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Abstract: In both financial theory and practice, Value-at-risk (VaR) has become the predominant risk
measure in the last two decades. Nevertheless, there is a lively and controverse on-going discussion
about possible alternatives. Against this background, our first objective is to provide a current
overview of related competitors with the focus on credit risk management which includes definition,
references, striking properties and classification. The second part is dedicated to the measurement
of risk concentrations of credit portfolios. Typically, credit portfolio models are used to calculate
the overall risk (measure) of a portfolio. Subsequently, Euler’s allocation scheme is applied to break
the portfolio risk down to single counterparties (or different subportfolios) in order to identify risk
concentrations. We first carry together the Euler formulae for the risk measures under consideration.
In two cases (Median Shortfall and Range-VaR), explicit formulae are presented for the first time.
Afterwards, we present a comprehensive study for a benchmark portfolio according to Duellmann
and Masschelein (2007) and nine different risk measures in conjunction with the Euler allocation. It is
empirically shown that—in principle—all risk measures are capable of identifying both sectoral and
single-name concentration. However, both complexity of IT implementation and sensitivity of the
risk figures w.r.t. changes of portfolio quality vary across the specific risk measures.

Keywords: VaR; expected shortfall; median shortfall; lambda VaR; range VaR; entropic VaR;
expectile VaR; glue VaR; Wang distortion; risk measures based on benchmark loss distributions

1. Introduction and Motivation

The focus of this contribution is on credit risk being one of the most important risk types in the
classical banking industry. Consequently, banks are urged from the supervisory authorities to reserve
a certain amount of capital to cover unexpected losses from credit risk. Typically, the unexpected
loss of a credit portfolio is defined as the difference between a high quantile of the portfolio loss
distribution (the so-called Value-at-Risk, briefly VaR) and the expected losses, which in turn are already
been included in the customers’ credit spread at the conclusion of the deal. Due to the complex and
nonlinear characteristic of the credit portfolio, the calculation of the portfolio loss distribution is usually
performed with a credit portfolio model (details are provided in Section 2). Afterwards, the overall
(portfolio) Value-at-Risk can be determined and the capital calculation step is completed. In the second
step, the so-called capital allocation step, the unexpected loss of the portfolio is broken down to an obligor
or transaction level in order to identify the essential/relevant risk drivers for the bank’s portfolio.
The standard allocation scheme in credit risk is the so-called Euler allocation—see, for instance,
Tasche (2004).
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Against this background, the contribution of this work is threefold: firstly, we review several
possible alternatives to or generalizations of the popular VaR concept which have been suggested
in the recent literature in order to address its shortcomings (i.e., not being sub-additive) or to tackle
new requirements (i.e., elicitability). For instance, the Lambda VaR introduced by Fritteli et al. (2014),
the Entropic VaR of Ahmadi-Javid (2011), the Range VaR advocated by Cont et al. (2010) or the Glue
VaR which was introduced by Belles-Sampera et al. (2014a). Secondly, Section 4 is dedicated to the
concept and implementation of the Euler allocation scheme for the alternative risk measures discussed
before. In the case of Median Shortfall and Range-VaR, new Euler allocation formulas were derived.
Thirdly, we empirically illustrate how risk contributions and hence risk concentrations behave across
the risk measures if sector dependence and counterparty dependence increases for a hypothetical
credit portfolio from Duellmann and Masschelein (2007). Section 6 provides conclusions.

2. Credit Risk and Credit Portfolio Modeling

In a narrow sense1 and roughly speaking, credit risk comprises the risk of losses from a
counterparty’s default, i.e., by failing to repay principal, interest or provision in a timely manner.
More formally and assuming that the credit portfolio consists of N counterparties, the total (or overall)
portfolio loss LP reads as

N

∑
i=1

Li =
N

∑
i=1

EADi · LGDi · 1PDi , (1)

where EADi denotes the outstanding exposure at default for counterparty i, PDi the probability of
default for the given time horizon (here one year) of counterparty i and LGDi the loss given default
expressed as a percentage of EADi. For reasons of simplicity, we assume that EADi and LGDi are
deterministic and, therefore, the portfolio loss variable LP essentially reduces to the sum of dependent
indicator variables, which is usually determined with a credit portfolio risk model2. Very common
industry models are CreditRisk+ by CSFP (1997) and CreditPortfolioView from McKinsey (1999), and,
as representatives of so-called structural model, CreditMetrics (see Gupton et al. (1997) and KMV
(see Kealhofer and Bohn (2001))). Except for CreditRisk+, where the default indicator is replaced by a
Poisson variable in order to force an analytic solution, all models rely on crude Monte Carlo simulation
technique in order to approximate the portfolio loss distribution. Furthermore, the models differ in
the specification of the default model and how the dependence structure between the counterparties
(represented by the indicator variable) is established.

Within this work, the focus is on a structural model of type CreditMetrics (dating back to
Merton (1974)), where the default model works as follows: the default of obligor i ∈ {1 . . . , N}
occurs when its creditworthiness Ai (treated as a latent variable) falls below a pre-specified threshold
τi, i.e., Ai ≤ τi. In order to reduce complexity and to handle large portfolios, so-called multi-factor
models became the industry standard. Here, the creditworthiness (sometimes also termed as asset
value) of an individual borrower i is defined as

Ai = RT
i S +

√
(1− RT

i ΣRi)ei. (2)

Consequently, Ai is driven by a systematic term RT
i S and an idiosyncratic term

√
(1− RT

i ΣRi)ei.
In the standard setting, the random vector S is assumed to follow a multivariate normal distribution
N(0, Σ), and e1, . . . , eN are presumed to be independent identical standard-normal distributed variables.
Furthermore, we assume that e1, . . . , eN are independent from S. The vector RT

i describes the sensitivity

1 In a broader sense, losses may also arise from rating migrations if the rating of the counterparty changes; see, for instance,
Tsaig et al. (2011).

2 Eckert et al. (2016) discuss a credit portfolio framework that allows for dependence between PD, LGD and EAD; see also
Kaposty et al. (2017) and Farinelli and Shkolnikov (2012).
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of the creditworthiness of counterparty i to the systematic factors bundled in S. Consequently,
A = (A1, . . . , AN) follow a multivariate Gaussian distribution and the default threshold can be
calculated as τi = Φ−1(PDi), where the PDi is an exogenous input parameter derived from the
bank’s rating tool. Once having specified the relevant factors for the underlying credit portfolio,3

the unknown parameters of the factor model need to be estimated for a given default data set (calibration
step) (see, for instance, Frye (2008)). Dorfleitner et al. (2012) deal with specification risk and calibration
effects of a multifactor credit portfolio model, whereas Pfeuffer et al. (2018) provide a detailed
simulation study on different estimation methods. For a discussion of non-Gaussian dependence
structures in terms of copulas, we refer to Jakob and Fischer (2014) and Fischer and Jakob (2015),
or with focus on vine copulas to the work of Geidosch and Fischer (2016). Jovan and Ahčan (2017)
and Hainaut and Colwell (2016) discuss alternative processes driving the creditworthiness of the
counterparties.

Finally, the portfolio loss distribution can be derived numerically using Monte Carlo (MC)
simulation, which is drawing multivariate Gaussian samples and evaluating Equation (2) in
combination with (1) for pre-specified thresholds τi.4 By construction, MC methods mimic a large
number m of (simulated) future portfolio losses l1, . . . , lm from which the empirical (discrete) cdf
(0, F̂0), . . . (tm, F̂m) finally results. The loss distribution itself forms the basis to derive the economic
capital (ECAP) which has to be withdrawn to absorb unexpected credit losses of a loan portfolio.
Forced by regulation, the industry standard to calculate ECAP is given by the α-quantile of the portfolio
loss distribution for large α (so-called Value-at-Risk, VaRα) reduced by the expected loss (EL) of the
portfolio. Noting that the one-year EL follows directly from Equation (1), the estimation of ECAP boils
down to the estimation of the Value-at-Risk from a given portfolio loss distribution in the end.5

In general, non-parametric, parametric or semi-parametric procedures could be applied to derive
VaR-estimators for a given quantile (see, for instance, Nadarajah (2016) who provides a comprehensive
overview on possible estimation methods). For example, a simple non-parametric estimator of the
α-quantile is given by the [N × α]-largest observation of the simulated portfolio losses. Within a
parametric setting, we assume that the portfolio losses had been generated by a known probability
distribution. In case of a log-normal distribution with parameter m and s—estimated from the
simulated loss data—the parametric VaR-estimator admits the following form

V̂aRα = exp(m + sΦ−1(α)).

