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Abstract: In our model, private actors with interbank cash flows similar to, but more general than
that by Carmona et al. (2013) borrow from the non-banking financial sector at a certain interest rate,
controlled by the central bank, and invest in risky assets. Each private actor aims to maximize its
expected terminal logarithmic wealth. The central bank, in turn, aims to control the overall economy
by means of an exponential utility function. We solve all stochastic optimal control problems explicitly.
We are able to recreate occasions such as liquidity trap. We study distribution of the number of
defaults (net worth of a private actor going below a certain threshold).

Keywords: systemic risk; stochastic control; principal–agent problem; stochastic game;
stationary distribution; stochastic stability; Lyapunov function
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1. Introduction

We are interested in modeling interaction between utility-maximizing private actors (which for
simplicity we call private banks or simply banks) and a central bank, which regulates borrowing activity
via an interest rate. Private banks exchange (exogenous) cash flows, and borrow from the non-banking
financial sector to invest in profitable but risky assets. This central bank can lower interest rate to
stimulate financial activity by private actors, or increase this rate to cool this activity down. Sometimes,
however, there are not many profitable investments. Then, the private actors do not borrow at all,
while the central bank is not able to remedy this even by lowering the rate to zero; this is called the
liquidity trap.

We mention the concept of systemic risk, which can be informally described as the probability
of a large number of banks defaulting or getting into financial trouble. We understand default or
failure of a bank as its net worth (assets minus liabilities) going below a given threshold. We are
interested in probability of this undesirable event; of the mechanism of such failure; and of the
financial contagion, when failure of a few banks leads to many more failures. We refer the reader to
the handbook (Fouque and Langsam 2013) containing many different approaches to systemic risk.
Our work is inspired by the model introduced in (Carmona et al. 2013) and also described in
(Carmona 2016, sct. 5.5).

If Xi(t) is the wealth and Yi(t) := log Xi(t), authors in (Carmona et al. 2013) model the banking
system as a system of N continuous-time stochastic processes Y1, . . . , YN , with multidimensional
Ornstein–Uhlenbeck dynamics. The stochastic differential equations are given by:

dYi(t) = a
(
Y(t)−Yi(t)

)
dt + σdWi(t), i = 1, . . . , N, (1)
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with i.i.d. (independent identically distributed) Brownian motions W1, . . . , WN , constants a, σ > 0, and

Y(t) =
1
N

N

∑
i=1

Yi(t), t ≥ 0. (2)

The constant a is referred to as the interbank flow rate. In (Carmona et al. 2013), these mean-reverting
drifts are generated by the decisions of banks to borrow money from one another. Their decisions are
done by minimizing a certain cost functional, which measures, roughly speaking, the preference of a
bank to borrow from other banks, as opposed to borrowing from the central bank. The authors discuss
both the finite player solution and the mean-field limit of the problem in the context of systemic risk.

Remark 1. Apply Itô’s formula to rewrite Equation (1) in terms of Xi (the actual net worth of the ith
bank) instead of Yi = log Xi. Then, the interbank flows derived from Ornstein–Uhlenbeck-type terms
a(Y(t)−Yi(t))dt do not add up to 0. One can think that the remainder comes from (or to, depending
on the sign) the real economy or non-banking financial sector. Nevertheless, the model in Equation (1) attracted
a lot of attention because of its simplicity and analytical tractability.

We further explore the individual decision-making of the private banks and extend the role of the
central bank. Furthermore, we analyze how this decision-making affects the stability of the system.
More specifically, we extend the model by assuming that each private bank invests in a risky portfolio
of assets, borrows money from the non-banking financial sector to invest in this portfolio (with interest
rate controlled by the central bank), pockets the profit, and pays back the interest. Private banks want
to maximize the terminal logarithmic wealth:

supE [log Xi(T)] = supE [Yi(T)] , i = 1, . . . , N, (3)

by borrowing and investing in a portfolio of risky assets. For simplicity, we assume the portfolios
of private banks are correlated geometric Brownian motions. The choice of logarithmic utility
function allows us to solve the corresponding Hamilton–Jacobi–Bellman (HJB) equation explicitly.
Logarithmic utility, as shown in (Feldman 1992), corresponds to myopic decision-making; in other
words, private actors are short-sighted.

Unlike (Carmona et al. 2013), where the decision making of the central bank is not analyzed,
in our model the central bank uses interest rate r ≥ 0 as a monetary policy instrument (to govern the
behavior of the private banks). This is a solution of the control problem solved by the central bank:

E
[
− exp(−λY(T))

]
for some λ > 0. (4)

As we see later, the central bank is more risk-averse than private banks. Sometimes it needs
to reduce overall risk by increasing the interest rate, which controls the overall size of the system,
measured by Y from Equation (2). This is not the average net worth of banks; this is the average of the
logarithms of net worth. This measure is somewhat non-standard; however, it is more appropriate
for our model, when dynamics in Equation (1) is written in terms of logarithms Yi of net worth Xi.
This measure is used in (Carmona et al. 2013) and subsequent papers, so we feel justified in using it
here. Similar to the problem in Equation (3), we can solve Equation (4) explicitly, because of the choice
of exponential utility. (Sometimes it is called CARA: constant absolute risk aversion utility function.)
For other choices of utility functions, it is probably impossible to solve these optimal control problems
explicitly. Then, one could possibly try to use mean-field limits, as in (Carmona et al. 2016; Carmona
and Lacker 2015; Lacker 2016).

Remark 2. This setup resembles the principal–agent problem: the principal (now the central bank) allows
private banks to borrow from the non-banking financial sector, and private banks (agents) maximize their
expected logarithmic terminal utility (their contract).
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Under such optimal choices of the actors, we study the dynamics of logarithmic net worth of
banks, and the distribution of defaults. A default of the ith bank is understood in the same way as
above: when Xi(t), the net worth of this bank, falls below some fixed positive threshold. This leads
us to understanding systemic risk in this model: how defaults of a few banks can lead to defaults of
many other banks (see Section 3.4).

Besides incorporating the optimal strategy of the central bank, we also generalize the model in
Equation (1) by allowing interbank flow rates from bank i to bank j to depend on the banks i, j, and on
time t, denoting this rate by cij(t). This heterogeneity, together with Ornstein–Uhlenbeck dynamics,
resembles to some extent the model by (Kley et al. 2015). As we show in Section 4, the matrix
(cij(t)) of interbank flow rates corresponds to the stability of the system. We also allow for Brownian
motions W1, . . . , WN to have drifts and to be correlated: that is, we assume W = (W1, . . . , WN) is an
N-dimensional Brownian motion with drift vector µ and covariance matrix A.

1.1. Existing Models and Contributions

The literature on systemic risk is divided into two main categories: graph theoretic models and
dynamic models using stochastic differential equations. Graph theoretic formulation of systemic risk
came to prominence through Eisenberg and Noe (2001). Many works have extended their model and
one of the latest works is Banerjee et al. (2018). Our work here is in the second group and inspired by
Carmona et al. (2013). Some of the recent works in this direction are (Carmona et al. 2018; Sun 2018).
Our work uniquely adds to the existing literature by viewing systemic risk as principal–agent problem
with central bank as the principal and private banks as the agents. To our knowledge, we are the first
to view the systemic risk through this lens. More specifically, our work adds to existing literature in
the following ways:

• First, we extend the model in (Carmona et al. 2013) to include the central bank. This affects the
response of the private banks who now make decisions considering the monetary policy of the
central bank. Our model allows for the central bank to play a more active role in stabilizing the
banking system. This important feature was missing in the work of (Carmona et al. 2013) where
the central bank was considered merely as a clearing house.

• Second, we reformulate the problem discussed in (Carmona et al. 2013) as a principal–agent
problem where both, the principal (central bank) and the agent (private banks) maximize their
respective utility. We assume that the private banks are risk neutral and central bank as risk averse.
This allows us to get closed form solutions for the optimal policy of both the players.

• Third, we generalize the flow rates in our model to be different for each pair of private banks.
This generalization converts the representative agent model discussed in (Carmona et al. 2013)
into a heterogeneous agent model. This heterogeneity demonstrates a unique feature of the
banking system where banks with higher interbank flows are less likely to default than their
counterparts with lower interbank flows.

