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Abstract: Two insurance companies I1, I2 with reserves R1(t), R2(t) compete for customers, such
that in a suitable differential game the smaller company I2 with R2(0) < R1(0) aims at minimizing
R1(t) − R2(t) by using the premium p2 as control and the larger I1 at maximizing by using p1.
Deductibles K1, K2 are fixed but may be different. If K1 > K2 and I2 is the leader choosing its premium
first, conditions for Stackelberg equilibrium are established. For gamma-distributed rates of claim
arrivals, explicit equilibrium premiums are obtained, and shown to depend on the running reserve
difference. The analysis is based on the diffusion approximation to a standard Cramér-Lundberg risk
process extended to allow investment in a risk-free asset.

Keywords: Stochastic differential game; Product differentiation; Adverse selection; Stackelberg
equilibrium

1. Introduction

Insurance premiums are typically calculated based on the expected loss, with an added loading
depending on distributional properties of the risk (the expected value principle, variance principle,
utility premium, etc.). An alternative to these static premium principles is to consider the premium
as a dynamic control variable of the insurance company, as suggested in Asmussen et al. (2013)
and Thøgersen (2016). In this approach, the individual customer’s problem of deciding whether
or not to insure at any given premium offered is modelled explicitly, and the premium is chosen
optimally by the insurance company, balancing the resulting portfolio size against revenue per
customer in order to minimize ruin probability. The analysis is based on the diffusion approximation
to a standard Cramér-Lundberg risk process, extended to allow investment in a risk-free asset.
In Asmussen et al. (2019), this idea is extended to a situation where insurance companies compete
against each other, and Nash equilibria in premium controls of the resulting stochastic differential
game are determined under suitable conditions. However, in some cases, no Nash equilibrium exists.

In the present paper, we present a parallel to this analysis dealing with product differentiation,
with insurance companies offering different deductibles, and accounting for the possibility of
Stackelberg equilibria. Two insurance companies compete against each other such that one company is
the leader, choosing its premium first, and the other company is the follower, choosing its premium
in response to the leader’s. The setting is slightly modified relative to that in Asmussen et al. (2019),
in that we do not consider search and switching costs when modelling the customer’s choice between
insurance products. Our main contributions are, first, to establish the existence of Stackelberg
equilibrium under suitable conditions on this strategic game between insurance companies, and
to identify the restrictions under which this reduces to the special case of Nash equilibrium. To our best
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knowledge, this adds at least the following new features to the literature on game theory in insurance:
an example of Stackelberg equilibrium in premium controls; a finding of dependence of optimal
premiums on reserves; and an occurrence of the phenomenon of adverse selection in a stochastic
differential game between insurance companies, i.e., a lower premium charged increases portfolio size
but leaves the average customer riskier to the company.

In the literature following Taylor (1986), the individual insurance company is frequently modelled
as setting its premium in response to the aggregate insurance market, without explicitly considering
the analogous behavior of the other companies constituting this market and the resulting strategic
interactions. Examples include Taylor (1987) on marginal expense rates, Emms and Haberman
(2005) generalizing the deterministic discrete-time analysis of Taylor to a stochastic continuous-time
model, Pantelous and Passalidou (2013, 2015) using stochastic demand functions in discrete time,
and Emms (2007) and Emms et al. (2007), adopting stochastic processes for the market average
premium and demand conditions in continuous time. Pantelous and Passalidou (2017) recently found
the optimal premium to depend on the company’s reserve in a competitive environment in the sense
of this literature, but, again, this is not explicitly a game-theoretic equilibrium in the sense of Nash or
Stackelberg, which is where we obtain dependence on reserves.

Game-theoretic aspects arise if the other insurers in the market in fact do react to the policy of
the individual insurer, with the latter explicitly taking this into account in setting its policy. Market
reaction to the individual insurer’s premium is considered by Emms (2011). Explicit games between
insurance companies have been studied using non-cooperative game theory, where Cournot games
involve volume controls, see, e.g., Powers et al. (1998), whereas premium controls correspond to
Bertrand games, e.g., the one-period games in Polborn (1998) and Dutang et al. (2013), who note
that one aspect missing in their analysis is adverse selection among policyholders—our analysis
includes this. Emms (2012) and Boonen et al. (2018) do consider continuous-time differential games
in premium controls, but again based on Taylor (1986) type demand functions of own and market
average premium. Boonen et al. (2018) in addition present a continuous-time extension of a one-period
aggregate game of Wu and Pantelous (2017), involving a price elasticity of demand or market power
parameter, and the individual insurer’s payoff depending on own premium and an aggregate of
market premiums. The models are deterministic and open-loop Nash equilibria are determined.
In contrast, rather than assuming demand functions, we model the customer’s choice of where to
insure directly and find closed-loop or feedback Nash and Stackelberg equilibria in the resulting
continuous-time strategic stochastic differential game between insurance companies. The roles
of product differentiation via deductibles, adverse selection, and separating equilibrium in our
solution are reminiscent of Rothschild and Stiglitz (1976), one of the first applications of game theory
to competition in insurance premiums.

Besides competition in premiums, game theory has found several other applications in insurance,
starting with Borch (1962) on risk transfer. Zeng (2010), Taksar and Zeng (2011), and Jin et al. (2013)
consider Nash equilibria of stochastic differential games between insurance companies in reinsurance
strategies. The analysis has been extended to non-zero sum games and additional investment controls
by Bensoussan et al. (2014), nonlinear risk processes by Meng et al. (2015), ambiguity-aversion
by Pun and Wong (2016), and insurance companies with different levels of trust in information by
Yan et al. (2017). Stackelberg-type equilibria of stochastic differential games have been studied
in Lin et al. (2012), where an insurance company selects an investment strategy while the market
(or nature) selects a worst-case probability scenario, and in Chen and Shen (2018), where the game
is between insurer and reinsurer, but not as here in a game between insurance companies. For
some more remote references, see Asmussen et al. (2019). Stackelberg games were introduced
by von Stackelberg (1934), and the theory of stochastic differential Stackelberg games is considered by
Yong (2002), Bensoussan et al. (2015), and Shi et al. (2016).

Premium competition between insurance companies is likely to arise because the premium
charged may affect both portfolio size and revenue per customer. Without market frictions or product
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differentiation, it might be expected that all customers would simply insure at the company offering
the lowest premium. However, this may not be the case in the presence of market frictions. Thus,
when choosing which insurance company to contact, customers may face different costs of search
and switching, transportation, or information acquisition, or they may simply exhibit differences in
preferences. Search frictions have been studied in economics by Diamond (1982), Mortensen (1982),
Mortensen and Pissarides (1994), and others. Brown and Goolsbee (2002) studied the effect of internet
search on life insurance premiums in US data. Information frictions have been modelled as differences
in the cost of obtaining information, e.g., by Salop and Stiglitz (1977). In Asmussen et al. (2019) we
study premium competition between insurance companies in the presence of market frictions. In the
present paper, we consider instead product differentiation, and for simplicity abstract from market
frictions. With the leading example of car insurance in mind, product differentiation may come in
several forms. Here, we focus on different deductibles. Other possibilities would be bonus-malus
systems, see Denuit et al. (2007), or proportional compensation in deductibles, similar to reinsurance
arrangements, see Albrecher et al. (2017).

We consider the case of two insurance companies, referred to as I1 and I2. We allow for product
differentiation by letting Ii offer an insurance contract with fixed deductible Ki for a premium pi,
i = 1, 2. The deductible measures the quality of the insurance product, so the company offering the
lower deductible will be able to charge a higher premium.

