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Abstract: Determining distributions of the functions of random variables is one of the most important
problems in statistics and applied mathematics because distributions of functions have wide range
of applications in numerous areas in economics, finance, risk management, science, and others.
However, most studies only focus on the distribution of independent variables or focus on some
common distributions such as multivariate normal joint distributions for the functions of dependent
random variables. To bridge the gap in the literature, in this paper, we first derive the general
formulas to determine both density and distribution of the product for two or more random variables
via copulas to capture the dependence structures among the variables. We then propose an approach
combining Monte Carlo algorithm, graphical approach, and numerical analysis to efficiently estimate
both density and distribution. We illustrate our approach by examining the shapes and behaviors of
both density and distribution of the product for two log-normal random variables on several different
copulas, including Gaussian, Student-t, Clayton, Gumbel, Frank, and Joe Copulas, and estimate some
common measures including Kendall’s coefficient, mean, median, standard deviation, skewness,
and kurtosis for the distributions. We found that different types of copulas affect the behavior of
distributions differently. In addition, we also discuss the behaviors via all copulas above with the
same Kendall’s coefficient. Our results are the foundation of any further study that relies on the
density and cumulative probability functions of product for two or more random variables. Thus, the
theory developed in this paper is useful for academics, practitioners, and policy makers.

Keywords: copulas; dependence structures; product of random variables; density functions;
distribution functions

1. Introduction

The problem of determining the distributions of different functions of random variables is one
of the most important problems in statistics and mathematics because the distributions of different
functions have wide range of applications in numerous areas in economics, finance, risk management,
science, and many other areas (see, for example Donahue (1964); Galambos and Simonelli (2004);
Springer (1979)). However, thus far, most studies only focus on independence structure with some
common distributions of the functions of random variables (see, for instance Dettmann and Georgiou
(2009); Garg et al. (2016); Springer and Thompson (1966, 1970); Yang and Wang (2013)). There are few
studies on determining distributions for statistical models involving dependence structures of some
common distributions for several functions of random variables (see, for example Ly et al. (2016, 2019);
Joe (1997)).
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Thus far, the distributions of product of random variables are based on the assumption of statistical
independence or on stochastic dependence through multivariate normal joint distribution by using the
techniques of the change-of-variable integration or applying the technique of Mellin’s transformation
(see Dettmann and Georgiou (2009); Donahue (1964); Galambos and Simonelli (2004); Garg et al. (2016);
Glen et al. (2004); Lomnicki (1967); Maller (1981); Salo et al. (2006); Springer and Thompson (1966, 1970);
Bohrnstedt and Goldberger (1969); Springer and Thompson (1970)), albeit it still always becomes
dependent through non-normal distributions or unwieldy integration problems. Thus, developing the
framework for modeling dependence structures for the distributions of product of dependent random
variables is still an open problem in risk management.

Copula, proposed by Abe Sklar in 1959, is a very important theory in mathematics and statistics.
The theory has been gaining attention in the past few decades because it has many applications in
many areas including economics, finance, and risk management, especially in modeling financial risk
and derivatives (see, for example Cherubini et al. (2004); Frey et al. (2001); Joe (1997); Tang (2014);
Tran et al. (2015, 2017) and references therein). Using copula could enable academics to develop a
framework for modeling dependence structures for the distributions of product of dependent random
variables. Thus, to bridge the gap in the literature, in this paper, we first apply copula to develop a
theory to study both density and distribution functions of the product of two and more dependent
and independent random variables via copulas to capture the structures among the variables.

In addition, in this paper, we propose an approach combining Monte Carlo algorithm, graphical
approach, and numerical analysis to efficiently estimate both density and distribution when parameters
vary because the formula of both density and distribution of the product of dependent random
variables are very complicated, and it is very difficult, if not impossible, to obtain their exact forms.
Thereafter, we illustrate our approach by examining the shapes of both density and distribution of
the product of two log-normal random variables on several different copulas, including Gaussian,
Student-t, Clayton, Gumbel, Frank, and Joe Copulas. We find that different types of copulas affect the
behavior of the distributions differently. For example, the distributions of the product using Gaussian
and Student-t copulas behave similarly while the distributions using Clayton, Gumbel, Frank, and Joe
copulas also behave similarly with impacts of different degrees. Our findings are useful to academics,
practitioners, and policy makers if they need to study the shapes of both density and distribution
functions and some common measures for the product of dependent or independent random variables
by using different copulas.

The rest of the paper is organized as follows. Section 2 discusses the background theory for both
density and distribution of the product of the random variables while Section 3 first briefly discusses
some simple copula results on bivariate copula and then discusses the results on the high dimensions
copula. In Section 4, we develop the theory for both density and distribution of the product of two
or more random variables. In Section 5, we examine the behavior of the product of two log-normal
random variables by using different copulas. The last section concludes.

