way that all actuaries would agree with.
Certainly, in case the predicting distribution coincides with the real distribution governing the sample,
that one is the preference above all. Provided that in real life modelling questions professionals lack
this exact knowledge, it is justified to create a ranking framework, which takes into account not only
the mean square error of the prediction, but also other features discussed in the coming subsections.
It is essential to understand how to assess these measures on the basis of available data and how to
build a decision making framework in an algorithmic manner. For the more explicit explanation of the
algorithmic steps see Arató et al. (2017), however, the mechanism can be replicated on the basis of the
present section.

Two out of the six sets of homogeneous risk groups available from NAIC are used to demonstrate
results and draw conclusions. Commercial auto and private passenger auto liability data have been
selected, justified by the higher sample size, 158 and 146 companies. Recall that the two samples still
contain closely degenerate run-off triangles (almost all zero elements, for instance), which had to be
sieved out in order to work with institutions where all the reserving models provide meaningful results.
Thus sample sizes have been reduced to 71 and 73. The only exception is the Munich Chain Ladder
method, which is applicable to even less claim histories and would have rarefied the observations
substantially. In each calculation, the actual sizes are indicated. Furthermore, continuous ranked
probability score, coverage and average width cannot be applied for the original MCL results.

4.1. Probability Integral Transform

Probability integral transform (PIT) can be traced back to the early papers Pearson (1933, 1938)
published consecutively by father and son from the Pearson family, as well as to the
short remarks of Rosenblatt (1952) on multidimensional transformation. Later, the concept
emerges in Dawid (1984); Diebold et al. (1998); Gneiting et al. (2007). Statistical tests such as
Kolmogorov–Smirnov or Cramér–von Mises decide whether or not to reject a certain distribution,
however, they are deficient in suggesting what goes wrong with the hypothesis.

Suppose that an observation xi is governed by an absolutely continuous distribution Fi, or density
function fi. Placing the observation into the argument of its own distribution function results in a

uniform random variable, i.e., Fi(xi) ∼ U(0, 1) or
xi∫
−∞

fi(u)du ∼ U(0, 1). Either be it one-dimensional
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or in higher dimension, this property will always be valid, except that in the latter case transformation
has to be carried out with conditional distributions on the previous coordinates, see Rosenblatt (1952).
Now let F̂i be the prediction given for Fi. Regardless of the question whether the stochastic method has
a distribution or it is distribution-free, the empirical predictive distribution can always be generated by
drawing randomly or bootstrapping a sufficient amount of samples. For a fixed reserving method, each
quadrangle is associated with one F̂i and the combination of these is used for backtesting. Coinciding
with the real distribution Fi has a necessary condition such that F̂i(xi) ∼ U(0, 1). In its analysis of
ranking histograms Hamill (2001) introduced a counterexample with biased prediction and uniform PIT
at the same time, disproving the uniform property as a satisfying condition. The paper highlights the
possible fallacies and misinterpretations of qualities that the rank histogram ensembles may conceal.

Proceed to the implementation of the PIT concept into the claims reserving model framework.
A certain set of companies related to one business line has n claims history quadrangles, e.g., the 132
institutions for workers’ compensation. Fix an arbitrary reserving model and perform the ultimate
claim value estimation for each of the triangles, followed by the observation of actually occured total
claims from the lower triangles. The latter stand for the realisation from the real unknown distribution,
where the value is practically unknown for future estimation, but known for past data enabling
validation. The result is n pair of {F̂i, xi} values, determining the PIT values F̂1(x1), F̂2(x2), . . . , F̂n(xn)

and hence, the histrogram. Should the set consist of an extremely low number of data points, then
the application of a randomised PIT or a non-randomised uniform version of PIT is more proper,
see Czado et al. (2009).

Generally, the deviation of the PIT histogram from uniformity reflects the dispersion of the
predictive model. A ∩-shaped histogram can be translated as an overdispersed prediction with
excessively wide prediction interval, i.e., overly heavy tailed distribution. By contrast, ∪-shaped PIT
suggests that the prediction shall be underdispersed with narrow prediction interval, i.e., lighter tail
than the underlying distribution would imply. In the latter case, variability of the real governing
distribution exceeds the variability of the model, whilst it is the other way around in the former
case. Going forward, real-life data and models result in a histogram of less pure shapes, which are
combinations of the mentioned two instances: skewed ∩-shaped PIT or entirely biased towards 0
(or 1), for instance.