We assume that there is a financial market consisting of a single risk-free asset with dynamics
dBt = rBt dt, where r is the risk-free interest rate. All excess wealth of customers and reserve of
insurers is invested in this asset. There are N customers in the insurance market. We assume that
all customers must insure at either I1 or I2 and focus the analysis on the choice between the two
companies. This involves several characteristics of both customer and insurance product. We pay
special attention to product differentiation and customer risk.

The characteristics of an individual customer are unknown to the insurance companies, but their
probability distribution known. Based on this distribution, the companies can determine the expected
portfolio sizes ni(p1, p2) and average claim frequencies αi(p1, p2) in their portfolios as functions of the
premiums offered. The gross premium rate of Ii is then ci(p1, p2) = ni(p1, p2)pi, and the aggregate
claim frequency is λi(p1, p2) = ni(p1, p2)αi(p1, p2).

Let r0,i be the initial reserve of company i. For given premiums (p1, p2), the reserve of Ii is
governed by the dynamics

dRi(t) = (µi(p1, p2) + rRi(t))dt + σi(p1, p2)dWi(t), (1)

where (W1,t)t≥0 and (W2,t)t≥0 are independent Wiener processes, and

µi(p1, p2) = ci(p1, p2)− λi(p1, p2)E[(Z− Ki)
+] = ni(p1, p2)

(
pi − αi(p1, p2)E[(Z− Ki)

+]
)

,

σ2
i (p1, p2) = λi(p1, p2)E[(Z− Ki)

+2
] = ni(p1, p2)αi(p1, p2)E[(Z− Ki)

+2
] .

The random variable Z represents claim sizes, assumed to be independent and identically
distributed. Thus, (1) can be considered as a diffusion approximation to the Cramér-Lundberg process
extended to the case where the insurance companies have access to investment in a risk-free asset.
Such diffusion approximations have been used widely, based on the arguments of Iglehart (1969).

The aim is to derive value functions for the insurance companies, and determine game-theoretic
equilibria. We consider here what we call push-pull competition. We assume that the largest company
in terms of initial capital, I1, selects its premium to try to push the small company away, while the small
company tries to pull closer to the large company. For K1 > K2 and I2 the leader choosing its premium
first, we derive conditions for a Stackelberg equilibrium. The stronger feature of a Nash equilibrium
may also occur, and we give conditions for that, but our numerical examples indicate that Stackelberg
is the more typical case. Subsequently, for completeness, we briefly sketch the solution in the opposite
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case, K1 < K2. The claim frequencies of individual customers are considered random to the insurance
company, and we obtain explicit solutions for equilibrium premiums in the case of gamma-distributed
claim frequencies.

The structure of the paper is as follows. In Section 2 we analyze the customer’s problem.
We proceed to portfolio characteristics in Section 3. In Section 4, we use the portfolio characteristics to
find the strategies of I1 and I2. In Section 5, we obtain explicit solutions in the case of gamma-distributed
claim frequencies, and provide numerical examples. Section 6 concludes. Some calculations and proofs
are deferred to Appendix A.

2. Customer’s Problem

The customer has access to the risk-free asset paying interest at rate r. This is the customer’s
only source of income, and he/she invests all his/her wealth in this. The customer is exposed to a
risk (At)t≥0, modelled as a compound Poisson process At = ∑

M(t)
n=1 Zn, where (M(t))t≥0 is a Poisson

process with claim frequency α, and (Zn)n∈N are the claim sizes, assumed to be independent of
(M(t))t≥0. The customer will then reduce this risk by buying insurance. If the customer insures at Ii,
then he/she will continuously pay the premium pi, and in return have the claim sizes reduced to at
most Ki. The wealth of the customer (wi,t)t≥0 when insuring at company i thus has dynamics

dwi,t = (rwi,t − pi)dt− dAi,t, wi,0 = w0,

where (Ai,t)t≥0 is the compound Poisson process Ai,t = ∑
M(t)
n=1 min{Zn, Ki}, and w0 the customer’s

initial wealth.
We here use similar evaluation criteria and subsequent arguments as in Thøgersen (2016), which

we refer to for a more exhaustive treatment. The first step is to realize that the expected present
discounted wealth when insuring at Ii can be evaluated as

Vi = E
[∫ ∞

0
exp(−dt)dwi,t

]
=

rw0 − pi
d− r

− α

d− r
E[min{Zn, Ki}],

where d > r is a subjective discount rate. If the customer were risk-neutral, he/she would simply
choose the insurance company generating maximum expected present discounted wealth. Thus,
he/she would prefer Ii over Ij if

pi − pj < −α
(
E[min{Zn, Ki}]−E[min{Zn, Kj}]

)
. (2)

However, an existence criterion for the insurance industry is that customers are risk averse, and
this requires modification of (2). If Ki 6= Kj, the customer will be facing an excess claim size risk
when insuring at the company with the higher deductible. Let this additional (or reduced) risk be
denoted ze

i,j = E[min{Zn, Ki} −min{Zn, Kj}] when insuring at Ii rather than Ij. Please note that ze
i,j

corresponds to the last factor in (2), and is positive if Ki > Kj, and vice versa. Let β denote the risk
aversion of the customer. By standard arguments of insurance, due to the risk aversion, the customer
will be willing to pay a fee to avoid the additional risk. We will take this into account by introducing a
personal safety loading ω(β) that the customer is willing to pay to avoid the excess risk present when
K1 6= K2. This is incorporated in (2) by multiplying the excess risk by (1 + ω(β)). The more risk averse
the customer, the higher the safety loading, i.e., ω is non-negative and increasing in β, with ω(0) = 0.
Thus, including risk aversion, the customer will prefer I1 over I2 if

p1 − p2 < −(1 + ω(β))αze
1,2 , (3)

and conversely, I2 over I1 if
p2 − p1 < +(1 + ω(β))αze

1,2 . (4)
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In the next section, we use these relations to evaluate the portfolio sizes and average claim frequencies
of the respective companies. We remark, however, at this place that in Asmussen et al. (2019) we have
presented an in part more sophisticated approach to the customer’s problem involving a finite decision
horizon with varying interpretations, but for the sake of simplicity, we have not pursued this aspect
here.

3. Portfolio Characteristics

The claim frequencies α of the customers will be considered as random to the firm and denoted
by A for a given customer. The case (3) then corresponds to the event

Ω =
{

p1 − p2 < −(1 + ω(β))Aze
1,2
}

(5)

and (4) to the complementary event Ωc.
For I1 the expected portfolio size n1(p1, p2) and the average claim frequency α1(p1, p2) take

the form
n1(p1, p2) = NP(Ω) , α1(p1, p2) = E[A |Ω],

where N is the market size. Vice versa for I2, where

n2(p1, p2) = NP(Ωc) , α2(p1, p2) = E[A |Ωc].

Letting

y =
p2 − p1

(1 + ω(β))ze
1,2

, (6)

the probability of (5) can for ze
1,2 > 0 (corresponding to K1 > K2) be evaluated as

P(Ω) = P(A < y),

so, the portfolio sizes are

n1(p1, p2) = NP(A < y), n2(p1, p2) = N(1− P(A < y)). (7)

The average claim frequency for I1 is the conditional expected value of the random claim frequency
A given that the customer insures at I1, i.e.,

α1(p1, p2) = E[A | A < y], (8)

and likewise, for I2,
α2(p1, p2) = E[A | A ≥ y], (9)

if y > 0. Otherwise, α1(p1, p2) = 0 and α2(p1, p2) = E[A] if y < 0. The criterion y > 0 for obtaining
information from the customers’ choices stems from the assumption ze

1,2 > 0, which indicates that I2

offers a better product than I1, and therefore the premium p1 should not exceed p2. Otherwise, every
customer would obviously choose to insure at I2.

