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Abstract: As decarbonisation progresses and conventional thermal generation gradually gives way
to other technologies including intermittent renewables, there is an increasing requirement for system
balancing from new and also fast-acting sources such as battery storage. In the deregulated context,
this raises questions of market design and operational optimisation. In this paper, we assess the
real option value of an arrangement under which an autonomous energy-limited storage unit sells
incremental balancing reserve. The arrangement is akin to a perpetual American swing put option
with random refraction times, where a single incremental balancing reserve action is sold at each
exercise. The power used is bought in an energy imbalance market (EIM), whose price we take as a
general regular one-dimensional diffusion. The storage operator’s strategy and its real option value
are derived in this framework by solving the twin timing problems of when to buy power and when
to sell reserve. Our results are illustrated with an operational and economic analysis using data from
the German Amprion EIM.

Keywords: multiple optimal stopping; general diffusion; real option analysis; energy imbalance
market

1. Introduction

In today’s electric grids, power system security is managed in real time by the system operator,
who coordinates electricity supply and demand in a manner that avoids fluctuations in frequency
or disruption of supply (see, for example, New Zealand Electricity Authority 2016). In addition, the
system operator carries out planning work to ensure that supply can meet demand, including the
procurement of non-energy or ancillary services such as operating reserve, the capacity to make near
real-time adjustments to supply and demand. These services are provided principally by network
solutions such as the control of large-scale generation, although from a technical perspective they can
also be provided by smaller, distributed resources such as demand response or energy storage (National
Grid ESO 2019a; Xu et al. 2016). Such resources have strongly differing operating characteristics: when
compared to thermal generation, for example, energy storage is energy limited but can respond
much more quickly. Storage also has important time linkages, since each discharge necessitates a
corresponding recharge at a later time.

The coming decades are expected to bring a period of “energy transition” in which markets for
ancillary services will evolve, among other highly significant changes to generation, consumption
and network operation. The UK government, for example, has an ambition that “new solutions such
as storage or demand-side response can compete directly with more traditional network solutions” (UK Office
of Gas and Electricity Markets 2017, p. 29). In harmony, the UK System Operator National Grid
has recently declared its intention to “create a marketplace for balancing that encourages new and existing
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providers, and all new technology types” (National Grid ESO 2019b). In anticipation of changes such as
these, we will examine the participation of autonomous energy storage in a future marketplace for
balancing.

Operating reserve is typically procured via a two-price mechanism, with a reservation payment
plus an additional utilisation payment each time the reserve is called for (Ghaffari and Venkatesh
2013; Just and Weber 2008). Since the incentivisation and efficient use of operating reserve for system
balancing is of increasing importance with growing penetration of variable renewable generation
(King et al. 2011), several system operators have recently introduced real-time energy imbalance
markets (EIMs) in which operating reserve is pooled, including in Germany (Ocker and Ehrhart
2017) and California (Lenhart et al. 2016; Western EIM 2019). Such markets typically involve the
submission of bids and offers from several providers for reserves running across multiple time
periods, which are then accepted, independently in each period, in price order until the real-time
balancing requirement is met. As one provider can potentially be called upon over multiple consecutive
periods, this reserve procurement mechanism is not well suited to energy-limited reserves such as
energy storage. However, storage-oriented solutions are being pioneered in a number of countries
including a recent tender by the National Grid in the UK (National Grid ESO 2019a) and various trials
by state system operators in the US (Xu et al. 2016).

This paper considers operating reserve contracts for energy limited storage devices such
as batteries. In contrast to previous work on the pricing and hedging of energy options where
settlement is financial (see, for example, Benth et al. (2008) and references therein), we take account of
the physical settlement required in system balancing, considering also the limited energy and time
linkages of storage. The potential physical feedback effects of such contracts are investigated by
studying the operational policy of the storage or battery operator. To address the limited nature of
storage, the considered reserve contract is for a fixed quantity of energy. In this way, each contract
written can be physically covered with the appropriate amount of stored energy. We consider a
simple arrangement where the system operator sets the contract parameters, namely the premia
(the reservation and utilisation payments) plus an EIM price level x∗ at which the energy is delivered.
That is, rather than being the outcome of a price formation process, these parameters are set
administratively. Our analysis thus focuses exclusively on the timing of the battery operator’s actions.
This dynamic modelling contrasts with previous economic studies of operating reserve in the literature,
which have largely been static (Just and Weber 2008).

To quantify the economic opportunity for the storage operator, we use real options analysis.
Real Options analysis is the application of option pricing techniques to the valuation of non-financial
or ‘real’ investments with flexibility (Borison 2005; Dixit and Pindyck 1994). Here, the energy storage
unit is the real asset, and is coupled with the timing flexibility of the battery operator, who observes
the EIM price in real time. The arrangement may be viewed as providing the battery operator with a
real perpetual American put option on the reserve contract described above. This option is either of
swing type (called the lifetime problem in this paper) or of single exercise type (the single problem).
The feature that sets it apart from the existing literature on swing options is the random refraction time
(cf. Carmona and Touzi 2008).

A key question in Real Options analyses is the specification of the driving randomness
(Borison 2005). In this paper, we model the EIM price to resemble the historical statistical dynamics
of imbalance prices. In common with electricity spot prices and commodity prices more generally
but unlike the prices of financial assets, imbalance prices typically exhibit significant mean reversion
(Ghaffari and Venkatesh 2013; Pflug and Broussev 2009).

To avoid trivial cases, we impose the following, mild, sustainability conditions on the arrangement:

S1. The battery operator has a positive expected profit from the arrangement.
S2. The reserve contract cannot lead to a certain financial loss for the system operator.

Condition S1 is also known as the individual rationality or participation condition
(Fudenberg et al. 1991). While the battery operator is assumed to be a profit maximiser, the system
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operator may engage in the arrangement for wider reasons than profit maximisation. To acknowledge
the potential additional benefits provided by batteries, for example in providing response quickly and
without direct emissions, condition S2 is less strict than individual rationality.

By considering reserve contracts for incremental capacity (defined as an increase in generation
or equivalently a decrease in load), we are able to provide complete solutions whose numerical
evaluation is straightforward. Contracts for a decrease in generation, or an increase in load, lead to a
fundamentally different set of optimisation problems which have been partially solved by Szabó and
Martyr (2017).

This study extends earlier work (Moriarty and Palczewski 2017) with two important differences.
Firstly, the dynamics of the imbalance price is described there by an exponential Brownian motion.
In the present paper, by employing a different methodological approach, we obtain explicit results
for mean-reverting processes (and also other general diffusions) which better describe the statistical
properties of imbalance prices (Ghaffari and Venkatesh 2013; Pflug and Broussev 2009). Secondly, the
present paper takes into account deterioration of the store. Without this feature, it was found that
the value of storage is either very small (corresponding roughly to writing a single reserve contract)
or infinite.

Through a benchmark case study, we obtain the following economic recommendations.
Firstly, investments in battery storage to provide reserve will be profitable on average for a wide
range of the contract parameters. Secondly, the EIM price level x∗ at which energy is delivered is
an important consideration. This is because, as x∗ increases, the EIM price reaches x∗ significantly
less frequently and the reserve contract starts to provide cover for rare events, resulting in infrequent
power delivery and low utilisation of the battery, which may make the business case unattractive.
These observations suggest that the contractual arrangement studied in this paper is more suitable for
the frequent balancing of less severe imbalance.

1.1. Objectives

Given the model parameters x∗, pc ≥ 0 and Kc ≥ 0, we wish to analyse the actions A1–A3 below
(a graphical description of this sequence of actions is provided in Figure 1):

A1 The battery operator selects a time to purchase a unit of energy on the EIM and stores it.
A2 With this physical cover in place, the battery operator then chooses a later time to sell the

incremental reserve contract to the system operator in exchange for the initial premium pc.
A3 The system operator requests delivery of power when the EIM price X first lies above the level x∗

and immediately receives the contracted unit of energy in return for the utilisation payment Kc.

Figure 1. The sequence of actions A1–A3.
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Thus, the system operator obtains incremental reserve from the arrangement in preference to
using the EIM, when the EIM price is higher than the level x∗ specified by the system operator.
When the sequence A1–A3 is carried out once, we refer to this as the single problem; when it is
repeated indefinitely back-to-back, we refer to it as the lifetime problem.

In the lifetime problem, because storage is energy limited, action A3 must be completed before
the sequence A1–A3 can begin again. Thus, if the arrangement is considered as a real swing put
option, the time between A2 and A3 is a random refraction period during which no exercise is possible.
Note that, after action A3, the battery operator will perform action A1 again when the EIM price has
fallen sufficiently. Mathematically, therefore, we have the following objectives:

M1 For the single and lifetime problems, find the highest EIM price x̌ at which the battery operator
may buy energy when acting optimally.

M2 For the single and lifetime problems, find the expected value of the total discounted cash flows
(value function) for the battery operator corresponding to each initial EIM price x ≥ x̌.

We also aim to provide a straightforward numerical procedure to explicitly calculate x̌ and the
value function (for x ≥ x̌) in the lifetime problem.

1.2. Approach and Related Work

We take the EIM price to be a continuous time stochastic process (Xt)t≥0. Since markets
operate in discrete time, this is an approximation, made for analytical tractability. Nevertheless,
it is consistent with the physical fact that the system operator’s system balancing challenge is both
real-time and continuous.

Mathematically, the problem is one of choosing two optimal stopping times corresponding to
the two actions A1 and A2, based on the evolution of the stochastic process X (The reader is refered
to Peskir and Shiryaev (2006, chp. 1) for a thorough presentation of optimal stopping problems).
We centre our solution techniques around ideas of Beibel and Lerche (2000), who characterise optimal
stopping times using the Laplace transforms of first hitting times for the process X (see, for example,
Borodin and Salminen (2012, sec. 1.10)). Methods and results from the single problem are then
combined with a fixed point argument for the lifetime analysis.

Our methodological results feed into a growing body of research on timing problems in trading.
In a financial context, Zervos et al. (2013) optimise the performance of “buy low, sell high” strategies,
using the same Laplace transforms to provide a candidate value function, which is later verified as
a solution to certain quasi-variational inequalities. An analogous strategy in an electricity market
using hydroelectric storage is studied in Carmona and Ludkovski (2010) where the authors use
Regression Monte Carlo methods to approximately solve the dynamic programming equations
for a related optimal switching problem. Our results differ from the above papers in two aspects.
Our analysis is purely probabilistic, leading to arguments that do not refer to the theory of PDEs and
quasi-variational inequalities. Secondly, our characterisation of the value function and the optimal
policy is explicit up to a single, one-dimensional nonlinear optimisation, which, as we demonstrate
in an empirical experiment, can be performed in milliseconds using standard scientific software.
Related to our lifetime analysis, Carmona and Dayanik (2008) apply probabilistic techniques to study
the optimal multiple-stopping problem for a general linear regular diffusion process and reward
function. However, the latter work deals with a finite number of option exercises in contrast to
our lifetime analysis which addresses an infinite sequence of exercises via a fixed point argument.
Our work thus yields results with a significantly simpler and more convenient structure.

