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Abstract: Policymakers in developing and emerging countries are facing higher risk that is related
to natural disasters in comparison to developed ones because of persistent problem of supply-side
bottleneck for disaster insurance. Additionally, lower insurance consumption, higher disaster risk,
and high income elasticity of insurance demand have worsened the loss consequences of natural
disaster in these markets. In this context, current study for the first time argues that the supply side
bottleneck problem has its origin in peculiar pattern of disaster consumption owing to memory cues.
The study finds that relatively higher frequency of natural disasters acts as a negative memory cue
and positively impacts insurance consumption. On the other hand, a relatively lower frequency of
natural disasters adversely impacts insurance consumption in the background of variation in risk
aversion behavior. For this purpose, current study has based its work on Mullainathan (2002), which
builds its argument around memory cues.

Keywords: natural disasters; nonlife insurance consumption; developing countries; risk aversion;
memory cues

1. Introduction

The scholars on the subject of climate change have predicted that 21st century will be characterized
by more severe losses in cities than the rural areas due to increasing proximity of dwellings and
irreversible migration towards cities (Jha et al. 2012; Pelling 2012). On the similar lines, United
Nations Conference on Trade and Development (UNCTAD) has stated in paragraph 55 of Doha
Mandate—“developing countries need, inter alia, support to develop capacities that would enable
greater use of catastrophic insurance risk coverage.”

Added to it, globally over 1.7 million are killed, and 5.1 billion people are affected from 1991 to
2014 (Centre for Research on the Epidemiology of Disasters 2015). These constant warnings over the
future repercussions of natural disasters losses have been reinforcing the need to search insurance
solutions especially in developing & emerging countries (Outreville 1990; Nell and Richter 2004;
Swiss Reinsurance Company 2017). The recent pattern of natural disaster losses, and occurrences has
intensified this discussion in industry as well as in academic domain. For instance, Munich Reinsurance
Company Report (2007) estimated that the average economic losses due to natural disasters in relation
to the national income are twice as high as in developing countries when compared to the losses in
developed countries. Linnerooth-Bayer et al. (2009) found that over 95 percent of deaths and about
US$ 100 billion per annum losses occurred in developing countries only.
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The existing literature focusing on disaster insurance in developing and emerging countries has
covered merely few aspects, such as the post disaster government policies, agriculture insurance,
and micro insurance (Linnerooth-Bayer et al. 2009; Krishna 2005; Sawada and Takasaki 2017;
Fusco et al. 2018). The reason for having such a narrow academic contribution on this subject in
the context of developing and emerging countries can be attributed to policy orientation in these
countries. The policymakers and firms in most of the developing and emerging countries have held
the view that high-risk premium and low affordability creates the problem of supply side bottle-neck.
Whereas, the recent pattern on income, education, and urbanization in these countries contradicts
the widely held view of policymakers and firms on underdeveloped disaster insurance markets.
Additionally, theoretical arguments on risk aversion behavior provide us sufficient backing to believe
increased consumption of disaster insurance products in the background of rising magnitude and
frequency of natural disasters in developing and emerging countries. Nonetheless, the supply side
bottleneck problem still persists for disaster insurance covers in these countries. Therefore, there still
remains a gap that this study aims to address.

In this context, the current study argues that problem of supply side bottleneck is an outcome of
cyclic pattern exists in occurrences of natural disaster. The pattern of natural disaster acts memory
cues, which in turn increases/decreases the tendency of people to protect themselves against low
probability severe nature risks (Mullainathan 2002).

Thus, the current study is extending the work of two existing studies. The first study
is Kunreuther et al. (1978) who argue that property owners’ more likely buy disaster insurance if
their homes have been damaged in the recent past. The second one is Bjerge and Trifkovic (2018) who
have found that the past rainfall has positive impact on demand of index link weather insurance in
India. Despite, partially similar findings, these studies have provided little guidance to firms and
policymakers on which specific variable they should focus for improving disaster insurance supply.
The current study has uniquely tested the frequency of natural disasters and found that the pattern of
these frequencies is major source of supply side problem in disaster insurance markets in developing
and emerging markets.

The remaining paper is organized as follows. Section 2 surveyed the past literature on the subject
in terms of its contribution and the gap. Section 3 provides details of the theoretical framework used
in the current study. Section 4 discusses the data and estimation methods. Section 5 discusses the
estimation results. Section 6 is about conclusion, limitation, and future research direction.