The semi-parametric VaR estimator can be motivated by the results of the extremal value theory,
where it was established that the distribution above a high threshold u can be approximated by a
generalized Pareto distribution GPD(β, ξ) (see Lucas et al. (2002) or Lucas et al. (2003))). Let m denote
the number of total observations and mu denotes the number of observations above the threshold u.
Then, the semi-parametric estimator admits the following form (assuming that the observation below
the threshold are modelled by their empirical cumulative distribution function):

V̂aRα = u +
β̂

ξ̂

(
m
mu

(1− α)ξ̂ − 1
)

.

3 Typically, counterparties are assigned to predefined industry and/or country sectors.
4 A technical implementation (see, in particular, Algorithm 1 from Jakob and Fischer (2016)) can be found in the R package

GCPM, which was used to generate the loss distribution for the hypothetical portfolios in the empirical part.
5 If the confidence level is high and losses from the tail of the distribution are of special interest, Importance Sampling (IS)

might came to application in order to increase the speed of the calculation. With IS, the future economic scenarios are not
generated randomly, but the “bad” scenarios have a higher chance of being selected than the “good” scenarios and the bias
that is thus introduced is corrected later, see Glassermann (2005), Glassermann and Li (2005) or Chen et al. (2017).
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Within this paper, estimators for the VaR and for related risk measures can be assigned to the
non-parametric class.

3. Risk Measures beyond VaR: A Comparative Analysis

In this section, we provide a comprehensive review of recently suggested risk measures
(beyond VaR) together with their key properties (from a financial, statistical and/or theoretical
perspective). For this purpose, a risk measure in this paper is defined as usually as a mapping
from the space of positive random variables or probability distributions to the real numbers in order to
quantify the amount of capital that a company has to reserve against unexpected losses.

Without any doubt, VaR has established as industry standard. It is defined for a given confidence
level α ∈ (0, 1], say α > 0.99, as the left α-quantile of L6:

VaRα := q−α (L) = inf {l ∈ R : FL(l) ≥ α} .

The popularity of VaR in the financial industry has started with the publication of RiskMetrics
developed by JP Morgan. These days, VaR is widely used in theory and practice because of its central
importance in the Basel II- and Basel III-regulatory, its intuitive interpretation, its easy implementation,
its backtestability and its robustness property. On the other hand, there are several drawbacks like
the lack of subadditivity and the fact that it completely ignores the severity of losses in the tail of a
loss distribution.

3.1. Desirable Requirements to Risk Measures

Nowadays, there is a lively discussion about the properties that a meaningful risk measure should
satisfy. A milestone in this context was set by Artzner et al. (1999) who postulate four theoretical
properties for a risk measure:

1. monotonicity: ρ (L1) ≤ ρ (L2) ∀L1, L2 with L1 ≤ L2,
2. cash invariance: ρ (L− a) = ρ (L)− a for a ∈ R,
3. positive homogeneity: ρ (cL) = cρ (L) for c ≥ 0,
4. subadditivity: ρ (L1 + L2) ≤ ρ (L1) + ρ (L2).

Risk measures satisfying all four properties are said to be coherent. Risk measures which satisfy
only monotonicity and cash invariance are said to belong to the class of monetary risk measures
which is regarded by Föllmer and Schied (2011) as minimal requirement to interpret risk measures as
capital reserve against unexpected losses. This is due to the fact that monotonicity is a very natural
property and, for cash invariant risk, measures the equation ρ(L − ρ(L)) = 0 holds. In addition,
the idea that diversification reduces the total risk is a relevant factor for quantifying the capital needs
in a risky portfolio. For subadditive risk measures, there is always a positive diversification factor
D(L) = ∑m

i=1 ρ(Li)− ρ (∑m
i=1 Li) ≥ 0. The positive homogeneity avoids changes with respect to the

unit of money which is used and implies a linear dependence between the size of the loss L and its risk
ρ[L]. This can be seen very critical for large multipliers c ≥ 0 because one might expect concentration
and liquidity risk which can be translated in terms of risk measures as ρ(cL) > cρ(L). This inequality
is not fulfilled for coherent risk measures due to their subadditivity.

To overcome this criticism, the class of convex risk measures was introduced. Every risk measure
which is monotone, cash invariant and convex is called a convex risk measure:

5. convex: ρ (cL1 + (1− c)L2) ≤ cρ (L1) + (1− c)ρ (L2) for c ≥ 0.

These discussions of diversification can be extended by the notion of comonotonic additivity
which describes the additivity of a risk measure for perfect positive dependent random losses:

6 For a multivariate extensions of the VaR, we refer to Cousin and Di Bernardino (2013).
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6. comonotonic additivity: ρ
(

Lc
1 + Lc

2
)
= ρ

(
Lc

1
)
+ ρ (Lc

2) for comonotonic random losses Lc
1 =d

t1(Z), Lc
2 =d t2(Z) with non-decreasing functions t1, t2 and a positive random variable Z.

From a practical point of view, law invariance is an essential property to transfer the issue from
quantifying the risk of a random loss to quantifying the risk of the corresponding distribution function,
which means

7. law invariance: L1 ∼d L2 ⇒ ρ[L1] = ρ[L2].

This property allows for breaking down the estimation process of the risk measure onto two
steps. First, estimate the distribution function. Second, calculate the risk measure from the estimated
distribution function. This is the way we estimate the risk measures in Section 5.

Another favorable characteristic when estimating risk measures is elicitability. This concept
can be used to compare the performance of different estimating methods and is discussed in detail
in Gneiting (2011). The notion of elicitability in the context of risk measures is recently adjusted
from Bellini and Bignozzi (2015). To acquire a basic understanding of the concept, we briefly recall
its main idea, which is closely connected with the one of scoring functions. A scoring function
S : R×R −→ [0, ∞) assigns a numerical score to the estimated value based on the realizations used
for the estimation.

A risk measure is elicitable relative to a set of distributions function F if there exists a scoring
function S for which the following expression holds:

8. elicitability: ρ[FL] = argmin
x∈R

∫
S(x, l) FL(dl), ∀FL ∈ F.

The term under the integral gives an intuitive performance measurement to compare different
estimation methods.

From a practical view, the estimation process is only effective when the risk measure of interest
satisfies some kind of robustness properties. This opinion is largely supported by several authors like
Stahl et al. (2012), Krätschmer et al. (2014), Kou et al. (2013), Cont et al. (2010) or Emmer et al. (2015).
There are some different definitions of robustness under these authors, but they all believe that the
estimated risk measure has to be relatively immune to small changes in the underlying database
and model. Therefore, we highlight the robustness of a risk measure as continuity with respect to a
simple probability metric or distance in the sense of Stahl et al. (2012):

9. robustness: ρ[FL]− ρ[GL] = o(1) for d(FL, GL) = o(1), mit FLGL ∈ F,

where F is the class of convex distribution functions on R+. The exercise of the risk manager is to
choose a metric that fits the context of application. A very easy example in Stahl et al. (2012) highlights
the fact that risk measures which put emphasis on the tail of a distribution cannot be expected to be
continuous with respect to topologies which completely ignore the tails like for e.g., the weak topology.
Consequently, for estimation processes of risk measures, another metric called Wasserstein metric
dW(FL, GL) =

∫ 1
0 | F−1

L (p)−G−1
L (p) | dp has gained importance. Due to the fact that this metric places

emphasis to the center and the tail of the distribution, it is useful to consider the Wasserstein metric in
risk management.