The contracts we consider have features in common with the reliability options used in
Colombia, Ireland and the ISO New England market and currently being introduced in Italy
(Mastropietro et al. 2018). Reliability options pay an initial premium to a generator, usually require
physical cover, and have a reference market price and a strike price that plays a similar role to x∗.
Typically, the strike price is set at the variable cost of the technology used to satisfy demand peaks,



Risks 2019, 7, 39 5 of 30

and the generator is contracted to pay back the difference between the market price and the strike
price in periods when energy is delivered and the market price is higher. However, instead of being
designed for system balancing, the purpose of reliability options is to ensure sufficient investment in
generation capacity.

The remainder of the paper is organised as follows. The mathematical formulation and main
tools are developed in Section 2. In the results of Section 3, we show that, for a range of price processes
X incorporating mean reversion, solutions for all initial values x can be obtained. Furthermore, an
empirical illustration using data from the German Amprion system operator is provided and qualitative
implications are drawn, while Section 5 presents the conclusions. Auxiliary results are collected in
the appendices.

2. Methodology

2.1. Formulation and Preliminary Results

In this section, we characterise the real option value in the single and lifetime problems using
the theory of regular one-dimensional diffusions. Denoting by (Wt)t≥0 a standard Brownian motion,
let X = (Xt)t≥0 be a (weak) solution of the stochastic differential equation:

dXt = µ(Xt)dt + σ(Xt)dWt, (1)

with boundaries a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}. The solution of this equation with the initial
condition X0 = x defines a probability measure Px and the related expectation operator Ex. We assume
that the boundaries are natural or entrance-not-exit, i.e., the process cannot reach them in finite time,
and that X is a regular diffusion process, meaning that the state space I := (a, b) cannot be decomposed
into smaller sets from which X cannot exit. The existence and uniqueness of such an X is guaranteed if
the functions µ and σ are Borel measurable in I with σ2 > 0, and

∀ y ∈ I, ∃ ε > 0 such that
∫ y+ε

y−ε

1 + |µ(ξ)|
σ2(ξ)

dξ < +∞ (2)

(see Karatzas and Shreve (1991, Theorem 5.5.15); condition (2) holds if, for example, µ is locally
bounded and σ is locally bounded away from zero). Necessary and sufficient conditions for the
boundaries a and b to be non-exit points, i.e., natural or entrance-not-exit, are formulated in Karatzas
and Shreve (1991, Theorem 5.5.29). In particular, it is sufficient that the scale function

p(x) :=
∫ x

c
exp

(
−2

∫ z

c

µ(u)
σ2(u)

du
)

dz, x ∈ I (3)

converges to −∞ when x approaches a and to +∞ when x approaches b. (Here, c ∈ I is arbitrary and
the condition stated above does not depend on its choice.) These conditions are mild, in the sense that
they are satisfied by all common diffusion models for commodity prices, including those in Section 3.

Denote by τx the first time that the process X reaches x ∈ I:

τx = inf{t ≥ 0 : Xt = x}. (4)

For r > 0, define

ψr(x) =

{
Ex{e−rτc}, x ≤ c,

1/Ec{e−rτx}, x > c,
φr(x) =

{
1/Ec{e−rτx}, x ≤ c,

Ex{e−rτc}, x > c,
(5)



Risks 2019, 7, 39 6 of 30

for any fixed c ∈ I (different choices of c merely result in a scaling of the above functions). It can be
verified directly that function φr(x) is strictly decreasing in x while ψr(x) is strictly increasing, and,
for x, y ∈ I, we have

Ex{e−rτy} =
{

ψr(x)/ψr(y), x < y,

φr(x)/φr(y), x ≥ y.
(6)

Since the boundaries a, b are natural or entrance-not-exit, we have ψr(a+) ≥ 0, φr(b−) ≥ 0 and
ψr(b−) = φr(a+) = ∞ (Borodin and Salminen 2012, Sec. II.1).

2.1.1. Optimal Stopping Problems and Solution Technique

The class of optimal stopping problems which we use in this paper is

v(x) = sup
τ

Ex{e−rτϑ(Xτ)1τ<∞}, (7)

where the supremum is taken over the set of all (possibly infinite) stopping times. Here, ϑ is the payoff
function and v is the value function. If a stopping time τ∗ exists which attains the supremum in (7),
we call this an optimal stopping time. In addition, if v and ϑ are continuous, then the set

Γ := {x ∈ I : v(x) = ϑ(x)} (8)

is a closed subset of I. Under general conditions (Peskir and Shiryaev 2006, chp. 1), which are satisfied
by all stopping problems studied in this paper, τ∗ = inf{t ≥ 0 : Xt ∈ Γ} is the smallest optimal
stopping time and the set Γ is then called the stopping set.

Appendix A contains three lemmas providing a classification of solutions to the stopping problem
(7) which will be used below.

2.1.2. Single Problem

Let (Xt)t≥0 denote the EIM price. We will develop a mathematical representation of actions
A1–A3 (see Section 1.1) when only one reserve contract is traded. Considering A3, the time of power
delivery is the first time that the EIM price exceeds a predetermined level x∗:

τ̂e = inf{t ≥ 0 : Xt ≥ x∗}.

Given the present level x of the EIM price, the expected net present value of the utilisation
payment exchanged at time τ̂e can be expressed as follows thanks to (6):

hc(x) = Ex{e−rτ̂e Kc} =

Kc, x ≥ x∗,

Kc
ψ(x)
ψ(x∗) , x < x∗.

(9)

Therefore, the optimal timing of action A2 corresponds to solving the following optimal
stopping problem:

sup
τ

Ex{e−rτ
(

pc + hc(Xτ)
)
1τ<∞}.

Since the utilisation payment Kc obtained when the EIM price exceeds x∗ is positive and constant,
as is the initial premium pc, it is best to obtain these cashflows as soon as possible. The solution of the
above stopping problem is therefore trivial: the contract should be sold immediately after completing
action A1, i.e., immediately after providing physical cover for the reserve contract. Optimally timing
the simultaneous actions A1 and A2, the purchase of energy and sale of the incremental reserve
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contract, is therefore the core optimisation task. It corresponds to solving the following optimal
stopping problem:

Vc(x) = sup
τ

Ex{e−rτ
(
− Xτ + pc + hc(Xτ)

)
1τ<∞} = sup

τ
Ex{e−rτh(Xτ)1τ<∞}, (10)

where the payoff
h(x) = −x + pc + hc(x) (11)

is non-smooth since hc is non-smooth. The function Vc(x) is the real option value in the single problem.

2.1.3. Lifetime Problem Formulation and Notation

In addition, to having a design life of multiple decades, thermal power stations have the primary
purpose of generating energy rather than providing ancillary services. In contrast, electricity storage
technologies such as batteries have a design life of years and may be dedicated to providing ancillary
services. In this paper, we take into account the potentially limited lifespan of electricity storage by
modelling a multiplicative degradation of their storage capacity: each charge–discharge cycle reduces
the capacity by a factor A ∈ (0, 1).

We now turn to the lifetime problem. To this end, suppose that a nonnegative continuation
value ζ(x, α) is also received at the same time as action A3. It is a function of the capacity of the store
α ∈ (0, 1) and the EIM price x, and represents the future proceeds from the arrangement.

The expected net present value of action A3 is now

hζ(x, α) := Ex{e−rτ̂e
(
αKc + ζ(Xτ̂e , Aα)

)
} =


(
αKc + ζ(x∗, Aα)

) ψ(x)
ψ(x∗) , x < x∗,

αKc + ζ(x, Aα), x ≥ x∗,
(12)

where A ∈ (0, 1) is the multiplicative decrease of storage capacity per cycle. Here, the optimal timing
of action A2 may be non trivial due to the continuation value ζ(x, α). We will show, however, that,
for the functions ζ of interest in this paper, it is optimal to sell the reserve contract immediately after
action A1, identically as in the single problem. The timing of action A1 requires the solution of the
optimal stopping problem

T ζ(x, α) := sup
τ

Ex{e−rτ
(
− αXτ + αpc + hζ(Xτ , α)

)
1τ<∞

}
. (13)

The optimal stopping operator T makes the dependence on ζ explicit: it maps ζ onto the real
option value of a selling a single reserve contract followed by continuation according to ζ. We define
the lifetime value function V̂ as the limit

V̂(x) = lim
n→∞

(T n0)(x, 1) (14)

(if the limit exists), where T n denotes the n-fold iteration of the operator T and 0 is the function
identically equal to 0. Thus„ T n0 is the real option value of selling at most n reserve contracts under
the arrangement. (Note that a priori it may not be optimal to sell all n contracts in this case, since it is
possible to offer fewer contracts and refrain from trading afterwards by choosing τ = ∞.)

Calculation of the lifetime value function requires the analysis of a two-argument function.
We will show now that this computation may be reduced to a function of the single argument x.
Define ζ0(x, α) = 0 and ζn+1(x, α) = T ζn(x, α). We interpret ζn(x, α) as the maximum expected
wealth accumulated over at most n cycles of the actions A1–A3 when the initial capacity of the store
is α.
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Lemma 1. We have ζn(x, α) = αζ̂n(x), where ζ̂n(x) = ζn(x, 1). Moreover, ζ̂n(x) = T̂ n0(x), where

T̂ ζ̂(x) = sup
τ

Ex{e−rτ
(
− Xτ + pc + ĥζ̂(Xτ)

)
1τ<∞

}
, (15)

and

ĥζ̂(x) =


(
Kc + Aζ̂(x∗)

) ψ(x)
ψ(x∗) , x < x∗,

Kc + Aζ̂(x), x ≥ x∗.
(16)

Proof. The proof is by induction. Clearly, the statement is true for n = 0. Assume it is true for n ≥ 0.
Then,

ζn+1(x, α) = T ζn(x, α) = α sup
τ

Ex{e−rτ
(
− Xτ + pc +

1
α

hζn(Xτ , α)
)
1τ<∞

}
,

and
1
α

hζn(x, α) = Ex{e−rτ̂e
(
Kc +

1
α

ζn(Xτ̂e , Aα)
)}

= Ex{e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)}
.

Hence, ζn+1(x, α) = αT̂ ζ̂n(x) = αζn+1(x, 1). Consequently, ζ̂n = T̂ n0.

Assume that ζn(x, α) converges to ζ(x, α) as n→ ∞. Then, clearly, ζ̂n converges to ζ̂(x) = ζ(x, 1).
It is also clear that ζ is a fixed point of T if and only if ζ̂ is a fixed point of T̂ . Therefore, we have
simplified the problem to that of finding a limit of T̂ n0(x). The stopping problem T̂ ζ̂ will be called
the normalised stopping problem and its payoff denoted by

ĥ(x, ζ̂) =

−x + pc +
ψr(x)
ψr(x∗)

(
Kc + Aζ̂(x∗)

)
, x < x∗,

−x + pc + Kc + Aζ̂(x), x ≥ x∗.
(17)

In particular, T̂ 0 coincides with the single problem’s value function Vc.
Notation. In the remainder of this paper, a caret (hat) will be used over symbols relating to the

normalised lifetime problem:
V̂(x) = lim

n→∞
T̂ n0(x).