In case ze
1,2 < 0, which means that I1 offers a better insurance product, i.e., a lower deductible,

K1 < K2, then by symmetry

n1(p1, p2) = NP(A ≥ y), α1(p1, p2) = E[A | A ≥ y],

n2(p1, p2) = NP(A < y), α2(p1, p2) = E[A | A < y],

if y > 0. Otherwise, if y < 0, then I1 would offer a lower premium for a better product, and would
hence win the entire market of customers.
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4. The Strategies of the insurance Companies—Push and Pull

We now consider the optimization problems of the insurance companies. A control π = (π1, π2)

is a set
(
π1(t), π2(t)

)
of premium strategies where π1(t), π2(t) denote the premiums set by the

companies at time t. As in much of stochastic control theory, we will only consider Markovian (also
called feedback) strategies π, meaning that π1(t), π2(t) only depend on the current value δ of the
difference ∆π(t) = Rπ

1 (t)− Rπ
2 (t) between the corresponding controlled reserve processes Rπ

1 , Rπ
2 .

That is, we can write π1(t) = pπ
1 (∆

π(t)), π2(t) = pπ
2 (∆

π(t)) for suitable functions pπ
1 , pπ

2 . Since the
(uncontrolled) reserves have the dynamics (1), this makes ∆π(t) a diffusion process,

d∆π(t) = µπ(∆π(t))dt + σπ(∆π(t))dW(t) , (10)

where

µπ(δ) = µ1
(

pπ
1 (δ), pπ

2 (δ)
)
− µ2

(
pπ

1 (δ), pπ
2 (δ)

)
+ rδ ,

σπ(δ)2 = σ1
(

pπ
1 (δ), pπ

2 (δ)
)2

+ σ2
(

pπ
1 (δ), pπ

2 (δ)
)2 ,

and W = (W1 − W2)/
√

2 is again a Wiener process. Without loss of generality, we take
∆(0) = ∆π(0) = r0,1 − r0,2 > 0, i.e., I1 is the large company and I2 the small. The large company
seeks to maximize the reserve difference (to push the competitor further away), while the small
company seeks to minimize the same (to pull closer to the competitor), each taking the current reserve
difference as the state variable. The optimality criterion is to consider a fixed interval [`d, `u] with
`d < ∆(0) < `u and let

τ(π) = inf
{

t > 0 : ∆π(t) 6∈ [`d, `u]
}

, Vπ(δ) = Pπ
(
∆π(τ(π)) = `u

∣∣∆(0) = δ
)

.

Then the large company I1 chooses π1 to maximize the probability Vπ(∆(0)) to exit at the
upper boundary, and the small I2 chooses π2 to minimize Vπ(∆(0)), or equivalently to maximize the
probability 1−Vπ(∆(0)) to exit at the lower boundary.

Remark 1. The feedback assumption implies that this is equivalent to maximizing (minimizing) Vπ(δ) for all
`d < δ < `u.

Given that deductibles are different, one of the firms offers a product of higher quality (lower
deductible) than the other. Therefore, the sequence of the game matters, and so a Stackelberg game is
considered, where the companies compete sequentially. The sequence of the game is that at any time t

1. The insurance company with the better product (i.e., lower deductible) is the leader and thus
plays first.

2. The insurance company with the lower quality product is the follower, and plays second, instantly
after observing the leader’s choice.

If I2 (the smallest firm) is the leader and I1 the follower (i.e., K1 > K2), then a Stackelberg
equilibrium is defined as a strategy pair (π∗1 , π∗2 ) satisfying

π∗1 = π̂1(π
∗
2 ) and V(π∗1 ,π∗2 ) ≤ V(π̂1(π2),π2) for all π2, (11)

where π̂1(π2) = arg supπ1
V(π1,π2). This case, K1 > K2, is relevant when the company offering the

lower deductible is not able to attract sufficiently many high-risk customers (who need this extra
protection) to become the largest company. We briefly discuss the opposite case below, in Remark 6.

The Stackelberg equilibrium concept involves backward induction. First, the optimal response
of the follower is determined as a reaction function. Next, the leader inserts the reaction function of
the follower into its optimization problem, and solves for the best first move. As the game evolves in
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continuous time, the reserve difference changes. At each instant, each firm reconsiders its strategy,
taking the running reserve difference as the state variable, and taking into account the future strategies
of both companies, as long as the reserve difference remains in [`d, `u]. The criteria for a Stackelberg
equilibrium are less strict than the ones for the more common Nash equilibrium, defined as a strategy
pair (π∗1 , π∗2 ) satisfying

V(π∗1 ,π∗2 ) ≥ V(π1,π∗2 ) for all π1 and V(π∗1 ,π∗2 ) ≤ V(π∗1 ,π2) for all π2, (12)

i.e., neither firm has an incentive to deviate from its strategy unilaterally. We later specify the specific
(second order) criteria for our solution for both types of equilibrium.

We next quote from Asmussen et al. (2019) some results that will allow replacing optimization
problems in the space of functions p1, p2 by the more elementary problem of pointwise
maximization/minimization of the real-valued ratio

κπ(δ) =
µπ(δ)

σπ(δ)2 (13)

between the drift and variance of the reserve difference process in (10).

Lemma 1. Let µ(x), σ2(x) be bounded and measurable functions on an interval (`d, `u) such that
inf`d<x<`u σ2(x) > 0 and let X, W be defined on a suitable probability space such that W is a standard
Brownian motion and

X(t) = δ +
∫ t

0
µ
(
X(s)

)
ds +

∫ t

0
σ
(
X(s)

)
dW(s) (14)

for some δ ∈ (`d, `u). Define further κ(x) = µ(x)/σ2(x),

s(y) = exp
{
−2

∫ y

`d

κ(z)dz
}

, S(δ) =
∫ δ

`d

s(y)dy

and τ = inf
{

t : X(t) 6∈ (`d, `u)
}

. Then:
(i) P

(
X(τ) = `u

)
= S(δ)/S(`u) .

(ii) For a given function κ on [`d, `u] and a given δ ∈ [`d, `u], let ϕ(κ) denote the r.h.s. in (i). Then κ0 ≤ κ1

implies ϕ(κ0) ≤ ϕ(κ1).

By slight abuse of notation, define

κ(p1, p2; δ) =
µ1(p1, p2)− µ2(p1, p2) + rδ

σ2
1 (p1, p2) + σ2

2 (p1, p2)
, p1, p2 ≥ 0, `d ≤ δ ≤ `u . (15)

To ease notation here and in the following subsections, we use the notation

κ′i(p1, p2; δ) =
∂

∂pi
κ(p1, p2; δ) , κ′′ij(p1, p2; δ) =

∂2

∂pi∂pj
κ(p1, p2; δ) ,

for partial derivatives, where the number of primes indicates the number of times the function is
differentiated, and the subscript specifies with respect to which variable. 1

1 The standard notation avoids the primes and considers the subscript as sufficient, but we want to emphasize the
differentiation here in order to avoid confusion with other notation in the paper, e.g., µ1(p1, p2) and µ2(p1, p2).
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Now consider the resulting drift and variance of the reserves in (1), focusing on the case K1 > K2.
Writing zi = E[(Z − Ki)

+] and z2
i = E[(Z − Ki)

21{Z≥Ki}], it follows from (1) and Section 3 that the
drift and variance for the reserve of I1 can be written as

µ1(p1, p2) = NP(A < y)
(

p1 −E[A | A < y] z1
)
,

σ2
1 (p1, p2) = NP(A < y)E[A | A < y] z2

1,

and for I2,

µ2(p1, p2) = NP(A ≥ y)
(

p2 −E[A | A ≥ y] z2
)
,

σ2
2 (p1, p2) = NP(A ≥ y)E[A | A ≥ y] z2

2,

with y given by (6). These expressions show that the denominator σ2
1 (p1, p2) + σ2

2 (p1, p2) in (15)
depends on the controls p1, p2 because so does y and K1 6= K2 implies z2

1 6= z2
2 (if K1 = K2 = K then

σ2
1 (p1, p2) + σ2

2 (p1, p2) reduces to NE[A]E[(Z− K)+]). Therefore, we need to optimize over the entire
κ function (15) and not just the difference in drifts ν as in Asmussen et al. (2019).