2. Background Theory

We first discuss some work on copula methods that is related to the problem studied in this paper.
Readers may refer to Ly et al. (2016) for more information. For a weighted sum of two dependent
random variables with special emphasis on the applications in estimating distortion risk measures and
diversification, we assume that a portfolio Y that is a linear combination of two assets X1 and X2 with
respect to their weights w1 and w2 is expressed as follows:

Y = w1X1 + w2X2 with w1 + w2 = 1. (1)
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Let FX1 , FX2 , and FY denote the cumulative distribution functions (CDFs) of X1, X2, and Y,
respectively. Suppose that investors are interested in estimating risks of the portfolio Y under distortion
risk measure (see Ly et al. (2016)), given by

Rg[Y] =
∫ ∞

0
g(FY(y))dy +

∫ 0

−∞
[g(FY(y))− 1]dy,

where g is a distortion function and FY(y) = 1 − FY(y) is a survival function of Y. In this model
setting, some academics and practitioners are interested in deriving the distribution of Y. Recall that, if
Y = X1 + X2 and X1, X2 are independent, then it is well-known that one can use convolution product
of two density functions fX1 and fX2 to find the density of Y, given by

fY(y) = fX1 ∗ fX2(y) =
∫ ∞

−∞
fX1(x) fX2(y− x)dx. (2)

Cherubini et al. (2011) relaxed the independence assumption and used copulas to define a
C-convolution for the dependence case as expressed in the following:

FX1+X2(y) = FX1

C∗ FX2(y)

=
∫ 1

0

∂

∂u
C
(

u, FX2

(
y− F−1

X1
(u)
))

du. (3)

Ly et al. (2016) further extended the theory by deriving a more general sum of variables, as stated
in the following formula:

Fw1X1+w2X2 (y) = 1{w2<0} + sgn(w2)
∫ 1

0

∂

∂u
C

(
u, FX2

(
y− w1F−1

X1
(u)

w2

))
du, (4)

where C is a copula Nelsen (2007) which captures the dependence structure of X1 and X2. Furthermore,
to deal with credit models, Frey et al. (2001) expressed the total loss in terms of the aggregation of
products of risk factors. Thus, it is necessary to develop formulas for multiplication case. To do this,
this study first uses copula to find the density and distribution of the absolutely continuous random
variable Y that is defined by

Y = X1X2, (5)

or the n-product Yn = X1X2 . . . Xn for n ≥ 2. We discuss the latter in the next section.

3. Copulas

In this section, we first briefly discuss the simple theory of bivariate copula, and then discuss
the theory of high-dimensional copula Joe (1997); Nelsen (2007). Letting I = [0, 1] be the closed
unit interval and I2 = [0, 1]× [0, 1] be the closed unit square interval, we define the bivariate copula
as follows:

Definition 1. (Copula) A two-dimensional copula is a function C: I2 → I satisfying the following conditions:

(i) C(u, 0) = C(0, v) = 0 for any u and v ∈ I.
(ii) C(u, 1) = u and C(1, v) = v for any u and v ∈ I.
(iii) for any u1, u2, v1, and v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2,. We have

C(u2, v2) + C(u1, v1)− C(u2, v1)− C(u1, v2) ≥ 0.
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The most crucial role in the copula theory is Sklar’s Theorem (1959). Specifically, given that X1

and X2 are random variables with absolutely continuous marginal distribution functions FX1 and
FX2 , respectively, by Sklar’s Theorem (see Joe (1997); Nelsen (2007)), there exists a unique copula C
such that

H(x1, x2) = C
(

FX1(x1), FX2(x2)
)

,

h(x1, x2) = H′′(x1, x2) = c
(

FX1(x1), FX2(x2) fX1(x1) fX2(x2)
)

, (6)

where c(u, v) := ∂2

∂u∂v C(u, v) denotes density of copula C, fXi is probability density function (PDF) of

Xi for i = 1, 2, and H′′(x1, x2) =
∂2

∂x1∂x2
H(x1, x2) = h(x1, x2) is the joint density function of X1 and X2.

The copula C is used to capture the dependence structure of X1 and X2. For example, X1 and X2 are
independent if and only if C(u, v) = uv; X1 and X2 are comonotonic (that is, X2 = f (X1), where f is
strictly increasing) if and only if C(u, v) = min(u, v); and X1 and X2 are countermonotonic (that is,
X2 = f (X1) a.s., where f is strictly decreasing) if and only if C(u, v) = max(u + v− 1, 0). Copulas
can be used not only to model the dependence structures of the variables, but also to capture the
correlation between the variables. Thus, Kendall’s coefficient τ can be expressed in terms of copulas as
shown in the following:

τ(X1, X2) = τ(C) = 4
∫ ∫

I2
C(u, v)dC(u, v)− 1. (7)

Readers may refer to Cherubini et al. (2004); Joe (1997); Nelsen (2007) for more details on different
families of copulas, the concept of dependence structures and measures of dependence with
applications. We now define the copula for higher dimension in the following:

Definition 2. A n-copula is a function C : In → I satisfying:

(i) C is grounded; that is, C(u1, u2, . . . , un) = 0 where (u1, u2, . . . , un) ∈ In such that at least one ui = 0
for i = 1, 2, . . . , n.

(ii) C(1, . . . , 1, ui, 1, . . . , 1) = ui, ∀ui ∈ I, i = 1, 2, . . . , n.
(iii) C is an n-increasing function; that is, ∀B = B1 × B2 · · · × Bn where Bi = [ai, bi] ⊂ [0, 1] for i =

1, 2, . . . , n. Then, we have:

VC(B) =
∫

B
dC(u1, . . . , un) = ∑

v∈B
sign(v)C(v) ≥ 0,

where the sum is taken over all vertices v = (v1, v2, . . . , vn) of the hyperrectangle B, i.e. vi = ai or vi = bi
and

sign(v) =

{
1, i f vk = ak, for an even number of k’s; and

−1, i f vk = ak, for an odd number of k’s.

We illustrate here how to compute VC(B). This information is useful in deriving Equation (20).
Letting

∆bk
ak C(v) := C (v1, . . . , vk−1, bk, vk+1, . . . , vn)− C (v1, . . . , vk−1, ak, vk+1, . . . , vn) ,

we get

VC(B) = ∆b
aC(v) = ∆bn

an . . . ∆b2
a2 ∆b1

a1 C(v1, . . . , vn) ≥ 0.