3.2. Classes of Risk Measures

The class of spectral risk measures was advocated by Acerbi (2002) in order to find a variety of
quantile-based coherent risk measures. The concept is based on the re-weighting of the quantile
function QL(p), p ∈ [0, 1] to incorporate the risk preference of an individual risk manager:

ρspec(L) =
∫ 1

0
φ(p)QL(p)dp. (3)
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The re-weighting function φ is known as risk aversion function and should satisfy three properties:
non-negativity, normalization and non-decreasing. If the properties are satisfied the corresponding
risk measure ρspec is risk-averse and coherent.7 Acerbi (2004) shows that spectral risk measures are all
coherent risk measures with the additional properties of comonotonic additivity and law invariance.
Albanese and Lawi (2004) compare different spectral risk measures for several credit portfolios.

The class of distorted risk measures follows a similar idea as the class of spectral risk measures.
The original concept was introduced and studied in the context of actuarial pricing premium theory
by Wang (1995, 1996, 1998). The basic idea of these risk measures is to distort the expectation of a
loss L with an individual distortion function g, which should be non-decreasing and left-continuous.
The general definition is

ρdis,g(L) =
∫ ∞

0
l dg ◦ FL(l) =

∫ ∞

0
g (1− FL(l)) dl.

The integral in the equation is called Choquet integral and is studied in Denneberg (1994). This is
a generalization of the traditional integral theory for measurable functions applying to non-additive
set functions. It is easy to see that ρdis,g(L) ≥ E(L) for a distortion functions with g(x) ≥ x for all
x ∈ [0, 1]. These risk measures are presented in many different ways in the literature. The most popular
alternative is the representation

ρdis,g(L) =
∫ 1

0
QL(1− α) dg(α)

through the quantile function. A central property of these measures is the comonotonic additivity
which was studied in the context of solvency capital in Dhaene et al. (2004). Additional properties are
monotonicity, cash invariance, positive homogenenity and law invariance. The most popular members
of the class are the VaR with distortion function gVaR(x) = 1x≥1−α(x) and the ES with distortion
function gES(x) = min

{ u
1−α , 1

}
. For concave distortion functions, these risk measures are additionally

subadditive and, therefore, form a direct generalization of the class of coherent risk measures.
The relationship between the two classes is obvious because both representations are a

re-weighting of the initial quantile function. Since a concave distortion function is absolute continuous,
it can be written as dg(u) = φ(u)du for a non-decreasing, positive and normalized function
φ. This yields the alternative representation ρdis,g =

∫ 1
0 QL(u)φ(u)du. Gzyl and Mayoral (2008)

explicitly prove the equivalence of spectral and distortion risk measures in the case of a concave
distortion function.

The category of quantile-based risk measures is completed by the class of generalized quantiles
which is introduced by Bellini et al. (2014). The class has recently gained attention because all of these
generalized quantiles share the important property of elicitability. This is a direct conclusion from
the definition

qφ1,φ2
α (L) = argmin

x∈R
α · E

[
φ1
(
(L− l)+

)]
+ (1− α) · E [φ2( (L− l)− )]

as the minimizers of an asymmetric loss function with convex parts φ1 and φ2.8

7 For a proof of the link between the properties of the risk aversion function and the coherency of the risk measure, see
Acerbi (2002) Theorem 4.1.

8 Newey and Powell (1987) and Breckling and Chambers (1988) have already introduced a similar notion of generalized
quantiles in a different context. For the choice φ1 = φ2 = x2, the generalized quantile is an expectile.
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3.3. Risk Measures beyond VaR

The most popular alternative is the Expected Shortfall (ES), which is defined as the mean of the
worst 100 · (1− α) per cent of the possible losses

ESα(L) =
1

1− α

∫ 1

α
VaRu (L) du =

1
1− α

∫ 1

α
q−u (L) du.

As the definition shows, it incorporates the tail of a loss distribution in both the frequency and the
severity. Furthermore, the analysis of Rockafellar and Uryasev (2002), and Acerbi and Tasche (2002)
shows the coherence of ES.9 The disadvantage of ES10 is its lack of accuracy statistical properties as
robustness and backtestability. Gneiting (2011) points out that the ES is not elicitable and therefore
has no intuitive backtesting method. The recent work from Acerbi and Szekely (2017) confirms the
statement in Gneiting that ES is not elicitable. Nevertheless, Acerbi and Szekely (2017) introduce a
new backtesting technique called ridge backtesting which is applicable for risk measures which are
not elicitable/backtestable. In fact, backtesting for ES is challenging and not as easy and intuitive as it
is for elicitable risk measures, especially the VaR. Cont et al. (2010) introduces a new approach for the
robustness of risk measures. If a risk measure is continuous with respect to the Levy metric for a set C
of distributions, it is called C-robust. Against this background, one comes across a conflict between
subadditivity and robustness.

To mitigate the shortcomings of the ES, Kou and Peng (2014) introduce the median shortfall (MS)
as the median of the α-tail distribution Fα,L

11

MSα(L) = inf
{

L ∈ R | Fα,L(L) ≥ 1
2

}
.

Like the ES, the median shortfall takes into account both frequency and severity of the extreme
losses beyond the VaR. Kou and Peng (2014) argue that the mean and the median have the same
information about a distribution function. Therefore, MS at least provides the same information about
possible worst-case scenarios. Furthermore, there are three considerable practical advantages over ES:
elicitability, robustness with respect to the weak topology and its easy implementation. Since it can be
shown that MSα(L) = VaR 1+α

2
(L), the MS has all of theoretical advantages and drawbacks of the VaR.

The Expectile Value-at-Risk (ExVaR)12 has recently attracted a lot of attention in the discussion
because it is the only known coherent and elicitable alternative. Historically, expectiles were already
defined in 1987 by Newey and Powell (1987) in the context of asymmetric least square estimation.
Its definition is given as the unique solution of an asymmetric quadratic optimization problem:

ExVaRα(L) = argmin
x∈R

α · E
[
(L− l)2

+

]
+ (1− α) · E

[
(L− l)2

−

]
.

Bellini and Bignozzi (2015) and Ziegel and Wang (2015) investigate the properties of ExVaR and
found that it is coherent for α ≥ 0.5, law invariant and elicitable with respect to the scoring function
SExVaR(x, l) = α · (x− l)2

+ + (1− α) · (x− l)2
−. Jones (1994) shows that, for a continuous distribution

9 Except for a correction term for a discontinuity in the distribution, the ES equals the conditional Expectation
E [L | L ≥ VaRα(L)]. It is also well known as Average-VaR, Tail-VaR and Conditional-VaR.

10 Cousin and Di Bernardino (2014) discuss multivariate extensions of ES.
11 Refering to Rockafellar and Uryasev (2002), the α-tail distribution Fα,L is defined as{

0, l < VaRα(L),
FL(L)−α

1−α , l ≥ VaRα(L).

12 Maume-Deschamps et al. (2017) discuss multivariate extensions of expectiles.
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function, in fact, the ExVaR is a quantile of a transformation of the originally distribution. In addition,
the ExVar has the implicit representation

ExVaRα(L) =
(1− α) ·

∫ eα(L)
−∞ l PL(dl) + α ·

∫ ∞
eα(L) l PL(dl)

(1− α) · Fl(eα(L)) + α · (1− FL (eα(L)))
,

which shows that it depends on the whole distribution different from quantiles which only depends
on a small local neighborhood. Bellini and di Bernadino (2017) show the relationship between
quantiles and expectiles with techniques of the extreme value theory for Pareto-type distributions.
The statement is that ExVaR is a more conservative risk measure for heavy-tailed distributions in
comparison with VaR. The contrary holds for distributions which are not heavy-tailed. Note that the
ExVaR is not comonotonic additive, which can lead to misleading diversification incentives.