From (6), by lowering the premium p1, I1 (with a high deductible in their product) can increase
y and thereby portfolio size n1(p1, p2), for given p2, but at the expense of simultaneously increasing
average claim rate α1(p1, p2), leaving the combined effect on the drift µ1(p1, p2) in (1) of sign that
may go either way in general. Thus, there is a tradeoff, reflecting the adverse selection problem, cf.
Rothschild and Stiglitz (1976), i.e., lowering the premium brings more but riskier customers. In contrast,
by lowering its premium p2 for given p1, I2 (offering the lower deductible) can lower y and thereby
simultaneously increase portfolio size n2(p1, p2) and reduce average claim rate α2(p1, p2), but the
combined effect on the drift of the reserve difference in (10) is nevertheless of ambiguous sign, and
further modelling indeed required.

By (i) of Lemma 1, Vπ(δ) takes the form S(δ)/S(`u), and combination of (ii) of the lemma and
Remark 1 allows characterizing a Stackelberg equilibrium with I2 as the leader and I1 the follower.
It shows that the optimization problem is local: We can just consider maximization or minimization
of κ(·, ·; δ) separately at each δ. This yields Proposition 1 below, in which we find the explicit (local)
conditions for a Stackelberg equilibrium in (11) in terms of the function κ(·, ·; δ) from (15). For a
solution to exist, the maximizing company should be facing a (locally, at least) concave problem
structure, and the minimizing company a convex one. Existence cannot be guaranteed in general, but
needs to be verified when considering a specific distribution of A, and hence a specific κ(·, ·; δ). For the
standard assumption of a gamma-distributed heterogeneity, we see in Section 5 that an equilibrium
does in fact exist and is unique. Although multiple solutions do not occur in this example, they cannot
be excluded in general, so that the equilibrium may not be unique. The approach with backward
induction should be the same, though giving a set of solutions. As multiple equilibria do not arise in
the gamma case, we do not discuss them in more depth, except noting that uniqueness is guaranteed if
the (local) concavity and convexity properties exploited in the following proposition extend globally.

For a fixed δ, write d(p2) = p̂1(δ|π2) for the optimal premium for I1 given I2 follows a strategy
with premium p2 at level δ.

Proposition 1. In a Stackelberg equilibrium (π∗1 , π∗2 ), the optimal set p∗1 = p∗1(δ), p∗2 = p∗2(δ) of premiums
at level δ is a solution to

p∗1 = d(p∗2), p∗2 = arg min
p2

κ(d(p2), p2; δ), where d(p2) = arg sup
p1

κ(p1, p2; δ). (16)

The first order conditions for (p∗1 , p∗2) are

0 = κ′1(p∗1 , p∗2 ; δ) = κ′2(p∗1 , p∗2 ; δ) , (17)
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and the second order conditions are

0 > κ′′11(p∗1 , p∗2 ; δ) , (18)

0 > det
(

H(p∗1 , p∗2 ; δ)
)
, (19)

where H(p1, p2; δ) =
(
κ′′ij(p1, p2; δ)

)
i,j=1,2 is the Hessian of κ(·, ·; δ).

Proof. Condition (16) follows from the definition of Stackelberg equilibrium, see (11), and the local
character of the problem discussed above. Choosing the best p1 given p2 means that I1 takes p1 as
d(p2), so d(p2) satisfies

0 = κ′1(d(p2), p2; δ) , (20)

0 > κ′′11(d(p2), p2; δ) . (21)

The problem I2 is facing is then to minimize κ(d(p2), p2; δ) so p∗2 is the zero of the function

g(p2) = κ′1(d(p2), p2; δ)d′(p2) + κ′2(d(p2), p2; δ).

At a Stackelberg equilibrium we have p∗1 = d(p∗2). We therefore get

0 = κ′1(p∗1 , p∗2 ; δ)d′(p∗2) + κ′2(p∗1 , p∗2 ; δ), (22)

and the second order condition g′(p∗2) > 0 means

0 <
[
κ′′11(p∗1 , p∗2 ; δ)d′(p∗2) + κ′′12(p∗1 , p∗2 ; δ)

]
d′(p∗2) + κ′1(p∗1 , p∗2 ; δ)d′′(p∗2)

+ κ′′21(p∗1 , p∗2 ; δ)d′(p∗2) + κ′′22(p∗1 , p∗2 ; δ).
(23)

Now (20) implies that the first term in (22) vanishes, and using (20) again, we arrive at (17).
Furthermore, differentiating (20) gives

0 = κ′′11(d(p2), p2; δ)d′(p2) + κ′′12(d(p2), p2; δ), (24)

and thus [·]d′(p∗2) in (23) vanishes. So does the second term, by (20), and hence (23) reduces to

0 < κ′′21(p∗1 , p∗2 ; δ)d′(p∗2) + κ′′22(p∗1 , p∗2 ; δ)

= −κ′′21(p∗1 , p∗2 ; δ)
κ′′12(p∗1 , p∗2 ; δ)

κ′′11(p∗1 , p∗2 ; δ)
+ κ′′22(p∗1 , p∗2 ; δ) =

det
(

H(p∗1 , p∗2 ; δ)
)

κ′′11(p∗1 , p∗2 ; δ)
,

where the first equality follows from (24). Combination with (21) produces (19).

Corollary 1. If, in addition to (18), the premiums in (16) satisfy

0 < κ′′22(p∗1 , p∗2 ; δ), (25)

then (p∗1 , p∗2) furthermore meets the conditions of a Nash equilibrium.

Proof. Follows from Asmussen et al. (2019).

It is clear from Proposition 1 and Corollary 1 that the Stackelberg equilibrium concept is more
general than Nash equilibrium. In particular, by (18) and (25), the diagonal entries of the relevant
Hessian are of opposite sign in Nash equilibrium, so (19) is automatic. Furthermore, since (18) and
(19) are the general conditions for a (local) saddlepoint of κ(p1, p2; δ), any saddlepoint of this function
gives rise to a (local) Stackelberg equilibrium. Geometrically, such a saddlepoint need not be parallel
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to the axes corresponding to the controls (premiums). In case the cross-partial κ′′12(p∗1 , p∗2 ; δ) = 0
(equivalently, the policy of I1 does not depend on that of I2 at the optimum), then the saddlepoint is
parallel to the axes and, indeed, gives rise to a (local) Nash equilibrium. Again, the conditions are only
necessary, whereas sufficient conditions would involve global concavity/convexity.

Heuristically, because the premium controls of the companies are equally powerful and act in
opposite directions, they should split customers evenly. This is formalized in the next proposition.

Proposition 2. In Stackelberg equilibrium, I1 and I2 share the market equally, i.e., n1(p∗1, p∗2) = n2(p∗1, p∗2) =
N/2.