In the special case in two dimensions such that C(v) = C(v1, v2), we have B = [a1, b1]× [a2, b2],
and thus,
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VC(B) = ∆b
aC(v) = ∆b2

a2 ∆b1
a1 C(v1, v2) = ∆b2

a2 [C(b1, v2)− c(a1, v2)]

= ∆b2
a2 C(b1, v2)− ∆b2

a2 C(a1, v2) = C(b1, b2)− C(b1, a2)− C(a1, b2) + C(a1, a2).

In the three-dimensional case with C(v) = C(v1, v2, v3), we have B = [a1, b1]× [a2, b2]× [a3, b3],
and thus,

VC(B) = ∆b
aC(v) = ∆b3

a3 ∆b2
a2 ∆b1

a1 C(v1, v2, v3)

= ∆b3
a3 ∆b2

a2 [C(b1, v2, v3)− c(a1, v2, v3)]

= ∆b3
a3 ∆b2

a2 C(b1, v2, v3)− ∆b3
a3 ∆b2

a2 c(a1, v2, v3)

= ∆b3
a3 [C(b1, b2, v3)− C(b1, a2, v3)]− ∆b3

a3 [C(a1, b2, v3)− C(a1, a2, v3)]

= C(b1, b2, b3)− C(b1, b2, a3)− C(b1, a2, b3) + C(b1, a2, a3)

− C(a1, b2, b3) + C(a1, b2, a3) + C(a1, a2, b3)− C(a1, a2, a3).

4. Theory

In this section, we develop the theorems on the probability distribution of the product of
dependent random variables by using copulas. We first study the bivariate case.

4.1. Bivariate Model

We first establish the formulas for both density and distribution functions of the two-dimensional
case as shown in the following theorem:

Theorem 1. Suppose that (X1, X2) is a vector of two absolutely continuous random variables with marginal
distributions F1 and F2, respectively. Let C be an absolutely continuous copula modeling the dependence
structure of the random vector (X1, X2) and define Y as

Y = X1X2, (8)

then the density and distribution functions of Y are

fY(y) =
∫ 1

0

1
|F−1

1 (u)|
c

(
u, F2

(
y

F−1
1 (u)

))
f2

(
y

F−1
1 (u)

)
du, (9)

FY(y) = F1(0) +
∫ 1

0
sgn

(
F−1

1 (u)
) ∂

∂u
C

(
u, F2

(
y

F−1
1 (u)

))
du, (10)

respectively, where F−1
1 is an inverse function of F1, c denotes the density of copula C, and sgn(·) is a sign

function such that

sgn(x) =

{
1, if x > 0,

−1, if x < 0.

Proof. We start by setting {
Y1 = X1X2,

Y2 = X1.

Then, the inverse transformation is given byX1 = Y2

X2 =
Y1

Y2
,
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and the Jacobian is

J =

∣∣∣∣∣∣
0 1
1

Y2
−Y1

Y2
2

∣∣∣∣∣∣ = − 1
Y2

, Y2 6= 0, a.s.

We note that, since X1 and X2 are both continuous random variables, P(X1 = 0) = P(Y2 = 0) = 0;
that is, Y2 6= 0 almost surely. Hence, the inverse transformation X2 = Y1

Y2
always exists with probability

1, and thus, we obtain the following joint density of Y1 and Y2:

h(y1, y2) = f (y2,
y1

y2
)

∣∣∣∣ 1
y2

∣∣∣∣
=

∣∣∣∣ 1
y2

∣∣∣∣ c
(

F1(y2), F2

(
y1

y2

))
f1(y2) f2

(
y1

y2

)
, (11)

and the density of Y1

fY1(y1) =

∞∫
−∞

∣∣∣∣ 1
y2

∣∣∣∣ c
(

F1(y2), F2

(
y1

y2

))
f1(y2) f2

(
y1

y2

)
dy2 (12)

=
∫ 1

0

1∣∣∣F−1
1 (u)

∣∣∣ c
(

u, F2

(
y1

F−1
1 (u)

))
f2

(
y1

F−1
1 (u)

)
du. (13)

The CDF of Y1 can then be determined by

FY1 (t) =
∫ 1

0

∫ t

−∞

1∣∣∣F−1
1 (u)

∣∣∣ c
(

u, F2

(
y1

F−1
1 (u)

))
f2

(
y1

F−1
1 (u)

)
dy1du. (14)

Taking v = F2

(
y1

F−1
1 (u)

)
=⇒ dv = f2

(
y1

F−1
1 (u)

)
1

F−1
1 (u)

dy1 and since

F−1
1 (u) ≥ 0⇐⇒ u ≥ F1(0), and F−1

1 (u) ≤ 0⇐⇒ u ≤ F1(0),

we have

FY1(t) = −
∫ F1(0)

0

∫ F2

(
t

F−1
1 (u)

)
1

∂2

∂u∂v C (u, v) dvdu +
∫ 1

F1(0)

∫ F2

(
t

F−1
1 (u)

)
0

∂2

∂u∂v C (u, v) dvdu

= −
∫ F1(0)

0

[
∂

∂u C
(

u, F2

(
t

F−1
1 (u)

))
− ∂

∂u C(u, 1)
]

du +
∫ 1

F1(0)

[
∂

∂u C
(

u, F2

(
t

F−1
1 (u)

))
− ∂

∂u C(u, 0)
]

du

= F1(0)−
∫ F1(0)

0
∂

∂u C
(

u, F2

(
t

F−1
1 (u)

))
du +

∫ 1
F1(0)

∂
∂u C

(
u, F2

(
t

F−1
1 (u)

))
du

= F1(0) +
∫ 1

0 sgn
(

F−1
1 (u)

)
∂

∂u C
(

u, F2

(
t

F−1
1 (u)

))
du.