Each figure in the following subsections uses consistent abbreviations to indicate reserving
methods, see Table 9.

Table 9. Legends of reserving models.

Abbreviation Model Subsection

boot.gamma bootstrap model with gamma distribution 3.1
boot.od.pois bootstrap model with overdispersed Poisson distr. 3.1

bootstrap.munich Munich Chain Ladder with bootstrapping 3.4
CCL correlated chain ladder model 3.2
CIT correlated incremental trend model 3.2

cred.bootstrap.od.pois credibility bootstrap with overdispersed Poisson distr. 3.3
munich Munich Chain Ladder (original) 3.4
SemiSt collective semi-stochastic model 3.5

Results of the two business lines on Figures 2 and 3 suggest similar inferences. It becomes instantly
obvious that none of the reserving models provide unbiased estimation of the ultimate claim. In fact,
the question is what exactly goes wrong with each one of them.

The Munich chain ladder (MCL) is an odd one out, the only model discussed in the present
article, which is not suitable for producing predictive distribution, and works only for a fraction
of underlying run-off triangles, thus the lower amount of frequencies. Since MCL results in one

single ÛC1,i prediction, the F̂i(z) =

{
1, z > ÛC1,i

0, otherwise
frequencies are reflected on the MCL histograms.
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Besides, both related histograms prove that in each case, MCL consistently underestimated the
actual outcome. The correlated incremental trend (CIT) model has a similar deficiency, resulting in
underdispersed predictions with one-sided biasedness.

The bootstrapped version of MCL and correlated chain ladder (CCL) models are both on the
overdispersed spectrum. The former tends to result in a symmetric PIT histogram, suggesting that
the expected value of the ultimate claim forecast is close to the expectation from the real distribution,
which implies a significant improvement compared to the original MCL. PIT values of CCL model are
biased to the left, as a sign of underestimation of ultimate claims.

The third group having similar results consists of bootstrap gamma and overdispersed Poisson
and credibility bootstrap overdispersed Poisson models, having ∪-shaped PIT, i.e., narrow prediction
intervals. Furthermore, biasedness can be observed to the left, indicating an underestimation of the
real ultimate claims. The collective semi-stochastic approach performs relatively well in terms of PIT
uniformity. We may conclude that the latter four models have the best qualities from a PIT perspective.
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Figure 2. Histograms of PIT values from the commercial auto data.
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Figure 3. Histograms of PIT values from the private passenger auto liability data.

4.2. Continuous Ranked Probability Score

Scores support the quality verification of probabilistic forecasts based on the distribution
estimates and observed outcomes. There are scores with a wide spectrum of types used for both
discrete and absolutely continuous distributions, such as Brier score, logarithmic score, spherical
score, continuous ranked probability score, energy score, etc. For an extensive introduction see
Gneiting and Raftery (2007), including a meteorological case study. In spite of the applicability in
other disciplines, to our knowledge, scores have been researched to a limited extent in peer-reviewed
journals in the context of technical reserving in insurance. A simulation-based methodology is
constructed in Arató et al. (2017) for the selection from competing models. In the extension of
regression models in non-life ratemaking to generalised additive models for location, scale, and shape
(GAMLSS), Klein et al. (2014) compares various models through their score contributions. Brier score,
logarithmic score, spherical score and deviance information criterion (DIC) is used for Poisson,
zero-inflated Poisson and negative binomial assumptions, whilst CRPS is also calculated for three
zero-adjusted models. Using a real-life data set, Tee et al. (2017) compares the overdispersed Poisson,
gamma and log-normal models in the bootstrap framework and their residual adjustments using the
Dawid-Sebastiani scoring rule (DSS). In modelling of claim severities and frequencies in automobile
insurance Gschlössl and Czado (2007) considers scores for model comparison, which either apply or
exclude spatial and certain claim number components.