• Finally, as we show in Section 2, the volatility of the wealth process of the private banks is
controlled, in contrast to (Carmona et al. 2013) where the volatility is constant for each bank.

1.2. Organization of the Paper

In Section 2, we describe the model in terms of stochastic control problem for a system of stochastic
differential equations. In Section 3, we solve the stochastic control problem for each private bank,
and in Section 4, for the central bank (given optimal control for each private bank). In particular,
in Section 3, we study distribution of the number of defaults. This is where we touch the concept
of systemic risk: We are interested in its dependence on the parameters of the system, for example
correlations between returns on various risky investments. Section 5 contains results on long-term
stability of the system: the fact that the capitals of banks tend to stay close, as opposed to splitting into
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two or more groups. Section 6 is devoted to concluding remarks and suggestions for future research.
The Appendix contains some technical proofs.

1.3. Notation

For a vector or a matrix a, its transpose is denoted by a′. We usually think of vectors as
column-vectors. The dot product of two vectors a and b is denoted by a · b. The term standard
Brownian motion stands for a one-dimensional Brownian motion with drift coefficient 0 and diffusion
coefficient 1. For V ≡ 1, this is called the total variation norm. Fix a dimension N ≥ 2. Then, e ∈ RN is a
vector (1, . . . , 1)′ with unit components, and we define the following hyperplane in RN :

Π := {x ∈ RN | x · e = 0} = {x ∈ RN | x1 + . . . + xN = 0}.

Define the (closed) ball of radius r on Π centered at the origin:

B(r) := {x ∈ Π | ‖x‖ ≤ r}. (5)

The (N − 1)-dimensional Lebesgue measure on Π is denoted by mesΠ(·). As mentioned above,
the symbol 1(A) or 1A stands for the indicator function of an event A.

2. Description of the Model

2.1. Formal Description

Consider a system of N agents (we call them private banks) which continuously lend money to
each other, borrow from the non-banking financial sector, pay back the interest, and invest in some
risky portfolios.

We operate on filtered probability space (Ω,F , (Ft)t≥0,P) with the filtration satisfying the usual
conditions. All the processes which we consider are adapted to the (Ft)t≥0. Let Xi(t) > 0 be the net
worth (assets minus liabilities) of the ith bank at time t, for i = 1, . . . , N. Let Zi(t) be the amount
borrowed at the moment t by the ith private bank from the non-banking financial sector. Assume the
interest rate for such borrowing is r(t) ≥ 0, controlled by the central bank. Then, during the time
interval [t, t + dt], the ith bank pays back interest r(t)Zi(t)dt. At time t, the ith bank has at its disposal
the amount Xi(t) + Zi(t): its own capital plus borrowed amount. This amount Zi(t) ≥ 0 is controlled
by the ith bank. Herein, we assume perfect competition in the interbank lending market. We also
assume that there is no limit on the maximum borrowing of the private banks.

Alternatively, the ith bank might decide to not borrow anything, and instead to even put aside
some of its own money in cash (which does not earn any interest). This happens if the investment is not
very profitable, or, more precisely, if the return does not outweigh the risk. In this case, we let Zi(t) < 0,
and define −Zi(t) to be the quantity of cash put aside. The amount invested is still Xi(t) + Zi(t),
but the bank does not pay or receive any interest.

We combine these two cases: the ith bank invests the amount Xi(t) + Zi(t) at time t into a risky
portfolio, and pays interest r(t)(Zi(t))+ dt during the time interval [t, t + dt].

At time t, the ith bank invests in a portfolio of risky assets with value Si(t). The ith bank buys
(Xi(t) + Zi(t))/Si(t) units of this portfolio. Net profit for the time interval [t, t + dt] is

(Xi(t) + Zi(t))
dSi(t)
Si(t)

.

Combining all of the above, we get the following system of equations:

dXi(t) = (Xi(t) + Zi(t))
dSi(t)
Si(t)

− r(t)(Zi(t))+ dt i = 1, . . . , N, and Xi(0) > 0. (6)
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Next, we make some assumptions on Si, the dynamics of the portfolio processes. A separate
question is how banks construct these portfolios out of stocks and other risky assets. This question is
separate from the topic of this paper, and we do not study it here. Instead, we assume that these are
geometric Brownian motions. This assumption is very simplifying, but we believe it captures to some
extent the features of portfolios. The processes

Mi(t) =
∫ t

0

dSi(s)
Si(s)

, i = 1, . . . , N,

form an N-dimensional Brownian motion with drift vector µ = (µ1, . . . , µN) and covariance matrix
A = (aij)i,j=1,...,N . In particular, each Mi, i = 1, . . . , N, is a Brownian motion with drift coefficient µi
and diffusion coefficient σ2

i := aii, so it can be represented as

Mi(t) = µit + σiWi(t), (7)

where Wi is a one-dimensional standard Brownian motion. Although the portfolio process in Equation (7)
is driven by only one Brownian motion, a more general representation:

dSi(t)
Si(t)

= µidt +
m

∑
j=1

σi,jdBj(t), (8)

where (B1, . . . , Bm) are Brownian motions, can also be considered in our framework.
Since σidWi(t) := ∑m

j=1 σi,jdBj(t), but Wi is also a Brownian motion, we fall back to the original
portfolio process in Equation (7).

The covariance between Brownian motions (W1, . . . , WN) can be modeled in various ways. (1.a)

All W1, . . . , WN are independent. Then, the matrix A is diagonal:

A = diag(σ2
1 , . . . , σ2

N). (9)

This means that the portfolios of banks are independent.
(1.b) All W1, . . . , WN are the same: W1 = W2 = . . . = WN . This means that all banks, in fact,

use the same portfolio, and they are perfectly correlated. Then, it makes sense to let µ1 = . . . = µN
and σ1 = . . . = σN .

(1.c) An intermediate case: for some i.i.d. Brownian motions W̃i, i = 0, . . . , N, and some
coefficients ρ0, ρ̃0 with ρ2

0 + ρ̃2
0 = 1 we have:

Wi(t) := ρ0W̃i(t) + ρ̃0W̃0(t), i = 1, . . . , N. (10)

One can also split N banks into subsets and construct dependence as in Case (1.c) for each subset;
portfolio processes corresponding to different subsets are assumed to be independent.

2.2. Main System of Driving Stochastic Equations

Apply Itô’s formula to find the dynamics of Yi(t) := log Xi(t):

dYi(t) =
dXi(t)
Xi(t)

− d〈Xi〉t
2X2

i (t)
(11)

Combining Equation (6) with Equation (11), we get our main stochastic equation, driving banks’
wealth. For now, it does not contain interbank flows, which are Ornstein–Uhlenbeck-type drifts as
in Equation (1):

dYi(t) = (1 + αi(t))σi dWi(t) + hi(αi(t), r(t))dt. (12)
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Here, we define the relative investment ratio:

αi(t) =
Zi(t)
Xi(t)

, t ≥ 0, i = 1, . . . , N,

and the following quantity:

hi(α, r) := (1 + α)µi −
σ2

i
2
(1 + α)2 − rα+ for α, r ∈ R. (13)

Finally, the ith bank also interacts with other banks, having cash flow in and out.
In (Carmona et al. 2013) and subsequent papers, this interaction is modeled by Ornstein-Uhlenbeck-
type drifts

a(Y(t)−Yi(t)) (14)

from Equation (1), with Yi(·) = log Xi(·). Here, we take drifts

1
N

N

∑
j=1

cij(t)(Yj(t)−Yi(t)) (15)

which are more general than Equation (14), and add them to Equation (12). Here, we assume that the
flow rates satisfy

cij(t) = cji(t), i 6= j; cii(t) = 0, i = 1, . . . , N.

Remark 3. While we generalize the model of (Carmona et al. 2013), the symmetric interbank flows is clearly a
simplification of real banking network where the interbank flows tend to be asymmetric. However, this assumption
simplifies the problem mathematically as the aggregate wealth Ȳ(t) is not dependent on the interbank flows and
its dynamics can be expressed through the stochastic differential Equation (35). Furthermore, this allows us to
solve for the optimal control of the central bank in closed form.