(15)

In addition, because the role of X1 and X2 can be exchangeable, the density and CDF of Y1 can be
obtained as shown in the following:

fY(y) =
∫ 1

0

1
|F−1

2 (v)|
c

(
F1

(
y

F−1
2 (v)

)
, v

)
f1

(
y

F−1
2 (v)

)
dv, (16)

FY(y) = F2(0) +
∫ 1

0
sgn

(
F−1

2 (v)
) ∂

∂v
C

(
F1

(
y

F−1
2 (v)

)
, v

)
dv. (17)

Thus, the assertions of Theorem 1 hold.

In a special case in which X1 and X2 are independent, applying Equation (9), we obtain the
following corollary:
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Corollary 1. When X1 and X2 are independent, the copula C(u, v) = uv has the density c(u, v) = 1 ∀u, v ∈ I
and the density of the product of two independent random variables become

fY(y) =
∫ ∞

−∞
f1(x) f2

( y
x

) 1
|x|dx.

This result is well known in the literature.

4.2. Multivariate Model

We now turn to extend Theorem 1 to a vector of more than two random variables as stated in the
following theorem:

Theorem 2. Supposing that (X1, X2, . . . , Xn) is a vector of absolutely continuous random variables with the
marginal distributions F1, F2, . . . , Fn, respectively, C is an absolutely continuous copula modeling dependence
structure of (X1, X2, . . . , Xn), and Y satisfies

Y = X1X2 . . . Xn, n ≥ 2. (18)

Then, the density and the distribution function of Y are

fY(y) =
∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
n−1 times

1∣∣∣∏n−1
i=1 F−1

i (ui)

∣∣∣ c (u1, . . . , un−1, Fn (y′)) fn (y′) du1 . . . dun−1,
(19)

FY(y) = VCn−1(A) +
∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
n−1 times

sgn
(

∏n−1
i=1 F−1

i (ui)
)

∂n−1

∂u1 ...∂un−1
C (u1, . . . , un−1, Fn (y′)) du1 . . . dun−1,

(20)

respectively, in which A := {(u1, . . . , un−1) ∈ [0, 1]n−1 : ∏n−1
i=1 F−1

i (ui) ≤ 0}; VCn−1(A) denotes
Cn−1-Volume of the set A defined by

VCn−1(A) =
∫

A

∂n−1

∂u1 . . . ∂un−1
C (u1, . . . , un−1, 1) du1du2 . . . dun−1 =

∫
A

dC(u1, . . . , un−1, 1);

c denotes the density of copula C with sgn(·) being a sign function such that

sgn(x) =

{
1, if x > 0,

−1, if x < 0,

and
y′ =

y

∏n−1
i=1 F−1

i (ui)
.

Proof. We set 

Y1 = X1X2 . . . Xn

Y2 = X1

Y3 = X2

. . .

Yn = Xn−1.
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Then, the inverse transformation is

X1 = Y2

X2 = Y3

. . .

Xn−1 = Yn

Xn =
Y1

Y2Y3 . . . Yn
,

(21)

with Jacobian

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂X1

∂Y1

∂X1

∂Y2
. . .

∂X1

∂Yn
∂X2

∂Y1

∂X2

∂Y2
. . .

∂X2

∂Yn
. . . . . . . . . . . .

∂Xn−1

∂Y1

∂Xn−1

∂Y2
. . .

∂Xn−1

∂Yn
∂Xn

∂Y1

∂Xn

∂Y2
. . .

∂Xn

∂Yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
1

Y2Y3 . . . Yn

−Y1

Y2
2 Y3 . . . Yn

−Y1

Y2Y2
3 . . . Yn

. . .
−Y1

Y2Y3 . . . Y2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)n+1

Y2Y3 . . . Yn
,

in which Y2Y3 · · ·Yn 6= 0, almost surely because all Y2, Y3, · · · , Yn are continuous random variables
with P(Y2Y3 . . . Yn = 0) = 0. Hence, the joint density of Y1, Y2, · · · , Yn becomes

h(y1, y2, . . . , yn) = f
(

y2, . . . , yn,
y1

y2y3 . . . yn

)
|J|

=
1

|y2y3 . . . yn|
c
(

F1(y2), . . . , Fn−1(yn), Fn

(
y1

y2y3 . . . yn

))
× f1(y2) . . . fn−1(yn) fn

(
y1

y2y3 . . . yn

)
,

and, thus, the density of Y1 can be derived as

fY1(y1) =
∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
n−1 times

h(y1, y2, . . . , yn)dy2 . . . dyn

=
∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
n−1 times

1
|y2y3 . . . yn|

c
(

F1(y2), . . . , Fn−1(yn), Fn

(
y1

y2y3 . . . yn

))

× f1(y2) . . . fn−1(yn) fn

(
y1

y2y3 . . . yn

)
dy2 . . . dyn.

Thereafter, we let ui := Fi(yi+1) for i = 1, 2, . . . , n− 1 and y′1 :=
y1

y2y3 . . . yn
. Then, we obtain

y2y3 . . . yn = ∏n−1
i=1 F−1

i (ui), y′1 =
y1

∏n−1
i=1 F−1

i (ui)
, and

fY1(y1) =
∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
n−1 times

1∣∣∣∏n−1
i=1 F−1

i (ui)
∣∣∣ c
(
u1, . . . , un−1, Fn

(
y′1
))

fn
(
y′1
)

du1du2 . . . dun−1.
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The CDF of Y1 can then be obtained as follows:

FY1 (t) =
∫ t

−∞
fY1(y1)dy1

=
∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
n−1 times

∫ t

−∞

1
|∏n−1

i=1 F−1
i (ui)|

c
(
u1, . . . , un−1, Fn

(
y′1
))

fn
(
y′1
)

dy1du1du2 . . . dun−1.