Definition 11 (Score). Generally, let S(F, x) : P ×Ω→ R be a real valued functional with the two possible
exceptions of −∞ and +∞, where P stands for a family of probability measures and Ω for a sample space.
The first argument can be interpreted as a prediction, whilst the second one as a realisation.

Definition 12 (Expected score). Let the expected score be S(P, Q) =
∫

S(P, ω)dQ(ω).
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Without loss of generality, suppose that forecast P1 is not worse than P2, if S(P1, x) ≥ S(P2, x) in
expectation, where x is governed by probability measure Q. Let a scoring rule be proper if S(P, Q) ≤
S(Q, Q) for P, Q ∈ P family of distributions, see Bernardo (1979); Staël von Holstein (1970), for instance.

Furthermore, let a scoring rule be strictly proper if S(Q, Q) = S(P, Q) if and only if P d
= Q.

Different distributions above are analogous to different forecasters, or using insurance claims
prediction terminology, the competing models of reserving. Given that these models may either result
in discrete or in absolutely continuous predictive distributions, it is of high practical relevance to select
an appropriate score functional flexible enough to cope with both cases. The following scoring rule is
more robust than the logarithmic or Brier scores, and requires practically no assumption with regards
to the distribution observed, let it be either discrete or not.

Definition 13 (Continuous ranked probability score (CRPS)).

CRPS(F, x) = −
∞∫
−∞

(
F(u)− χ{x≤u}

)2
du,

where indicator function χ{x≤u} equals 1 if x ≤ u and 0 otherwise.

Some of the articles define positive CRPS, however, here we will use its negative counterpart.
CRPS can be considered as generalisation of the Brier score (BS); it is the integral of BS over the domain
of all threshold values, see Hersbach (2000). In other words, there is a direct connection between the
CRPS and an event-no-event score. Vice versa, the concept of energy score (ES) can be thought of as
the generalisation of CRPS.

Definition 14 (Energy score). ESβ(F, x) = 1
2 EF|X − X′|β − EF|X − x|β with an arbitrary constant

β ∈ (0, 2). Let X and X′ be independent copies from probability distribution F. For β = 1, ESβ(F, x) =

CRPS(F, x), see Székely and Rizzo (2005).

On a set of observations and corresponding predictive distributions, the goal is to maximise
the mean score, resulting in a ranking of competing predictive models through maximising the
expected utility:

Smodel =
1
n

n

∑
i=1

S(Pmodel
ith company, xith company). (9)

Let Pmodel
ith company = F̂j = Pmodel

ith company

(
ÛC1,i, . . . , ÛCM,i

)
stand for the empirical predictive

distribution derived for company i on the basis of a fixed reserving model, where ÛCk,i denotes the kth
randomly generated total ultimate claim for company i (i = 1, . . . , n). We have seen in the discussion of
PIT that distribution-free models can also be used to generate predictive distribution by bootstrapping.
Furthermore, full quadrangles that contain actual ultimate claims enable backtesting. Analytical
formulae can rarely be derived for CRPS, not to mention the practical models of claims prediction,
although, it is feasible if the distribution F is normal, see Gneiting and Raftery (2007). A reasonable
question is how sensitively the mean score is exposed to extremely inappropriate models, i.e., if the
sample size is relatively small and an outstanding score value is involved. For that reason the complete
scale of score outcomes is proposed to be analysed in the form of a boxplot, the − log (−score) plotted
for the sake of better visual understanding, see Figures 4 and 5. The higher the boxplot, the better the
performance of forecast according to the scoring rule.

CRPS is not defined in relation to the MCL model due to the lack of predictive distribution.
On Tables 10 and 11 the mean CRPS values are demonstrated, which determine the ranking of
competing models. In order to see whether an extreme value has influenced the mean outcome
(defined in Equation (9)), the median scores are added to the second column. Reserve calculations in
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accordance with the CIT model on both commercial and private passenger portfolios show scores of
outstandingly large absolute value, implying that forecasts on some of the companies performed poorly.
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Figure 4. Boxplots of CRPS values from the commercial auto data.

Table 10. Average and median CRPS values from the commercial auto data.