2.1.4. Sustainability Conditions Revisited

The sustainability conditions S1 and S2 introduced in Section 1 are our standing economic
assumptions. The next lemma, proved in the appendices, expresses them quantitatively. This makes
way for their use in the mathematical considerations below.

Lemma 2. When taken together, the sustainability conditions S1 and S2 are equivalent to the following
quantitative conditions:

S1*: supx∈(a,b) h(x) > 0, and
S2*: pc + Kc < x∗.

Notice that S1* is always satisfied when a ≤ 0.

2.2. Three Exhaustive Regimes in the Single Problem

In this section, we consider the single problem. Recall that the sustainability assumptions,
or equivalently assumptions S1* and S2*, are in force. For completeness, the notation and general
optimal stopping theory used below is presented in Appendix A.

Since the boundary a is not-exit, we have φr(a+) = ∞. When h is given by (11), the limit L of (A3)
is then

Lc := lim sup
x→a

−x
φr(x)

. (18)
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It can also be verified that the analogous constant R defined in (A4) in the appendices satisfies
R < ∞ since, by S2*, h is negative on [x∗, ∞). The following theorem completes our aim M2.

Theorem 1. (Single problem) Assume that conditions S1* and S2* hold. With the definition (18), there are
three exclusive cases:

(A) Lc ≤ h(x)
φr(x) for some x =⇒ there is x̂ < x∗ that maximises h(x)

φr(x) , and then, for x ≥ x̂, τx̂ is optimal, and

Vc(x) = φr(x)
h(x̂)
φr(x̂)

, x ≥ x̂. (19)

(B) ∞ > Lc >
h(x)
φr(x) for all x =⇒ Vc(x) = Lc φr(x) and there is no optimal stopping time.

(C) Lc = ∞ =⇒ Vc(x) = ∞ and there is no optimal stopping time.

Moreover, in cases A and B, the value function Vc is continuous.

Proof. By condition S1*, h(y) is positive for some y ∈ I and the value function Vc(x) > 0. For case A,
note first that the function h is negative on [x∗, b) by S2*, see (9) and (11). Therefore, the supremum
of h

φr
is positive and must be attained at some (not necessarily unique) x̂ ∈ (a, x∗). The optimality of

τx̂ for x ≥ x̂ then follows from Lemma A1. Case B follows from Lemma A2 and the fact that Lc > 0.
Lemma A2 proves case C. The continuity of Vc follows from Lemma A3.

The optimal strategy in case A is of a threshold type. When an arbitrary threshold strategy τx̃ is
used, the resulting expected value for x ≥ x̃ is given by φr(x)h(x̃)/φr(x̃). Figure 2 (whose problem
data fall into case A) shows the potentially high sensitivity of the expected value of discounted cash
flows for the single problem with respect to the level of the threshold x̃. It is therefore important in
general to identify the optimal threshold accurately.
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Figure 2. Sensitivity of the expected value in the single problem with respect to the stopping boundary.
The EIM price is modelled as an Ornstein-Uhlenbeck process dXt = 3.42(47.66− Xt)dt + 30.65dWt

(time measured in days, fitted to Elexon Balancing Mechanism price half-hourly data from July 2011
to March 2014). The interest rate r = 0.03, power delivery level x∗ = 60, the initial premium pc = 10,
and the utilisation payment Kc = 40. The initial price is X0 is set equal to x∗.

We now show that, for commonly used diffusion price models, it is case A in the above theorem
which is of principal interest. This is due to the mild sufficient conditions established in the following
lemma which are satisfied, for example, by the examples in Section 3. Although condition 2(b)
in Lemma 3 is rather implicit, it may be interpreted as requiring that the process X does not
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‘escape relatively quickly to −∞’ (see Appendix D for a further discussion and examples) and it
is satisfied, for example, by the Ornstein-Uhlenbeck process.

Lemma 3. If condition S1∗ holds, then:

1. The equality Lc = 0 implies case A of Theorem 1.
2. Any of the following conditions is sufficient for Lc = 0:

(a) a > −∞,
(b) a = −∞ and limx→−∞

x
φr(x) = 0.

Proof. Condition S1∗ ensures that h takes positive values. Hence, the ratio h(x)
φr(x) > 0 = Lc for some x.

For assertion 2(a), recall from Section 2 that φr(a+) = ∞ since the boundary a is not-exit. Then, we
have Lc = lim supx→a(−x)/φr(x) = 0 as a > −∞. In 2(b), the equality Lc = 0 is immediate from the
definition of Lc.

Turning now to aim M1, we have

Corollary 1. In the setting of Theorem 1 for the single problem, either

(a) the quantity

x̌ := max

{
x ∈ I :

h(x)
φr(x)

= sup
y∈I

h(y)
φr(y)

}
(20)

is well-defined, i.e., the set is non-empty. Then, x̌ is the highest price at which the battery operator may buy
energy when acting optimally, and we have x̌ < x∗ (this is case A); or

(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case, the single
problem’s value function may either be infinite (case C) or finite (case B).

Proof. (a) Since the maximiser x̂ in case A of Theorem 1 is not necessarily unique, the set in (20) may
contain more than one point. Since h and φr are continuous and all maximisers lie to the left of x∗,
this set is closed and bounded from above, so x̌ is well-defined and a maximiser in case A. For any
stopping time τ with Px{Xτ > x̌} > 0, it is immediate from assertion 3 of Lemma A1 that τ is not
optimal for the problem Vc(x), x ≥ x̌. Part (b) follows directly from cases B and C of Theorem 1.

Corollary 1 confirms that it is optimal for the battery operator to buy energy only when the EIM
price is strictly lower than the price x∗ which would trigger immediate power delivery to the system
operator. Thus, the battery operator (when acting optimally) does not directly conflict with the system
operator’s balancing actions.

2.3. Two Exhaustive Regimes in the Lifetime Problem

Turning to the lifetime problem, we begin by letting ζ̂(x) in definition (16) be a general
nonnegative continuation value depending only on the EIM price x, and studying the normalised
stopping problem (15) in this case (the payoff ĥ is therefore defined as in (17)).

We now wish to study the value of n cycles A1–A3, and hence the lifetime value, by iterating the
operator T̂ . To justify this approach, it is necessary to check the timing of action A2 in the lifetime
problem. With the actions A1–A3 defined as in Section 1.1, recall that the timing of action A2 is trivial
in the single problem: after A1 it is optimal to perform A2 immediately. Lemma A5, which may be
found in Appendix B, confirms that the same property holds in the lifetime problem.

We may now provide the following answer to objective M1 for the lifetime problem.

Corollary 2. Assume that conditions S1* and S2* hold. In the lifetime problem with ζ̂ = V̂, either:
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(a) the quantity

x̌ := max

{
x ∈ I :

ĥ(x, ζ̂)

φr(x)
= sup

y∈I

ĥ(y, ζ̂)

φr(y)

}
(21)

is well-defined, i.e., the set is non-empty. Then, x̌ is the highest price at which the battery operator
can buy energy when acting optimally in the lifetime problem, and we have x̌ < x∗ (cases 1 and 2a in
Lemma A4 in Appendix B); or

(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case, the lifetime
value function may either be infinite (case 3) or finite (case 2b in Lemma A4 in Appendix B).

Proof. The proof proceeds exactly as that of Corollary 1 with the exception of showing that x̌ < x∗

(this is because Lemma A4 in the appendices, which characterises the possible solution types in the
lifetime problem, does not guarantee the strict inequality x̌ < x∗). Assume then x̌ = x∗. At the EIM
price Xt = x̌ = x∗, the power delivery to the system operator is immediately followed by the purchase
of energy by the battery operator and this cycle can be repeated instantaneously, arbitrarily many times.
However, since each such cycle is loss making for the battery operator by condition S2∗, this strategy
would lead to unbounded losses almost surely in the lifetime problem started at EIM price x∗ leading
to V̂(x∗) = −∞. This would contradict the fact that V̂ > 0, so we conclude that x̌ < x∗.

Pursuing aim M2, we will show now that there are two regimes in the lifetime problem: either the
lifetime value function is strictly greater than the single problem’s value function (and the cycle A1–A3
is repeated infinitely many times), or the lifetime value equals the single problem’s value. Although
the latter case appears counterintuitive, it is explained by the fact that the lifetime problem’s value
is then attained only in the limit when the purchase of energy (action A1) is made at a decreasing
sequence of prices converging to a, the left boundary of the process (Xt). In this limit, the benefit of
future payoffs becomes negligible, equating the lifetime value to the single problem’s value.1

Theorem 2. There are two exclusive regimes:

(α) V̂(x) > Vc(x) for all x ≥ x∗,
(β) V̂(x) = Vc(x) for all x ≥ x∗ (or both are infinite for all x).

Moreover, in regime (α), an optimal stopping time exists when the continuation value is ζ̂ = ζ̂n = T̂ n0
for n > 0 (that is, for a finite number of reserve contracts), and when ζ̂ = V̂ (for the lifetime value function).

Proof. We take the continuation value ζ̂ = Vc in Lemma A4 from Appendix B and consider separately
its cases 1, 2a, 2b and 3. Firstly, in case 3, we have Vc = ∞, implying that also V̂ = ∞ and we have
regime (β).

Case 2 of Lemma A4 corresponds to case B of Theorem 1, when there is no optimal stopping time
in the single problem and Vc(x) = Lcφr(x) for all x ∈ I. Considering first case 2b and defining ζ̂n as in
Lemma A6 in Appendix B, it follows that ζ̂2(x) = Lcφr(x) = Vc(x) for x ∈ I and consequently V̂ = Vc,
which again corresponds to regime (β).

In case 2a of Lemma A4, suppose first that the maximiser x̂ ≤ x∗ is such that ĥ(x̂,ζ̂1)
φr(x̂) = Lc. Then, for

x ≥ x∗ ≥ x̂, we have ζ̂2(x) = φr(x) ĥ(x̂,ζ̂1)
φr(x̂) = Lcφr(x), which also yields regime (β). On the other hand,

when ĥ(x̂,ζ̂1)
φr(x̂) > Lc, we have for x ≥ x∗ ≥ x̂ that ζ̂2(x) = φr(x) ĥ(x̂,ζ̂1)

φr(x̂) > Lcφr(x) = ζ̂1(x), and so regime

(α) applies by the monotonicity of the operator T̂ . From the definition of ĥ in (17), and holding the

point x̂ ≤ x∗ constant, this monotonicity implies that ĥ(x̂,ζ̂n)
φr(x̂) > Lc for all n > 1 and that ĥ(x̂,V̂)

φr(x̂) > Lc.