Taking un := Fn(y′1), letting A :=
{
(u1, .., un−1) ∈ [0, 1]n−1 : ∏n−1

i=1 F−1
i (ui) ≤ 0

}
, and denoting

its compliment set by A, we get

FY1 (t) =
∫

A

∫ Fn

(
t

∏n−1
i=1 F−1

i (ui)

)
0

c (u1, . . . , un−1, un) dundu1du2 . . . dun−1

−
∫

A

∫ Fn

(
t

∏n−1
i=1 F−1

i (ui)

)
1

c (u1, . . . , un−1, un) dundu1du2 . . . dun−1

=
∫

A

∂n−1

∂u1 . . . ∂un−1
C

(
u1, . . . , un−1, Fn

(
t

∏n−1
i=1 F−1

i (ui)

))
du1du2 . . . dun−1

−
∫

A

∂n−1

∂u1 . . . ∂un−1
C

(
u1, . . . , un−1, Fn

(
t

∏n−1
i=1 F−1

i (ui)

))
du1du2 . . . dun−1 + VCn−1(A),

where

VCn−1(A) =
∫

A

∂n−1

∂u1 . . . ∂un−1
C (u1, . . . , un−1, 1) du1du2 . . . dun−1

=
∫

A
dC(u1, . . . , un−1, 1)

denotes Cn−1-volume of the set A calculated via (n − 1)−dimensional copula C. Using the sign
function sgn(·), we obtain the following result:

FY1(t) = VCn−1(A)+

+
∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
n−1 times

sgn
( n−1

∏
i=1

F−1
i (ui)

) ∂n−1

∂u1 . . . ∂un−1
C
(

u1, . . . , un−1, Fn

( t

∏n−1
i=1 F−1

i (ui)

))
du1 . . . dun−1.

Thus, the assertions in Theorem 2 hold.

From Equation (20), one could notice that it contains the quantity VCn−1(A). Using this result, we
obtain the following corollary:

Corollary 2. For n = 2, we have A := {u1 ∈ [0, 1] : F−1
1 (u1) ≤ 0} = [0, F1(0)] and VC1(A) =

VC(u1,1)(A) = F1(0).

This result can be used for the bivariate model and one could easily apply Corollary 2 to obtain
Theorem 1. In addition, we obtain the following corollary:

Corollary 3. For n = 3,

A := {(u1, u2) ∈ [0, 1]2 : F−1
1 (u1)F−1

2 (u2) ≤ 0} = [0, F1(0)]× [F2(0), 1] ∪ [F1(0), 1]× [0, F2(0)]
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and

VC2(A) = VC(u1,u2,1)(A) = C(F1(0), 1, 1) + C(0, F2(0), 1)− C(0, 1, 1)− C(F1(0), F2(0), 1)

+ C(1, F2(0), 1) + C(F1(0), 0, 1)− C(1, 0, 1)− C(F1(0), F2(0), 1)

= F1(0) + F2(0)− 2C(F1(0), F2(0), 1).

This result can be used for the trivariate model and one could apply Corollary 3 to obtain the
density and distribution functions of Y = X1X2X3.

When X1, . . . , Xn are independent, applying Theorem 2, we obtain the following corollary:

Corollary 4. When X1, . . . , Xn are independent,

fY(y) =
∫ 1

0
· · ·

∫ 1

0︸ ︷︷ ︸
n−1 times

1∣∣∣∏n−1
i=1 F−1

i (ui)
∣∣∣ fn

(
y

∏n−1
i=1 F−1

i (ui)

)
du1 . . . dun−1,

=
∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
n−1 times

1
|x1x2 . . . xn−1|

f1(x1) . . . fn−1(xn−1) fn

(
y

x1x1 . . . xn−1

)
dx1 . . . dxn−1.

Since Equations (9), (10), (19), and (20) may not have any close form, in this paper, we propose to
use the Monte Carlo (MC) simulation method to obtain the solutions of Equations (9), (10), (19), and
(20). We discuss the issue in the next section.

5. Simulation Study

Because the density and the CDF formula of the product Y = X1X2 expressed in both (9) and (10)
that are in terms of integrals are very complicated, we cannot obtain the exact forms of their density and
CDF. To circumvent the difficulty, in this paper, we propose to use numerical analysis and graphical
approach to examine the behavior of both density and distribution and the changes of their shapes
when parameters are changing.

Let X1 and X2 be log-normal random variables denoted by Xi ∼ LN(µi, σ2
i ) with the

following PDF:

fXi (x) =
1

x
√

2πσi
exp(− (ln(x)− µi)

2

2σ2
i

),

for i = 1, 2. Without loss of generality, we assume µ1 = µ2 = 0 and σ1 = σ2 = 1. We note that, if X1

and X2 are independent, then Y ∼ LN(µ = 0, σ2 = 2). In this paper, we consider several dependence
structures of X1 and X2 through different copula functions and study the shapes of the corresponding
PDF and CDF of Y. For each copula Cθ(u, v), the PDF and CDF of Y can be plotted on the interval [0, 4]
by using the following steps:

(i) For each y belonging to the sequence {0, 0.01, 0.02, 0.03, . . . , 4}, generate the uniform random
variable U on the unit interval; that is, U ∼ Uni f orm(0, 1) with the sample size N, say N =10,000.