Mean.CRPS Median.CRPS SampleSize

CIT −1,805,000 −5082 71
CCL −11,880 −2260 71

boot.gamma −2990 −662 71
boot.od.pois −9404 −655 71

munich 0
bootstrap.munich −20,970 −2094 71

SemiSt −4573 −1073 71
cred.bootstrap.od.pois −2698 −733 71
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Figure 5. Boxplots of CRPS values from the private passenger auto liability data.
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Table 11. Average and median CRPS values from the private passenger auto liability data.

Mean.CRPS Median.CRPS SampleSize

CIT −11,410,000 −10,350 73
CCL −247,900 −7163 73

boot.gamma −22,620 −780 73
boot.od.pois −23,200 −831 73

munich 0
bootstrap.munich −132,800 −2108 73

SemiSt −31,760 −1644 73
cred.bootstrap.od.pois −101,400 −1253 73

In the calculation on the commercial auto data, the best performing model has been the credibility
bootstrap overdispersed Poisson one, using experience ratemaking, whilst applied on the private
passenger auto data it has performed behind the other bootstrap methods. The semi-stochastic claims
reserving technique becomes the third one applied on each of the data sets. Bootstrap MCL and CCL
can be ranked behind these four models, and the CIT model yields significantly lower mean score
values than the previous ones.

4.3. Coverage and Average Width

The intention of the following definition is to grasp the consistency between the probability of
falling out of a given interval assuming a predictive distribution, and the real distribution. In other
words, to find the likelihood that a random variable of measure Q coincides with a central predictive
interval determined by F. Meteorology related discussion can be found in Baran et al. (2013). For an
application from the financial sector see Christoffersen (1998), addressing conditional interval forecasts
and asymmetric intervals, whilst the closest one to stochastic claims reserving can be found in
Arató and Martinek (2015); Arató et al. (2017). Both on coverage and average width the most detailed
study is believably provided by Gneiting et al. (2007).

Definition 15 (Coverage α). Let Q stand for the probability measure governing the real distribution of the
ultimate claim, and F the forecast distribution. Q

(
F−1

(
1−α

2

)
, F−1

(
1+α

2

))
is the central α prediction interval

of F given Q.

The definition above results in the observations coinciding with the interval bounded by the
lower and upper quantiles of the predictive distribution. In order to give the concept meaning in the
context of run-off triangles and ultimate claims, conditional distributions have to be defined, given the
upper tringles. Suppose that Dj is an upper triangle associated with the jth company. Fix an arbitrary
model discussed in Section 3, to be applied on each triangle for claim forecasting purposes. Let Qηj |Dj

stand for the ultimate claim distribution resulted by the chosen model given Dj, whilst Qξ j |Dj
is the

actual conditional distribution. With the previous notations, the definition of coverage converts into

PQξ j |Dj

(
Q−1

ηj |Dj

(
1− α

2

)
< ξ j < Q−1

ηj |Dj

(
1 + α

2

))
. (10)

It is easy to see that if ηj has identical distribution to ξ j, which means a perfect prediction,
expression Equation (10) equals to α for any α value in (0, 1). Now assume that the model determines
the predictive distribution given Dj in the form of a random sample η1,j, . . . , ηM,j for j ∈ {1, . . . , n} and
arbitrarily large positive integer M. Let Qu(η•j, p) stand for the p-quantile of the empirical distribution
determined by sample η1,j, . . . , ηM,j. For α ∈ (0, 1) the central prediction interval’s approximation is
1
n

n
∑

j=1
χ{Qu(η•j , 1−α

2 )<ξ j<Qu(η•j , 1+α
2 )}, using χA for the notation of the indicator function of event A. That is
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given by generating an ultimate claim random sample on the basis of the fixed model, conditionally on
Dj for each j ∈ {1, . . . , n}. In order to achieve convergence, increase the sample size M arbitrarily large.

As an ancillary measure besides coverage, average width of prediction covers the expected
difference between the lower and upper p-quantiles, a value expressed in actual payment. Alternatively
it is called the sharpness of the predictive evaluation. The narrower the width, the better the prediction.