A direct generalization of the VaR is the Lambda Value-at-Risk (LVaR). In contrast to VaR, the LVaR
has the possibility to control the relationship between the probability and the severity of losses through
a monotone and left-continuous probability/loss function Λ : R→ [λmin, λmax]. Thereby, the original
definition from Fritteli et al. (2014) is adjusted for the use of a credit portfolio loss L as

ΛVaR := inf {m ∈ R : FL(l) ≥ Λ(l), ∀l ≥ m} .

For λmin = λmax, the LVaR reduces to the classical VaR. It is worth noting that there are
no restrictions to the direction of the probability/loss function. However, a careful risk manager
would prefer to choose a probability/loss function which accepts extreme losses only with very low
probabilities. Hitaj and Peri (2015) and Hitaj et al. (2017) deliver the first empirical studies for the LVaR
in the context of market risk. It is straightforward to prove that LVaR in general is a monotone and
law invariant risk measure. Furthermore, LVaR has the properties of elicitability and robustness in
the sense of Cont et al. (2010), which is studied in Burzoni et al. (2017). Unfortunately, LVaR is not
translation invariant and therefore not a monetary risk measure. Instead, Fritteli et al. (2014) prove a
similar but weaker property, named Λ-translation invariance.

A further generalization of the VaR is a class of quantile-based risk measures called risk measures
based on benchmark loss distributions (BLD), which was recently introduced by Bignozzi et al. (2018).
The key ingredient here is the non-decreasing and right continuous BLD function α : [0, ∞)→ (0, 1].
Formally, we call a risk measure based on BLD, if

ρα(L) := inf {m ∈ R : P(L−m ≤ l) ≥ α(l) for all l ≥ 0} .

At first sight, this concept is very similar to that of the LVaR. Both measures follow the original
idea of Fritteli et al. (2014). This means that every potential loss should only occur with a pre-definied
small probability. Therefore, these measures take into account both the frequency and the severity of
the loss. The difference in the interpretation of the two risk measures is that the LVaR determines the
maximal interval [m, ∞) where the distribution function FL is above the probability/loss-function Λ.
In contrast, RM based on BLDs shift the distribution of L until it reaches an acceptable form. For RM
based on BLDs, the risk manager does not require additional capital reserves when the inequality
P(L ≤ l) ≥ α(l) holds for every l ≥ 0. Bignozzi et al. (2018) show that these measures result as a
solution of the following maximization problem:

ρα(L) = sup
l≥0

(
VaR(L)α(l) − l

)
.
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In addition, the RM based on BLD are more conservative compared to VaRα, which can be derived
from the inequality VaRα ≤ ρα ≤ VaRα

13. In the case FX(l) = α(l) ∀l ≥ 0 with any random variable X
and with α = 1, the representation can be reformulated to

ρα(L) = sup
p∈[α,1]

(
VaR(L)p −VaR(X)p

)
.

It follows from the definition that all BLD risk measures in general are monotone and law invariant.
In general, they are neither convex nor subadditive nor positive homogeneous and comonotonic
additive. In contrast to the LVaR, RMBLDs are not elicitable. However, Bignozzi et al. (2018)
point out some interesting alternative backtesting methods and show the robustness in the sense
of Cont et al. (2010).

Next, we highlight some promising alternatives from the class of distortion risk measures. First,
let us mention a two-parameter quantile-based family of risk measures called Range Value-at-Risk
(RVaR). The definition of RVaR is a slightly modified version of the ES such that the average of VaR
levels is calculated across a pre-defined range [α, β] of loss probabilities:

RVaRα,β(L) =

{
1
β

∫ α+β
α VaRu(L)du, β > 0, α + β ≤ 1,

VaRα(L), β = 0.

Cont et al. (2010) introduce the RVaR as a robust alternative to ES in the case that the range of loss
probabilities vanishes around 0 and 1. In this case, the RVaR is robust with respect to the weak topology
(C-robust). The special cases of VaR and ES re-appear for β = 0 and α > 0, α + β = 1, respectively.
The RVaR is a distorted risk measure with distortion function

g(α,β)(x) =

min
(

1{x>α}(x) x−α
β 1,

)
, for β > 0,

1{x>α}(x), for β = 0,
and x ∈ [0, 1].

Obviously, the distortion function is not concave, which means that the RVaR is not a coherent
risk measure in general. However, it is robust and inherits some useful properties as a distorted
risk measures. Further investigation for risk sharing strategies with RVaR can be found in
Embrechts et al. (2016).

In contrast to VaR and ES, Wang’s risk measure takes all available information from the loss
distribution into account when quantifying the risky position. In addition, this risk measure is coherent
for the parameter choice λ ≥ 0. Wang (2000) introduces this risk measure through the following
distortion function

gλ(x) = Φ
(

Φ−1(x) + λ
)

, λ ∈ R, x ∈ [0, 1],

which is mainly influenced by the standard normal distribution and an additional shift parameter
λ ∈ R.14 Wang (2001) presents first analyses of the Wang risk measure in comparison to VaR and ES.

Belles-Sampera et al. (2014a) propose a four-parameter family of risk measures within the class
of distortion risk measures called Glue Value-at-Risk (GlueVaR). For a given confidence level α, it is
completely characterized by the following distortion function

13 α = supl≥0 α(L) and α = infl≥0 α(L).
14 Wang (2000) pointed out that this distortion function combines four different approaches: (1) Classical insurance premium

calculation; (2) Theory of distortion risk measures; (3) Capital-Asset-Pricing-Model; (4) Option pricing (Black-Scholes).
Furthermore, Wang (2001) has showed that for a normal or log-normal distributed loss this distortion function results in a
normal or log-normal distribution.
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gh1,h2
β,α (x) :


h1

1−β x, i f 0 ≤ x < 1− β,

h1 +
h2+h1
β−α [x− (1− β)] , i f 1− β ≤ x < 1− α,

1, i f 1− α ≤ x ≤ 1,

where α, β ∈ [0, 1] such that α ≤ β, h1 ∈ [0, 1] and h2 ∈ [h1, 1]. The parameter β can be seen as an
additional confidence level besides α and the shape of the distortion function is determined by the
heights h1 and h2. Because of its flexible definition, the GlueVaR can cover a wide range of risk attitudes.
The special case of VaR and ES are included for g0,0

α,α and g1,1
α,α. On the one hand, the GlueVaR can

be calibrated less conservative such that the inequality VaRα(L) ≤ GlueVaRh1,h2
α,β (L) ≤ ESα(L) holds.

On the other side, the GlueVaR can be calibrated as a more conservative risk measure so that ESα(L) ≤
GlueVaRh1,h2

α,β (L) ≤ ESβ(L) holds.15 For fixed confidence levels α < β, Belles-Sampera et al. (2014a)
show that GlueVaR can be expressed as linear combination of ESα, ESβ and VaRα. Defining

ω1 = h1 −
(h2 − h1) (1− β)

β− α
, ω2 =

h2 − h1

β− α
(1− α) , ω3 = 1−ω1 −ω2 = 1− h2,

the distortion function rewrites as gh1,h2
β,α = ω1gESβ

(u)+ω2gESα(u)+ω3gVaRα(u) which leads to the useful

practical and intuitive representation GlueVaRh1,h2
β,α (L) = ω1ESβ(L) + ω2ESα(L) + ω3VaRα(L).16 Further

work on the GlueVaR can be found in Belles-Sampera et al. (2014b)17 and Belles-Sampera et al. (2014c).
Finally, alternatives to the VaR can be derived using the entropy concept, briefly denoted as

entropy-based risk measures in the sequel. For instance, Föllmer and Schied (2018) introduce the
entropic risk measure (ERM) defined as

eγ(X) ≡ 1
γ

log(EP(exp(−γX))) = sup
Q∈M1

{
EQ(−X)− 1

γ
H(Q|P)

}
,

which is convex but not coherent. It was shown that the acceptence set of ERM is the set of payoffs with
positive expected utility (i.e., U(x) = 1− exp(−γx)). A coherent version (CERM, coherent entropic
risk measure) is discussed by Föllmer and Knispel (2011)

ρc(X) = sup
Q

EQ(−X) = − inf EQ(X)

with Q ∈ D ≡ {Q >> P : H(Q|P) ≤ H}, where H(Q|P) denotes the relative entropy
(or Kullback-Leibler distance) of Q with respect to (the original measure) P. Additional related
discussion of CERM can be found in Zheng and Chen (2012, 2014a, 2014b) who coined the notion
iso-entropic risk measure, defined as

ρc(X) =
ln E(exp(−mX))− ln(λ)

m
,

where m is determined by X and the confidence level λ. It is obvious that ρc corresponds to the negative
expectation of the risky position under the probability measure through Esscher transformation, i.e.,

15 The forcing conditions for the parameters such that the two presented inequalities hold are listed in
Belles-Sampera et al. (2014a).