(ii) Estimate the values for fY(y) and FY(y) by using

f̂Y(y) ≈
1
N

N

∑
i=1

1
|F−1

1 (ui)|
cθ

(
ui, F2

(
y

F−1
1 (ui)

))
f2

(
y

F−1
1 (ui)

)
, (22)

F̂Y(y) ≈ F1(0) +
1
N

N

∑
i=1

sgn
(

F−1
1 (ui)

) ∂

∂u
Cθ

(
ui, F2

(
y

F−1
1 (ui)

))
, (23)

in which the density copula cθ(ui, vi) and the derivative ∂
∂u Cθ(ui, vi) can be obtained by using

the packages of VineCopula in R language.
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(iii) Plot f̂Y(y) and F̂Y(y), with y ∈ {0, 0.01, 0.02, 0.03, · · · , 4}.

To estimate the mean, median, standard deviation (sd), skewness, and kurtosis of Y, we first
construct the joint distribution of (X1, X2) by using Sklar’s Theorem, as shown in the following. For
each copula Cθ(u, v), we first obtain the joint CDF of (X1, X2)

Hθ(x1, x2) = Cθ

(
F1(x1), F2(x2)

)
.

We then perform 5000 repetitions, k = 1, 2, . . . , 5000 to use the following steps for the computation:

(1) For each repetition k = 1, 2, . . . , 5000:

(i) Generate (X1, X2) from Hθ(x1, x2) of sample size 104 by using the package copula in R
language and define

y(k)i = x(k)1i x(k)2i , i = 1, 2, · · · , 104.

(ii) Estimate the mean y(k), median ỹ(k), standard deviation s(k), skewness skew(y)(k) and

kurtosis kur(y)(k)of Y by using the following formula

y(k) =
1

104

104

∑
i=1

y(k)i ,

ỹ(k) =
y(k)
(5000) + y(k)

(5001)

2
, where y(k)

(j) denotes order statistic of y(k),

s(k) =

√√√√ 1
104 − 1

104

∑
i=1

(
y(k)i − y(k)

)2
,

skew(y)(k) =

1
104

104

∑
i=1

(
y(k)i − y(k)

)3

[
1

104

104

∑
i=1

(
y(k)i − y(k)

)2]3/2
,

kur(y)(k) =

1
104

104

∑
i=1

(
y(k)i − y(k)

)4

[
1

104

104

∑
i=1

(
y(k)i − y(k)

)2]2
.

(2) Finally, take the mean for each of the above quantities by using the following formula:

y =
1

5000

5000

∑
k=1

y(k),

ỹ =
1

5000

5000

∑
k=1

ỹ(k),

s =
1

5000

5000

∑
k=1

s(k),

skew(y) =
1

5000

5000

∑
k=1

skew(y)(k),

kur(y) =
1

5000

5000

∑
k=1

kur(y)(k),
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to obtain the estimates of the mean, median, standard deviation (sd), skewness, and kurtosis
for Y.

We first use the above-mentioned algorithm to examine Gaussian Copula and discuss our analysis
in the next subsection.

5.1. Gaussian Copula

We first investigate the dependence structure of X1 and X2 through the following Gaussian
Copula Cr(u, v) and observe the shapes of the corresponding distribution for Y:

Cr(u, v) =
1

2π
√

1− r2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

(
− s2 − 2rst + t2

2(1− r2)

)
dsdt,

where Φ−1(x) is the inverse of standard normal CDF and r is Pearson correlation coefficient between
X1 and X2 with |r| < 1. Considering r = −0.9,−0.5, 0, 0.5, and 0.9, we plot both PDFs and CDFs of Y
in Figure 1 and display some descriptive statistics for Y = X1X2 in Table 1, including the dependence
measure Kendall τ, mean, median, standard deviation (sd), skewness, and kurtosis. The special case of
r = 0 corresponds to the situation in which X1 and X2 are independent. As can be seen from the graph
and table, for parameter r ∈ [0, 1] (positive correlation), PDFs of Y tends to be more right skewed than
those from r ∈ [−1, 0) (negative correlation). When the parameter r varies from negative values to
positive values, one can easily notice that the mean, sd, and kurtosis are all significantly increasing
while the median is unchanged.

Table 1. Descriptive Statistics for Y = X1X2 when (X1, X2) follows Gaussian copulas.

r τ(Cr) Mean Median sd Skewness Kurtosis

−0.9 −0.71 1.11 1 0.52 1.51 7.30
−0.5 −0.33 1.65 1 2.16 5.84 85.43

0 0 2.72 1 6.77 14.27 466.41
0.5 0.33 4.48 1 18.21 23.23 1045.26
0.9 0.71 6.68 1 38.59 30.15 1585.27

Figure 1. PDFs and CDFs of the product of two log-normal distributed random variables having
Gaussian Copulas.
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5.2. Student-t Copula

We turn to study the dependence structures of X1 and X2 through the following Student-t Copula
Cr,ν(u, v):

Cr,ν(u, v) =
1

2π
√

1− r2

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

(
1 +

s2 − 2rst + t2

v(1− r2)

)(v+2)/2

dsdt,

and investigate the shape of the distribution for Y = X1X2 where t−1
ν (x) is the inverse of Student CDF

with ν degrees of freedom and r is the Pearson correlation coefficient between X1 and X2 with |r| < 1
and the degree of freedom ν > 2.