1 If the lifetime value is infinite then so is the single problem’s value and they are equal in this sense. When the lifetime value
is zero then it is optimal not to enter the contract, and so the single problem’s value is also zero.
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We conclude that case 2a of Lemma A4 applies (rather than case 2b) for a finite number of reserve
contracts and also in the lifetime problem.

Considering now the maximiser x̂ defined in case 1 of Lemma A4, we have for x ≥ x∗ ≥ x̂ that

ζ̂2(x) = φr(x)
ĥ(x̂, ζ̂1)

φr(x̂)
≥ ĥ(x̂0, ζ̂1)

φr(x̂0)
>

ĥ(x̂0, 0)
φr(x̂0)

= ζ̂1(x) = Vc(x),

and regime (α) again follows by monotonicity. In addition, trivially, case 1 of Lemma A4 applies for
ζ̂ = ζ̂n and ζ̂ = V̂.

The following corollary follows immediately from the preceding proof.

Corollary 3. Regime (β) holds if and only if T̂ 20(x) = T̂ 0(x) for all x ≥ x∗.

To address the implicit nature of our answers to M1 and M2 for the lifetime problem, in the next
section, we provide results for the construction and verification of the lifetime value function and
corresponding stopping time. For this purpose, we close this section by summarising results obtained
above (making use of additional results from Appendix C).

Theorem 3. In the setting of Theorem 2, assume that regime (α) holds. Then, the lifetime value function V̂ is
continuous, is a fixed point of the operator T̂ and T̂ n0 converges to V̂ exponentially fast in the supremum norm.
Moreover, there is x̌ < x∗ such that τx̌ is an optimal stopping time for T̂ V̂(x) when x ≥ x̌ and, furthermore,
x̌ is the highest price at which the battery operator can buy energy when acting optimally.

2.4. Construction of the Lifetime Value Function

In this section, we discuss a numerical procedure for solution of the lifetime problem. It is based
on the problem’s structure as summarised in Theorem 3. Lemma 4 provides a means of constructing
the lifetime value function, together with the value x̌ of Theorem 3, using a one-dimensional search.
We assume that regime (α) of Theorem 2 holds.

In the circumstance when the above procedure is not followed, complementary findings in
Appendix E enable one to verify if a candidate buy price x̂ is optimal for the lifetime problem.

Lemma 4. The lifetime value function evaluated at x∗ satisfies

V̂(x∗) = max
z∈(a,x∗)

y(z), (22)

where

y(z) :=
−z + pc +

ψr(z)
ψr(x∗)Kc

φr(z)
φr(x∗) −

ψr(z)
ψr(x∗) A

. (23)

Proof. Fix z ∈ (a, x∗). In the normalised lifetime problem of Section 2.1.3, suppose that the strategy τz

is used for each energy purchase. Writing y for the total value of this strategy under Px∗ , by construction
we have the recursion

y =
φr(x∗)
φr(z)

(
− z + pc +

ψr(z)
ψr(x∗)

(
Kc + Ay

))
.

Rearranging, we obtain (23). By Theorem 3, there exists an optimal strategy τx̌ of the above form
under Px∗ and (22) follows.

Hence, under Px∗ , an optimal stopping level x̂ can be found by maximising y(z) over z ∈ (a, x∗).
The value x̌ of Theorem 3 is given by x̌ = max{x : y(x) = maxz∈(a,x∗) y(z)}.
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3. Results

The general theory presented above provides optimal stopping times for initial EIM prices x ≥ x̌,
where x̌ is the highest price at which the battery operator can buy energy optimally. In this section,
for specific models of the EIM price, we derive optimal stopping times for all possible initial EIM prices
x ∈ I when the sustainability conditions S1* and S2* hold. In the examples of this section, the stopping
sets Γ for the single and lifetime problems take the form (a, x̌] although, in general, stopping sets may
have much more complex structure. Interestingly, the stopping sets for the single and lifetime problem
are either both half-lines or both compact intervals.

Note that condition S2* is ensured by the explicit choice of parameters. Verification of condition
S1∗ is straightforward by checking, for example, if the left boundary a of the interval I satisfies
a < pc + limx→a

ψr(x)
ψr(x∗)Kc, i.e., that lim supx→a h(x) > 0. In particular, S1∗ always holds if a = −∞.

Our approach is to combine the above general results with the geometric method drawn from
Section 5 of Dayanik and Karatzas (2003). Although Proposition 5.12 of the latter paper gives results
for natural boundaries, we note that the same arguments apply to entrance-not-exit boundaries.
In particular, we construct the least concave majorant W of the obstacle H : [0, ∞)→ R, where

H(y) :=


ĥ(F−1(y),ζ̂)
φr(F−1(y)) , y > 0,

lim supx→a
ĥ(x,ζ̂)
φr(x) = Lc, y = 0

(24)

(the latter equality was given in (A5) in the appendices). Here, the function F(x) = ψr(x)/φr(x) is
strictly increasing with F(a+) = 0. Writing Γ̂ for the set on which W and H coincide, under appropriate
conditions, the smallest optimal stopping time is given by the first hitting time of the set Γ := F−1(Γ̂)
(Dayanik and Karatzas 2003, Propositions 5.13 and 5.14).

The Ornstein-Uhlenbeck (OU) process is a continuous-time stochastic process with dynamics

dXt = θ(µ− Xt)dt + σdWt, (25)

where θ, σ > 0 and µ ∈ R. It has two natural boundaries, a = −∞ and b = ∞. This process
extends the scaled Brownian motion model by introducing a mean reverting drift term θ(µ− Xt)dt.
The mean reversion is commonly observed in commodity price time series and may have several
causes (Lutz 2009). In the present context, the mean reversion can also be interpreted as the impact
on prices of the system operator’s corrective balancing actions. Appendix F collects some useful facts
about the Ornstein-Uhlenbeck process. In particular, when constructing W, it is convenient to note
that H′′ ◦ F has the same sign as (L− r)h, where L is the infinitesimal generator of X defined as in
Appendix F.

3.1. OU Price Process

Assume now that the EIM price follows the OU process (25) so that Lc = 0 (see Equation (A19)
in Appendix F) and, by Lemma 3, case A of Theorem 1 applies. We are able to deal with the single
and lifetime problems simultaneously by setting ζ̂ equal to 0 for the single problem and equal to
(the positive function) V̂ in the lifetime problem. The results of Sections 2.2 and 2.3 yield that, in both
problems, the right endpoint of the set Γ̂ equals F(x̌) for some ∞ < x̌ < x∗. Furthermore, since ψr is a
solution to (L− r)v = 0 and since x̌ < x∗, for x ≤ x∗, we have

(L− r)ĥ(x, ζ̂) = (L− r)
(
− x + pc +

ψr(x)
ψr(x∗)

(
Kc + Aζ̂(x∗)

))
(26)

= (L− r)(−x + pc) (27)

= (r + θ)x− rpc − θµ. (28)
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Therefore, the function (L − r)ĥ(·, ζ̂) is negative on (−∞, B0) and positive on (B0, ∞),
where B0 = rpc+θµ

r+θ . This implies that H is strictly concave on (0, F(B0)) and strictly convex on
(F(B0), ∞). Since the concave majorant W of H cannot coincide with H in any point of convexity,
so necessarily x̌ < B0 and H is concave on (0, F(x̌)). Hence, we conclude that W is equal to H on the
latter interval and so Γ = (−∞, x̌].

3.2. General Mean-Reverting Processes

The above reasoning can be extended to mean-reverting processes with general volatility

dXt = θ(µ− Xt)dt + σ(Xt)dWt

for a measurable function σ such that the above equation admits a unique solution, cf. Section 2, and
Lc = 0 (cf. (24)). Recall that we assume that (Xt) has two non-exit boundaries a, b (natural or
entrance-not-exit boundaries) satisfying a < x∗ < b. Since L = θ(µ − x) d

dx + 1
2 σ2(x) d2

dx2 ,
Equations (26)–(28) still apply. In particular, we see that the diffusion coefficient σ(·) does not affect
the sign of (28) and thus does not influence the concavity properties of H on (0, F(x∗)). Proceeding
as above, we argue that case A of Theorem 1 applies and the single and lifetime problems can be
solved simultaneously. Particularly, the largest buy price is given by a < x̌ < x∗ (different for the
single and lifetime problems). Note that the form of the stopping set is purely determined by µ, θ, the
left boundary a and the initial premium pc. Obviously, the mean price level µ satisfies µ > a because a
is an unreachable boundary.

Lemma 5. If pc > a, then the stopping sets for the single and lifetime problems are of the form Γ = (a, x̌].

Proof. The same arguments as in the OU case are directly applicable to the present setting and,
under the assumptions of the lemma, we have B0 = rpc+θµ

r+θ > a. Hence, for each problem, the stopping
set has the form Γ = (a, x̌] for some x̌ < B0.

In the particular case of the CIR model (Cox et al. 1985)

dXt = θ(µ− Xt)dt + σ
√

XtdWt, (29)

we have a = 0, b = ∞. Then:

Corollary 4. If X is the CIR process (29) with 2θµ ≥ σ2 and µ > 0, then the boundary a = 0 is
entrance-not-exit. Furthermore, if pc > 0, then the stopping sets for the single and lifetime problems are
of the form Γ = (0, x̌].

Proof. It follows from (Cox et al. 1985, p. 391) that the condition 2θµ ≥ σ2 is necessary and sufficient
for the boundary 0 to be entrance-not-exit. By Lemma 3, we have Lc = 0. An application of
Lemma 5 concludes.

Remark 1. More generally, suppose that the imbalance price process follows

dXt = θ(µ− Xt)dt + σXγ
t dWt

for some γ > 0.5. Then, the left boundary a = 0 is entrance-not-exit for any choice of parameters θ, µ, σ > 0
since the scale function p given in (3) converges to negative infinity at 0. Therefore, the arguments in the above
corollary apply and the stopping sets for the single and lifetime problems are also of the form Γ = (0, x̌].
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3.3. Shifted Exponential Price Processes

In order to first recover and then generalise previously obtained results (Moriarty and Palczewski
2017), take the following shifted exponential model for the price process:

f (z) := D + debz, (30)

Xt = f (Zt), (31)

where Z is a regular one-dimensional diffusion with non-exit (natural or entrance-not-exit) boundaries
aZ and bZ (we will use the superscripts X and Z where necessary to emphasise the dependence on the
stochastic process). The idea is that Z models the physical system imbalance process while f represents
a price stack of bids and offers which is used to form the EIM price. In this case, the left boundary for X
is a = f (aZ) ≥ D and, by Lemma 3, Lc = 0 and case A of Theorem 1 applies. Rather than working
with the implicitly defined process X, however, we may work directly with the process Z by setting:

z∗ := f−1(x∗), (32)

h f (z) := − f (z) + pc +


ψZ

r (z)
ψZ

r (z∗)
Kc, z < z∗,

Kc, z ≥ z∗,
(33)

ĥ f (z, ζ̂) :=

− f (z) + pc +
ψZ

r (z)
ψZ

r (z∗)

(
Kc + Aζ̂(z∗)

)
, z < z∗,

− f (z) + pc + Kc + Aζ̂(z), z ≥ z∗,
(34)

and modifying the definitions for T , T̂ , Vc and V̂ accordingly. We then have

Theorem 4. Taking definitions (30) and (32)–(34), assume that conditions S1* and S2* hold. Then,

Lc := lim sup
z→aZ

− f (z)
φZ

r (z)
= 0.