16 Belles-Sampera et al. (2014a) calculate some useful analytical closed forms of the GlueVaR for Normal, Log-normal, Exponential,
Pareto and Type-II Pareto distributions. Furthermore, they deliver conditions under which the GlueVaR fulfills the special
property of tail-subadditivity also introduced in the same paper.

17 The contribution discusses different approaches for capital allocation methods for the GlueVaR.
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ρ(X) = −EQ0(X) = −E(X exp(−mX))

E(exp(−mX))
with q0(x) = p(x)

exp(−mx)
E(exp(−mx))

.

Almost at the same time, Ahmadi-Javid (2011, 2012a, 2012b) introduces the notion of Entropic
Value at Risk (EVaR), defined as

EVaR1−α(X) = inf
θ
{1/θ ln(MX(θ)/α)} withMX(t) = E(exp(−tX))

with further discussion in Delbaen (2018) and Ahmadi-Javid and Pichler (2017). The EVaR is the
tightest upper bound that one can find using the Chernoff inequality for the VaR (and CVaR). Refering
to the equation above, its dual representation is given based on the relative entropy which reveals why
this risk measure was called Entropic VaR. If the risky position X has a normal distribution—analogue
to the VaR and ES—the EVaR is a member of the mean-standard deviation class of risk measures,
which is defined as

MSλ(X) = E(X) + λSD(X) with λ =
√
−2 ln(α) for the EVaR.

Above that, extensions and alteratives (beyond the scope of our analysis) can be found in
the current literature: First, Assa et al. (2016) put forward the idea of using a cumulative risk
measure based on the Entropic Value at Risk (CEVaR). Application to portfolio optimization was
provided by Brandtner et al. (2018). Second, φ-EVaR as an extension is discussed by Pichler and
Schlotter (2018) by replacing the relative entropy in the dual representation with different divergences
as suggested in Ahmadi-Javid (2012c) first. Third, risk measures of generalized entropy are
discussed by Zhou et al. (2017) who systematically investigate the properties of Information Entropy,
Cumulative Residual Entropy, Fuzzy Entropy, Credibility Entropy, Sine Entropy and Hybrid Entropy.

Table 1 summarizes the basic properties of all risk measures mentioned before.

Table 1. Risk measures (RM) and basic properties.

RM Coherence Convex Comonotonic Add. Law Invariant Elicitability Robustness

VaR x x X X X Weak Topology
ES X X X X x Wasserstein
MS x x X X X Weak Topology

ExVaR X X x X X Wasserstein
LVaR x x x X X C-robust

RMBLD x x x X x C-robust
RVaR x x X X x C-robust
Wang X X X X x

GlueVaR x x X X x Wasserstein
EVaR X X X X x

4. Risk Contribution and Euler Allocation

Economic capital (ECAP) is a measure of risk, which is the amount of capital that a bank
needs to ensure that the company stays solvent given its risk profile. Economic capital is calculated
internally, sometimes using proprietary models, and is the amount of capital that the firm should have
to support any risks that it takes. Once having calculated the bank’s ECAP, a process of capital
allocation (CA) is carried out, whereby the ECAP requirement is apportioned to different lines
of business and sub-portfolios. Several competing capital allocation methods reflect the different
ways in which individual risks and sub-portfolios contribute to the total capital. There are several
streams in the literature, respectively motivated by arguments from: (i) cooperative game theory
(Denault (2001); Tsanakas and Barnett (2003); Kalkbrenner (2005) or Hougaard and Smilgins (2016)),
(ii) performance and portfolio management (e.g., Tasche (1999) or Buch et al. (2011)), (iii) market
valuation of assets and liabilities (e.g., Zanjani (2010) or Bauer and Zanjani (2015)); and (iv) optimization
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(e.g., Dhaene et al. (2003) or Dhaene (2012)). An overview of different capital allocation principles can
be found in Koyhuoglu and Stoker (2002) and Urban et al. (2003)18.

Van Gulick et al. (2012) define two key properties for a feasible allocation method. The risk
contribution should not exceed the stand alone risk and it should not fall below the minimum loss that
can occur from this position. For the Euler allocation, which is the predominated method for capital
allocation in credit portfolios, the two key properties are fulfilled. If a risk measure is continuously
differentiable and positive homogeneous, the Euler contributions are given by

ρEuler[Li | L] =
dρ

dh
(L + hLi)

∣∣∣∣
h=0

, ∀i = 1, . . . , n.

The key practical feature of the Euler allocation is the complete allocation property which means
that the sum of the individual risk contributions add up to the overall risk ρ[L] = ∑n

i=1 ρ [Li | L]
(e.g., Patrik (1999)). This is naturally fulfilled by the Euler theorem for homogeneous functions
(Tasche (2008) Theorem A1). The axiomatic approach from Kalkbrenner (2005)19 for positive
homogeneous and subadditive risk measure justify the Euler principle in a theoretical setting. The main
argument in Kalkbrenner (2005) for the Euler principle is the fact that it is the only compatible principle
to the subadditivity of a risk measure (see also Kalkbrenner et al. (2004)). Tasche (1999) motivates
this methods for the use in performance measuring and portfolio optimization. He argues that risk
contributions are reasonably calculated as sensitivity of the portfolio. He showed that, for performance
measurement, this allocation method is the only one which satisfies the RORAC compatibility. In Tasche
(2004, 2007, 2008), there are comprehensive descriptions of the Euler principle from a theoretical and
practical point of view. Martin (2007) suggest the Euler allocation to investigate the influence of
systematic factors on the portfolio risk. Both Kurth and Tasche (2003) and Dhaene et al. (2008) consider
the calculation of risk contributions for VaR and ES. The focus in Kurth and Tasche (2003) lies on the
calculation for classical credit portfolio models and Dhaene et al. (2008) derive analytical formulas for
elliptical distribution and approximations for special distributions. Ordinary Monte Carlo simulation
methods are impractical for determining the Euler risk contribution of VaR and ES because these
depend only on rare events of the simulation. Therefore, Glassermann (2005) and Siller (2013) develop
techniques to efficiently calculate the Euler contributions in a credit portfolio context.

For the derivation of the Euler risk contributions, Tasche (2001) formulates the conditions under
which the corresponding quantiles are differentiable (see Assumption 2.3). This is important in
order to determine the contribution of quantile-based risk measures as VaR, ES, RVaR and distorted
risk measures in the form of the partial derivative. In general, this assumption is not fulfilled for
credit portfolios because of the typical Bernoulli characteristic {default, no default}. If the partial
derivative of the risk measures leads to an intuitive formula, the risk contribution can always be
calculated even when the assumptions for differentiability are not fulfilled. For the practical useability,
the intuitive formula is a key feature of the risk contribution. In particular, for large credit portfolios,
the assumptions can be seen as approximately valid (see Haaf and Tasche (2002)).

The risk contributions for the above-mentioned risk measures are listed in Table 2. For the VaR
and the ES, the risk contributions as partial derivatives are well-known as the expectation of the
counterparty loss Li conditioned that the overall loss L is equal to the VaRα(L) or greater than or equal
to the VaRα(L).

18 Alternative allocation methods: Shapley, Aumann-Shapley, Euler, Activity based, beta method, incremental method, cost gap
method, Nucleonlus method

19 The axiomatic approach follows three key properties of the allocation principle: (1) complete allocation; (2) diversification;
(3) continuity with respect to the allocation principle.
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Table 2. Risk contribution and the Euler principle.