We illustrate our proposed approach by examining r = −0.9,−0.5, 0, 0.5, and 0.9 with ν = 3.
To do so, we first plot both PDFs and CDFs of Y in Figure 2 and exhibit some descriptive statistics for
Y = X1X2 in Table 2. Similar to the case of Gaussian copula, r = 0 is for the case in which there is no
linear correlation. We find that the more positive r is, the higher the mean and higher the variance
of Y tend to be. However, different from the Gaussian case, Student t-copula can capture the tail
dependence between X1 and X2 that yields larger kurtosis and larger skewness for Y than for the case
of Gaussian copula.

Table 2. Descriptive Statistics for Y = X1X2 when (X1, X2) follows Student-t copulas, ν = 3.

r τ(Cr) Mean Median sd Skewness Kurtosis

−0.9 −0.71 1.13 1 1.42 3.62 2221.42
−0.5 −0.33 1.92 1 9.26 40.75 2562.20

0 0 3.30 1 20.44 37.01 2182.05
0.5 0.33 5.51 1 32.58 34.03 1903.21
0.9 0.71 6.89 1 44.09 32.31 1766.27

Figure 2. PDFs and CDFs of the product of two log-normal distributed random variables having
Student t-Copulas ν = 3.

5.3. Clayton Copula

We now investigate the dependence structures of X1 and X2 through the following Clayton
Copula Cθ(u, v):

Cθ(u, v) = max
{

u−θ + v−θ − 1, 0
}−1

θ , θ ∈ [−1;+∞) \0, (24)
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and examine the shape of the distribution for Y.
We follow the common practice to use θ > 0 that leads to the following formula

Cθ(u, v) =
(

u−θ + v−θ − 1
)−1

θ , θ > 0.

For θ = 1, 2, 3, and 4, we plot both PDFs and CDFs of Y in Figure 3. From the results in the figure,
we confirm that Clayton copula can be used to model left tail dependence; that is, dependency at small
values. We also find that, when parameter θ → ∞, it becomes more positive dependence and yields
higher mean and higher standard deviation for Y but makes both the right skewness and the fatness of
tail (kurtosis) smaller for Y (see Table 3).

Table 3. Descriptive Statistics for Y = X1X2 when (X1, X2) follows Clayton copulas.

θ τ(Cθ) Mean Median sd Skewness Kurtosis

1 0.33 3.53 1.12 8.93 13.12 403.90
2 0.5 4.01 1.13 10.43 12.81 389.76
3 0.60 4.34 1.11 11.55 12.65 379.99
4 0.67 4.59 1.08 12.41 12.36 359.40

Figure 3. PDFs and CDFs of the product of two log-normal distributed random variables having
Clayton Copulas.

5.4. Gumbel Copula

We turn to study the dependence structure of X1 and X2 through the following Gumbel Copula
Cθ(u, v):

Cθ(u, v) = exp

− [(− ln u)θ + (− ln v)θ
]1

θ

 , θ > 0,

and investigate the shape of the distributions for Y.
We plot both PDFs and CDFs of Y in Figure 4 for θ = 1, 2, 3, and 4. For Gumbel copula, θ = 1 is

for the case in which X1 and X2 are independent. In contrast to Clayton, Gumbel copula is used to
capture dependency at large values (right tail dependence). Hence, it makes Y to get bigger mean,
higher variance, more right skewness, and heavier tail (kurtosis). However, in this case, the median is
clearly smaller than that in the case of Clayton copula (see Table 4).
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Table 4. Descriptive Statistics for Y = X1X2 when (X1, X2) follows Gumbel copulas.

θ τ(Cθ) Mean Median sd Skewness Kurtosis

1 0 2.72 1 6.78 14.41 477.10
2 0.5 6.47 0.95 41.52 32.34 1756.88
3 0.67 7.01 0.97 44.46 31.88 1719.80
4 0.75 7.19 0.98 44.83 31.66 1696.71

Figure 4. PDFs and CDFs of the product of two log-normal distributed random variables having
Gumbel Copulas.

5.5. Frank Copula

We next examine the dependence structure of X1 and X2 through the following Frank Copula
Cθ(u, v):

Cθ(u, v) = −1
θ

ln

(
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

)
, θ ∈ R\{0};

and study the shape of the distribution for Y.
We plot both PDFs and CDFs of Y in Figure 5 for θ = 1, 2, 3, and 4 and display some descriptive

statistics in Table 5. For Frank copula, the parameter θ → 0 is for the case in which the two variables are
independent. In addition, the structure becomes more monotonic when θ → ∞ and becomes counter
monotonicity when θ → −∞. Comparing with both Clayton and Gumbel, Frank copula cannot capture
left or right tail dependence. It does not affect the median as in the case of both Gaussian and Student-t
copulas. However, the mean and the standard deviation are higher and both skewness and fatness are
smaller when the value of the parameter increases.

Table 5. Descriptive Statistics for Y = X1X2 when (X1, X2) follows Frank copulas.

θ τ(Cθ) Mean Median sd Skewness Kurtosis

1 0.11 3.10 1 8.06 13.84 440.25
2 0.21 3.47 1 9.26 13.49 419.00
3 0.31 3.81 1 10.35 13.07 394.79
4 0.39 4.11 1 11.34 12.88 384.20
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Figure 5. PDFs and CDFs of the product of two log-normal distributed random variables having
Frank Copulas.

5.6. Joe Copula

Finally, we study the dependence structure of X1 and X2 through the following Joe Copula
Cθ(u, v):

Cθ(u, v) = 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ ]1/θ , θ ∈ [1, ∞),

and examine the shape of the distribution for Y.
We plot both PDFs and CDFs of Y in Figure 6 for θ = 1, 2, 3, and 4 and display some descriptive

statistics in Table 6. From the results in the figure and table, we find that the dependency captured by
Joe Copula is similar to that captured by Gumbel Copula in the way that the variables are independence
for θ = 1 and becomes more monotonic when θ → ∞. We also find that the variations of all other
measures are changing in a similar manner.