Definition 16 (Average width (sharpness)). Let Qξ j |Dj
be the conditional probability measure of the ultimate

claim based on a fixed model, provided that the upper triangle is Dj. Suppose there is an underlying multivariate
distribution QD governing upper triangle D. The average width of the model is

EQD

[
Q−1

ξ j |Dj

(
1 + α

2

)
−Q−1

ξ j |Dj

(
1− α

2

)
|Dj

]
.

Similarly to the practical evaluation of coverage, generate for each upper triangle Dj a
sufficiently large amount of random ultimate claim values, where M denotes an integer large
enough. Hence, the sharpness of the model given the set of run-off triangle observations is
1
n

n
∑

i=1

(
Qu(η•j, 1+α

2 )−Qu(η•j, 1−α
2 )
)

.

In the calculations with NAIC data, each width in the average calculation formula above is
normalised in every triangle with the realised incurred but not reported (IBNR) value. That normalising
value stands for the lower triangle sum in case of an incremental point of view, or, in other words,
the ultimate claim reduced by the payment already available in the upper triangle. Hence, it reflects
the average span interval as a unit of realised IBNR value.

In the ideal case of coinciding predictive and actual probability measures P d
= Q, coverage α

equals to α for any given α ∈ (0, 1). Tables 12 and 13 calculated on the basis of two α values prove that
the applied models produce coverages that are far from ideal. The original MCL method does not
have any coverage or average width output due to lack of predictive distribution. CIT and bootstrap
MCL show the most inappropriate characteristics, in essence with degenerate coverages, either equal
or close to 0 or 1. CCL performs better in the sense that the lower α = 67% coverage is 84% and 94%
in the two cases. The credibility bootstrap and original bootstrap gamma and overdispersed Poisson
methods result in similar coverage and average width: Measures are balanced among these three
models, and have the narrowest sharpness. The collective semi-stochastic method results in coverages
closest to identity, however, at the cost of having wider average width values.

Table 12. Coverage and average width from the commercial auto data.

67% Cover 90% Cover 67% Width 90% Width SampleSize

CIT 0.00 0.00 0.01 0.02 71
CCL 0.84 1.00 4.96 10.60 71

boot.gamma 0.45 0.79 1.04 2.43 71
boot.od.pois 0.45 0.78 1.00 2.13 71

munich 0.00 0.00 0.00 0.00 56
bootstrap.munich 1.00 1.00 37.83 113.90 71

SemiSt 0.73 0.99 1.51 3.55 71
cred.bootstrap.od.pois 0.51 0.75 1.13 2.34 71
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Table 13. Coverage and average width from the private passenger auto liability data.

67% Cover 90% Cover 67% Width 90% width SampleSize

CIT 0.00 0.00 0.00 0.01 73
CCL 0.94 1.00 5.38 10.30 73

boot.gamma 0.30 0.59 0.59 1.14 73
boot.od.pois 0.32 0.57 0.58 1.12 73

munich 0.00 0.00 0.00 0.00 61
bootstrap.munich 0.97 1.00 98.43 411.20 73

SemiSt 0.59 0.93 0.97 2.33 73
cred.bootstrap.od.pois 0.37 0.59 0.58 1.03 73

4.4. Mean Square Error of Prediction

Measuring the expected squared distance between the predictor and the actual outcome has
been part of the conventional way of actuarial reserving. We shall distinguish the conditional error
given the D upper triangle and the unconditional one. Eventually, in the judgment of the specific
model, the unconditional version is assessed in order to measure the average performance of the
model without constraining it on a fixed run-off triangle. Several articles break down the definition on
occurrence years, i.e., inspecting Ci,J real and Ĉi,J estimated ultimate claims for occurrence year i, or the
future (reserve) part of the claims Ci,J − Ci,J−i+1 real and Ĉi,J − Ci,J−i+1. Without loss of generality,

the definition in the present paper is formalised for total ultimate claims UC =
I

∑
i=1

Ci,J . For the sake of

traceability, the definition contains the notation of ξi ∼ Qi ultimate claim for company i and ηi ∼ Fi
ultimate claim prediction. Furthermore, Di stands for the σ-field generated by the upper triangle,
as already used previously.

Definition 17 (Mean square error of prediction (MSEP)). The conditional mean square error of prediction
of estimator ηi for ξi given Di is

msepξi |Di
(ηi) = E

[
(ξi − ηi)

2 |Di

]
.