RM p[Li] p[Li | L] Source

VaR q−α (Li) E [Li | L = VaRα(L)] Tasche (1999)

ES 1
1−α

∫ 1
α q−u (Li) du E [Li | L ≥ VaRα(L)] Tasche (1999)

MS q−1−α
2
(Li) E [Li | L = MSα(L)] Moser (2016)

ExVaR E [SExVaR(x, l)]
(1−α)E[Li1{−X>ExVaRα (L)}]+αE[Li1{L≤ExVaRα (L)}]

(1−α)P[L>ExVaRα(L)]+αP[L≤ExVaRα(L)] Emmer et al. (2015)

RVaR
∫ ∞

0 g(α,β) (1− FLi (l)) dl E
[

Li | VaRβ(L) ≥ L ≥ VaRα(L)
]

Moser (2016)

Wang
∫ ∞

0 gλ (1− FLi (l)) dl E
[

Lig
′

λ(1− FL(l))
]

Tsanakas and Barnett (2003)

GlueVaR
∫ ∞

0 gh1,h2
α,β (1− FLi (l)) dl E

[
Lig

′ ,h1,h2
α,β (1− FL(l))

]
Tsanakas and Barnett (2003)

EVaR E(exp(m0 Lp)Lp)
E(exp(mp Lp))

E(exp(m0 Lp)Li)
E(exp(mp Lp))

Zheng and Chen (2015)

LVaR x x not positive homogeneous

BLD x x not positive homogeneous

A direct conclusion from the work of Tasche (2001) gives the risk contributions for the MS using
the fact that the MS is a quantile of a transformed distribution function the so-called α-tail distribution.
Therefore, we get a very similar formula as expectation of Li conditioned that the overall loss L is equal
to the MS.

Assuming the differentiability of the left-quantile written as risk-measure function rα
VaR(λ) =

q−α (L(λ)) of VaR with L(α) = ∑n
i=1 λiLi. Consider the definition of RVaR and rewrite the expression

with the risk-measure functions as

rα,β
RVaR(λ) =

1
β

∫ α+β

α
ru

VaR(λ)du.

Now, we compute the partial derivative with respect to λi and for the case L = L(1):

∂rα,β
RVaR
∂λi

(1) =
1
β

∫ α+β

α

∂ru
VaR

∂λi
(1)du =

1
β

∫ α+β

α
E (Li | L = VaRu(L)) du.

We assume that the density fL of L is strictly positive so that a differentiable inverse of the
distribution function exists. Applying the inverse function theorem, we can apply change of variables
v = q−α (L(λ)) with dv

du = 1
fL(v)

and finally obtain

∂rα,β
RVaR
∂λi

(1) =
1
β

∫ q−α+β(L)

q−α (L)
E (Li | L = v) du =

1
β

E
(

Li1q−α (L)≤L≤q−α+β(L)

)
.

Under the Assumption 2.3 in Tasche (2001), it follows that P
[
q−α (L) ≤ L ≤ q−α+β(L)

]
= β and,

consequently, the risk contribution takes the form in Table 2.
Tsanakas and Barnett (2003) investigate the risk allocation for distorted risk measures. They used

the representation of distorted risk measures as quantile-based risk measures and derived the partial
derivative by applying a similar concept, which we used to derive the risk contribution of the RVaR.
The risk contribution of Li can be interpreted as the expectation under a change of probability measure

ρdis [Li | L] = EQ (Li) ,
dQ
dP

= g
′
(1− FL(L)) .
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Consequently, the Radom-Nikodym derivative is g
′
(1− FL(L)) with E

(
g
′
(1− FL(L))

)
= 1.

For instance, the risk contribution for Wang’s risk measure is explicitly given by

ρWang [Li | L] = E
(

Li exp
(
−λΦ−1 (1− FL(L))− λ2

2

))
.

For the risk contribution of GlueVaR, we used results of Belles-Sampera et al. (2014a) who state
that the GlueVaR can be expressed as linear combination of ES and VaR for given confidence levels
α, β. In conclusion, we receive the risk contribution as follows:

ρGlueVaR [Li | L] = ω1E
(

Li | L ≥ VaRβ(L)
)
+ ω2E (Li | L ≥ VaRα(L)) + ω3E (Li | L = VaRα(L)) .

Alternatively, one could derive the risk contribution through the general formula for distortion
risk measures (see Table 2).

Emmer et al. (2015) determine the Euler allocation for the ExVaR with a method from Delbaen
(2000) for coherent risk measure ρ : L∞ → R by using the so-called Fatou property. This method
avoids the incentive process of proofing the existence of differentiability. An alternative approach
is introduced in Martin (2014) with the saddlepoint method. The term in Table 2 is well-defined for
Li ∈ L1 and is a intuitive formula for sensitivity analysis.

Based on the iso-entropic risk measure (which corresponds to the EVaR), Zheng and Chen (2015)
discuss the risk capital Euler allocation. Here,

ρEVaR[Li|L] =
E(exp(m0Lp)Li)

E(exp(mpLp))
,

where mp satisfies

E
[
(mpLp − log(E(exp(mpLp)))) exp(mpLp)

E(exp(mpLp))

]
= Hα.

The Euler allocation principle for the LVaR and the BLD does not exist because the two risk
measures are not positive homogeneous.

5. Application to Credit Risk

One of the key risk drivers in a credit portfolio is concentration risk caused by an unbalanced
distribution of the loans to individual borrowers (single-name concentration) or industry/country
sectors (sector concentration). Due to the requirement under Basel II Pillar 2 to evaluate the impact
of concentration risk in the portfolio, banks are interested in quantifying this particular impact in
terms of additional risk capital. The following application investigates the practical usability of the
aforementioned risk measures in order to quantitfy concentration risk.

5.1. Data Description and Portfolio Structure

A standard approach to measure the impact of concentrations is to construct a benchmark portfolio
and a sequence of portfolios with different concentration levels. We follow this approach and use
the data set and portfolio construction methods in Duellmann and Masschelein (2007) as the basis.
Duellmann and Masschelein (2007) derives the sectoral distribution of aggregated exposures of the
German banking system from the exposure information of 2224 German banks in September 2004.
The degree of concentration in this reference can be seen as the maximal diversification which can be
reached from a German bank at that time. Therefore, Duellmann and Masschelein’s (2007) sectoral
distribution, which is shown in Table 3 in column “Benchmark-PF”, provides a starting point to
construct a portfolio for further investigations. In order to focus on the impact of sector concentration,
we assume homogeneous exposure size and credit quality (PD’s) on a sector level. In detail, we assume
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a total portfolio volume of 2 Million Euros consisting of 200 counterparties.20 Every counterparty
has a PD of 2% and solely one credit with the bank. We set a uniform loss given default (LGD) of
45%. This is the supervisory value in the Foundation IRB (FIRB) approach for unsecured senior loans.
The sector correlation is adopted from Duellmann and Masschelein (2007) who has estimated the
correlation matrix as sample correlations of the MSCI EMU21 industry indices based on weekly return
data covering the period between November 2003 and 2004. The intra-sector correlations are given
through the square of the constant sector weights Ri,k = Rj,k = 0.5 and lead to 0.25. For a more detailed
treatment of empirical inter and intra-sector correlations, we refer, for example, to Pfeuffer et al. (2018).

Σ =



100 50 42 34 45 46 57 34 10 31 69
100 87 61 75 84 62 30 56 73 66

100 67 83 92 65 32 69 82 66
100 58 68 40 8 50 60 37

100 83 68 27 58 77 67
100 76 21 69 81 66

100 33 46 56 66
100 15 24 46

100 75 42
100 62

100


Having defined our benchmark portfolio, we next explore the impact of concentrations in

business sectors across the different risk measures. Therefore, we increase the concentration in
the business sector capital goods. We construct Portfolio 1 (PF 1) from the benchmark portfolio by
removing exposures from all sectors and adding them to capital goods. We then define the even more
concentrated Portfolio 2 (PF 2) by repeated application of this step. The exact sector distribution for
PF 1 and PF 2 can be taken from Table 3. The increase in sector concentration is also reflected in the
Hirschmann-Herfindahl index (HHI) (see Table 3).