Figure 6. PDFs and CDFs of the product of two log-normal distributed random variables having
Joe Copulas.
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Table 6. Descriptive Statistics for Y = X1X2 when (X1, X2) follows Joe copulas.

θ τ(Cθ) Mean Median sd Skewness Kurtosis

1 0 2.72 1.00 6.76 14.28 466.67
2 0.36 6.30 0.87 42.01 32.67 1789.96
3 0.52 6.91 0.88 44.31 31.65 1692.84
4 0.61 7.11 0.90 45.01 31.79 1720.81

5.7. Comparison of Copulas for the Same Measure of Dependence

In this section, we investigate the effects of the six copulas families as discussed above on
the shapes of different distributions for the random variable Y := X1X2 when they have the same
measure of dependence—the Kendall’s coefficient τ. Here, the parameters are chosen to each copula
to correspond to Kendall τ = 0.49. We exhibit the corresponding CDFs and PDFs of Y in Figure 7,
estimate the mean, median, standard deviation, skewness, and kurtosis, and display the values in
Table 7. As can be seen on the table and figure, Y attains the largest mean (6.84) and standard deviation
(44.67) but the smallest median (0.87) when it follows Joe copula. In contrast, Clayton copula produces
the smallest mean (0.39) and standard deviation (10.27) but attains the largest median (1.13). Using
Student-t copula gets the largest skewness (33.58) and fatness (1876.99), followed by using Gumbel and
Joe copulas. On the other hand, using Frank copula gets the lowest skewness (12.59) and the lowest
fatness (362.17) for Y and Gaussian copula is ranked the fourth by mean, sd, skewness, and kurtosis.

Table 7. Descriptive Statistics for Y = X1X2 in which (X1, X2) is modeled with six copulas having the
same Kendall coefficient τ = 0.49.

Copulas Parameters τ(C) Mean Median sd Skewness Kurtosis

Gaussian 0.7 0.49 5.47 1.00 26.98 27.42 1375.98
Student-t 0.7, ν = 3 0.49 5.95 1.00 38.33 33.58 1876.99
Clayton 1.90 0.49 3.97 1.13 10.27 12.74 382.27
Gumbel 1.95 0.49 6.42 0.95 41.54 32.41 1764.93
Frank 5.5 0.49 4.47 1.00 12.58 12.59 362.17
Joe 2.8 0.49 6.84 0.87 44.67 32.37 1766.43

Figure 7. PDFs and CDFs of the product of two log-normal distributed random variables with six
copulas having the same Kendall coefficient.
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6. Conclusions

Determining distributions of the functions of random variables is one of the most important
problems in statistics and applied mathematics because it has wide range of applications in numerous
areas including economics, finance, risk management, science, and many other areas, especially in
modeling financial risk and derivatives. However, most studies only focus on structure for independent
variables with some common distributions of the functions for the variables. There are few studies
on determining distributions for statistical models involving dependence structure. Nonetheless,
to the best of our knowledge, the problem of determining distribution function of product for two
or more dependent random variables using copulas has not been studied. Thus, to bridge the gap
in the literature, in this paper, we develop the theory to establish the formulas of both density and
distribution functions for the product of two and more dependent and independent random variables
via copulas to capture the structure among the variables.

Because the density and distribution of the product for dependent random variables are in terms
of integrals, the forms of both density and distribution are very complicated, and, thus, it is very
difficult, if not impossible, to obtain the exact forms of the density and distribution. To circumvent the
problem, in this paper, we propose using Monte Carlo algorithm, graphical approach, and numerical
analysis to efficiently compute their complicated integrals and examine the behaviors of both density
and distribution and the changes of their shapes when parameters vary.

We illustrated our proposed approaches by using simulation and graphical approaches to study
the behavior of the distribution for the product of two log-normal random variables on several different
copulas, including Gaussian, Student-t, Clayton, Gumbel, Frank, and Joe Copulas. We found that
different types of copulas have different impact on the behaviors of distributions. For example, since
both Gaussian and Student-t copulas belong to elliptical family, their distributions of the product
behave similarly. On the other hand, because Clayton, Gumbel, Frank, and Joe copulas belong to
Archimedean family, their distributions of the product behave similarly but with impacts of different
degrees. Furthermore, we found that there are some differences on location, variance, skewness,
fatness of tail, and others when the values of the parameters vary.

In this paper, we derive formulas for both density and cumulative probability functions of the
product of n random variables for n ≥ 2. We also propose a Monte Carlo algorithm to compute both
density and cumulative probability functions. The Monte Carlo algorithm we proposed enables
academics and practitioners to obtain both density and cumulative probability functions easily.
Furthermore, we drawn some useful information on the product of two lognormal-distributed random
variables. Our results are the foundations of any further study that relies on the density and cumulative
probability functions of the product of n random variables. We note that, although the theory we
developed in our paper is not difficult to derive, as far as we know, our findings are new and there is no
study obtaining similar results as our findings. Readers may read Cherubini et al. (2004); Nelsen (2007)
for all related theories. Thus, the theory we developed in this paper is new, useful, and the contribution
of our paper is important in the literature.

Our findings are useful to academics if studying the shapes and basic measures of both density
and distributions of the product of dependent or independent random variables by using different
copulas is their interest. Because the product of dependent or independent random variables by using
different copulas are widely used in many empirical applications in economics, finance, and many
other areas, our findings are useful to practitioners and policy makers in economics, finance, and many
other areas if they need to study the shapes of both density and distribution functions for the product
of dependent or independent random variables by using different copulas.
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