Proof. Suppressing δ for notational convenience, let κn(p1, p2) and κd(p1, p2) denote the numerator
and denominator, respectively, of κ(p1, p2 ; δ) in (15). Simple calculations show that the partial
derivatives satisfy the relations

κ′n,2(p1, p2) = −κ′n,1(p1, p2) + N(P(A < y)− P(A ≥ y)) ,

κ′d,2(p1, p2) = −κ′d,1 ,
(26)

with y from (6). Following Proposition 1, we find the first order condition for I1,

κ′1(p1, p2; δ) =
1

κd(p1, p2)
κ′n,1(p1, p2)−

κn(p1, p2)

κd(p1, p2)2 κ′d,1(p1, p2) = 0,

which can be reduced to

κ′n,1(p1, p2)−
κn(p1, p2)

κd(p1, p2)
κ′d,1(p1, p2) = 0. (27)

From this equation, the optimal response function d(p2) is deduced. Similarly, the first order
condition for I2 can be reduced to

κ′n,2(d(p2), p2)−
κn(d(p2), p2)

κd(d(p2), p2)
κ′d,2(d(p2), p2) = 0.

Using the relation (26) between the partial derivatives yields

−κ′n,1(d(p2), p2) + N(P(A < y)− P(A ≥ y)) +
κn(d(p2), p2)

κd(d(p2), p2)
κ′d,1(d(p2), p2) = 0,

which in combination with (27) yields P(A < y) = P(A ≥ y). Hence, in Stackelberg equilibrium y
should be the median of A, and from (7), n1(p∗1 , p∗2) = n2(p∗1 , p∗2) = N/2.

5. Gamma-Distributed Claim Frequencies

For modelling purposes, we assume that the claim frequencies are distributed according to
A ∼ gamma(a, b), with c.d.f. P(A < y) = γ(b, y/a)/Γ(b) where

Γ(b) =
∫ ∞

0
tb−1 exp(−t)dt , γ(b, z) =

∫ z

0
tb−1 exp(−t)dt, Γ(b, z) = Γ(b)− γ(b, z)

are the Gamma function, and the lower resp. upper incomplete Gamma function. The gamma
distribution is standard for modelling unobserved heterogeneity in a Poissonian setting (in insurance,
a classical case is credibility theory, see Bühlmann and Gisler (2006); in general Bayesian modelling, the
gamma has the role of a conjugate prior greatly facilitating calculations, see Robert (2007)). However,
the outline calculations can easily be paralleled for other distributions, though the amount of analytic
details may be considerable.
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The portfolio characteristics (7)–(9) can then be written explicitly as

n1(p1, p2) = N
γ (b, y/a)

Γ(b)
, α1(p1, p2) =

aγ (b + 1, y/a)
γ(b, y/a)

, (28)

n2(p1, p2) = N
Γ(b, y/a)

Γ(b)
, α2(p1, p2) =

aΓ (b + 1, y/a)
Γ(b, y/a)

,

if ze
1,2 > 0 and y > 0 which, as explained in Section 3, is equivalent to K1 > K2 and p1 < p2.

Theorem 1. Assume K1 > K2 that A ∼ gamma(a, b), and let mΓ denote the median of gamma(a, b). Then a
Stackelberg equilibrium exists at

p∗1 = d(p∗2) = a
( p∗2

a
− (1 + ω(β))ze

1,2
mΓ

a

)
,

p∗2 =
a
2

(mΓ

a

)(1
2

emΓ/a
(mΓ

a

)−b
Γ(b)(1 + ω(β))ze

1,2

+ (1 + ω(β))ze
1,2 + (z1 + z2)− κ̃(z2

2 − z2
1)
) (29)

where

κ̃ = κ(p∗1 , p∗2 ; δ)

=
e−mΓ/a(mΓ/a)b(z1 + z2) +

1
2 Γ(b)(b(z2 − z1)− (mΓ/a)(1 + ω(β))ze

1,2) + rδΓ(b)/(Na)
1
2 bΓ(b)(z2

1 + z2
2) + e−mΓ/a(mΓ/a)b(z2

2 − z2
1)

, (30)

provided
p∗1 ≥ 0, p∗2 ≥ 0 , (31)

and
D(a, b, K1, K2, r, δ, ω(β)) < 0 (32)

with
D(a, b, K1, K2, r, δ, ω(β)) = κ(p∗1 , p∗2 ; δ)(z2

2 − z2
1)− 2(1 + ω(β))ze

1,2 − (z1 + z2)

− 1
2

emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze
1,2(mΓ/a− b + 1).

(33)

Remark 2. As we discussed in Asmussen et al. (2019), there are arguments that motivate to remove
condition (31) of non-negative premiums or to tighten it to premiums never below net levels αi(p1, p2)zi.
However, since αi(p1, p2) now depends on y from (6) and hence on premiums unlike in the Nash
equilibrium occurring there, this route leads to an implicit condition and is not pursued further here.
See; however, the discussion following (37) below.

Proof. Using the portfolio characteristics (28) and the notation from the proof of Proposition 2, we can
write the numerator of the criterion to be optimized (15) as

κn(p1, p2) = µ1(p1, p2)− µ2(p1, p2) + rδ

= N
(
γ (b, y/a) p1 − aγ (b + 1, y/a) z1 − Γ (b, y/a) p2 + aΓ (b + 1, y/a) z2

)
/Γ(b) + rδ

= N
(
γ(b, y/a)(p1 − abz1)− Γ(b, y/a)(p2 − abz2) + a(y/a)be−y/a(z1 + z2)

)
/Γ(b) + rδ ,
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using the relations γ(b + 1, z) = bγ(b, z) − zbe−z and Γ(b + 1, z) = bΓ(b, z) + zbe−z. Similarly, for
the denominator,

κd(p1, p2) = σ2
1 (p1, p2) + σ2

2 (p1, p2)

= N
(
aγ (b + 1, y/a) z2

1 + aΓ (b + 1, y/a) z2
2
)
/Γ(b)

= N
(
abγ(b, y/a)z2

1 + abΓ(b, y/a)z2
2 + a(y/a)be−y/a(z2

2 − z2
1
)
/Γ(b).

The derivatives of the incomplete Gamma functions are

∂γ (b, z)
∂z

= zb−1e−z = −∂Γ (b, z)
∂z

,

and by the definition (6) of y, we have ∂y
∂p2

= − ∂y
∂p1

= 1/((1+ ω(β))ze
1,2). Hence, κn and κd have partial

derivatives

κ′n,1(p1, p2) =
N

Γ(b)

(
γ (b, y/a) +

z1 + z2

(1 + ω(β))ze
1,2

e−y/a (y/a)b − p1 + p2

a(1 + ω(β))ze
1,2

(y/a)b−1 e−y/a
)

,

κ′n,2(p1, p2) =
N

Γ(b)

(
− Γ (b, y/a)− z1 + z2

(1 + ω(β))ze
1,2

e−y/a (y/a)b +
p1 + p2

a(1 + ω(β))ze
1,2

(y/a)b−1 e−y/a
)

= N
(γ (b, y/a)

Γ(b)
− Γ (b, y/a)

Γ(b)

)
− κ′n,1(p1, p2),

κ′d,1(p1, p2) =
N

Γ(b)

(
z2

2 − z2
1

(1 + ω(β))ze
1,2

e−y/a (y/a)b
)

,

κ′d,2(p1, p2) = −
N

Γ(b)

(
z2

2 − z2
1

(1 + ω(β))ze
1,2

e−y/a (y/a)b
)
= −κ′d,1(p1, p2) ,

confirming (26) in this case. By Proposition 2, y must be the median of the gamma distribution, namely,
the value mΓ that solves γ(b, mΓ/a)/Γ(b) = Γ(b, mΓ/a)/Γ(b) = 1/2. From the definition (6) of y it
then follows that p∗2 is chosen to satisfy

mΓ =
p∗2 − d(p∗2)

(1 + ω(β))ze
1,2

.