The unconditional MSEP is

msepξi (ηi) = E
[
(ξi − ηi)

2
]
= E

[
E
[
(ξi − ηi)

2 |Di

]]
.

It is easy to see that MSEP can be split into E
[
(ξi − ηi)

2|Di
]
= Var[ξi|Di] + (ηi − E[ξi|Di])

2,
where the first term is the variance of the process, whilst the second term reflects the estimation error.
Similarly to the conditional version, E

[
(ξi − ηi)

2] = E [Var[ξi|Di]] + E[ηi − E[ξi|Di]]
2. In conjunction

with some of the parameteric models, MSEP can be derived in an analytical form, see Mack (1993) for
the original Mack model and Buchwalder et al. (2006) in a time series method revisiting the result of
the previous article.

Results calculated here differ from the original definition in the sense that each outcome is
normalised by the ultimate reserve. The reason corresponds to the one discussed in Section 2,
i.e., the magnitudinal discrepancies among the claims in distinct companies. Hence, instead of
E
[
(ξi − ηi)

2|Di
]

estimate E
[
( ηi

ξi
− 1)2|Di

]
. Draw a random sample from the distribution of ηi

determined by the forecasting model, and the real observed realisation of ξi; ÛC1,i, . . . , ÛCM,i and UCi.

Statement 18. 1
M

M
∑

j=1

(ÛCj,i−UCi)
2

UC2
i

is an unbiased estimator of E
[
( ηi

ξi
− 1)2|Di

]
.
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Proving the statement works by taking expectation

E

[
1
M

M

∑
j=1

(ÛCj,i −UCi)
2

UC2
i

|Di

]
= E

[
(ÛC1,i −UCi)

2

UC2
i

|Di

]
= E

[
(ηi − ξi)

2

ξ2
i

|Di

]
.

Finally, the MSEP estimator of the model, unconstrained on the upper triangle is the average of
the elements calculated for each company i. However, should the mean be dominated by any extreme
value, the median of conditional MSEPs is included in the calculation results. Observe the differing
values on Tables 14 and 15, supporting the actuary with insufficient background in order to determine
reliable methods on the data sets. Extreme values may easily occur where very high squares are
possible with a low probability. Taking exclusively the MSEP into account in model decisions is clearly
not the proper way of ranking them and does not provide information concerning the appropriateness
of predictive distribution.

Table 14. Mean square error of prediction from the commercial auto data.

Mean.Msep Median.Msep SampleSize

CIT 127.7 1.0 71
CCL 445.1 6.2 71

boot.gamma 352.6 0.2 71
boot.od.pois 6137.0 0.1 71

munich 1.9 0.0 52
bootstrap.munich 6235000.0 16.5 71

SemiSt 4.3 1.7 71
cred.bootstrap.od.pois 3112.0 0.2 71

Table 15. Mean square error of prediction from the private passenger auto liability data.

Mean.Msep Median.Msep SampleSize

CIT 61800000.0 1.0 73
CCL 25.9 12.9 73

boot.gamma 38450.0 0.1 73
boot.od.pois 874.0 0.1 73

munich 2.1 0.0 59
bootstrap.munich 2791000.0 3.1 73

SemiSt 14.0 6.5 73
cred.bootstrap.od.pois 7.7 0.1 73

4.5. Ranking Algorithm

We summarise the algorithmic steps of the ranking framework. Suppose that the triangles stem
from one homogeneous risk group.

1. Stochastic forecast phase. For meth ∈ { bootstrap gamma, bootstrap ODP, . . . }, for j ∈ {set of
companies}, generate M ultimate claim values.
Result: ÛC1,j,meth, . . . , ÛCM,j,meth ∀j ∀meth.

2. Backtest phase. For meth ∈ { bootstrap gamma, bootstrap ODP, . . . } , j ∈ {set of companies}
calculate PIT, CRPS, coverage, sharpness, MSEP from ÛC1,j,meth, . . . , ÛCM,j,meth and real UCj.
Result: (a) PITj,meth ∈ (0, 1), (b) CRPSj,meth ∈ R−, (c) coverj,meth,p ∈ (0, 1), (d) sharpj,meth,p ∈ R+,
(e) MSEPj,meth ∈ R+ ∀j ∀meth ∀p ∈ {67%, 90%}.