Note that in our model, as in (Carmona et al. 2013), the cash flows (in the original scale,
not logarithmic one) do not necessarily add up to zero. Consider possible particular cases:

(2.a) All cij(t) ≡ 0. Then, there are no cash flows between banks.
(2.b) All cij(t) ≡ c(t) > 0. For a constant c, this is the model from (Carmona et al. 2013).
(2.c) Let G be a graph on vertices {1, . . . , N}. Fix a c(t) > 0 for all t > 0. Let

cij(t) =

{
c(t) if the vertices i, j, are adjacent

0 else
(16)

After superimposing these Ornstein–Uhlenbeck-type drifts from Equation (15) on top of Equation (12),
our main driving equation takes the form

dYi(t) = (1 + αi(t))σi dWi(t) + hi(αi(t), r(t))dt

+
1
N

N

∑
j=1

cij(t)
(
Yj(t)−Yi(t)

)
dt, i = 1, . . . , N.

(17)

Equation (17) resembles the model from (Carmona et al. 2013). However, it also has significant
differences: the volatility in Equation (17) can be controlled (bank i controls its investment decisions
via αi(t) which drives the volatility of the process Yi(t)), unlike in (Carmona et al. 2013); and the drift
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coefficient in Equation (17) is a bit more complicated. For homogeneous rates: cij(t) ≡ c(t), Equation (17)
takes the form

dYi(t) = (1 + αi(t))σi dWi(t) + hi(αi(t), r(t))dt + c(t)(Y(t)−Yi(t))dt, (18)

for i = 1, . . . , N, where Y(t) is defined in Equation (2). Moreover, this modification makes the
representative agent model as studied by (Carmona et al. 2013) into a heterogeneous agent model.

2.3. Interpretation

As in (Carmona et al. 2013), we consider bank i to be in bankruptcy at time t if Xi(t) < eD, where D
is a given threshold, stipulated by the central bank. The central bank would like to stimulate the
activity of banks by persuading them to take risks, but not too much, lest they may become bankrupt.
Equation (12) means that the central bank can use interest rate r(t) as a monetary policy tool to alter
the behavior of the private-banks.

Assume that banks start borrowing too much money and investing them in risky assets
(leveraging). By doing this, they increase their probability of default. Then, the central bank can
raise this interest rate to discourage private banks from excessive borrowing. Conversely, if banks are
too cautious in borrowing against future profits and risk-taking, then the central bank can stimulate
them by lowering the interest rate. As we show below, this interest rate affects the overall state of
the system.

The parameter r(t) is determined by the central bank and given to all private banks.
These private banks then determine the investment rates αi(t), independently of each other. In light of
decision-making of the banks, the central bank needs to determine optimal values of these parameters.
This setup is similar to the principal–agent problem, but with many agents.

3. Optimal Behavior of Private Banks

3.1. Statement of the Problem

We assume that the ith bank takes as given the capital of other banks: Xj(t), j 6= i (or, equivalently,
Yj(t) := log Xj(t), j 6= i), as well as the interest rate r(t) (the instrument of the monetary policy).
The bank is trying to choose the relative investment ratio αi(t), or, equivalently, the amount borrowed
Zi(t), to maximize its expected terminal logarithmic wealth:

sup
αi

E [log Xi(T)] , (19)

where the supremum in Equation (19) is taken over all bounded adapted controls αi = (αi(t), 0 ≤ t ≤
T). Assume that the interest rate r(t) is already set by the central bank. In this section, we solve this
stochastic control problem explicitly. This corresponds to the agent’s problem in the principal–agent
framework. In the next section, we discuss the optimal policy choices of the central bank (the principal).

3.2. Solution of the Problem

This specific choice of the utility function, which is linear in Yi, and the choice of the interbank
flows, which are also linear in Yi in Equation (12), makes this optimization problem tractable.

Theorem 1. For the optimization problem stated in Equation (19), where αi is bounded, adapted on [0, T],
the following value of αi is optimal for the ith private bank:

α∗i (t) :=


(

µi − r(t)
σ2

i
− 1
)
+

, µi ≥ σ2
i ;

µi
σ2

i
− 1, µi ≤ σ2

i .
(20)
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Remark 4. In particular, if µi ≤ σ2
i , that is, the return on the investment does not outweigh its risks, then the

ith bank does not borrow anything to invest. On the contrary, this bank sets aside money as cash. If µi ≥ σ2
i ,

the investment is attractive for borrowing, but a high enough interest rate: r(t) ≥ µi − σ2
i can preclude the ith

bank from borrowing; then this bank will invest only its own money into the portfolio. Only if the interest rate is
low enough: r(t) < µi − σ2

i , the ith bank borrows money to invest.

Remark 5. Note that the optimal strategies Equation (20) do not depend on the flow rates cij, because of the
special choice of logarithmic utility function, which is linear in Yi. Although logarithmic utility function leads
to myopic agents, this assumption is important for mathematical tractability of the results. Let us mention
CRRA (Constant Relative Risk Aversion, which corresponds to power functions) utility, or DARA (Decreasing
Absolute Risk Aversion) utility, suggested in the paper (Machina and Viscusi 2014). These are other utility
functions used in the literature. However, we were unable to evaluate the optimal control for these even in the
mean field case.

Proof. The dynamic programming principle tells us that the function

Φi(t, y) := sup
αi

E [Yi(T) | Yi(t) = y]

where we take the supremum over all αi which are bounded and adapted on [t, T], satisfies the
Hamilton–Jacobi–Bellman (HJB) equation:

∂Φi
∂t

(t, y) + sup
αi∈R

[
1
2

N

∑
j=1

N

∑
k=1

(1 + αj)ajk
∂2Φi

∂yj∂yk
(t, y)

+
N

∑
j=1

[
hj(αj, r(t)) +

1
N

N

∑
k=1

cjk(t)(yk − yj)
]∂Φi

∂yj
(t, y)

]
= 0,

(21)

with terminal condition Φi(T, y) = yi. We assume all αj, j 6= i are already chosen. Try the following
anzats, linear in yj:

Φi(t, y) = gi0(t) +
N

∑
j=1

gij(t)yj. (22)

Because it is linear, the second-order derivatives in Equation (21) turn out to be zero. Therefore,
the only term in Equation (21) which needs to be maximized is h(αi, r(t)). The solution to this
maximization problem is given by the value α∗i from Equation (20). This is a simple algebraic exercise;
detailed calculations are given in Lemma A3 in the Appendix. The maximal value of hi(α, r(t)) is

h∗i (t) := hi(α
∗
i (t), r(t)) =


r(t) + (µi − r(t))2

2σ2
i

, r(t) ≤ µi − σ2
i ;

µi − 1
2 σ2

i , r(t) ≥ µi − σ2
i ≥ 0;

µ2
i

2σ2
i

, µi ≤ σ2
i .

(23)

This means that the ith bank chooses the control value αi := α∗i . This value is independent of
terminal time T, and of the values of Yj, j = 1, . . . , N. This corresponds to the classical solution of
the Merton problem. If r is constant (independent of t), then α∗i and h∗i are also constant. Comparing
Equation (22) with the terminal condition, we have:

gij(T) = δij =

{
1, i = j;

0, i 6= j,
for j = 0, . . . , N. (24)
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Next, plug the anzats in Equation (22) into Equation (21). Note that all second-order derivatives
of the anzats in Equation (22) are equal to zero, and first-order derivatives are

∂Φi
∂yj

= gij(t), j = 1, . . . , N. (25)

In addition, the time derivative of this value function Φ from Equation (22) is

∂Φ
∂t

= g′i0(t) +
N

∑
j=1

g′ij(t)yj. (26)

Combining Equations (20), (23), (25) and (26), we get that the HJB Equation (21) takes the form

g′i0(t) +
N

∑
j=1

g′ij(t)yj +
N

∑
j=1

h∗j (t)gij(t) +
1
N

N

∑
j=1

N

∑
k=1

cjk(t)(yk − yj)gij(t) = 0. (27)

Comparing coefficients in Equation (27) at each yj, we see that

g′ij(t) +
1
N

N

∑
k=1

gik(t)cjk(t)−
1
N

N

∑
k=1

gik(t)ckj(t) = 0, j = 1, . . . , N. (28)

The free terms in Equation (27) sum up to

g′i0(t) +
N

∑
j=1

h∗j (t)gij(t) = 0. (29)

Together with terminal conditions in Equation (24), this Systems in Equations (28) and (29) of
N + 1 linear ODEs has a unique solution gi0, . . . , giN . This solves the HJB equation.