In the second step, we focus on the behavior of the risk contributions across the risk measures
w.r.t. single-name concentrations. For this purpose, we construct two more portfolios with different
levels of single-name concentrations. To avoid undesired effects from changes in the sectoral
distribution, we hold the sector concentration from PF1 and PF2 constant and increase only single-name
concentrations. In the first step, we replace 110 exposures with a share of 1/200 with 11 exposures with
a share of 11/200 such that the sector concentration is equal to PF 1. This leads to portfolio 3 (PF 3) with
100 counterparties and seven single-name concentrations in Capital goods, 1 in Commercial services
and supplies, 1 in Consumer discretionary and 1 in Health care. Portfolio 4 (PF 4) should equal the
sector distribution of PF 2 and, therefore, needs the following single-name concentrations: eight in
Capital goods, one in Commercial services and supplies and one Consumer discretionary.

20 We take this portfolio size to guarantee efficient simulations and avoid working memory problems.
21 The MSCI EMU Index (European Economic and Monetary Union) captures large and mid cap representation across the 10

Developed Markets countries in the EMU.
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Table 3. Relative sector concentration.

Sector Benchmark-PF PF 1 PF 2 PF 3 PF 4

Energy 0 0 0 0 0
Materials 6 2 1 2 1
Capital goods 12 71 82 71 82
Commercial services and supplies 34 11 7 11 7
Transportation 7 2 1 2 1
Consumer Discretionary 15 5 3 5 3
Consumer staples 6 2 1 2 1
Health Care 9 3 2 3 2
Information technology 3 1 1 1 1
Telecommunication.services 1 1 1 1 1
Utilities 7 2 1 2 1
Number of Counterparties 200 200 200 100 100
HHI 17.86 52.15 67.92 52.15 67.92

Figure 1 displays the loss densities of portfolio i together with the benchmark portfolio.
Assuming single-name concentration in PF 3 and PF 4 leads to a bi-modal shape. As a consequence
of the portfolio construction, all of the five portfolios have the same potential loss ∑i EADi ·
LGDi =900,000 Euro and the same expectation value of ∑i EADi · LGDi · 1PDi = 18,000. Consequently,
our procedure guarantees that the increase in risk capital, measured by different risk measures, results
only from the increasing concentration risk in the portfolios compared to the benchmark portfolio.

Figure 1. Loss distributions of the portfolios.
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5.2. Research Questions and Calibration of the Risk Measures

Basically, there are three aspects we will shed light on.

1. How sensitive is the overall portfolio risk w.r.t. changes of the credit quality across the risk
measures under consideration?

2. How sensitive are the risk contributions w.r.t. sector and name concentrations across the risk
measures under consideration?

3. Are there differences between the risk measures under consideration w.r.t. capital allocation?

In order to carry out the investigation of the different risk measures in a suitable manner, the risk
measures shall be adequately calibrated. The regulatory requirements to quantify credit risk is
currently based on a confidence level of 99.9% for the VaR. Therefore, this value is used as a benchmark
henceforth to compare the effects of the remaining risk measures.

The calibration of the ExVaR raises the issue of a suitable level q. We follow the approach in
Bellini and di Bernadino (2017) for an application in market risk measurement where the level q is
determined such that ExVaRq ≈ VaR0.999 holds for typical portfolio distributions. To transfer the
approach to our application in the credit portfolio context, we suggest a level q = 0.9999 which holds
ExVaRq ≈ VaR0.999 for a Weibull distribution with parameter a = 2 and b = 1.22

The confidence level 1− α of the EVaR is obviously determined by α = 0.001. Through the
Chernoff inequality with aL(α, z) = z−1 ML(z)

α , we have P (L ≥ aL(α, z)) ≤ α. As a consequence,
the EVaR is the best upper bound of the VaR0.999 (see Ahmadi-Javid (2012a)).

To calibrate Wang’s risk measure in line with the confidence level 99.9% of the VaR, Wang (2001)
suggests choosing λ = Φ−1(0.999) ≥ 0 which leads to a coherent version of the risk measure.

For the calibration of the LVaR, it is necessary to determine a suitable probability/loss function
Λ : R → [λmin, λmax]. Unlike previous measures, we have to calibrate an entire function instead
of only one parameter. To start, we fix the interval of the function values for the probability/loss
function as [λmin, λmax] = [0.99, 0.9999]. This is a suitable choice in connection with the selected linear
interpolation approach from Hitaj et al. (2017), which is given by

Λ(x) =
n−1

∑
i=1

1(πi ,πi+1]

(
(x− πi)

λi+1 − λi
πi+1 − πi

+ λi

)
and adjusted for the application in the context of credit risk instead of market risk. With πi and λi where
i = 1, . . . , 4, we denote the values on the loss interval and the probability axis. The choice n = 4 is a
compromise between the practical application and the accuracy of the interpolation. The values of the
probability axis are assumed to be equally distributed so that λ1 = 0.99, λ2 = 0.9933, λ3 = 0.9966 and
λ4 = 0.9999. Finally, we estimate the πi with two accuracy credit portfolio loss distributions through
the formula πi = max (VaRαi (L1), VaRαi (L2)) for α1 = 0.8, α2 = 0.9, α3 = 0.95 and α4 = 0.9999. As a
result, we obtain an increasing probability/ loss function which accepts extreme losses only with
low probabilities.

For the RM based on BLDs, we consider the piecewise constant function

BLD =

{
α1 = 0.999, i f 0 ≤ l < l̄,

α2 = 0.9999, i f l̄ ≤ l < ∞,

with a lower confidence level of α1 = 0.999, which is consistent with the calibration of the VaR.
The value l̄ is determined through the empirical VaR0.999 of an accuracy benchmark portfolio for e.g.,
a historical value.

22 Different contributions, for e.g., Micocci (2000) has pointed out that the Weibull distribution can lead to suitable
approximations of credit portfolio distributions.
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The confidence level for the ES is chosen equally to the one of the VaR so that the inequality
ES0.999 ≥ VaR0.999 holds for every random loss L.

The MS is a direct alternative to the ES and is therefore calibrated to the equal confidence level
of 99.9%.

The lower level of the RVaR has to be equal to the one of the ES for a reasonable comparison of
the two risk measures. The upper level is chosen as β = 0.9999 to get an observable difference to the
numerical ES. For an upper level of 0.99999 and a simulation number of M = 100,000, the two risk
measures are numerically indistinguishable.

The three components of the GlueVaR as a linear combination of VaR and ES should be equally
important for the risk quantification which implies ω1 = ω2 = ω3 = 1/3. The lower confidence level
is assumed to be 0.999 and the upper confidence level is assumed to be β = 0.9995 so that a comparison
with the ES and VaR of the confidence level 99.9% is possible. This calibration results in the heights
h1 = 0.5 and h2 = 2/3 of the corresponding distortion function gh1,h2

α,β .

5.3. Empirical Results

1. Sensitivity analysis of the overall portfolio risk: As the probability of default is one of the key risk
driver in a credit portfolio, we first explore the sensitivity of the aforementioned risk measures in
quantifying concentration risk if the underlying PD structure in the portfolio changes. We therefore
consider an increase in the constant PDs of 2% (basis scenario PD 2.0) for all counterparties to 3.5%
(scenario, PD 3.5). An increase of 1.5 percentage points seems reasonable because this can be interpreted
as a typical downgrade of 1-2 notch, depending on the specific rating scale. Additionally, we explore the
stability of the risk measures in quantifying concentration risk for portfolios which are heterogeneous
in terms of the PD (scenario, Mixed PD). This PD structure is derived from typical non-investment
grade portfolio ranging from 0.6% to 20% assuming a right skewed distribution, i.e., better rating are
more likely. On average (number weighted), the portfolio PD is again 2%.