2. Literature Review

The previously available literature on the subject, in the context of developing countries has
focused mainly on weather insurance demand, crop insurance, government policies, and economic
vulnerability of population living in rural and coastal areas (Mirza 2003; Toya and Skidmore 2007;
Ghesquiere and Mahul 2007; Levine et al. 2000; Liu and Neilson 2006; Linnerooth-Bayer et al. 2009;
Elango and Jones 2011; Hellin et al. 2017; Sawada and Takasaki 2017; Bjerge and Trifkovic 2018;
Yuzva et al. 2018; Klomp and Hoogezand 2018). In the context, Linnerooth-Bayer et al. (2009) have
provided a comprehensive discussion over the need of disaster insurance markets in developing
countries. Mirza (2003) has focused on model development for risk capacities in developing countries.
Toya and Skidmore (2007) have presented comparative analysis. They find that precautionary
measures for disaster risk are less prevalent in the countries that have higher educational levels,
more open economies, sound financial systems, and smaller governmentsGhesquiere and Mahul (2007)
show that sovereign insurance should only focus on short term liquidity. Whereas, Hellin et al. (2017)
have focused on bundling of weather insurance products with agriculture finance, and agriculture
inputs to expand the insurance consumption. Elango and Jones (2011) have focused on the factors
that affect insurance demand. In this context, although Bjerge and Trifkovic (2018) have found that
the past rainfall has positive impact on the demand of index link weather insurance in India. But,
Yuzva et al. (2018) have shown that due to basis risk, the demand for index link weather insurance
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remains low in low income group countries. Klomp and Hoogezand (2018) have studied the impact of
natural disasters on the agriculture protection and found significant positive causal relation which
again supports earlier research findings. Sawada and Takasaki (2017) explained the complimentary
nature of three actors namely, government, insurance markets, and local communities.

However, extant literature in the context of developed countries on disaster insurance has
covered broad spectrum of variables in empirical research framework, such as climate change,
economic impact of disaster losses, charity, and vulnerability of people to natural disasters risk,
compulsory insurance, and infrastructure deficiencies charity hazard (post disaster aid, low interest
loans, and tax exemption during the rehabilitation and restoration), income, risk perception, price
elasticity of flood insurance, education, etc. (Anderson 1974; Kunreuther et al. 1978; Kunreuther 1984;
Lewis and Nickerson 1989; Kunreuther 1996; Levmore 1996; Pasterick 1998; Browne and Hoyt 2000;
Kriesel and Landry 2004; Lai and Hsieh 2007; Pielke et al. 2008; Barthel and Neumayer 2012;
Pešta and Okhrin 2014; Kousky et al. 2018; Luke et al. 2018).

Therefore, on the one hand, the current study is trying to find the type of insurance solution in
general. On other hand, it is making an effort to find a solution for the supply-side problem that persists
in developing and emerging countries. Therefore, this paper fills crucial gap in existing literature.

3. Theoretical Framework

The theoretical framework for the current study has been taken from two groups of theories,
namely risk aversion and memory cues (Kahneman and Tversky 1979; Tversky and Kahneman 1992;
Mullainathan 2002). We are using these theories for the first time to study insurance solution against
natural disasters.

The earlier literature in the domain of natural disaster insurance consumption has majorly focused
on the theoretical framework of the Samaritan’s Dilemma which says that charity has dual effect.
In some context, it can improve situation while in other context, it can worsen some situations.
The argument of this theory is that outcome of charity depends upon the way people use it and not
on the charity itself (Buchanan 1975; Raschky and Weck-Hannemann 2007). The some of the reasons
for such theoretical focus of earlier works can be attributed to the previous policy orientation of
governments in these countries.

Different from the previous literature, the current study has used the frameworks of Tversky and
Tversky and Kahneman (1992) and Mullainathan (2002) because of the following reasons:

(i) unlike previous empirical work in developing and emerging economies on natural disasters
insurance, the current study is focusing on overall disaster insurance markets, which are barely
studied in previous studies;

(ii) the current study has drawn its logic from Prospect Theory (Tversky and Kahneman 1992).
The argument of current study is based on weighing function and value functions (Kahneman
and Tversky 1979). This framework is better than earlier deterministic theoretical arguments
because insurance buying behavior is an outcome of perceived risk; and,

(iii) both frequency and magnitude (losses) of natural disaster are cyclic in nature (see Figures 1
and 2), which has provided authors an opportunity to test the impact of memory on risk aversion
behavior (Mullainathan 2002).
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Figure 1. Cont.
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Figure 1. Average Cycle Period is shown in above figures (source: Author created based on 
International Disaster Database—Centre for Research on the Epidemiology of Disasters). Note: In the 
above figures; (a–h) authors show annual frequency of natural disasters on y axis. Years are plotted 
on X axis. In this figure author showed that average period for one complete cycle is nearly five 
years.  

 
Figure 2. This Figure Shows that average loss per event is increasing every year. Note: In the Figure 
2, Y axis shows per annum average loss, whereas, years are depicted on X axis (Source: Author 
created based on EM-Dat database). 