To complete the proof, let us do the verification argument. Take a bounded adapted control
αj = (αj(t), 0 ≤ t ≤ T) for each j = 1, . . . , N. Apply Itô’s formula for Φi(t, Y(t)):

dΦi(t, Y(t)) =
[

∂Φi
∂t

(t, Y(t)) +
1
2

N

∑
j=1

N

∑
k=1

(1 + αj(t))ajk
∂2Φi

∂yj∂yk
(t, Y(t))

+
N

∑
j=1

[
hj(αj(t), r(t)) +

1
N

N

∑
k=1

cjk(t)(Yk(t)−Yj(t))
]∂Φi

∂yj
(t, Y(t))

]
dt

+
N

∑
j=1

∂Φi
∂yj

(t, Y(t))(1 + αj(t))dWj(t).

(30)

Using the boundedness of αj = (αj(t), 0 ≤ t ≤ T), we get that the stochastic integral
term in Equation (30) has expectation zero. Combining Equation (21) with Equation, (30), we
get that (Φi(t, Y(t)), t ≥ 0) is a supermartingale for all admissible (adapted bounded) controls
αi, but a martingale for the control α∗i . Recall that Φi(T, y) = yi. Therefore, EΦi(0, Y(0)) ≥
EΦi(T, Y(T)) = EYi(T), with equality for the control α∗i . From here it immediately follows that
α∗i is indeed the optimal control.
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3.3. The Dynamics of Banks under Their Optimal Investment Choices

Under the optimal control in Equation (20), the processes Yi, i = 1, . . . , N (we denote them by Y∗i )
satisfy the following system of stochastic differential equations:

dY∗i (t) = dM∗i (t) +
1
N

[
N

∑
j=1

cij(t)(Y∗j (t)−Y∗i (t))

]
dt, i = 1, . . . , N, (31)

where M∗1 , . . . , M∗N , are given by

dM∗i (t) = hi(α
∗
i (t), r(t))dt + σi(1 + α∗i (t))dWi(t).

If r = const, then M∗ is an N-dimensional Brownian motion with drift vector and covariance
matrix given by

µ∗ = (µ∗1 , . . . , µ∗N), µ∗i := hi(α
∗
i , r). (32)

A∗ := (a∗ij)i,j=1,...,N = diag((1 + α∗i )
2, i = 1, . . . , N) A. (33)

The dynamics in Equation (31) is similar to that in (Carmona et al. 2013). If r(t) does not depend
on t, then M∗ = (M∗1 , . . . , M∗N)

′, similar to (M1, . . . , MN)
′, is an N-dimensional Brownian motion,

but with different drift vector and covariance matrix. As in Equation (2), we define

Y∗(t) =
1
N

N

∑
i=1

Y∗i (t).

Averaging Equation (31) and using the symmetry property cij = cji, we have:

Y∗(t) =
1
N

N

∑
i=1

M∗i (t), (34)

The interest rate r controls the overall size of the system, measured by Y. Express Equation (34) as:

dY∗(t) = g(r(t))dt + ρ(r(t))dW(t), (35)

where W is a standard Brownian motion, and the coefficients g(·) and ρ(·) are defined as:

g(r) :=
1
N

N

∑
i=1

gi(r), gi(r) :=


(µi − r)2

2σ2
i

+ r, r ≤ µi − σ2
i ;

µi −
σ2

i
2 , r ≥ µi − σ2

i ;
µ2

i
2σ2

i
, µi < σ2

i .

(36)

ρ2(r) :=
1

N2

N

∑
i=1

N

∑
j=1

aijρi(r)ρj(r), ρi(r) :=


µi − r

σ2
i

, 0 ≤ r ≤ µi − σ2
i ;

1, 0 ≤ µi − σ2
i ≤ r;

µi
σ2

i
, µi ≤ σ2

i .

(37)

To illustrate the optimal choice of the investment ratio α∗i = αi, i = 1, . . . , N, we made some
simulations. Take N = 30 banks, with µi, σi, i = 1, . . . , N i.i.d. uniform [0.1, 0.2]. Then, µi ≥ σ2

i for all
i; that is, all portfolios are profitable to invest, at least for zero interest rate r = 0. First, in Figure 1,
we assume Equation (9), that is, the portfolio processes S1, . . . , SN , are independent. We also assume
that there are no flows:

cij(t) ≡ 0, i, j = 1, . . . , N.
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We take three interest rates r: 0%, 12%, and 20%, respectively. As expected, increasing the interest
rate forces the banks to borrow less and thus optimal investment ratio α∗ becomes 0 in Figure 1c while
it varied between 2 to 12 in Figure 1a.
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Figure 1. We use the following parameters for the simulations: N = 30 bank, time horizon T = 1,
no correlation ρ0 = 0, no interbank flows ci,j = 0, 1000 time steps and µi, σi, i = 1, . . . , N i.i.d. uniform
[0.1, 0.2].

Next, in Figure 2, we assume portfolio processes are independent, as in Equation (9), but there
are flows:

cij =

{
10, i, j = 1, . . . , 10;

0.5, else.
(38)

We observe that the banks with significant flows tend to have wealth dynamics which are more
“tied” together. Moreover, this adds to the stability to the system as we observe lesser defaults for
i = 1, . . . , 10 compared to j = 11, . . . , 30.
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(b) i = 1, . . . , 10
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(c) j = 11, . . . , 30

Figure 2. Evolution of the logarithmic capital Yi(t) of banks, i = 1, . . . , N. We use the following
parameters: interest rate r = 0, N = 30 banks, time horizon T = 1, no correlation: ρ0 = 0,
interbank flows ci,j are as in Equation (38), 1000 time steps, and µi, σi, i = 1, . . . , N are i.i.d. uniform on
[0.1, 0.2].

Finally, in Figure 3, we assume that the portfolio processes are correlated, as in Equation (10),
with ρ0 := 0.5, flows are given by Equation (38) and interest rate r is 8%. Compared to Figure 2,
the impact of correlation on the dynamics of the banks is clearly visible through movement of the
wealth dynamics strongly tied together.
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Figure 3. Evolution of Yi(t), which represents the log capital of the ith bank. We use the following
parameters: interest rate r = 8%, N = 30 banks, time horizon T = 1, correlation coefficient ρ0 = 0.5,
interbank flows ci,j as in Equation (38), 1000 time steps and µi, σi, i = 1, . . . , N i.i.d. uniform [0.1, 0.2].

3.4. Systemic Risk

Much of current research is devoted to systemic risk, that is, the probability of multiple bank
defaults, and propagation of defaults through the system (in other words, contagion). To illustrate the
probability of default of banks under different scenarios, we present the histogram and the empirical
cumulative distribution function for number of defaults with N = 100 banks and 1000 simulations.
We assume the default threshold D = −1 in logarithmic wealth. That is, firms default if Yi(t) < D for
some t ∈ [0, T]. Denote the (random) number D of defaults:

D :=
N

∑
i=1

1
(

min
0≤t≤T

Yi(t) < D
)

, (39)

First, in Figure 4, we assume no interbank flows and independent portfolio process under different
interest rate scenarios.

0 5 10 15 20 25
number of banks

0

50

100

150

200

250

(a) r = 0

0 5 10 15 20 25
number of banks

0

20

40

60

80

100

120

140

160

(b) r = 0.05

0 5 10 15 20 25
number of banks

0

50

100

150

200

250

300

(c) r = 0.08

Figure 4. Number of banks in default, whose log capital Yi(t) at some time t ∈ [0, T] goes below
D = −1. We use the following parameters: N = 100 banks, 1000 simulations, no correlation: aij = σ2

i δij,
no interbank flows: cij = 0 for i, j = 1, . . . , N, 100 time steps, and µi, σi, i = 1, . . . , N are i.i.d. uniform
on [0.1, 0.2].