Table 4 summarizes the results for the benchmark portfolio as well as portfolios 1 and 2 with
increased sector concentration. For the benchmark portfolio, the portfolio risk for every risk measure
is expressed as a percentage of the total amount of the entire portfolio of 2 Million Euro. For PF1 and
PF2, the percentage increase is expelled. Consequently, a risk measure can be considered as stable if
the increases do not noticeable change when the credit quality changes.

Table 4. Sensitivity analyses of increasing concentration effects (Basis).

Risk Measures Benchmark-PF PF1 PF2 Risk Measures Benchmark-PF PF1 PF2

VaR (PD 2.0) 9.23 +24 +32 BLD (PD 2.0) 9.23 +24 +32
VaR (PD 3.5) 12.83 +25 +28 BLD (PD 3.5) 12.83 +25 +28

VaR (Mixed PD) 6.98 +26 +32 BLD (Mixed PD) 6.98 +26 +32
ExVaR (PD 2.0) 10.47 +27 +34 ES (PD 2.0) 11.01 +27 +35
ExVaR (PD 3.5) 14.10 +23 +28 ES (PD 3.5) 14.83 +25 +29

ExVaR (Mixed PD) 8.02 +25 +33 ES (Mixed PD) 8.49 +25 +32
EVaR (PD 2.0) 8.72 +31 +36 MS (PD 2.0) 10.80 +27 +33
EVaR (PD 3.5) 13.74 +22 +27 MS (PD 3.5) 14.85 +21 +29

EVaR (Mixed PD) 6.98 +23 +30 MS (Mixed PD) 8.10 +25 +33
Wang (PD 2.0) 9.57 +29 +34 RVaR (PD 2.0) 10.76 +26 +33
Wang (PD 3.5) 13.11 +22 +27 RVaR (PD 3.5) 14.44 +25 +29

Wang (Mixed PD) 7.46 +29 +37 RVaR (Mixed PD) 8.20 +24 +33
LVaR (PD 2.0) 9.45 +26 +31 GlueVaR (PD 2.0) 10.82 +27 +34
LVaR (PD 3.5) 13.05 +26 +33 GlueVaR (PD 3.5) 14.71 +24 +29

LVaR ( Mixed PD) 6.75 +33 +47 GlueVaR (Mixed PD) 8.34 +26 +33

Focusing in PF1, we observe stable increases for VaR, BLD, RVaR and GlueVaR, whereas ExVaR,
EVaR, Wang and MS exhibit a certain variation. Focusing on PF2, all risk measures exhibit a smaller
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increase for the portfolio with PD = 0.035.23 The BLD shows the same reaction as the VaR in every
situation. Since the lower confidence level is equal to the confidence level of VaR and the upper
confidence level only takes into account, for very heavy-tailed distributions, the results are as expected.
The LVaR is even less sensitive than all of the other risk measures for portfolios with constant PDs.
However, the difference is large for the portfolio with heterogenuous PDs. The RVaR is on the
same stability level as the VaR and the ES for measuring concentration risk. Considering the similar
representation forms of the RVaR and the ES as an average of extreme losses, this result seems
very evident. For the reason that the GlueVaR is a linear combination of the ES and the VaR for
different confidence levels, it seems reasonable that it has a very similar stability results as in the case
of the ES and VaR.

2. Differences in capital allocation for the considered risk measures: Figure 2 illustrates the percentage
distribution of the risk capital across all risk measures. Above that, we highlighted in each pillar
sectoral allocation for both the portfolio with a constant PD of 2% and 3.5%, respectively. Whereas the
upper diagram of Figure 2 refers to the benchmark portfolio, the lower diagram corresponds to the
portfolio with high sector concentration. Consequently, across all risk measures, nearly 80% of the
portfolio risk is allocated to Capital goods. In general, the distribution seems to be relatively stable
across all risk measures. However, EVaR and Wang’s measure allocate slightly less risk to the Capital
goods sector. In addition, the importance of the risk contribution for the sector Transportation
increases in the portfolio with higher PDs driven by the correlation structure. Although the
allocation results are rather similar, the complexity of the IT implementation of the risk measures
differs: for instance, the implementation of ExVaR, EVaR, Wang’s measure and LVaR requires some
computational experience.

3. Sensitivity of capital allocation w.r.t. concentration effects: For reasons of clarity and with respect
to the results up to now, the on-going analysis were restricted to VaR (standard case) and EVaR
(not yet considered in the context of credit risk, with certain deviances in the former analysis). Figure 3
again illustrates the percentage risk allocation to the relevant sectors for all five portfolios (i.e., with
different levels of concentration) for the VaR (upper panel) and EVaR (lower panel). First of all,
the visualization of the portfolio concentration is nearly identical for both risk measures. As the
graphics for the other risk measures strongly resemble those of Figure 3, we excluded them from
the paper. Referring to the portfolio construction summarized in Table 3, the increase of risk due
to increasing sector concentration (significant exposure is shifted from Commercial services and
supplies, and Consumer discretionary to the Capital goods sector) translates to the bars corresponding
to PF1 and PF2. In addition, the differences between the second (third) and the fourth (fifth) bar
solely arise from the assumed name concentration. In the case of constant portfolio quality and
sector mapping, the importance of the sectors Capital goods and Transportation decreases, whereas
that of Consumer discretionary increases when the number of counterparties is reduced from 200
to 100. Finally, Figure 4 illustrates the different behaviour of expected loss and unexpected loss in
the presence of risk concentrations. We contrasted the percentage distributions to the major sectors
of the expected sector loss and the risk contribution(s) on the basis of the VaR (and the EVaR). Per
definition, the expected doesn’t account for default correlation and would lead to an underestimation
and mis-allocation of risk if it is used as allocation scheme. Again, no significant deviations between
the allocation based on VaR and EVaR can be detected.

23 The simulation results are generated with a simulation number of 100,000.
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Figure 2. Sensitivity of risk contributions.
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Figure 3. Risk contribution over all portfolios.
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Figure 4. Comparison: Expected loss and risk contribution.
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6. Conclusions

Despite of its popularity, several alternatives to the Value-at-Risk and the Expected Shortfall
shot from the ground in the recent financial literature. We reviewed eight of them in the first part of
this contribution. The second part of this contribution is dedicated to the measurement of unexpected
losses in credit portfolios. Thereby, the focus is on the allocation of the unexpected portfolio loss to
sub-portfolios using Euler’s allocation scheme, which is well-established in credit risk management.
We gather and summarize the allocation formulas for the new risk measures. Some of them are already
available, partially under different names. In two cases (Median Shortfall and Range Value-at-Risk),
we closed the gap. Finally, application is given to 5 hypothetical but realistic credit portfolios with
different degrees of (name and sector) concentration. As a result, at least for the underlying portfolios,
the Euler allocation method applied to all risk measures produce similar allocation results if they are
properly calibrated. As our sensitivity analysis shows, some of the risk measures (EVaR, ExVar or
Wang distortion) react more sensitively to variation of the portfolio quality.

As it is usual, there are several open issues related to the topic which were not within our scope but
which might motivate future research. For instance, estimation procedures are only well-established
in the literature for some of the new candidates. Beyond VaR, estimation methods for the ES were
discussed, for instance, by Nadarajah et al. (2014) or Dutta and Suparna (2018), whereas estimation
of distorted risk measures relates to Tsukahara (2014) or Kim (2010) or Rassoul (2014). Similar to
Tasche (2016) who advocates a so-called Quantile-ES matching, other combinations could be used to
derive specific estimators with focus on the tail. Above that, multivariate extensions are only available
for some of the risk measures under consideration, i.e., multivariate VaR discussed by Cousin and Di
Bernardino (2013) or multivariate ES discussed by Cousin and Di Bernardino (2014). This also holds
for the dynamic versions which try to capture time-dependencies. Finally, our focus was on credit risk.
Similarly, application to market risk or operational risk is also conceivable.
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