Thus, when evaluated at p∗2 , the optimal response by I1 is d(p∗2) = p∗2 − (1+ω(β))ze
1,2mΓ. We may

now evaluate the expressions

κ(d(p∗2), p∗2 ; δ) =
e−mΓ/a(mΓ

a
)b
(z1 + z2) +

1
2 Γ(b)

(
b(z2 − z1)− mΓ

a (1 + ω(β))ze
1,2
)
+ rδΓ(b)/(Na)

1
2 bΓ(b)(z2

1 + z2
2) + e−mΓ/a

(mΓ
a
)b
(z2

2 − z2
1)

,

κ′n,1(d(p∗2), p∗2) =
N

Γ(b)

( −2p∗2
a(1 + ω(β))ze

1,2
(mΓ/a)b−1e−mΓ/a +

Γ(b)
2

+
z1 + z2

(1 + ω(β))ze
1,2

e−mΓ/a(mΓ/a)b + (mΓ/a)be−mΓ/a
)

,

κ′d,1(d(p∗2), p∗2) =
N

Γ(b)

(
z2

2 − z2
1

(1 + ω(β))ze
1,2

e−mΓ/a(mΓ/a)b
)

.
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Substitute these into (27) and solve for p∗2 to get

p∗2 =
a
2

(mΓ

a

)(1
2

emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze
1,2 + (1 + ω(β))ze

1,2 + (z1 + z2)

−
e−mΓ/a(mΓ/a)b(z1 + z2) +

1
2 Γ(b)(b(z2 − z1)− (mΓ/a)(1 + ω(β))ze

1,2) + rδΓ(b)/(Na)
1
2 bΓ(b)(z2

1 + z2
2) + e−mΓ/a(mΓ/a)b(z2

2 − z2
1)

(z2
2 − z2

1)
)

.

The second order conditions, (18) and (19), are verified in Appendix A such that the first order
conditions yield the types of optima desired.

We have without loss of generality assumed that y ≥ 0, i.e., by (6), I2 charges the highest
premium. This is reasonable because it offers the best product (K1 > K2). Indeed, there cannot be
an equilibrium in the region y < 0, since here, the criterion to be optimized would be κ(p1, p2; δ) =

(rδ− N(p2 − αz2))/(Nαz2
2), which is decreasing in p2. Since I2 seeks to minimize, it would increase

p2 until again y > 0.

Corollary 2. If, in addition to (32), the premiums in (29) satisfy

D(a, b, K1, K2, r, δ, ω(β)) > −4(1 + ω(β))ze
1,2 (34)

then (p∗1 , p∗2) furthermore meets the conditions of a Nash equilibrium.

Proof. Follows from Corollary 1 and calculations in the Appendix A.

Remark 3. The median is not analytically available, but can be solved for numerically. Banneheka and
Ekanayake (2009) argue that the median for b ≥ 1 can be approximated as mΓ ≈ ab(3b− 0.8)/(3b+ 0.2).
Further to this, note that by scaling properties of the gamma distribution, mΓ/a is the median of a
gamma(1, b) distribution. Evidently, equilibrium premiums scale in proportion to a.

Remark 4. If b = 1, the gamma distribution reduces to the exponential with parameter 1/a and median
me = a log(2). In this case, the expressions for equilibrium premiums simplify to

p∗1 = d(p∗2) = a(p∗2/a− (1 + ω(β))ze
1,2me/a),

p∗2 =
a
2

(
(1 + ω(β))ze

1,2 + (1 + ω(β))ze
1,2(me/a) + (z1 + z2)(me/a)

− me

a
(me/a)(z1 + z2) + z2 − z1 − (me/a)(1 + ω(β))ze

1,2 + 2rδ/(aN)

z2
1 + z2

2 + (me/a)(z2
2 − z2

1)
(z2

2 − z2
1)
)

.

Remark 5. Without product differentiation, K1 = K2, premiums coincide, p∗1 = p∗2 . With product
differentiation, the difference between equilibrium premiums is increasing in excess risk ze

1,2 and safety
loading ω(β).

Remark 6. In case K1 < K2, i.e., the large firm I1 offers the highest-quality insurance product (lowest
deductible), then for a gamma-distributed claim frequency, the criterion to be optimized is by symmetry instead

κ(p1, p2; δ) =
Γ (b, y/a) p1 − aΓ (b + 1, y/a) z1 − γ (b, y/a) p2 + aγ (b + 1, y/a) z2 + rδΓ(b)/N

aΓ (b + 1, y/a) z2
1 + aγ (b + 1, y/a) z2

2

.

In this case, I1 will be the leader of the Stackelberg game, and I2 the follower. Recall here that because K1 < K2

we have ze
1,2 < 0. The same approach as in the proof of Theorem 1 then yields the equilibrium
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p∗2 = d(p∗1) = a(p∗1/a + (1 + ω(β))ze
1,2(mΓ/a)),

p∗1 =
a
2

(mΓ

a

)(
− 1

2
emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze

1,2 − (1 + ω(β))ze
1,2 + (z1 + z2)

−
−e−mΓ/a(mΓ/a)b(z1 + z2) +

1
2 Γ(b)(b(z2 − z1)− (mΓ/a)(1 + ω(β))ze

1,2) + rδΓ(b)/(aN)

1
2 bΓ(b)(z2

1 + z2
2)− e−mΓ/a(mΓ/a)b(z2

2 − z2
1)

(z2
2 − z2

1)

)
.

We have again that ni(p∗1 , p∗2) = N/2, i = 1, 2 (this follows as in the proof of Proposition 2 and as in that
case does not depend on the assumption of gamma-distributed heterogeneity). The case K1 < K2 is relevant if the
company offering best protection (lowest deductible) and therefore charging highest premiums is able to more
than cover the extra cost associated with the high-risk customers willing to pay such higher premiums, and thus
become the largest company.

Returning to Theorem 1 and the discussion of how the Stackelberg equilibrium evolves over
time, note that due to interest rates, the strategy of the leader (here, I2, with strategy p∗2) changes in
an affine fashion with δ. Although δ indicates the difference in initial reserves, the companies may
reoptimize at any point in time. The game is repeated every instant, and each new equilibrium in
the feedback version of the game takes the same form, with premiums set as in Theorem 1, and δ the
running difference in reserves. As functions of δ, the Stackelberg equilibrium premiums, p∗2 = p∗2(δ)
and p∗1 = p∗1(δ), remain time-invariant. In game-theoretic terms, the equilibrium is time-consistent.
Furthermore, the portfolio characteristics actually remain constant through time. The reason is that
the difference between premiums, p∗2 − p∗1 = (1 + ω(β))ze

1,2mΓ, clearly is constant over time, not
dependent on the reserve difference δ, and by Section 3, portfolio sizes and average claim frequencies
for the companies only depend on the difference in premiums.

Numerical Illustration

We have aimed for examples with parameters that are somehow realistic in car insurance,
taking the time unit as a year and the monetary unit as one e. For gamma-distributed unobserved
heterogeneity there are some studies (see Bichsel (1964)) with b very close to 1, so for the sake of
illustration, we take b = 1. Furthermore, an average claim frequency of order 0.05–0.10 is common
in Western countries, so we took a = 0.1. A gamma(0.1,1)-distribution has median mΓ ≈ 0.0693.
Examples of gamma-distributed claim frequencies across customers are illustrated in Figure 1 for
different values of the parameters a and b. The combinations of parameters are chosen to maintain an
average claim frequency of 0.1.