Next, in Figure 5, we present empirical cumulative distribution function (CDF) for the number
of defaulted banks assuming correlated portfolios and no interbank flows for different interest rates.
The corresponding histogram is presented in Figure 6. As stated in previous studies, increase in
correlation increases the probability of large defaults and at the same time reducing the small default
probabilities, similar to flocking behavior in various biological studies. Thus, in Figure 7, we present
empirical estimates of P(D > 60) and P(D < 5), for N = 100 banks, as a function of the correlation
between their portfolio process at different interest rates. As expected, we observe the increase in
probability of large and small default as the correlation increases. However, increasing the interest rate
reduces the probability of large default at the expense of small default probability. Finally, in Figure 8,
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we present the empirical CDF for the number of defaulted banks assuming correlated portfolio process
and constant interbank flows cij = a for i, j = 1, . . . , N, where a ∈ {0, 0.5, 1}. We observe that interbank
flows help stabilize the system and reduce the probability of default.
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Figure 5. Empirical CDF of D, the number of banks in default, with N = 100 banks, 1000 simulations,
µi = σi = 0.1 for i = 1, . . . , N.

(a) r = 0 and ρ0 = 0 (b) r = 0 and ρ0 = 0.5

(c) r = 0.03 and ρ0 = 0.3 (d) r = 0.05 and ρ0 = 0.3

Figure 6. Histogram of the number of banks defaulting. We use the following parameters:
N = 100 banks, 1000 simulations, µi = σi = 0.1 for i = 1, . . . , N, and no interbank flows: cij = 0
for i, j = 1, . . . , N.
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(a) Probability of a large default: D > 60 (b) Probability of a small default: D < 5

Figure 7. Empirical estimates of the probabilities of large and small defaults: P(D > 60) and
P(D < 5), respectively, as a function of correlation between portfolio process ρ0 at different interest
rates. We use the following parameters: N = 100 banks, 5000 simulations, µi = σi = 0.1 for i = 1, . . . , N,
and interbank flow rates cij = 0 for i, j = 1, . . . , N.
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(a) ρ0 = 0.5 and r = 0
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(b) ρ0 = 0.5 and r = 0.03

Figure 8. Empirical CDF of the number D of banks in default. We use the following parameters:
N = 100 banks, 1000 simulations, µi = σi = 0.1 for i = 1, . . . , N, and constant interbank flows cij = a
for i, j = 1, . . . , N, where a ∈ {0, 0.5, 1}.

4. Optimal Central Bank Policy

In this section, we assume that the central bank has to choose the interest rate r in an optimal
way, so that, after banks make their choice as in the previous section, optimal policy choice is achieved.
We assume that banks make optimal (for them) choices and we omit all asterisks from notation
of processes. This can be thought of as a principal’s problem within the principal–agent problem
framework. Let us now revisit the description of policy making by the central bank.

Its tool is the interest rate r, which the central bank uses to control the overall amount of capital
in the system, measured by the Y∗ from Equation (35). If the interest rate is low, the growth rate g(r)
from Equation (36) and the volatility ρ2(r) from Equation (37) are large. A more risk-averse central
bank can choose therefore a larger r. One can apply a concave utility function to Y∗(t), and solve the
stochastic control problem for this r. We apply the exponential (CARA: constant relative risk aversion)
utility function to Y∗(t).
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The private banks wish to maximize their expected logarithmic net worth Yi(t). However, in terms
of logarithmic capital, their utility function is linear, thus the private banks are risk neutral. Now, if the
central bank was risk neutral, similar to the private banks, she would also try to maximize

E(Y1(T) + . . . + YN(T)), or, alternatively, EY(T),

for a time horizon T > 0. Below, we show that the central bank would then choose zero interest rate
r = 0, because this would produce the same result as the private banks were aiming for.

Now, suppose the central bank is risk-averse. This should manifest itself in the utility function
being concave (rather than linear). Consider, for example, a commonly used exponential (CARA)
utility function:

Uλ(y) := −e−λy. (40)

Assume the central bank maximizes expected terminal utility:

sup
r

EUλ(Y(T)), (41)

where the supremum in Equation (41) is chosen over all bounded adapted controls r. We can
alternatively choose instead of Equation (40) the utility function as

Uλ(y) =
1
λ

(
1− e−λy

)
. (42)

There is no difference between Equation (40) and Equation (42) when we try to maximize
Equation (41), but writing Equation (42) highlights the risk-aversion of the central bank. As λ ↓ 0,
the function Uλ from Equation (42) satisfies:

Uλ(y)→ y.

The commonly used absolute risk aversion is calculated for Equation (42) as follows:

−
U′′λ (y)
U′λ(y)

= λ.

In other words, λ > 0 is the coefficient of risk aversion (of the central bank relative to private
banks). For λ = 0, the central bank is risk neutral.

Theorem 2. An optimal interest rate r(t) for the problem in Equation (41) is given by a constant r = r∗ which
maximizes the following expression:

w(r, λ) := g(r)− λ

2
ρ2(r). (43)

Remark 6. It is interesting to note that the optimal interest rate r does not depend on the flow rates cij. This is
because we measure the size of the system by the stochastic process Y(t). This process satisfies a stochastic
differential equation with coefficients independent of cij. These coefficients do depend on the optimal controls α∗i .
However, as we mentioned in Remark 5, these optimal controls α∗i , in turn, do not depend on the flow rates,
because of our special choice of logarithmic utility function. We want to emphasize that in practice we expect to
observe the interbank flow rate to affect the optimal interest rate. Particularly, asymmetric interbank flow rates
are more likely to be one of the control variables for the corresponding bank, driving its wealth and consequently
affecting the optimal interest rate. The result here is driven by the assumption of symmetric flows i.e., cij = cji.
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Proof. The HJB equation for the function

Φ(t, y) := sup
r

E
[
Uλ(Y(T)) | Y(t) = y

]
where the supremum is taken over all bounded adapted controls r = (r(t), 0 ≤ t ≤ T), takes the form

∂Φ
∂t

+ sup
r≥0

[
∂Φ
∂y

g(r) +
1
2

∂2Φ
∂y2 ρ2(r)

]
= 0, (44)

with terminal condition Φ(T, y) = Uλ(y). Try the following form:

Φ(t, y) = f (t)Uλ(y). (45)

From Equation (45), we can calculate derivatives with respect to t and y:

∂Φ
∂t

= f ′(t)Uλ(y),
∂Φ
∂y

= −λΦ,
∂2Φ
∂y2 = λ2Φ. (46)

Plug Equation (46) into Equation (44). Because Φ < 0, we can rewrite Equation (44) as

f ′(t) + f (t) · inf
r≥0

[
−λg(r) +

λ2

2
ρ2(r)

]
= 0.

This, in turn, is equivalent to

f ′(t)
λ f (t)

= sup
r≥0

[
g(r)− λ

2
ρ2(r)

]
=: k0. (47)

Since we have Φ(T, y) < 0 and Uλ(y) < 0, for compatibility we need to show that f (t) > 0 for
all t. From the terminal condition Φ(T, y) = Uλ(y) combined with Equation (45), we have: f (T) = 1.
Equation (47) can be written as f ′(t) = λk0 f (t), which gives us f (t) = exp (λk0(t− T)). Therefore,
f (t) is positive.

Finally, let us do the verification argument to complete the proof. The idea is similar to the
verification argument in Theorem 1. Assume r∗ = (r∗(t), 0 ≤ t ≤ T) is our constant control from
Equation (43), found from Equation (44), and r = (r(t), 0 ≤ t ≤ T) is some other admissible (adapted
bounded) control. Apply the function Φ(t, ·) to the process Y. By Itô’s formula,

dΦ(t, Y(t)) =
[

∂Φ
∂t

(t, Y(t)) +
∂Φ
∂y

(t, Y(t))g(r(t)) +
1
2

∂2Φ
∂y2 (t, Y(t))ρ2(r(t))

]
dt

+
∂Φ
∂y

(t, Y(t))ρ(r(t))dW(t).
(48)

Comparing Equation (44) with Equation (48), we get that Φ(t, Y(t)) is a supermartingale for
the control r, but a martingale for the control r∗. Indeed, by boundedness of r(t), the expectation
of the stochastic integral in Equation (48) is zero. Since Φ(T, y) = Uλ(y), we get: EUλ(Y(T)) =

EΦ(T, Y(T)) ≤ EΦ(0, Y(0)), with equality for the control r∗. The result immediately follows
from here.