Hypothesis Development: In Cumulative Prospect Theory (Tversky and Kahneman 1992), risk 
aversion and risk seeking are determined by the joint effect of value function and capacity function. 
Whereas, earlier theories on risk aversion had used probabilities as they are given. This joint analysis 
provides authors an opportunity to explore disaster insurance in new light. In the present context, 
we are focusing on Reflection Effect discussed in the Cumulative Prospect Theory (Tversky and 
Kahneman 1992). 

Let us assume that x represents the large loss with very low probability p, whereas y represents 
certainty equivalent, i.e., , < 0. 

Also, v represents value function and  represents decision weight function. 
As per Cumulative Prospect Theory (Tversky and Kahneman 1992), if p is near zero (which is 

similar in case of natural disasters), we can write:  ( ) >  (1)

As v is convex for losses, we can write:  
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Figure 1. Average Cycle Period is shown in above figures (source: Author created based on
International Disaster Database—Centre for Research on the Epidemiology of Disasters). Note: In the
above figures; (a–h) authors show annual frequency of natural disasters on y axis. Years are plotted on
X axis. In this figure author showed that average period for one complete cycle is nearly five years.
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Figure 2. This Figure Shows that average loss per event is increasing every year. Note: In the Figure 2,
Y axis shows per annum average loss, whereas, years are depicted on X axis (Source: Author created
based on EM-Dat database).

Hypothesis Development: In Cumulative Prospect Theory (Tversky and Kahneman 1992), risk
aversion and risk seeking are determined by the joint effect of value function and capacity function.
Whereas, earlier theories on risk aversion had used probabilities as they are given. This joint analysis
provides authors an opportunity to explore disaster insurance in new light. In the present context, we are
focusing on Reflection Effect discussed in the Cumulative Prospect Theory (Tversky and Kahneman 1992).

Let us assume that x represents the large loss with very low probability p, whereas y represents
certainty equivalent, i.e., x, y < 0.

Also, v represents value function and π represents decision weight function.
As per Cumulative Prospect Theory (Tversky and Kahneman 1992), if p is near zero (which is

similar in case of natural disasters), we can write:

π−(p) > p (1)

As v is convex for losses, we can write:

π−(p) > p (2)
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Cumulative Prospect Theory also suggests that people are more risk averse over small probability
losses i.e., they prefer sure small losses over uncertain large losses (Reflection Effect). Therefore,
we can write:

v(x)× π−(p) < v(y) (3)

Though, the earlier theoretical evidences suggest that insurance purchase is often prevalent in
mid-range risk probabilities but, later on Cumulative Prospect Theory presented its argument that
people tend to become more risk averse for the losses of low probabilities (Kunreuther et al. 1978;
Slovic et al. 1977; Tversky and Kahneman 1992). Under this theoretical argument, we can support
our hypothesis that people have greater tendency to buy low probability insurance (Tversky and
Kahneman 1992). However, the argument of Cumulative Prospect Theory is not sufficient to study
the context of disaster insurance consumption because in current study there is time lapse between
the occurrences of natural disasters and insurance buying. Therefore, apart from the argument that is
proposed in Equation (3), we need to incorporate the memory effect. To assimilate the role of memory,
we tested the role of memory cues in the current study.

For this purpose, we have plotted the annual frequency of natural disasters on Y axis, and years
on X axis in various sub parts of Figure 1. Similarly, we have also plotted annual average loss per
disaster on Y axis, and years on X axis in Figure 2. The eight sub-parts of Figure 1 shows that there is a
cyclic behavior in annual frequencies of natural disasters. Additionally, Figure 1 shows that average
period of one complete cycle is converging to four to five years. In context of disaster insurance
Kunreuther et al. (1978) and (MacDonald et al. 1987), argued in one of their qualitative findings that
property owners are more likely buy disaster insurance if their homes have been damaged in the recent
past by a disaster. Mullainathan (2002) argues that cues help people to recall certain events. In this
context, the present study argues that frequency of extreme events acts as a memory cues that can
increase/decrease disaster insurance consumption.

We know that cyclic trend has two components namely, mean ∆µ(t) and deviations ∆σ(t) depicted
in Figure 3.

Risks 2018, 6, x FOR PEER REVIEW  6 of 17 

 

( ) >  (2)

Cumulative Prospect Theory also suggests that people are more risk averse over small 
probability losses i.e., they prefer sure small losses over uncertain large losses (Reflection Effect). 
Therefore, we can write:  ( ) × ( ) < ( )	 (3)

Though, the earlier theoretical evidences suggest that insurance purchase is often prevalent in 
mid-range risk probabilities but, later on Cumulative Prospect Theory presented its argument that 
people tend to become more risk averse for the losses of low probabilities (Kunreuther et al. 1978; 
Slovic et al. 1977; Tversky and Kahneman 1992). Under this theoretical argument, we can support 
our hypothesis that people have greater tendency to buy low probability insurance (Tversky and 
Kahneman 1992). However, the argument of Cumulative Prospect Theory is not sufficient to study 
the context of disaster insurance consumption because in current study there is time lapse between 
the occurrences of natural disasters and insurance buying. Therefore, apart from the argument that 
is proposed in Equation (3), we need to incorporate the memory effect. To assimilate the role of 
memory, we tested the role of memory cues in the current study.  