0 0.5

a=0.10, b=1

a=1, b=0.10

a=0.70, b=7

Figure 1. The gamma distribution of the claim frequencies for different a and b.
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Assuming for simplicity that the claim sizes are exponentially distributed with parameter θ, then
we additionally have that

zi =
1
θ

e−θKi , z2
i =

2
θ2 e−θKi ,

for i = 1, 2, together with excess risk

ze
1,2 = E[min{Z, K1} −min{Z, K2}] =

1
θ
(e−θK2 − e−θK1).

Aiming for an average claim size of 5000 e, we choose θ = 1/5000. We consider a deductible for
I1 of 15% of the average claim size, that is K1 = 750. Similarly for I2 with 10% of the claim size giving
K2 = 500. Note in particularly that K1 > K2. For these parameter values, we get

z1 = 4303.54, z2
1 = 43 035 398.82, z2 = 4524.19, z2

2 = 45 241 870.90, ze
1,2 = 220.65. (35)

Assume further that there are N = 1, 000, 000 customers with identical personal safety loadings of
ω(β) = 0.4 and that the risk-free interest rate is r = 3%. To get an indicator of the level of the
reserves, we find a starting point, R, based on a 95% Value at Risk (VaR) principle. As N is rather
large, the distribution of the sum ∑N/2

i=1 (Zi − 5000) can be approximated by the normal distribution
N(0, (N/2)/θ2). Solving for the R that satisfies

P
( N/2

∑
i=1

(Zi − 5000) > R
)
= 0.05,

using the inverse of the N(0, (N/2)/θ2) cdf, yields R = 5 815 435.77. Next, I1 is assumed to have a
reserve somewhat more than R, and I2 somewhat less. More specifically, we let

r0,1 = (1 + γ)R and r0,2 = (1− γ)R, (36)

which leads to an initial reserve difference of δ = 2γR. Choosing e.g., γ = 0.2 we get a difference of
δ = 2 326 174.31. Since the analytic results do not depend on the bounds on the reserve, `u and `d,
their particular values do not matter, and we just need that the interval [`d, `u] contains the chosen δ.
Given this value, the graph of the criterion to be optimized, κ(p1, p2; δ), appears in Figure 2, and the
corresponding contour diagram in Figure 3.

Figure 2. Graph of κ(p1, p2; δ).
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Figure 3. Contour diagram of κ(p1, p2; δ).

Recall that we here consider the case where I2 offers the better product (K1 > K2) and chooses its
premium p2 first. Given this, I1 maximizes by seeking toward the ridge that appears diagonally when
choosing p1. The market leader, I2, takes this response function of I1 into account, and minimizes
κ(p1, p2; δ) along the ridge, by choice of p2. The optimum provides the Stackelberg equilibrium, at
the saddle point. However, in this case the saddle is located diagonally, not parallel to the axes, and
there is no Nash equilibrium. In particular, given p1, I2 would benefit from increasing p2, moving
away from the ridge (toward cooler colors in the figures). While this precludes Nash equilibrium,
the analysis demonstrates that it is possible to obtain an equilibrium in finite premiums by having I2

commit to some p2 at the given δ, then letting I1 respond, i.e., a Stackelberg equilibrium. This is also
verified by the value

D(a, b, K1, K2, r, δ, ω(β)) = −9603.91,

which tells us that condition (32) is satisfied, whereas (34) is not, as −4(1 + ω(β)ze
1,2 = −1235.62, i.e.,

greater than D(·) in this case.
From Theorem 1, we compute the Stackelberg equilibrium premiums

p∗1 = 305.5 and p∗2 = 326.0 (37)

at the current reserve difference δ = 2 326 174.31. These are to be compared with the net premiums

α1(p∗1 , p∗2)z1 = 0.0307 · 4303.54 = 132.1, α2(p∗1 , p∗2)z2 = 0.1693 · 4524.19 = 766.0,

so that pursuing solely the competition aspects would lead to a likely loss for I2 at the current reserve
difference. This is not necessarily a paradox since the perspective of control and game theory is to
focus solely on a one-eyed goal. Larger δ means I2 is lagging more behind the large firm I1, and this
gives I2 greater incentive to compete for customers by lowering its premium, with I1 responding by
letting premiums move in lockstep. Thus, in equilibrium, I2 always receives a higher premium than I1,
reflecting the higher quality product (lower deductible). This type of product is attractive to “bad”
customers, that is, customers with high claim frequency, as seen in Figure 4. These customers are
expected to experience more losses than “good” customers, and are therefore willing to pay extra for
better coverage, yielding a separating equilibrium, with customers’ choices revealing their type, as in
Rothschild and Stiglitz (1976). Still, I2 may remain the smallest company, due to the higher risk of
its customers.
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0 m
Γ

Figure 4. Distribution of customers in equilibrium, where customers with claim frequencies in the
green (blue) area insure at I1 (I2).

In Figures 5 and 6, exhibiting aspects of D, we take a closer graphical look at the second order
criteria. Starting with Figure 5, we plot D as a function of δ. All other parameters remain the same as
above. Values for δ for which D < −4(1+ ω(β)ze

1,2 are plotted in green to indicate that the equilibrium
is of Stackelberg type. Values that yield−4(1+ω(β)ze

1,2 < D < 0, and hence equilibrium of Nash-type,
are plotted in blue. Finally, the values plotted with red give D > 0, which tells us that there is no
equilibrium. Here we see that D is indeed a linearly increasing function of δ, as it should be according
to (30) and (33). Hence, for small δ-values we get a Stackelberg equilibrium (green). For a small
spectrum in the middle we get a Nash equilibrium (blue), and, finally, for large values of δ there is no
equilibrium. The same color codes are used in Figure 6, which shows the color plateaus of D, and not
the actual values, as depending on the deductibles, K1 and K2. As we restrict the analysis to the case
where K1 > K2, it is only the lower triangular part that is illustrated. For simultaneously large values
(above 5× 104) of K1 and K2, there appears an area (red) where there is no equilibrium. However,
5× 104 is ten times the average claim size of 5000 and obviously an unrealistically large value of
the deductibles. For K1 and K2 being close, i.e., along the diagonal, there is then an equilibrium of
Stackelberg type (green area) for smaller values. Moving away from the diagonal, the equilibrium type
will change from Stackelberg to Nash (blue area). However, in the most realistic region of deductibles
K1, K2 being below the mean claim size 5000 = 0.5× 104 it is always Stackelberg.
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Figure 5. D as a function of δ. Green indicates Stackelberg equilibrium, blue indicates Nash equilibrium,
and red indicates neither.

Figure 6. D as a function of K1 and K2 for K1 > K2. Green indicates Stackelberg equilibrium, blue
indicates Nash equilibrium, and red indicates neither.

6. Conclusions

We have considered a non-life insurance market in which two insurance companies compete for
customers by choice of premium strategies. Each company chooses its strategy to balance revenue
against portfolio size, taking into account the strategy of the other company. We pay special attention
to product differentiation and customer risk, while abstracting for simplicity from market frictions.
For product differentiation, we focus on different deductibles, noting that alternatives would include
bonus-malus systems, and proportional compensation in deductibles. The analysis is carried out
in continuous time using stochastic differential game techniques. Adverse selection implies that a
change in premium alters the risk composition of the portfolio. With claim arrival rates following a
gamma distribution across customers, Stackelberg equilibrium premiums are derived. Conditions
under which a Nash equilibrium exists are also established, but our numerical examples indicate that
Stackelberg is the more typical case. Equilibrium premiums depend in an affine fashion on the running
difference between the reserves of the companies, each modelled using the diffusion approximation to
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a standard Cramér-Lundberg risk process, extended to allow investment in a risk-free asset. Numerical
illustrations of both types of equilibrium are provided.