Let us find the r which corresponds to the maximum in the right-hand side of (47). This depends
on the structure of the vector g and the matrix A.

If µi ≤ σ2
i for all i = 1, . . . , N, then all investments are too unprofitable to borrow money for them.

Then, the interest rate policy cannot influence the behavior of private banks. This corresponds to the
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case of the liquidity trap, when conventional monetary policy no longer works. From now on until the
end of this section, let us assume that all investments are attractive:

µi ≥ σ2
i , i = 1, . . . , N.

(3.a) Assume S1 = . . . = SN : all investments are the same. Then, we have:

g1 = . . . = gn =: g, and σ1 = . . . = σN =: σ;

g(r)− λ

2
ρ2(r) =

{
(µ − r)2

2σ2 (1− λ), r ≤ µ− σ2;

µ− σ2

2 (1 + λ), r ≥ µ− σ2.

The maximum is attained at r = 0 for

λ < λ∗ := 1− 2
( µ

σ2 + 1
)−1

,

and at any r ≥ µ− σ2 for λ > λ∗. This has the following meaning: the case λ < λ∗ corresponds to
less risk-averse central bank, and, to increase the total quantity of capital in the system, it wishes to
slash the interest rate to zero. For the case λ > λ∗, however, the central bank is very risk-averse, and it
increases the interest rate to prevent excessive borrowing and overheating of the financial system.

(3.b) Independent portfolio process: aij = σ2
i δij, where δij is as defined in Equation (24). Then,

g(r)− λ

2
ρ2(r) =

1
N

N

∑
i=1

[
gi(r)−

λ

2N
σ2

i ρ2
i (r)

]
.

This function attains maximum:

at r = 0 for λ < λmin := N min
i=1,...,N

1− 2

(
µi

σ2
i
+ 1

)−1
 ,

at r = max
i=1,...,N

[
µi − σ2

i

]
for λ > λmax := N max

i=1,...,N

1− 2

(
µi

σ2
i
+ 1

)−1
 .

In the general case, we do not have an explicit form for the optimal r in case λ ∈ [λmin, λmax].
If µ1 = . . . = µN = µ and σ1 = . . . = σN = σ, we have λmin = λmax. Note that here the central bank
chooses expansionary monetary policy (zero interest rate r = 0) for larger values of λ compared to
Case (3.a). This has the following interpretation: If the portfolios of banks are independent, then this
creates diversification in the system and reduces risk. Therefore, even a relatively risk-averse central
bank (large λ) can pursue aggressive expansionary monetary policy.

(3.c) Correlated portfolio process with same growth rates µ = µi and volatilities σ2 = σ2
i .

Assume the driving Brownian motions of these portfolio process are correlated as in Equation (10).
After calculation, we get:

g(r) =

{
(µ − r)2

σ2 + r, r ≤ µ− σ2;

µ− σ2

2 , r ≥ µ− σ2;

ρ2(t) := c
(

µ− r
σ
∧ σ

)2
, c := λ

(
N − 1

N
ρ0 +

1
N

)
.
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Then, we can find optimal r: this is

r∗ =

0, c < 1− 2
(

µ

σ2 − 1
)−1

;

µ− σ2, c > 1− 2
(

µ

σ2 − 1
)−1

.

Note that for ρ0 = 1 we get Case (3.a), and for ρ0 = 0 we get Case (3.b). Case (3.c) is intermediate:
there is diversification between portfolios of private banks, but this diversification is not complete.
Therefore, a risk-averse central bank can pursue more expansionary monetary policy than in Case (3.a),
but less so than in Case (3.b).

To illustrate the impact of risk aversion λ on the optimal interest rate, we simulate three scenarios.
First, in Figure 9, we assume uncorrelated portfolio process, each with same mean and volatility
µi = σi = 0.1 for i = 1, . . . , N. This is Case (3.a), which is discussed above in this section.

(a) optimal interest rate (b) w(r, λ)

Figure 9. Optimal interest rate with N = 30 uncorrelated portfolio process: ρ0 = 0, with µi = σi = 0.1
for i = 1, . . . , N.

Next, in Figure 10, we assume independent portfolio process but with mean and standard
deviation µi, σi, i = 1, . . . , N i.i.d uniform on [0.1, 0.2]. This is Case (3.b), which is discussed above in
this section. However, to our surprise, we observe the optimal interest rate to have only one jump as
we increase the risk aversion parameter λ.

(a) optimal interest rate (b) w(r, λ) (c) µi − σ2
i

Figure 10. Optimal interest rate with N = 30 uncorrelated assets. with mean and standard deviation
µi, σi, i = 1, . . . , N i.i.d uniform on [0.1, 0.2].

Finally, in Figure 11, we assume correlated portfolio process with ρ0 = 0.8 and mean and standard
deviation µi, σi, i = 1, . . . , N drawn from i.i.d uniform [0.1, 0.2]. This is a generalized version of
Case (3.c) discussed above. We observe that, due to correlation in the portfolio process, even a
relatively less risk averse central bank is forced to raise the interest rate.
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(a) optimal interest rate (b) w(r, λ) (c) µi − σ2
i

Figure 11. Optimal interest rate with N = 30 portfolio process, with correlation ρ0 = 0.8 and
µi, σi, i = 1, . . . , N i.i.d uniform on [0.1, 0.2].

Remark 7. The optimization problems discussed in this section maximized the expected utility of the central
bank. This is in contrast to a more common measure of discounted expected utility U :

E
∫ T

0
e−γt Uγ(Y

∗
(t))dt.

However, if the discounting term γ is not dependent on controlled interest rate r, the optimal policy remains
the same as proposed in Theorem 2.

Remark 8. In the current formulation, the private banks solve their problems given r, and the central bank
in anticipation of them solves for r incorporating the future decisions of the private banks. In practice, this is
similar to central banks announcing the policy rate to which the private players react. Reversing the order of the
solution makes the problem mathematically uninteresting and its economics impractical. Within this scenario,
Equations (12) and (13) imply that the optimal interest rate for the central bank r = 0, thus the central bank is
just an observer with no ability to direct the economy. This is in sharp contrast to the real economy where central
banks play an active role through the monetary policy.

5. Long-Term Stability

In this section, we analyze the long-term behavior of the centered process:

Ỹ =
(
Ỹ1, . . . , ỸN

)
, Ỹi(t) = Yi(t)−Y(t), i = 1, . . . , N. (49)

It takes values in the hyperplane Π := {y ∈ RN | y1 + . . . + yN = 0}. In other words, we are
trying to find whether log capitals of banks stay together as time t goes to infinity, or they split into
two or more “clouds”. The key parameters are rates cij of interbank cash flows. Under certain fairly
general conditions on these rates, the process (49) is ergodic: It has a unique stationary distribution;
and for any initial conditions, it converges to this distribution as t→ ∞. This section has two results.
Theorem 3 deals with the case of flow rates cij being time-independent: cij(t) ≡ cij. Lemma 1 covers
the general case.

Assume the central bank has already chosen the interest rate r = r∗, as above. Then, Y is a
Brownian motion with drift coefficient g(r∗) and diffusion coefficient ρ2(r∗). We have:

dYi(t) = dMi(t) +
1
N

N

∑
j=1

cij(t)
(
Yj(t)−Yi(t)

)
dt, i = 1, . . . , N. (50)
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Here, the process: M = (M1, . . . , MN) is an N-dimensional Brownian motion with drift vector
and covariance matrix µ∗ = (µ∗1 , . . . , µ∗N) and A∗ = (a∗ij)i,j=1,...,N from Equations (32) and (33).
The centered process in Equation (49) satisfies the SDE

dỸi(t) = dM̃i(t) +
1
N

N

∑
j=1

cij(t)
(
Ỹj(t)− Ỹi(t)

)
dt, i = 1, . . . , N. (51)

Here, M̃i(t) := Mi(t) − M(t) for i = 1, . . . , N. Note that M̃ = (M̃1, . . . , M̃N) is a Π-valued
Brownian motion. It has drift vector

µ̃∗ = (µ̃∗1 , . . . , µ̃∗N)
′, µ̃∗i := µ∗i − µ∗, µ∗ :=

1
N

N

∑
i=1

µ∗i (52)

and covariance matrix

Ã∗ = (ã∗ij) := VA∗V, V = IN − N−1ee′, e = (1, . . . , 1)′ ∈ RN . (53)

Therefore, Ỹ is a Markov process. Denote by Pt(x, ·) its transition function. Define the following
measure norm on Π for a function V : Π→ [1, ∞):

‖ν‖V := sup
| f |≤V

∣∣∣∣∫Π
f dν

∣∣∣∣ .