In addition:

(i) (Single problem) There exists ẑ < z∗ that maximises
h f (z)
φZ

r (z)
, the stopping time τẑ is optimal for z ≥ ẑ, and

Vc(z) = φZ
r (z)

h f (ẑ)
φZ

r (ẑ)
, z ≥ ẑ.

(ii) (Lifetime problem) The lifetime value function V̂ is continuous and a fixed point of T̂ . There exists

z̃ ∈ (ẑ, z∗) which maximises ĥ(z,V̂)

φZ
r (z)

and τz̃ is an optimal stopping time for z ≥ z̃ with

V̂(z) = T̂ V̂(z) = φZ
r (z)

ĥ(z̃, V̂)

φZ
r (z̃)

, z ≥ z̃.

Proof. The proof follows from the one-to-one correspondence between the process X and the process
Z, and direct transfer from Theorems 1 and 3.

In some cases, explicit necessary and/or sufficient conditions for S1∗ may be given in terms of the
problem parameters. Assume that aZ = −∞ as in the examples studied below. If pc > D and Kc ≥ 0,
this is sufficient for the condition S1∗ to be satisfied as then h f (z) ≥ − f (z) + pc > 0 for sufficiently
small z. When pc = D and Kc > 0, it is sufficient to verify that ebz = o

(
ψZ

r (z)
)

as z → −∞ since
then h f (z) = −debz + ψZ

r (z)Kc/ψZ
r (z∗) for z < z∗. On the other hand, our assumption that S1∗ holds

necessarily excludes parameter combinations with pc − D = Kc = 0, since the reserve contract writer
then cannot make any profit because h f (z) ≤ 0 for all z.
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In Section 3.3.1, we take Z to be the standard Brownian motion and recover results from the single
problem of Moriarty and Palczewski (2017) (the lifetime problem is formulated differently in the latter
reference, where degradation of the store is not modelled). In Section 3.3.2, we generalise to the case
when Z is an OU process.

3.3.1. Brownian Motion Imbalance Process

When the imbalance process Z = W, the Brownian motion, we have

(L− r)ĥ f (z, ζ̂) = (L− r)(− f (z) + pc) = debz
{

r− 1
2

b2
}
+ r(D− pc).

We have several cases depending on the sign of (D− pc) and (r− 1
2 b2).

1. Assume first that r > 1
2 b2:

(i) We may exclude the subcase pc ≤ D, since then H(y) = ĥ(z,ζ̂)
φZ

r (z)
|z=(FZ)−1(y) is strictly convex

on (0, FZ(z∗)) for any ζ̂ and Γ cannot intersect this interval, contradicting Theorem 4 and,
consequently, violating S1∗ or S2∗.

(ii) If pc > D, H is concave on (0, FZ(B)) and convex on (FZ(B), ∞), where

B =
1
b

log

(
r(pc − D)

d(r− 1
2 b2)

)
.

By Theorem 4 and the positivity of H on (0, FZ(ẑ)), we have Γ = (−∞, ẑ] and Γ = (−∞, z̃]
for the single and lifetime problems, respectively, with z̃ < ẑ < B.

2. Suppose that r < 1
2 b2.

(i) When pc ≥ D, the function H is concave on (0, ∞). Hence, the stopping sets Γ for single and
lifetime problems have the same form as in case 1(ii) above.

(ii) If pc < D, the function H is convex on (0, FZ(B)) and concave on (FZ(B), ∞). The set Γ must
then be an interval, respectively [ẑ0, ẑ] and [z̃0, z̃]. For explicit expressions for the left and
right endpoints for the single problem, as well as sufficient conditions for S1∗, the reader is
refered to Moriarty and Palczewski (2017).

3. In the boundary case r = 1
2 b2, the convexity of H is determined by the sign of the difference

D− pc. As above, the possibility D > pc is excluded since then H is strictly convex. Otherwise,
H is concave and the stopping sets Γ have the same form as in case 1(ii) above.

3.3.2. OU Imbalance Process

When Z is the Ornstein-Uhlenbeck process, by adjusting d and b in the price stack function f
(see (30)), we can restrict our analysis to the OU process with zero mean and unit volatility, that is:

dZt = −θZtdt + dWt.

Then, for z < z∗,

(L− r)ĥ f (z, ζ̂) = (L− r)(− f (z) + pc) (35)

= debz
{

b
(

θz− 1
2

b
)
+ r
}
+ r(D− pc) =: η(z). (36)
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Differentiating η, we obtain

η′(z) = dbθebz

(
bz + 1 +

r− 1
2 b2

θ

)
,

which has a unique root at z� = 1
b

( 1
2 b2−r

θ − 1
)

. The function η decreases from r(D− pc) at −∞ until

η(z�) = −debz�θ + r(D− pc) at z� and then increases to positive infinity.

1. If pc ≥ D, then the function η is negative on (−∞, u), where u is the unique root of η. Hence, H is
concave on (0, FZ(u)) and convex on (FZ(u), ∞). The stopping sets Γ for the single and lifetime
problems must then be of the form (−∞, ẑ] and (−∞, z̃], respectively, cf. case 1(ii) in Section 3.3.1.

2. The case pc < D is more complex:

(i) Let z� ≥ z∗. We exclude the possibility η(z∗) ≥ 0, since then the function H is convex on
(0, FZ(z∗)) and the set Γ has empty intersection with this interval, contradicting Theorem 4
and, consequently, violating S1∗ or S2∗. When η(z∗) < 0, H is convex on (0, FZ(u))
and concave on (FZ(u), FZ(z∗)), where u is the unique root of η on (0, z∗). Therefore,
the stopping sets Γ for the single and lifetime problems are of the form [ẑ0, ẑ] and [z̃0, z̃],
respectively, with min(ẑ0, z̃0) > u, cf. case 2(ii) in Section 3.3.1.

(ii) Consider now z� < z∗. As above, we exclude the case η(z�) ≥ 0, since then H is
convex on (0, FZ(z∗)). The remaining case η(z�) < 0 implies that the stopping sets Γ
have the same form as in case 2(i) above, as H is convex and then concave if η(z∗) ≤ 0,
and convex–concave–convex if η(z∗) > 0.

4. Benchmark Case Study and Economic Implications

In this section, we use a case study to draw qualitative implications from the above results. An OU
model is assumed, which captures both the mean reversion and random variability present in EIM
prices, and is fitted to relevant data. The interest rate is taken to be 3% per annum, and the degradation
factor for the store to be A = 0.9999.

Our data is the ‘balancing group price’ from the German Amprion system operator, which is
available for every 15 min period (AMPRION 2016). Summary statistics for the period from 1 June
2012 to 31 May 2016 are presented in Table 1. To address the issue of its extreme range, which impacts
the fitting of both volatility and mean reversion in the OU model, the data was truncated at the values
−150 and 150. The parameters obtained by maximum likelihood fitting were then θ = 68.69 (the rate
of mean reversion), σ = 483.33 (the volatility), µ = 30.99 (the mean-reversion level). The effect of the
truncation step was to approximately halve the fitted volatility.

Table 1. Summary statistics for the 15 min balancing group price per MWh in the German Amprion
area, 1 June 2012 to 31 May 2016.

Min. 1st Qu. Median Mean 3rd Qu. Max.

−6002.00 0.27 33.05 31.14 66.97 6344.00

The left panel of Figures 3 and 4 show the lifetime value V̂(x∗), while the right panel of Figure 3
plots the stopping boundary x̌, which is the maximum price at which the battery operator can buy
energy optimally. These values of x̌ are significantly below the long-term mean price D, indeed the
former value is negative while the latter is positive. Thus, in this example, the battery operator
purchases energy when it is in excess supply, further contributing to balancing. To place the negative
values on the stopping boundary in Figure 3 in the statistical context, recall from Table 1 that the first
quartile of the price distribution is approximately zero. Indeed, negative energy prices usually occur
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several times per day in the German EIM. In the present dataset of 1461 days, there are only 11 days
without negative prices and the longest observed time between negative prices is 41.5 h.
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Figure 3. Results obtained with the Ornstein-Uhlenbeck model fitted in Section 4, as functions of
the total premium, with interest rate 3% per annum. Solid lines: x∗ = 100, dotted: x∗ = 75, dashed:
x∗ = 50. Left: lifetime value V̂(x∗). Right: the stopping boundary x̌, the maximum price for which the
battery operator can buy energy optimally.
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Figure 4. Lifetime value V̂(x∗) as a function of x∗ with the Ornstein-Uhlenbeck model fitted in Section 4,
with interest rate 3% per annum. Dashed line: pc + Kc = 20, solid: pc + Kc = 30, dotted: pc + Kc = 40,
mixed: pc + Kc = 50. The horizontal grey line indicates the current price of lithium-ion battery storage
per MWh (IRENA 2017, Figure 33).

We make the following empirical observations. Firstly, defining the total premium as the sum
pc + Kc, altering its distribution between the initial premium pc (which is received at x = x̌) and the
utilisation payment Kc (which is received at x = x∗) results in insignificant changes to the graphs,
with relative differences on the vertical axes of the order 10−3 (data not shown). It is for this reason
that the figures are indexed by the total premium pc + Kc rather than by individual premia. Secondly,
it is seen from the right-hand panel of Figure 3 that the (negative valued) stopping boundary increases
with the total premium, making exercise more frequent. Thus, as the total premium increases, both the
frequency and size of the cashflows increase, yielding a superlinear relationship in the left-hand panel
of Figure 3. This superlinearity is not very pronounced since the stopping boundary is relatively
insensitive to the total premium in the range presented in the graphs (see the right hand panel), so that
the lifetime value is driven principally by the size of the cashflows. Thirdly, the grey horizontal line of
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Figure 4 is placed at a level indicative of recent costs for lithium-ion batteries per MWh (megawatt
hour). Thus, the investment case for battery storage providing reserve is significantly positive for a
wide range of the contract parameters. Finally, the contours in Figure 4 have an S-shape, the marginal
influence of x∗ being smaller in the range x∗ < 110 and larger for greater values of x∗ (with the
marginal influence eventually decreasing again in the limit of large x∗).