For this purpose, we have plotted the annual frequency of natural disasters on Y axis, and years 
on X axis in various sub parts of Figure 1. Similarly, we have also plotted annual average loss per 
disaster on Y axis, and years on X axis in Figure 2. The eight sub-parts of Figure 1 shows that there is 
a cyclic behavior in annual frequencies of natural disasters. Additionally, Figure 1 shows that 
average period of one complete cycle is converging to four to five years. In context of disaster 
insurance Kunreuther et al. (1978) and MacDonald et al. 1987, argued in one of their qualitative 
findings that property owners are more likely buy disaster insurance if their homes have been 
damaged in the recent past by a disaster. Mullainathan (2002) argues that cues help people to recall 
certain events. In this context, the present study argues that frequency of extreme events acts as a 
memory cues that can increase/decrease disaster insurance consumption. 

We know that cyclic trend has two components namely, mean ∆ ( ) and deviations ∆ ( ) 
depicted in Figure 3. 

 
 

 
Figure 3. Shows Components Extreme Events cycles. Note: Figure shows yearly frequency trend of 
disaster events in developing and emerging economies (Source: EM-Dat). 

However, in our analysis, we have considered only vertical components because the current 
study is intended to focus on in insurance solutions, which is possible only if outcomes are 
applicable in short term i.e., few years. Based on the outcomes of various parts of Figure 1, we can 
conclude that one cycle completes on an average in range of four to five years.  

, = + × , 	+ × , + ,  (4)

where ,  is total effect of memory cues (disaster frequency) of country i in year t. , , and ,  are the mean frequency and mean deviation of natural disaster for country i in 
year t. Whereas, ,  represents noise and a, b, and c are constants. Nevertheless, we also know from 

0

100

200

300

400

500

1970 1980 1990 2000 2010 2020

Frequency

∆ ( ) 
∆ ( ) 

Years 

A
nn

ua
l F

re
qu

en
cy

 

Figure 3. Shows Components Extreme Events cycles. Note: Figure shows yearly frequency trend of
disaster events in developing and emerging economies (Source: EM-Dat).

However, in our analysis, we have considered only vertical components because the current study
is intended to focus on in insurance solutions, which is possible only if outcomes are applicable in
short term i.e., few years. Based on the outcomes of various parts of Figure 1, we can conclude that
one cycle completes on an average in range of four to five years.

Mi,t = a + b× µi,t + c× σi,t + ei,t (4)

where Mi,t is total effect of memory cues (disaster frequency) of country i in year t.
µi,t, and σi,t are the mean frequency and mean deviation of natural disaster for country i in year t.

Whereas, ei,t represents noise and a, b, and c are constants. Nevertheless, we also know from our
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analysis in Figure 1 that average period of complete cycle is four to five years, and we have collected
nine years data for each country. Therefore, we can only calculate mean of five years frequencies.

From Equations (3) and (4)
Mi,t = F{σi,t(π

−(p)), µi,t} (5)

where E(ei,t) = 0
If ∆Mi,t = [σi,t{(π−(p)), µi,t} − σi,t+1{(π−(p)), µi,t+1}] (6)

Since here we are focusing on within the cycle c variation of frequencies, and in each year of one
complete frequency cycle, the mean frequency will remain same.

µi,t = µi,t+1

∆Mi,t = [σi,t{(π−(p))} − σi,t+1{(π−(p))}]

Now, if ∆Mi,t = +ve, it will act as positive memory cue and increase the disaster insurance
consumption. Whereas, if ∆Mi,t = −ve, acts as a negative cue and will reduce the disaster
insurance consumption.

Therefore, we have proposed following hypotheses:

Hypothesis 1 (H1). Ceteris Paribas, the mean deviation of frequency of natural disasters positively impacts
premium density.

Hypothesis 1a (H1a). Ceteris Paribas, relatively higher mean deviation of natural disaster acts as positive
memory cue and positively impacts nonlife premium density.

Hypothesis 1b (H1b). Ceteris Paribas, relatively lower mean deviation of natural disaster acts as negative
memory cue and negatively impacts nonlife premium density.