Overall, the managerial implications are that insurance companies should consider the premium
as an active means to control portfolio size and revenue per customer in competition with other
companies, as opposed to merely pooling individual risks and setting the premium based on
conventional principles. Future research could consider three or more companies competing for
market shares, to account explicitly for the risk of ruin or the possibility that some potential customers
choose not to insure, or to pursue the more sophisticated ideas of Asmussen et al. (2019) on the
customer’s problem.
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Appendix A. Second Order Derivative Tests for Theorem 1

Since we only need to consider a fixed δ, we write for notational convenience κ(p1, p2) instead of
κ(p1, p2; δ). Please note that the first order conditions, in the present case (17), can be written as

κ′i(p1, p2) =
1

κd(p1, p2)

(
κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)

)
= 0 for i = 1, 2,

and consider the second order partial derivatives

κ′′ii(p1, p2) =
1

κd(p1, p2)

(
κ′′n,ii(p1, p2)− κ(p1, p2; δ)κ′′d,ii(p1, p2)

− 1
κd(p1, p2)

κ′d,i(p1, p2)
(

κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)
))

− 1
κd(p1, p2)2 κ′d,i(p1, p2)

(
κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)

)
,

κ′′ij(p1, p2) =
1

κd(p1, p2)

(
κ′′n,ij(p1, p2)− κ(p1, p2; δ)κ′′d,ij(p1, p2)

− 1
κd(p1, p2)

κ′d,i(p1, p2)
(

κ′n,j(p1, p2)− κ(p1, p2; δ)κ′d,j(p1, p2)
))

− 1
κd(p1, p2)2 κ′d,j(p1, p2)

(
κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)

)
.

In optimum the critical point (p∗1 , p∗2) must satisfy the first order condition (27), which reduces
the second order partial derivatives to

κ′′ii(p∗1 , p∗2) =
1

κd(p∗1 , p∗2)

(
κ′′n,ii(p∗1 , p∗2)− κ̃κ′′d,ii(p∗1 , p∗2)

)
,

κ′′ij(p∗1 , p∗2) =
1

κd(p∗1 , p∗2)

(
κ′′n,ij(p∗1 , p∗2)− κ̃κ′′d,ij(p∗1 , p∗2)

)
.
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From the links between the first order derivatives in the proof of Theorem 1,

κ′′22(p∗1 , p∗2) =
1

κd(p∗1 , p∗2)

(
κ′′n,22(p∗1 , p∗2)− κ̃κ′′d,22(p∗1 , p∗2)

)
(A1)

=
1

κd(p∗1 , p∗2)

(
κ′′n,11(p∗1 , p∗2)− 2 f ′1(p∗1 , p∗2)− κ̃κ′′d,11(p∗1 , p∗2)

)
, (A2)

κ′′12(p∗1 , p∗2) =
1

κd(p∗1 , p∗2)

(
κ′′n,12(p∗1 , p∗2)− κ̃κ′′d,12(p∗1 , p∗2)

)
(A3)

=
1

κd(p∗1 , p∗2)

(
− κ′′n,11(p∗1 , p∗2) + f ′1(p∗1 , p∗2) + κ̃κ′′d,11(p∗1 , p∗2)

)
, (A4)

where f (p1, p2) = γ (b, y/a)− Γ (b, y/a). The second order derivative test on the Hessian in (19),

κ′′11(p∗1 , p∗2)κ
′′
22(p∗1 , p∗2)− κ′′12(p∗1 , p∗2)

2 = − 1
κd(p∗1 , p∗2)

2 f ′1(p∗1 , p∗2)
2 < 0,

then confirms a saddle point, provided we can show the condition (18). For this, we need to be more
specific and find the actual second order derivatives and evaluate them in equilibrium. Differentiating
κ′n,1(p1, p2) and κ′d,1(p1, p2) with respect to p1 yields

κ′′n,11(p1, p2) = −
2

a(1 + ω(β))ze
1,2

e−y/a (y/a)b−1 +
z1 + z2

a((1 + ω(β))ze
1,2)

2 e−y/a (y/a)b−1 (y/a− b)

− p1 + p2

(a(1 + ω(β))ze
1,2)

2 e−y/a (y/a)b−2 (y/a− b + 1),

κ′′d,11(p1, p2) =
z2

2 − z2
1

a((1 + ω(β))ze
1,2)

2 e−y/a (y/a)b−1 (y/a− b).

Evaluating at the equilibrium premiums,

κ′′n,11(p∗1 , p∗2) = −
2

a(1 + ω(β))ze
1,2

e−mΓ/a (mΓ/a)b−1 +
z1 + z2

a((1 + ω(β))ze
1,2)

2 e−mΓ/a (mΓ/a)b−1 (mΓ/a− b)

−
2p∗2 − (1 + ω(β))ze

1,2mΓ

(a(1 + ω(β))ze
1,2)

2 e−mΓ/a (mΓ/a)b−2 (mΓ/a− b + 1),

κ′′d,11(p1, p2) =
z2

2 − z2
1

a((1 + ω(β))ze
1,2)

2 e−mΓ/a (mΓ/a)b−1 (mΓ/a− b).

Multiplying by the positive constant κd(p∗1 , p∗2)a((1 + ω(β))ze
1,2)

2/((mΓ/a)b−1 exp(−mΓ/a)),
the criterion can be written in reduced form explicitly as

−2(1 + ω(β))ze
1,2 + (z1 + z2)(mΓ/a− b)− (2p∗2/a− (1 + ω(β))ze

1,2mΓ/a) (mΓ/a)−1 (mΓ/a− b + 1)

− κ̃(z2
2 − z2

1)(mΓ/a− b) < 0.

Inserting the optimal premium,

p∗2 = a
2

(
1
2 emΓ/a(mΓ/a)1−bΓ(b)(1 + ω(β))ze

1,2 + (1 + ω(β))ze
1,2(mΓ/a) + (mΓ/a)(z1 + z2)

−(mΓ/a)κ̃(z2
2 − z2

1)
)

,
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we can reduce the condition to

κ̃(z2
2 − z2

1)− 2(1 + ω(β))ze
1,2 −

1
2

emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze
1,2(mΓ/a− b + 1)− (z1 + z2) < 0,

which is the same as (32).
The condition (25) for a Nash equilibrium can also be found more explicitly by using the link

in (A2) between the second order derivatives. The condition can be rewritten as

1
κd(p∗1 , p∗2)

(
κ′′n,11(p∗1 , p∗2)− 2 f ′1(p∗1 , p∗2)− κ̃κ′′d,11(p∗1 , p∗2)

)
> 0,

which, using the same approach as above, can be written as

2
a((1 + ω(β))ze

1,2)
2

(mΓ/a)b−1 exp(−mΓ/a)
f ′1(p∗1 , p∗2) < κ̃(z2

2 − z2
1)

− 2(1 + ω(β))ze
1,2 −

1
2

emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze
1,2(mΓ/a− b + 1)− (z1 + z2),

where

a((1 + ω(β))ze
1,2)

2

(mΓ/a)b−1 exp(−mΓ/a)
f ′1(p∗1 , p∗2) = −2

a((1 + ω(β))ze
1,2)

2

(mΓ/a)b−1 exp(−mΓ/a)
(mΓ/a)b−1 exp(−mΓ/a)

a(1 + ω(β)ze
1,2

= −2(1 + ω(β))ze
1,2,

which combined yields (34).
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