These phenomena are explained by the presence of mean reversion in the OU price model.
The timings of the cashflows to the battery operator are entirely determined by the successive passage
times of the price process between the levels x∗ and x̌. These passage times are relatively short on
average for the fitted OU model. This means that the premia are received at almost the same time under
each reserve contract, and it is the total premium which drives the real option value. Furthermore,
the passage times between x∗ and x̌ may be decomposed into passage times between x∗ and D,
and between D and x̌. Since the OU process is statistically symmetric about D, let us compare the
distances |x̌− D| and |x∗ − D|. From Figure 3, we have x̌ ≈ −70 so that |x̌− D| ≈ 100. Therefore,
for x∗ < 110, we have |x∗ − D| � |x̌− D| and the passage time between D and x̌, which varies little,
dominates that between x∗ and D. Correspondingly, we observe in Figure 4 that the value function
changes relatively little as x∗ varies below 110. Conversely, as x∗ increases beyond 110, it is the distance
between x∗ and D which dominates, and the value function begins to decrease relatively rapidly.

These results provide insights into the suitability of the considered arrangement for correcting
differing levels of imbalance. As the distance between x∗ and the mean level D grows, the energy price
reaches x∗ significantly less frequently and the reserve contract starts to provide insurance against rare
events, resulting in infrequent power delivery and low utilisation of the battery. These observations
suggest that the contractual arrangement studied in this paper is more suitable for the frequent
balancing of less severe imbalance. In contrast, the more rapid reduction in the lifetime value for
large values of x∗ suggests that such arrangements based on real-time markets are not suitable for
balancing relatively rare events such as large system disturbances due to unplanned outages of large
generators. The system operator may prefer to use alternative arrangements, based, for example,
on fixed availability payments, to provide security against such events.

5. Conclusions

In this paper, we investigate the procurement of operating reserve from energy-limited storage
using a sequence of physically covered incremental reserve contracts. This leads to the pricing of a
real perpetual American swing put option with a random refraction time. We model the underlying
energy imbalance market price as a general linear regular diffusion, which, in particular, is capable of
modelling the mean reversion present in imbalance prices. Both the optimal operational policy and
the real option value of the store are characterised explicitly. Although the solutions are generally not
available in an analytical form, we have provided a straightforward procedure for their numerical
evaluation together with empirical examples from the German energy imbalance market.

The results of the lifetime analysis in particular have both managerial implications for the battery
operator and policy implications for the system operator. From the operational viewpoint, under
the setup described in Section 1.1, we have established that the battery operator should purchase
energy as soon as the EIM price falls to the level x̌, which may be calculated as described in Section 2.4.
Furthermore, the battery operator should then sell the reserve contract immediately. Our real options
valuation may be taken into account when deciding whether to invest in an energy store, and whether
to sell such reserve contracts in preference to trading in other markets (for example, performing price
arbitrage in the spot energy market).

Turning to the perspective of the system operator, we have demonstrated that the proposed
arrangement can be mutually beneficial to the system operator and battery operator. More precisely,
the system operator can be protected against guaranteed financial losses from the incremental capacity
contract purchase while the battery operator has a quantifiable profit. The analysis also provides
information on feedback due to battery charging by determining the highest price x̌ at which the battery
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operator buys energy, hence identifying conditions under which the battery operator’s operational
strategy is aligned with system stability.

We address incremental reserve contracts, which are particularly valuable to the system operator
when the margin of electricity generation capacity over peak demand is low. Decremental reserve may
also be studied in the above framework, although the second stopping time (action A2) is non-trivial,
which leads to a nested stopping problem beyond the scope of the present paper. Furthermore, we
assume that the energy storage unit is dedicated to providing incremental reserve contracts, so that
the opportunity costs of not operating in other markets or providing other services are not modelled.
The extension to a finite expiry time, the lifetime analysis with decremental reserve contracts, and also
the opportunity cost of not operating in other markets would be interesting areas for further work.

The methodological advances of this paper reach beyond energy markets. In particular, they are
relevant to real options’ analyses of storable commodities where the timing problem over the lifetime
of the store is of primary interest. The lifetime analysis via optimal stopping techniques, developed
in Section 2.3, provides an example of how timing problems can be addressed for rather general
dynamics of the underlying stochastic process. In this context, we provide an alternative method to
quasi-variational inequalities, which are often dynamics-specific and technically more involved.
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Appendix A. Lemmas and Proofs from Section 2

The following three lemmas classify solutions to the stopping problem (7). Note that,
if supx ϑ(x) ≤ 0, then no choice of the stopping time τ gives a value function greater than 0.
The optimal stopping time in this case is given by τ = ∞. In what follows, we therefore assume

sup
x∈(a,b)

ϑ(x) > 0. (A1)

These results can be derived from Beibel and Lerche (2000); however, for the convenience of the
reader, we provide simple proofs.

Lemma A1. Assume that there exists x̂ ∈ I which maximises ϑ(x)/φr(x) over I. Then, the value function
v(x) is finite for all x, and for x ≥ x̂:

1. the stopping time τx̂ is optimal,

2. v(x) =
ϑ(x̂)
φr(x̂)

φr(x),

3. any stopping time τ with Px{ϑ(Xτ)/φr(Xτ) < ϑ(x̂)/φr(x̂)
}

> 0 is strictly suboptimal for the
problem v(x).

Proof. Since φr is r-excessive (Borodin and Salminen 2012, Sec. II.5), for any finite stopping time τ

Ex{e−rτφr(Xτ)} ≤ φr(x).

Let now τ be a stopping time taking possibly infinite values. Let bn be an increasing sequence
converging to b with b1 > x, the initial point of the process X. Then, τbn is an increasing sequence of
stopping times converging to infinity and
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φr(x) ≥ lim inf
n→∞

Ex{e−r(τ∧τbn )φr(Xτ∧τbn
)}

≥ Ex{lim inf
n→∞

e−r(τ∧τbn )φr(Xτ∧τbn
)} = Ex{e−rτφr(Xτ)1τ<∞},

where φr(b−) = 0 was used in the last equality.
For any stopping time τ,

Ex{e−rτϑ(Xτ)1τ<∞} = Ex
{

e−rτφr(Xτ)
ϑ(Xτ)

φr(Xτ)
1τ<∞

}
≤ ϑ(x̂)

φr(x̂)
Ex{e−rτφr(Xτ)1τ<∞

}
≤ ϑ(x̂)

φr(x̂)
φr(x),

(A2)

where the final inequality follows from the first part of the proof and (A1) (so ϑ(x̂)
φr(x̂) > 0). Hence, v(x)

is finite for all x ∈ I. To prove claim 1, note from (6) that for x ≥ x̂ the upper bound is attained by τx̂,
which is therefore an optimal stopping time in the problem v(x). The assumption on τ in claim 3 leads
to strict inequality in (A2), making τ strictly suboptimal in the problem v(x).

It is convenient to introduce the notation

L := lim sup
x→a

ϑ(x)+

φr(x)
. (A3)

Lemma A2 corresponds to cases when there is no optimal stopping time, but the optimal value
can be reached in the limit by a sequence of stopping times.

Lemma A2.

1. If L = ∞, then the value function is infinite and there is no optimal stopping time.

2. If L < ∞ and L > ϑ(x)/φr(x) for all x ∈ I, then there is no optimal stopping time and the value function
equals v(x) = Lφr(x).

Proof. Assertion 1. Fix any x ∈ I. Then, for any x̂ < x, we have

Ex{e−rτx̂ ϑ(Xτx̂ )} = ϑ(x̂)
φr(x)
φr(x̂)

,

which converges to infinity for x̂ tending to a over an appropriate subsequence. Since the process is
recurrent, the point x can be reached from any other point in the state space with positive probability
in a finite time. This proves that the value function is infinite for all x ∈ I.

Assertion 2. Recall that, due to the supremum of ϑ
φr

being strictly positive, we have L > 0.
From the proof of Lemma A1, for an arbitrary stopping time τ, we have

Ex{e−rτϑ(Xτ)1τ<∞} = Ex{e−rτφr(Xτ)
ϑ(Xτ)

φr(Xτ)
1τ<∞} < LEx{e−rτφr(Xτ)1τ<∞} ≤ Lφr(x).

However, one can construct a sequence of stopping times that achieves this value in the limit.
Take xn such that limn→∞ ϑ(xn)/φr(xn) = L and define τn = τxn . Then,

lim
n→∞

Ex{e−rτn ϑ(Xτn)} = lim
n→∞

ϑ(xn)
φr(x)
φr(xn)

= φr(x)L,

so v(x) = φr(x)L. This together with the strict inequality above proves that an optimal stopping time
does not exist.
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The results developed in this section also have a ‘mirror’ counterpart involving

R := lim sup
x→b

ϑ(x)+

ψr(x)
(A4)

rather than L. In particular, the value function is infinite if R = ∞, and

Corollary A1. If x̂ ∈ I maximises ϑ(x)/ψr(x), then, for any x ≤ x̂, an optimal stopping time in the problem
v(x) is given by τx̂.

This also motivates the assumptions of the following lemma which collects results from Dayanik
and Karatzas (2003, Sec. 5.2). Again, although those results are obtained under the assumption that
both boundaries are natural, their proofs require only that they are non-exit.

Lemma A3. Assume that L, R < ∞ and ϑ is locally bounded. Then, the value function v is finite and
continuous on (a, b).

All the stopping problems considered in this paper have a finite right-hand limit R < ∞. Therefore,
whenever L < ∞, their value functions will be continuous.

Proof of Lemma 2. If S1* does not hold, then the payoff from cycle A1–A3 is not profitable (on average)
for any value of the EIM price x, so S1 does not hold. Conversely, if S1* holds, then there exists x such
that T̂ 0(x) ≥ h(x) > 0. For any other x′, consider the following strategy: wait until the process X hits
x and proceed optimally thereafter. This results in a strictly positive expected value: T̂ 0(x′) > 0 and,
by the arbitrariness of x′, we have T̂ 0 > 0.

Suppose that S2* holds. Then, the system operator makes a profit on the reserve contract
(relative to simply purchasing a unit of energy at the power delivery time τ̂e, at the price X(τ̂e) ≥ x∗)
in undiscounted cash terms. Considering discounting, the system operator similarly makes a profit
provided the EIM price reaches the level x∗ (or above) sufficiently quickly. Since this happens with
positive probability for a regular diffusion, a certain financial loss for the system operator is excluded.
When S2* does not hold, suppose first that pc + Kc > x∗: then, the system operator makes a loss in
undiscounted cash terms, and if the reserve contract is sold when x ≥ x∗, then this loss is certain.
In the boundary case pc + Kc = x∗, the battery operator can only make a profit by purchasing energy
and selling the reserve contract when Xt < x∗, in which case the system operator makes a certain loss.
This follows since instead of buying the reserve contract, the system operator could invest pc > 0
temporarily in a riskless bond, withdrawing it with interest when the EIM price rises to x∗ = pc + Kc.
The loss in this case is equal in value to the interest payment.