3. Ranking phase. Separate comparison of metrics (a)-(e). Combined comparison of metrics (f). (We
assume to compare 7 stochastic methods, excluding MCL.)

(a) Calculate the entropy PIT·,methi
of each set {PITj,meth : ∀j} and order PIT·,meth1 > . . . >

PIT·,meth7 . Assign rank i to methi, the lower the rank the better the performance.
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(b) Calculate average CRPS and order CRPS·,meth1 > . . . > CRPS·,meth7 . Assign rank i to methi.
(c) Calculate coverage values cover·,methi ,p and order (cover·,meth1,p − p)2 < . . . <

(cover·,meth7,p − p)2 for each p and assign rank i to methi. For each method, take the
arithmetic average of the two ranks.

(d) Calculate sharpness values sharp·,methi ,p and order sharp·,meth1,p < . . . < sharp·,meth7,p for
each p and assign rank i to methi. Similarly to coverage take the average of the two ranks
for each method.

(e) Calculate MSEP values and rank as for sharpness.
(f) For meth ∈ { bootstrap gamma, bootstrap ODP, . . . } determine

ranktotal
methi

= rankPIT
methi

+ rankCRPS
methi

+ rankcover
methi

+ ranksharp
methi

+ rankMSEP
methi

. Method k performs

better than l if ranktotal
methk

< ranktotal
methl

.

Observe that the metrics have identical weights in ranking, which is an arbitrary choice. These
steps describe a combined ranking based on different characteristics. However, this ranking should
not be applied without scrutinising PIT, CRPS, etc. separately in order to see the exact weakness of a
reserving method. The ranking results per business line can be found on Table 16. Observe that in
contrast to all other models, the bootstrap gamma one never ranked worse than 3.

Table 16. Combined rankings of stochastic reserving methods per business line. (Excluding MCL.)

Comauto Medmal Ppauto Prodliab Wkcomp Othliab

CIT 5 4 7 5 7 6
CCL 6 6 5 6 5 4

boot.gamma 2 1 3 1 2 1
boot.od.pois 4 3 4 2 3 2

bootstrap.munich 7 7 6 7 6 7
SemiSt 1 5 2 3 1 3

cred.bootstrap.od.pois 3 2 1 4 4 5

5. Conclusions

Rapidly increasing computational power has been generating a shift from deterministic claims
reserving models to stochastic ones. Simultaneously, the validation of model appropriateness has to
receive sufficient attention from researchers. In our view it is crucial to understand the performance of
different methodologies for the calculation of remaining future payments in an insurance portfolio,
and to compare them from several perspectives. We have interpreted claims reserving as a probabilistic
forecast, as already done by other disciplines, such as meteorology or finance. Data sets of six business
lines from American insurance institutions supported calculations in order to remain in contact with
actual real-life claim outcomes.

Eight different models have been used with key parameter estimation details, out of which five
principally different method families can be distinguished. Two of the models are first introduced in
the present article, using not only the individual insurers’, but collective claims observations from
other companies for calibration. See experience ratemaking embedded into the credibility bootstrap
overdispersed Poisson model. Semi-stochastic and credibility bootstrap models have been among
the best performing ones, however, results lack significant evidence that they would considerably
outperform their regular bootstrap counterparts.

Goodness-of-fit measures describing the nature of predictive distribution are clearly more
informative than exclusively observing the mean square error of the prediction. Probability integral
transform is better than Kolmogorov–Smirnov or Cramér–von Mises in the sense that it highlights
what goes wrong with the hypothesis. Continuous ranked probability scores can widely be applied on
distributions with no constraint on absolute continuity, defining a ranking among competing models.
Further characteristics such as coverage and sharpness explain the central prediction interval and
its expected width. Models differ significantly in terms of these two metrics. Methodologies with
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bootstrapping have shown the best performance in general, along with the semi-stochastic model,
calculated with two selected homogeneous risk groups from the NAIC data.
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