We denote the Euclidean norm of a vector x = (x1, . . . , xd)
′ ∈ Rd by

‖x‖ :=
[

x2
1 + . . . + x2

d

]1/2
.

Theorem 3. Assume the flow rates cij(t) = cij are constant. Define the graph G on the set of vertices
{1, . . . , N}: i↔ j iff cij > 0. If G is connected, then:

(a) Ỹ has a unique stationary distribution π on Π, which is multivariate normal.
(b) The transition function satisfies for some constants c, λ, k > 0:

‖Pt(x, ·)− π(·)‖V ≤ cV(x)e−kt, V(x) := exp
(

λ

2
‖x‖2

)
. (54)

(c) For any bounded measurable function f : Π→ R we have, almost surely:

lim
T→∞

1
T

∫ T

0
f (Ỹ(s))ds =

∫
Π

f (y)π(dy).

Proof. From the properties of solutions of SDE and nondegeneracy of the covariance matrix Ã∗ of M,
we have the following positivity property:

Pt(x, C) > 0 for all t > 0, x ∈ Π, C ⊆ Π with mesΠ(C) > 0. (55)

The generator of Ỹ for all twice continuously differentiable functions f : Π→ R is given by:

L f (x) :=
[

µ̃∗ +
1
N
Mx

]
· ∇ f +

1
2

N

∑
i=1

N

∑
j=1

ã∗ij
∂2 f

∂xi∂xj
. (56)
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Here,M = (mij)i,j=1,...,N is the following matrix:

mij =

cij, i 6= j;

− ∑
k 6=i

cik, i = j. (57)

Now, plug this function V from Equation (54) for a suitable λ into the generator in
Equation (56). Then,

∇V = λxV,
∂2V

∂xi∂xj
=
(

λ2xixj + λδij

)
V. (58)

Combining Equation (58) with Equation (56), we get:

LV =

[(
λµ̃∗ · x +

λ

N
x′Mx

)
+

1
2

(
λ2(x′ Ã∗x) + λ tr(Ã∗)

)]
V. (59)

Using Lemma A4 below, we get:

1
N
[
x′Mx

]
≤ −c0‖x‖2, c0 :=

c(M)

N
. (60)

There exists a constant a0 > 0 such that for all x ∈ Π, we have: x′ Ã∗x ≤ a0‖x‖2. Combining this
observation with Equations (59) and (60), we get:

LV ≤
[

λµ̃∗ · x− λc0‖x‖2 +
1
2

a0λ2‖x‖2 +
1
2

λ tr(Ã∗)
]

V. (61)

Choose λ := c0/a0, then Equation (61) takes the form

LV(x) ≤ K(x)V(x), K(x) :=
c0

a0
µ̃∗ · x−

c2
0

2a2
0
‖x‖2 +

1
2

c0

a0
tr(Ã∗). (62)

Note that, as ‖x‖ → ∞, we have: K(x)→ −∞. Therefore, for some constants c1, c2 > 0,

K(x) ≤ −c1, ‖x‖ ≥ c2. (63)

Recall the definition of the ball B(c2) in Equation (5). Since LV and V are continuous, we have:

max
x∈B(c2)

[LV(x) + c1V(x)] =: c3 < ∞. (64)

Combining Equation (62) with Equations (63) and (64), we get:

LV(x) ≤ −c1V(x) + c31B(c2)
(x). (65)

Finally, combine Equation (65) with the Feller property of Ỹ (i.e., for a bounded continuous
function f, the map x 7→ Pt f (x) is also bounded and continuous for the transition function P
of Ỹ), and with the positivity property in Equation (55). Apply Lemma A1 from Appendix A to
Lebesgue reference measure ψ and the function V from Equation (54). This completes the proof of (a)
(the uniqueness of a stationary distribution), as well as of (b). The fact that this stationary distribution π

is multivariate normal follows from the observation that Ỹ is a multidimensional Ornstein–Uhlenbeck
process on the hyperplane Π.
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To finish the proof of Theorem 3, let us show (c): This is similar to the proof of (Ichiba et al. 2011,
Theorem 1). Take any r ≥ c2. Adjusting the proof of Equation (65) above, we find that there exists a
positive constant d(r) such that

LV(x) ≤ −c1V(x) + d(r)1B(r)(x).

Let τB(r) := inf{t ≥ 0 | Ỹ(t) ∈ B(r)} be the hitting moment of the ball B(r), for a fixed r > 0.
Apply (Meyn and Tweedie 1993b, Theorem 4.3(a)), with the function V from Equation (54), with f := 1,
δ := 0. Then,

ExτB(r) ≤ c−1
1 V(x), x ∈ Π.

Use the fact that V is bounded on compact subsets to verify assumption (b) in Lemma A2.
Assumption (a) of this lemma follows from the observation that the covariance matrix of Ỹ is constant.
Now, apply Lemma A2 from (Khasminskii 2012, Theorem 4.1, Theorem 4.2), cited as (Ichiba et al. 2011,
Proposition 1). This completes the proof of part (c) of Theorem 3.

Lemma 1. Assume the flow rates are given by

cij(t) = cij f (Ỹ(t)), i, j = 1, . . . , N, i 6= j; t ≥ 0,

where f : Π→ R is a function such that
lim
‖z‖→∞

f (z) > 0,

and cij are real numbers as in Theorem 3. Then, the conclusion of Theorem 3 is the same, minus the conclusion
that π is multivariate normal.

Proof. Similar to Theorem 3, but with the following changes: Instead of Equation (59), we have:

LV(x) =
[

λµ̃∗ · x +
λ f (x)

N
x′Mx +

1
2

(
λ2(x′ Ã∗x) + λ tr(Ã∗)

)]
V.

There exist c4, c5 > 0 such that f (x) ≥ c4 for x ∈ Π, ‖x‖ ≥ c5. Therefore, for such x,
the estimate (62) is preserved with c0 changed to c0c4. The rest of the proof is similar to that
of Theorem 3.

Note, however, that, if the graph G is disconnected, then this stability breaks down. Indeed,
assume G has connected components G1 and G2 (only two for sake of notational simplicity; analysis is
the same for more than two connected components), and the flow rates cij are positive constants if i
and j are adjacent, cij = 0 if not. By Theorem 3, we get:

(Yi −Y1)i∈G1 , (Yi −Y2)i∈G2

are ergodic, that is, they satisfy an inequality similar to Equation (54). Here,

Y1(t) :=
1
|G1| ∑

i∈G1

Yi(t), Y2(t) :=
1
|G2| ∑

i∈G2

Yi(t). (66)

However, these averages from Equation (66) are, in fact, Brownian motions with certain drift and
diffusion coefficients, which are easy to calculate from Equation (50). They are correlated, but not
perfectly. Therefore, Y1 − Y2 is not ergodic, and the process Ỹ defined in Equation (49) is also not
ergodic. Private banks are separated into two groups, which “drift” from each other.
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6. Concluding Remarks

We studied a model of N private banks exchanging money through interbank flows,
borrowing from the non-banking financial sector under an interest rate set by the central bank, and
investing in portfolios consisting of risky assets; these portfolios are modeled by correlated geometric
Brownian motions. This represents an enhancement of the model in Equation (1), which is obtained
in (Carmona et al. 2013) as a result of banks borrowing from each other. We generalize the interbank
flows from (Carmona et al. 2013), making them heterogeneous.