Appendix B. Lemmas for the Lifetime Problem

It follows from the optimal stopping theory reviewed in Section 2.1.1 and Appendix A that the
following definition of an admissible continuation function is natural in our setup. In particular, the final
condition corresponds to the assumption that the energy purchase occurs at a price below x∗.

Definition A1. (Admissible continuation value) A continuation value function ζ̂ is admissible if it is

continuous on (a, x∗] and non-negative on I, with ζ̂(x)
φr(x) non-increasing on [x∗, b).

The following result now characterises the possible solution types in the lifetime problem.

Lemma A4. Assume that conditions S1* and S2* hold. If ζ̂ is an admissible continuation value function, then

lim sup
x→a

ĥ(x, ζ̂)

φr(x)
= lim sup

x→a

−x
φr(x)

= Lc, (A5)
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and with cases A, B, C defined just as in Theorem 1:

1. In case A, there exists x̂ ≤ x∗ which maximises ĥ(x,ζ̂)
φr(x) and τx̂ is an optimal stopping time for x ≥ x̂ with

value function

v(x) = T̂ ζ̂(x) = φr(x)
ĥ(x̂, ζ̂)

φr(x̂)
, x ≥ x̂.

Denoting by x̂0 the corresponding x̂ in case A of Theorem 1, we have x̂0 ≤ x̂.
2. In case B, either

(a) there exists xL ∈ (a, b) with ĥ(xL ,ζ̂)
φr(xL)

≥ Lc: then, there exists x̂ ∈ (a, x∗] which maximises ĥ(x,ζ̂)
φr(x) ,

and τx̂ is an optimal stopping time for x ≥ x̂ with value function v(x) = φr(x) ĥ(x̂,ζ̂)
φr(x̂) for x ≥ x̂; or

(b) there does not exist xL ∈ (a, b) with ĥ(xL ,ζ̂)
φr(xL)

≥ Lc: then, the value function is v(x) = Lc φr(x) and
there is no optimal stopping time.

3. In case C, the value function is infinite and there is no optimal stopping time.

Moreover, the value function v is continuous in cases A and B.

Proof. Note that

h(x) = ĥ(x, 0) ≤ ĥ(x, ζ̂) =

h(x) + ψr(x)
ψr(x∗) Aζ̂(x∗), x < x∗,

h(x) + Aζ̂(x), x ≥ x∗.
(A6)

This proves (A5), since limx→a ψr(x)/φr(x) = 0. We verify from (A6) and the assumptions of the
lemma that R < ∞ in (A4). Hence, whenever Lc < ∞, the value function v is finite and continuous by
Lemma A3. As noted previously (in the proof of Theorem 1), h is negative and decreasing on [x∗, b),
hence the ratio h(x)/φr(x) is strictly decreasing on that interval. It then follows from (A6) and the

admissibility of ζ̂ that the function x 7→ ĥ(x,ζ̂)
φr(x) is strictly decreasing on [x∗, b). Therefore the supremum

of x 7→ ĥ(x,ζ̂)
φr(x) , which is positive by (A6) and S1∗, is attained on (a, x∗] or asymptotically when x → a.

In cases 1 and 2a, the optimality of τx̂ for x ≥ x̂ then follows from Lemma A1. To see that x̂0 ≤ x̂ in
case 1, take x < x̂0. Then, from (A6), we have

ĥ(x, ζ̂)

φr(x)
=

h(x)
φr(x)

+
ψr(x)
φr(x)

Aζ̂(x∗)
ψr(x∗)

<
h(x̂0)

φr(x̂0)
+

ψr(x̂0)

φr(x̂0)

Aζ̂(x∗)
ψr(x∗)

=
ĥ(x̂0, ζ̂)

φr(x̂0)
,

since x 7→ ψr(x)
φr(x) is strictly increasing. Case 2b follows from Lemma A2 and the fact that Lc > 0,

while Lemma A2 proves case 3.

Before proceeding, we note the following technicalities.

Remark A1. The value function v in cases 1 and 2a of Lemma A4 satisfies the condition that v(x)/φr(x) is
non-increasing on [x∗, b). Indeed,

v(x)
φr(x)

=
ĥ(x̂, ζ̂)

φr(x̂)
= const.

for x ≥ x̂.

Remark A2. For case 3 of Lemma A4, the assumption that ζ̂(x)
φr(x) is non-increasing on [x∗, b) can be dropped.

Lemma A5. The timing of action A2 remains trivial when the cycle A1–A3 is iterated a finite number of times.
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Proof. Let us suppose that action A1 has just been carried out in preparation for selling the first in
a chain of n reserve contracts, and that the EIM price currently has the value x. Define τA2 to be
the time at which the battery operator carries out action A2. The remaining cashflows are (i) the
first contract premium pc (from action A2), (ii) the first utilisation payment Kc (from A3), and (iii) all
cashflows arising from the remaining cycles A1–A3 (there are n− 1 cycles which remain available to
the battery operator). The cashflows (i) and (ii) are both positive and fixed, making it best to obtain
them as soon as possible. The cashflows (iii) include positive and negative amounts, so their timing is
not as simple. However, it is sufficient to notice that

• their expected net present value is given by an optimal stopping problem, namely, the timing of
the next action A1:

sup
τ≥σ∗

Ex{e−rτh(iii)(Xτ)1τ<∞}, (A7)

where σ∗ := inf{t ≥ τA2 : Xt ≥ x∗}, for some suitable payoff function h(iii),
• the choice τA2 = 0 minimises the exercise time σ∗ and thus maximises the value of component

(iii), since the supremum in (A7) is then taken over the largest possible set of stopping times.

It is therefore best to set τA2 = 0, since this choice maximises the value of components (i),
(ii) and (iii).

The next result establishes the existence of, and characterises, the lifetime value function V̂.

Lemma A6. In cases A and B of Theorem 1,

1. For each n ≥ 1, the function ζ̂n := T̂ n0 is an admissible continuation value function and is decreasing
on [x∗, b).

2. The functions T̂ n0 are strictly positive and uniformly bounded in n.
3. The limit ζ̂ = limn→∞ T̂ n0 exists and is a strictly positive bounded function. Moreover, the lifetime value

function V̂ coincides with ζ̂.
4. The lifetime value function V̂ is a fixed point of T̂ .

Proof. Part 1 is proved by induction. The claim is clearly true for n = 1. Assume it holds for n.
Then, Lemma A4 applies and ζ̂n+1(x)/φr(x) = ĥ(x̂, ζ̂n)/φr(x̂) for x ≥ x̂ when the optimal stopping
time exists and ζ̂n+1(x)/φr(x) = Lc otherwise. Therefore, ζ̂n+1(x) = cφr(x) for x ≥ x∗ and some
constant c ≥ 0. Since φr is decreasing, we conclude that ζ̂n+1 decreases on [x∗, b).

The monotonicity of T̂ guarantees that, if T̂ 0 > 0, then T̂ n0 > 0 for every n. For the upper bound,
notice that

T̂ ζ̂n(x) = sup
τ

Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
≤ sup

τ
Ex
{

e−rτ
(

pc − Xτ + KcEXτ{e−rτ̂e}
)

1τ<∞

}
+ Aζ̂n(x∗) = Vc(x) + Aζ̂n(x∗),

where Vc = T̂ 0 is the value function for the single problem and the inequality follows from the fact
that ζ̂n is decreasing on [x∗, b). From the above, we have ζ̂n(x) = T̂ n0(x) ≤ Vc(x) + 1−An

1−A Vc(x∗).
Recalling that A ∈ (0, 1) yields that the ζ̂n(x) are bounded by Vc(x) + 1

1−A Vc(x∗), so there exists a
finite monotone limit ζ̂ := limn→∞ ζ̂n, and
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ζ̂(x) = lim
n→∞

T̂ ζ̂n(x) = sup
n

sup
τ

Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
= sup

τ
lim

n→∞
Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
= sup

τ
Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂(Xτ̂e)

)})
1τ<∞

}
= T̂ ζ̂(x),

by monotone convergence. The equality of V̂ and ζ̂ is clear from (14).

Appendix C. Uniqueness of Fixed Points

Corollary A2 below establishes the uniqueness of the fixed point of T̂ . Lemma A8 shows that
T̂ n0 converges exponentially fast to this unique fixed point as n→ ∞.

Lemma A7. Let ξ, ξ ′ be two continuous non-negative functions with ξ satisfying the assumptions of Lemma A4
together with the bound ξ ≥ ξ ′. In the problem T̂ ξ, assume the existence of an optimal stopping time τ∗ under
which stopping occurs only at values bounded above by x′ < x∗. Then,

‖T̂ ξ − T̂ ξ ′‖# ≤ ρ‖ξ − ξ ′‖#,

where ρ = A ψr(x′)
ψr(x∗) < 1 and ‖ f ‖# = | f (x∗)| is a seminorm on the space of continuous functions. Moreover,

0 ≤ T̂ ξ(x)− T̂ ξ ′(x) < ‖ξ − ξ ′‖#. (A8)

Note that, in general, an optimal stopping time for T̂ ξ(x) depends on the initial state x.
However, under general conditions (cf. Section 2.1.1), τ∗ = inf{t ≥ 0 : Xt ∈ Γ}, where Γ is the
stopping set. Then, the condition in the above lemma writes as Γ ⊂ (a, x′] for some x′ < x∗.

Proof of Lemma A7. By the monotonicity of T̂ , for any x, we have

0 ≤ T̂ ξ(x)− T̂ ξ ′(x) ≤ Ex
{

e−rτ∗
(
− Xτ∗ + pc +

(
Kc + Aξ(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
−Ex

{
e−rτ∗

(
− Xτ∗ + pc +

(
Kc + Aξ ′(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
= Ex

{
e−rτ∗A

((
ξ(x∗)− ξ ′(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
= ‖ξ − ξ ′‖# AEx

{
e−rτ∗ ψr(Xτ∗)

ψr(x∗)

}
.

This proves (A8). In addition, we have

AEx∗
{

e−rτ∗ ψr(Xτ∗)

ψr(x∗)

}
≤ A

φr(x∗)
φr(x′)

ψr(x′)
ψr(x∗)

≤ ρ.

Lemma A8. Assume that there exists a fixed point ζ̂∗ of T̂ in the space of continuous non-negative functions.
In the problem T̂ ζ̂∗, assume the existence of an optimal stopping time under which stopping occurs only at
values bounded above by x′ < x∗ (cf. the comment after the previous lemma). Then, there is a constant ρ < 1
such that ‖ζ̂∗ − T̂ n0‖# ≤ ρn‖ζ̂∗‖# and ‖ζ̂∗ − T̂ n0‖∞ ≤ ρn−1‖ζ̂∗‖#, where ‖ · ‖∞ is the supremum norm.
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Proof. Clearly, ‖ζ̂∗ − 0‖# < ∞. By virtue of Lemma A7, we have ‖T̂ n0 − ζ̂∗‖# ≤ ρn‖0 − ζ̂∗‖# for
ρ = ψr(x′)

ψr(x∗) < 1. Hence, T̂ n0 converges exponentially fast to ζ̂∗ in the seminorm ‖ · ‖#. Using (A8),
we have

‖ζ̂∗ − T̂ n0‖∞ = ‖T̂ ζ̂∗ − T̂ ◦ T̂ n−10‖∞ ≤ ρn−1‖ζ̂∗‖#.