4. Data and Methodology

Similar to previous literature in the domain of nonlife, the definition of property and casualty
insurance (PCI) consumption that is used in this work is equal to the sum of the individual firm
and household annual consumption. This macroeconomic industry consumption analysis is done
assuming that, within the country, all of the individuals are homogeneous in comparison to those in
other countries. We have tested two models with a two-different-proxy-variables (secondary education
and tertiary education) for the same specification in order for the current work to more robust. For the
present study, we have gathered data from sources like Em-Dat, World Bank and, Swiss Re. The total
number of developing and emerging countries taken into the consideration for this study are 111.
However, we could find the data on our study variables only for 88 countries for the period 2006 to
2014 (sample are listed in Table A1).

The definition and list of developing countries and emerging countries are taken from World
Economic Outlook Report, April 2015. Total of nine years data starting from 2006 to 2014 has
been taken into consideration for this work. This time frame is suitable for current work, because,
during this period, the frequency of natural disasters has increased significantly in developing and
emerging countries.

Control Variables: Our primary focus of this study is to empirically test the impact of relatively
higher and lower frequencies of natural disasters on nonlife insurance consumption in order to
understand the role of memory in changing risk aversion behavior. In this work, all of the other variables
except for frequency of extreme events are taken as the control variables. Here, for the simplicity of
current models, the study has used only three control variables. These control variables are common in
all of the nonlife insurance studies in which the panel data estimation method is used (Esho et al. 2004;
Kriesel and Landry 2004; Trinh et al. 2016). For per person income, the study has used per capita GDP
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in US $ at a constant price of 2010 (Trinh et al. 2016). The current study has proxied risk exposure with
urbanization. To control the individual risk aversion, secondary and tertiary levels education are used.

In order to test the hypothesis, and, constructing the models, we have used panel data.
The advantage of using panel data is that it controls country-specific and period-specific effects
(Greene 2011), such as cyclic business fluctuations or difference in across the country culture, and risk
management practices. Thus, panel data provides more consistent, reliable, and robust results.
Additionally, panel data estimation is widely used in the domain of non-life insurance (Pešta and
Okhrin 2014; Peštová and Pešta 2017).

Since, in panel studies of nonlife insurance consumption, the problem of endogeneity is prevalent.
Therefore, we have used two techniques for estimation of this panel data study. The first technique
is OLS with dynamic panel data, and the other one is GMM with lag term and difference method to
examine the dynamic adjustments in the PCI consumption equation (Peštová and Pešta 2015; Peštová
and Pešta 2017).

To deal with the non-stationarity issue, we have tested panel unit root test and found that four
of the variables have a unit root. However, in our final form of study variable i.e., mean deviation
from the average of five-year period (period of complete cycle), there is not a non-stationarity issue.
Within the OLS panel data estimation, there are three types of estimation models, namely pooled
effect, fixed effect, and random effects. To find out the most appropriate model among three, we have
conducted the Wald Test as well as the Lagrange Multiplier (LM) test to check the relative efficiency of
heterogeneous fixed and random effect estimation against the estimation of homogeneous pooled OLS.
The values of LM chi-square, the Wald F-statistics, and Hausman specification test are summarized
in Appendix B.1. The test in most of the models found the computed F value and found it to be
statistically significant at (one tailed). We infer from these results that the null hypothesis of zero
correlation between the observable country specific effects and the explanatory variables in the model
can be rejected. In this case, the fixed effect model can still derive consistent estimates but the random
effect model cannot; therefore, we used a fixed effect model in the current study. For random effect
study, data need be drawn from a large population (Baltagi and Li 1995).

The Specification of Model for Estimation Methods:
From (3) and (6)

v(y) > ∆Mi,t (7)

Provided ∆Mi,t � 0. Else, people will not buy disaster insurance cover.
Now if yi,t is nonlife insurance consumption against disaster, then we can write:

yi,t = αyi,t−1 + βiXi,t + γi Mi,t + µi + εi,t (8)

Here, the subscript i denotes the number of countries i = 1, 2, 3, . . . , 88; and subscript t denotes the
years t = 1, 2, 3, . . . , 9 (our data interval is 2006–2014); yi,t denotes premium density; αi denotes country
specific intercepts, β1, β2, β3, . . . and γ1, γ2, γ3, . . . are country specific slopes parameters; and εi,t is
the random error terms. yi,t is dependent variable i.e., premium density and, yi,t−1 is lag dependent
variable. Xi,t are column vectors for other variables such as education, income, and urbanization.

Estimation Method: LSDV with the small time period (T < 30) produces at least 20% biased
estimates (Judson and Owen 1999). Therefore, we used GMM system estimator.

Since in the simple OLS model with dynamic term, there is an issue of endogeneity as the same
error term εi,t enters the equation for every observation in group i (Greene 2011, p. 308). Therefore,
difference estimator method is the method that can address the issue.