Each private bank maximizes its expected terminal logarithmic utility. The central bank maximizes
exponential utility function of the total size of the system. We are able to solve the control problems for
each private banks and the central bank because of this special choice of utility functions. The resulting
dynamics looks a bit like Equation (1), except that each private bank has its own growth rate and
volatility in the driving Brownian motion, and the flow rates cij depend on i and j.

Our setup allowed us to study systemic risk and distribution of defaults under different market
and investment scenarios. We also observe common economic phenomena of liquidity trap (where the
monetary policy fails to boost the investment in risky assets) naturally arising from the model.

For future research, one can consider the case when some but not all portfolios Si satisfy
µi ≤ σ2

i (and are therefore unprofitable). In addition, it might be interesting to consider
different utility functions for private banks, for example power utility. Since the corresponding
Hamilton–Jacobi–Bellman equations are likely to be intractable, the problem might be analyzed using
mean-field formulation, each bank is competing against the “mass of banks”.
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Appendix A

Let us state explicitly convergence results for general continuous-time Markov processes, used in the
proof of Theorem 3. These results from classic papers (Down et al. (1995); Meyn and Tweedie 1993a, 1993b)
link Lyapunov functions with long-term convergence. In (Sarantsev 2016, Lemma 2.3, Theorem 2.6),
we reformulate these results to make them more convenient for our use. Let us restate these results
here, for convenience of the reader.

Lemma A1. Take a Feller continuous strong Markov process X = (X(t), t ≥ 0) on the metric state space
E , with transition function Pt(x, ·), and generator L. Denote by Px the probability measure under which
X(0) = x. Assume for some positive reference measure ψ and a function V : E → [1, ∞) in the domain D(L)
of the generator L, we have:

(a) For some compact subset C ⊆ E , we have ψ(C) > 0.
(b) For all ψ-positive subsets A ⊆ E , x ∈ E , t > 0, we have: Pt(x, A) > 0.
(c) For some constants b, k > 0 and a compact set K ⊆ E , we have:

LV(x) ≤ −kV(x) + b1K(x), x ∈ E ; and sup
x∈K

V(x) < ∞.
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Then, there exists a unique stationary distribution π, and the transition function satisfies the following
estimate: for some constants D,κ > 0,

‖Pt(x, ·)− π(·)‖V ≤ DV(x)e−κt, x ∈ E , t ≥ 0.

The following Strong Law of Large Numbers is taken from (Khasminskii 2012, Theorem 4.1,
Theorem 4.2). It holds under an assumption which can be called uniform positive recurrence,
and which can be deduced from existence of Lyapunov functions. Assume that E = Rd above,
and X is the solution of an SDE with a certain drift vector, and the covariance matrix A(·).
Let τC := inf{t ≥ 0 | X(t) ∈ C} be the hitting time of a subset C ⊆ Rd. Assume there exists a unique
stationary distribution π.

Lemma A2. Assume for some open bounded domain D ⊆ E with C2 boundary, we have:

(a) The smallest eigenvalue of A(x) for x ∈ D is uniformly bounded away from zero.
(b) For every compact subset K ⊆ Rd, we have: sup

x∈K
ExτD < ∞.

Then, Px-a.s. for every x ∈ Rd and bounded measurable function f : Rd → R, we have:

lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Rd

f (x)π(dx).

Lemma A3. Fix µ ∈ R and σ > 0. Take a function h : R→ R, defined as

h(x) = µx− σ2

2
x2 − r(x− 1)+.

Its global maximum is reached at the point x∗ and is equal to h∗ = h(x∗), where:

h(x∗) :=


r + (µ−r)2

2σ2 , µ− σ2 ≥ r;

µ− σ2

2 , 0 ≤ µ− σ2 ≤ r;
µ

2σ2 , µ ≤ σ2.

x∗ :=


µ−r
σ2 , µ− σ2 ≥ r;

1, 0 ≤ µ− σ2 ≤ r;
µ

σ2 , µ ≤ σ2.

Proof. We can write

h(x) =

{
µx− σ2

2 x2 − r(x− 1), x ≥ 1;

µx− σ2

2 x2, x ≤ 1.

First, note that the function h is smooth everywhere except x = 1, and h′′(x) < 0 for all x 6= 1.
Therefore, if h′(x) = 0, then h has a local maximum at x. Take derivatives on both intervals (−∞, 1]
and [1, ∞):

x ≥ 1 implies h′(x) = (µ− r)− σ2x = 0 =⇒ x = x1 :=
µ− r

σ2 ;

x ≤ 1 implies h′(x) = µ− σ2x = 0 =⇒ x = x2 :=
µ

σ2 .

On both these rays, h is a parabola with branches facing down.

Case 1. µ− σ2 ≥ r. Then, x1, x2 ≥ 1. Therefore, h reaches maximum on [1, ∞) at x1, and on (−∞, 1] at
1. Since h reaches its maximum on [1, ∞) at x1 and not 1, we have: h(1) ≤ h(x1). As a result, x∗ = x1.
Case 2. 0 ≤ µ− σ2 ≤ r. Then, x1 ≤ 1, but x2 ≥ 1. Therefore, h reaches maximum on [1, ∞) at 1, and on
(−∞, 1] at 1. As a result, the global maximum will be at x∗ = 1.
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Case 3. µ− σ2 ≤ 0. Then, x1, x2 ≤ 1. Therefore, h reaches maximum on [1, ∞) at 1, and on (−∞, 1] at
x = x2. Similar to Case 1, the global maximum is reached at x∗ = x2.

Lemma A4. For the matrixM defined in (57), there exists a constant c(M) > 0 such that

x′Mx ≤ −c(M)‖x‖2, x ∈ Π. (A1)

Proof. Note that M is a generator matrix for a continuous-time Markov chain Q = (Q(t), t ≥ 0)
on {1, . . . , N}. This Markov chain can be viewed as a biased random walk on the graph G: As it
wants to jump out of a state i, it chooses one of its nearest neighbors j, such that i and j are connected,
only not with uniform probability. This graph G is connected. Therefore, this Markov chain is
irreducible. Since it is finite, it is positive recurrent. From the standard results on continuous-time
Markov chains, see for example (Suhov and Kelbert 2008, Theorem 2.7.15), this Markov chain Q has a
unique stationary distribution

πQ =
[
πQ

1 . . . πQ
N

]
This stationary distribution satisfies πQM = 0. However, the columns of the matrixM sum

up to zero. Therefore, e′M = 0, and e/N is a stationary distribution. By uniqueness, πQ = e/N.
Let λ1, . . . λN and v1, . . . , vN be the eigenvalues and eigenvectors of the matrixM

Mvi = λivi, i = 1, . . . , N. (A2)

The eigenvectors of the matrixM are all real, becauseM is symmetric. Next, nonzero eigenvalues
are negative: This follows from (Iosifescu 2007, Exercise 8.1). Each zero eigenvalue λi has eigenvector vi
which satisfies v′iM = 0, that is, v′i is proportional to a stationary distribution. However, the stationary
distribution is unique, so we have (without loss of generality):

λ1 = 0; λ2, . . . , λN < 0; v1 = ce for some constant c.

Now, take an x ∈ RN . Assume v1, . . . , vN are normalized: ‖vi‖ = 1, i = 1, . . . , N. BecauseM is
symmetric, v1, . . . , vN form an orthonormal basis in RN . Therefore, we can decompose

x = (x · v1)v1 + (x · v2)v2 + . . . + (x · vN)vN . (A3)

For a vector x ∈ Π, we have: x · e = 0, and therefore x · v1 = 0. Thus, Equation (A3) takes the form

x = (x · v2)v2 + . . . + (x · vN)vN . (A4)

Apply the matrix M to this vector in Equation (A4) and use Equation (A2). We have:

Mx = (x · v2)λ2v2 + . . . + (x · vN)λNvN . (A5)

From Equations (A4) and (A5), since v1, . . . , vN form an orthonormal basis of RN , we have:

x′Mx =Mx · x = λ2(x · v2)
2 + . . . + λN(x · vN)

2. (A6)

In addition, multiplying Equation (A4) by itself, we get:

‖x‖2 = x · x = (x · v2)
2 + . . . + (x · vN)

2. (A7)

Let c(M) := min (|λ2|, . . . , |λN |) > 0. Comparing Equations (A6) and (A7), we
get Equation (A1).
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