Corollary A2. Let ζ̂∗ be a fixed point of T̂ and suppose that the problem T̂ ζ̂∗ admits an optimal stopping time
τ̂∗ satisfying Xτ̂∗ ≤ x′ < x∗, for some constant x′. Such a fixed point ζ̂∗ is unique.

Proof. By Lemma A8, if ζ̂∗ is a fixed point satisfying the assumptions of the corollary, it is approximated
by T̂ n0 in the supremum norm; hence, it must be unique.

Appendix D. Note on Lemma 3

The inequality limx→−∞
−x

φr(x) > 0 when a = −∞ asserts that the process X escapes to −∞ quickly.

Indeed, choosing z ∈ I, we have Ez{e−rτx} = φr(z)
φr(x) for x ≤ z, hence Ez{e−rτx} ≥ c

−x for some constant
c > 0 and x sufficiently close to −∞. To illustrate the speed of escape, assume for simplicity that X is a
deterministic process. Then, the last inequality would imply τx ≤ 1

r
(

log(−x)− log(c)
)
, i.e., X escapes

to −∞ exponentially quickly.
An example of a model that violates the assumptions of Lemma 3 is the negative geometric

Brownian motion: Xt = − exp
(
(µ− σ2/2)t + σWt

)
for µ, σ > 0. With the generator A = 1

2 σ2x2 d2

dx2 +

µx d
dx , we have φr(x) = (−x)γ2 and ψr(x) = (−x)γ1 , where γ1 < 0 < γ2 are solutions to the quadratic

equation σ2

2 γ2 + (µ− σ2

2 )γ− r = 0, i.e., γ = B±
√

B2 + 2 r
σ2 with B = 1

2 −
µ

σ2 . Hence, limx→−∞
−x

φr(x) =

limx→−∞(−x)1−γ2 > 0 if and only if γ2 ≤ 1. It is easy to check that γ2 = 1 for µ = r and γ2 is
decreasing as a function of µ. Therefore, the condition γ2 ≤ 1 is equivalent to µ ≥ r.

In summary, the negative geometric Brownian motion violates the assumptions of Lemma 3 if
µ ≥ r. If µ = r, then case B of Theorem 1 applies with Lc = 1, while, if µ > r, then Lc = ∞ and so case
C applies. Both cases may be interpreted heuristically as the negative geometric Brownian motion X
escaping ‘relatively quickly’ to −∞, that is, relative to the value r of the continuously compounded
interest rate. In the latter case, this happens sufficiently quickly that the single problem’s value function
Vc is infinite.

Appendix E. Verification Theorem for the Lifetime Value Function

We now provide a verification lemma which may be used to verify if a given value x̂ is an optimal
buy price in the lifetime problem. The result is motivated by the following argument using Theorem 3.

We claim that, for all x ∈ I, T̂ V̂(x) depends on the value function V̂ only through its value
at x = x∗. The argument is as follows: when the battery operator acts optimally, the energy
purchase occurs when the price is not greater than x∗: under Px for x ≥ x∗, this follows directly
from Theorem 3; under Px for x < x∗, the energy is either purchased before the price reaches x∗ or one
applies a standard dynamic programming argument for optimal stopping problems (see, for example,
Peskir and Shiryaev 2006) at x∗ to reduce this to the previous case. In our setup, the continuation value
is not received until the EIM price rises again to x∗ (it is received immediately if the energy purchase
occurs at x∗).

Suppose therefore that we can construct functions Vi : I → R, i = 1, 2, with the following
properties:

(I) T̂ V1 = V2,
(II) V1(x∗) = V2(x∗),
(III) for i = 1, 2, the highest price at which the battery operator buys energy in the problem T̂ Vi is not

greater than x∗.
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Then, we have V2 = T̂ V1 = T̂ V2, so that V2 is a fixed point of T̂ .
We postulate the following form for Vi: given y > 0 take

V1(x) = ξ̂
y
0(x) := 1x≤x∗y, (A9)

V2(x) = ξ̂y(x) := T̂ ξ̂
y
0(x). (A10)

For convenience, define h(x, y) to be the payoff in the lifetime problem when the the continuation
value is ξ̂

y
0 . Thus, we have

h(x, y) = ĥ(x, ξ̂
y
0), (A11)

ξ̂y(x) = T̂ ξ̂
y
0(x) = sup

τ
Ex{e−rτh

(
Xτ , y

)
1τ<∞

}
. (A12)

Lemma A9. Suppose that x̂ ∈ (a, x∗) satisfies the system

h(x̂, y)
φr(x̂)

= sup
x∈(a,x∗)

h(x, y)
φr(x)

, (A13)

y =
φr(x∗)
φr(x̂)

h(x̂, y), (A14)

y > 0. (A15)

Then, the function ξ̂y of (A12) is a fixed point of T̂ , is continuous and strictly positive, and

ξ̂y(x) =
φr(x)
φr(x∗)

y, for x ≥ x̂. (A16)

Proof. Consider first the problem (A12) with x ≥ x̂. By construction, ξ̂
y
0 is an admissible continuation

value in Lemma A4, and cases 1 or 2a must then hold due to the standing assumption for this section
that regime (α) of Theorem 2 is in force. By (A13), the stopping time τx̂ is optimal, and the problem’s
value function ξ̂y has the following three properties. Firstly, ξ̂y is continuous on I by Lemma A3.
Secondly, using (A14), we see that ξ̂y satisfies (A16). This implies thirdly that ξ̂y/φr is constant on
[x∗, b) and establishes that ξ̂y(x∗) = y, giving property (ii) above. Since y > 0 by (A15), the strict
positivity of ξ̂y everywhere follows as in part 1 of the proof of Lemma 2. Our standing assumption
S2* implies that the payoff h(x, y) of (A11) is negative for x > x∗, which establishes property (iii) for
problem (A12).

The three properties of ξy established above make it an admissible continuation value in
Lemma A4, so we now consider the problem T̂ ξy for x ≥ x̂. Under Px for x ≥ x∗, claim 2 of
Lemma A1 prevents the battery operator from buying energy at prices greater than x∗ when acting
optimally; under Px for x < x∗, the dynamic programming principle mentioned above completes
the argument.

The following corollary completes the verification argument, and also establishes the uniqueness
of the value y in Lemma A9.

Corollary A3. Under the conditions of Lemma A9:

(i) the function ξ̂y coincides with the lifetime value function: V̂ = ξ̂y,
(ii) there is at most one value y for which the system of equations (A13)-(A14) has a solution x̂ ∈ (a, x∗).

Proof. (i) We will appeal to Lemma A8 by refining property (III) above for the problem T̂ V2 = T̂ ξ̂y

(as was done in the proof of Corollary 2). Suppose that the battery operator buys energy at the
price x∗. Then, since the function ξ̂y is a fixed point of T̂ under our assumptions, we may consider
T̂ ξ̂y(x∗) = −x∗ + pc + Kc + ξ̂y(x∗) and then S2* leads to T̂ ξ̂y(x∗) < ξ̂y(x∗), which is a contradiction.
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Thus, from Lemma A8, T̂ n0 converges to ξ̂y as n → ∞. As the limit of T̂ n0 is the lifetime value
function, we obtain V̂ = ξ̂y.

(ii) Assume the existence of two such values y1 6= y2. Then, (A16) gives V̂(x∗) = ξ̂y1(x∗) = y1 6=
y2 = ξ̂y2(x∗) = V̂(x∗), a contradiction.

We recall here that, on the other hand, the value x̂ in Lemma A9 may not be uniquely determined
(cf. part (a) of Corollary 2). In this case, the largest x̂ satisfying the assumptions of Lemma A9 is the
highest price x̌ at which the battery operator can buy energy optimally.

Appendix F. Facts about the OU Process

Let us temporarily fix µ = 0 and θ = σ = 1. Consider the ordinary differential equation (ODE)

w′′(z) +
(

ν +
1
2
− 1

4
z2
)

w(z) = 0.

There are two fundamental solutions Dν(z) and Dν(−z), where Dν is a parabolic cylinder function.
Assume that ν < 0. This function has a multitude of representations, but the following will be sufficient
for our purposes (Érdelyi et al. 1953, p. 119):

Dν(z) =
e−z2/4

Γ(−ν)

∫ ∞

0
e−zt− 1

2 t2
t−ν−1dt.

Then, Dν is strictly positive. Fix r > 0. Define

ψr(x) = e
(x−µ)2θ

2σ2 D−r/θ

(
− (x− µ)

√
2θ

σ

)
, φr(x) = e

(x−µ)2θ

2σ2 D−r/θ

( (x− µ)
√

2θ

σ

)
.

By direct calculation, one verifies that these functions solve

Lv = rv, (A17)

where
Lv(x) =

1
2

σ2v′′(x) + θ(µ− x)v′(x) (A18)

is the infinitesimal generator of the OU process (25). Setting ν = −r/θ, we can write

ψr(x) =
1

Γ(−ν)

∫ ∞

0
e(x−µ)t

√
2θ
σ −

1
2 t2

t−ν−1dt, φr(x) =
1

Γ(−ν)

∫ ∞

0
e−(x−µ)t

√
2θ
σ −

1
2 t2

t−ν−1dt.

Hence, ψr is increasing and φr is decreasing in x. In addition, by monotone convergence,
ψr(−∞) = φr(∞) = 0 and ψr(∞) = φr(−∞) = ∞. The functions ψr and φr are then fundamental
solutions of the Equation (A17). Furthermore, they are strictly convex, which can be checked by
passing differentiation under the integral sign (justified by the dominated convergence theorem).
Defining F(x) = ψr(x)/φr(x), then F is continuous and strictly increasing with F(−∞) = 0 and
F(∞) = ∞.
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Using the integral representation of φr and l’Hôpital’s rule, we have

lim
x→−∞

−x
φr(x)

= lim
x→−∞

−1
1

Γ(−ν)

∫ ∞
0 e−(x−µ)t

√
2θ
σ −

1
2 t2
(
− t
√

2θ
σ

)
t−ν−1dt

=
σ√
2θ

lim
x→−∞

1
1

Γ(−ν)

∫ ∞
0 e−(x−µ)t

√
2θ
σ −

1
2 t2 t−νdt

=
σ√
2θ

lim
x→−∞

1
Γ(−ν+1)

Γ(−ν)
1

Γ(−ν+1)

∫ ∞
0 e−(x−µ)t

√
2θ
σ −

1
2 t2 t−νdt

= 0,

(A19)

as the denominator is a scaled version of φr̃ corresponding to a new r̃ such that −r̃/θ = ν− 1 < ν < 0,
and so it converges to infinity when x → −∞.
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