This method uses first difference of Equation (8)

(yi,t − yi,t−1) = α (yi,t−1 − yi,t−2) + β2 (Xi,t − xi,t−2) + (εi,t − εi,t−1) (9)

Moment generating condition E[ki,t−s(∆εi,t)] = 0 (where s ≥ 2; t = 3, 4, 5, . . . T; ki,t = (xi,t, yi,t).
However, this method may also have biased and imprecise results in case the variance of

permanent effects increases relative to the transitory shocks (Blundell and Bond 1999). Therefore,
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independent variables and country specific correlation is time invariant, results in additional moment
conditions such that

E[(xi,t, yi,t)(εi,t + ui,t)] = 0 (s = 1; t = 3, 4, . . . , T; ki,t = (xi,t, yi,t)) (10)

where t = 3 and s = 1.
In this r, dependent variable is premium density = Total Premium (nonlife) consumed in

country/Total population in country. control independent variables are GDP/capita, secondary
education, tertiary education, and urbanization. main variable is mean deviation of disaster frequency
with five years mean.

This additional condition along with difference estimator is known as a GMM system estimator
and this provides better estimation results. The GMM dynamic system estimator is developed by
Arellano and Bond (1991).

The consistency of GMM depends upon the number of assumptions, specifically the assumption
of serial correlation in error terms and validity of instruments. Therefore, along with model results,
diagnostic results have also been provided.

5. Result and Discussion

Tables 1 and 2 provide panel data results. There are two regression models in each table. Table 1
has OLS estimation results. Whereas, Table 2 has GMM estimation results. We have used two proxies
for the individual tendency of risk aversion used in earlier studies i.e., secondary enrollment and
tertiary enrollment. However, we have not used a third widely used proxy i.e., uncertainty avoidance
index. It is not included because more than one country has the same index value, and at the same time,
there is only one value for all the years. This in turn would limit our ability to include lag independent
variables. Additionally, it creates problem of singular matrix. Regression model 1 in Table 1 shows the
dynamic panel results. In model 1, the lag term of premium density and GDP per capita at the 2010
constant price is significant at the 1% significance level. Other than these, no other control variable is
found to be significant.

Table 1. Determinant of property and casualty insurance (PCI) with frequency of extreme events as
memory cues: panel data results (OLS).

IDV Model 1 Model 2

Mean Dev Frequency 0.0513 −0.0243
(0.841) (0.916)

Mean Dev Frequency (−1) −0.5372 ** −0.3795 *
(0.0215) (0.0957)

Mean Dev Frequency (−2) 0.1638 0.08770
(0.483) (0.712)

Mean Dev Frequency (−3) 0.4707 ** 0.3434 *
(0.028) (0.088)

Secondary Education −0.0852
(0.575)

Tertiary Education 10.6186
(0.335)

GDP/Capita 0.00432 *** 0.0036 ***
(0.000) (0.000)

Urbanization
0.14985 0.1245
(0.701) (0.934)

Premium Density (−1) 0.6511 *** 0.6648 ***
(0.000) (0.000)

Constant
17.34948 −8.4705
(0.647) (0.847)

Summary Statistics
Number of Countries 63 62

Number of Observations 207 252
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Table 1. Cont.

IDV Model 1 Model 2

F Statistics 0.000 *** 0.000 ***
ADJ R-Square 0.9776 0.9821

Note: p-values are given in the brackets. *, ** & *** indicate significance at 10%, 5% & 1% respectively. In this panel
data analysis stationarity is tested with the help of unit root tests for all the variables as group and as individual
variables. The test found that secondary education, tertiary education, has no unit root. While, the occurrence of
natural disasters has unit root. Therefore, we used mean deviation of frequency that is stationary.

Similarly, in model 2 of Table 1, other than GDP at 2010 constant prices and lag term of premium
density, no other term is found to be significant. The both the terms are significant at 1% level.

In our regression model 1, and 2, we have tested four terms i.e., level term and three lag terms of
main variables of our hypothesis. In model 1, one-year lag term, and three years lag term of mean
deviation of frequency are found significant at the 5% significance level. In model 2 of Table 1, we have
found that one-year lag term and three years lag term of mean deviations of frequency variable are
found to be significant at the 10% significance level.

In Table 2, GMM of two model outcomes are presented. In model 1 of Table 2, the lag term of
premium density, and GDP at 2010 constant prices are found to be significant at the 10% significance
level. Other than these, no other control variable is found to be significant. However, in terms of our
main variable, there are certain different results in model 1. Except the level term of mean deviation
frequency, one year, two year, and three-year lag terms are found to be significant at the 10%, 5%, and
10% significance levels. However, other than three-year lag term, other two terms are negative in sign.

Table 2. Determinant of PCI with frequency of extreme events as memory cues: panel data
results (GMM).

IDV Model 1 Model 2

Mean Dev Frequency −1.1241 −0.9322
(0.422) (0.101)

Mean Dev Frequency (−1) −4.3020 * −3.0110 ***
(0.085) (0.006)

Mean Dev Frequency (−2) −3.8986 * −3.061 ***
(0.0167) (0.004)

Mean Dev Frequency (−3) 2.0296 * 1.9204 ***
(0.083) (0.000)

Secondary Education −0.3125
(0.467)

Tertiary Education 4.2865
(0.931)

GDP/Capita 0.006 * 0.0052 ***
(0.054) (0.000)

Urbanization
−22.8987 5.3336

(0.374) (0.642)

Premium Density (−1) 0.3520 ** 0.3589 ***
(0.058) (0.001)

Total Observation 204 190
Cross Section 56 54

Wald Joint Test (p-value) 0.000 *** 0.000 ***
J-Statistics 0.80513 0.577882

AR (1) 0.3116 0.000 ***
AR (2) 0.3438 0.2517

Note: p-values are given in the brackets. *, ** & *** indicate significance at 10%, 5% & 1% respectively. In this panel
data analysis stationarity is tested with the help of unit root tests for all the variables as group and as individual
variables. The test found that secondary education, tertiary education, has no unit root, while, the occurrence
of natural disasters has unit root. Therefore, we used mean deviation of frequency that is stationary. The GMM
estimators depends upon assumption of serial correlation of errors and validity of instruments. A summary of
diagnostic test is also presented here.
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In this table, the dependent variable is premium density = Total Premium (nonlife) consumed
in country/Total population in country. Control Independent Variables are GDP/capita, secondary
education, tertiary education, and urbanization. Main Variable is mean deviation of disaster frequency
with five years mean.

In model 2 of Table 2, other than lag term of the dependent variable i.e., premium density and
GDP, no other control variable is found to be significant. These two terms are found to be significant at
the 1% significance level, which is higher than the significance level of model 2 in Table 1.

In terms of main variable level term all the lag terms are significant at 1% significance levels with
similar signs.

In all these four models, neither primary nor secondary education is found significant. This may
be due to relatively higher risk aversion tendency that is caused by natural disasters. Similarly,
urbanization is also not found to be significant due to the fact that natural disasters impact rural and
urban population alike.

Coming to the outcomes of our main hypothesis, except third year lag term, other lag terms
are either not significant or significant with negative magnitude. Therefore, the current study failed
to accept our first hypothesis directly. However, the study has further put the element of memory
to test the hypotheses i.e., effect of memory. Having considered memory element, we found our
hypothesis true in the current context. Here, every third year, lag term produces a positive impact
on insurance consumption. Whereas, level term is producing a negative effect on the insurance
consumption. The negative impact of level term indicates that year we are considering here level
term has relatively lower frequency in comparison to previous years. Whereas, the positive impact
of third year lag term shows that, in our study, three year back, average frequency of disaster events
was higher than the previous years. This in turn provides an extension in the findings of risk aversion
behavior. This study has proposed the similar impact of memory on risk aversion behavior at initial
phase of current study. The current study has argued that positive memory cues positively impact
risk aversion behavior, whereas relatively lower frequency acts as a deterrent to recall negative event
and it adversely impacts insurance consumption. Both hypotheses are proved true in the context of
developing and emerging countries.

6. Conclusions

In developing countries, there is low insurance consumption. However, the current study found
that supply side bottleneck for disaster insurance consumption is not the outcome of overall low
insurance consumption. The current study finds that supply side bottleneck has its origin in demand
pattern. It further adds that, due to cyclic nature of demand pattern of disaster insurance, markets
do not function well (see it in Figure 4). Figure 5 shows that at some point of time at t = 1 (we can
assume that it is second period immediately following starting point, t = 0) if, there is demand D1 and
supply S1. Now, if a cyclic pattern exists, there may be two cases, namely relatively lower frequency
and relatively high frequency. In the case that the disaster frequency is not relatively high, people will
demand less. However, it is difficult for insurance firms to maintain same price. This happens due to
the reduced diversification opportunities and uncertainty in the markets. Therefore, firms will increase
price. This in turn reduces price elasticity of supply (shown in Figures 4 and 5). Inappropriate increases
in risk premium further puts down side pressure on disaster insurance demand (though, the consumer
cannot observe reduced diversification opportunities for firms, but he can observe increased risk
premium). Now, if at time t = 1, there is relatively higher frequency, demand will increase, but there are
chances of demand being not reached up to the previous levels (t = 0) because of new price levels, i.e.,
D2 < D0. In this way, in every cycle, risk premium will increase and demand will decrease. This vicious
cycle will continue until the supply of disaster risk cover stops.
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Appendix A

Table A1. List of developing and emerging economies.

Albania Ecuador Mali Russia
Algeria Egypt Mauritania Rwanda
Angola El Salvador Mexico Saudi Arabia

Argentina Ethiopia Moldova Senegal
Azerbaijan Gabon Mongolia Serbia Montenegro
Bahamas Gambia Montenegro Sierra Leone
Bahrain Georgia Morocco South Africa

Bangladesh Ghana Mozambique Sri Lanka
Benin Guatemala Namibia Syrian Arab Republic

Bolivia Guinea Nepal Tanzania
Bosnia and Herzegovina Honduras Nicaragua Thailand

Brazil Hungary Niger Togo
Burkina Faso India Nigeria Tunisia

Burundi Iran Oman Turkey
Cambodia Iraq Pakistan Uganda
Cameroon Jordan Panama Ukraine

Central African Republic Kazakhstan Paraguay United Arab Emirates
China Kenya Peru Uzbekistan

Colombia Lebanon Philippines Venezuela
Democratic Republic of the Congo Libya Poland Viet Nam

Costa Rica Malawi Qatar Zambia
Dominican Republic Malaysia Romania Zimbabwe

Table A2. Data definitions.

Variable Description Source

PCI Ratio of property casualty gross premium to population in US $ Swiss Re

GDP/Capita GDP per capita in constant 2010 US $ World Bank

Urbanization The portion of population living in urban areas World Bank

Secondary Education The portion of population enrolled in secondary education
within prospective age group World Bank

Tertiary Education The portion of population enrolled in tertiary education within
prospective age group World Bank

Frequency Annual frequency of natural disasters EM-DAT

Table A3. Data sources.

Data Sources Publishers

Premium Density International Insurance Fact Book (2007–2017) Axco Insurance Information
Services/Swiss Re

GDP World Bank national accounts data, and OECD
National Accounts data files The World Bank

Secondary Level Education United Nations Educational, Scientific and
Cultural Organization Statistical Year Book UNESCO

Third Level Education United Nation Educational, Scientific and
Cultural Organization Statistical Year Book UNESCO

Urbanization World Tables The World Bank

Frequency EM-DAT Centre For Research on the
Epidemiology of Disaster
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Table A4. Summary statistics.

Measure Premium
Density

Per Capita
GDP

Secondary
Education

Tertiary
Education Urbanization Annual Frequency

(Natural Disaster)

Mean 55.18266 5720.561 70.55974 1.058573 27.68619 6.222951
Median 23.73345 3264.450 79.33659 1.040420 25.79282 3.000000

Maximum 716.3261 96732.53 120.2947 6.315640 63.87144 64.00000
Minimum 0.000000 0.000000 10.73256 0.269630 3.021368 0.000000
Std. Dev. 79.35052 9424.676 27.05183 0.633586 13.94163 8.776246

Observations 305 305 305 305 305 305

Table A5. Correlation table.

Variables Per Capita
GDP

Secondary
Education

Tertiary
Education Urbanization Annual

Frequency

Per Capita GDP 1
Secondary Education 0.411056 1

Tertiary Education 0.865859 0.520748 1
Urbanization −0.098128 −0.273754 −0.054524 1

Annual Frequency −0.065811 0.074825 −0.070033 −0.371366 1

Appendix B

Appendix B.1

Table A6. Diagnostic tests for Table 1.

Test Model 1 Model 2 Model 3

Wald Test F(62,196) = 3.0274 (0.000) F(61,192) = 2.9097 (0.000) Fixed Effect Model is superior to
Pooled OLS

LM Test χ2
(62) = 179.3582 (0.000) χ2

(61) = 171.5347 (0.000) Random Effect Model is superior to
Pooled OLS

Hausman Test χ2
(8) = 89.7502 (0.000) χ2

(8) = 72.6517 (0.000) Fixed Effect Model is superior to
Random Effect Model

Jaraque Bera JB = 2116.682 (0.000) JB = 2449.586 (0.000) Normality is rejected in error term

Ramsey’s Test F(8195) = 1.809 (0.131) F(8195) = 1.792 (0.213) No, misspecification cannot be
rejected

Note: In brackets there are p-values.

Appendix B.2

Let us assume that p is actual probability of any loss x.
Then insurance company will charge premium y = (p + ε) × x. where ε includes various

administrative expenses. It is used in a specific way in above expression to keep the discussion simple.

y = (p + ε)× x ⇔ p =
y
x
− ε (A1)

From Cumulative Prospect Theory, we know p is very small probability,

π−(p) > p (A2)

From convexity of losses assumption and Equation (A1), we can write,

v(y)
v(x)

>
y
x
> p (A3)

Again, we know that insurance sale can happen only when,

y
x
> π−(p) (A4)
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From Equations (A3) and (A4):

v(y)
v(x)

> π−(p)⇔ v(y) > π−(p)× v(x)
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