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Abstract: Mortality forecasting has always been a target of study by academics and practitioners.
Since the introduction and rising significance of securitization of risk in mortality and longevity,
more in-depth studies regarding mortality have been carried out to enable the fair pricing of
such derivatives. In this article, a comparative analysis is performed on the mortality forecasting
accuracy of four mortality models. The methodology employs the Age-Period-Cohort model, the
Cairns-Blake-Dowd model, the classical Lee-Carter model and the Kou-Modified Lee-Carter model.
The Kou-Modified Lee-Carter model combines the classical Lee-Carter with the Double Exponential
Jump Diffusion model. This paper is the first study to employ the Kou model to forecast French
mortality data. The dataset comprises death data of French males from age 0 to age 90, available
for the years 1900–2015. The paper differentiates between two periods: the 1900–1960 period where
extreme mortality events occurred for French males and the 1961–2015 period where no significant
jump is observed. The Kou-modified Lee-Carter model turns out to give the best mortality forecasts
based on the RMSE, MAE, MPE and MAPE metrics for the period 1900–1960 during which the two
World Wars occurred. This confirms that the consideration of jumps and leptokurtic features conveys
important information for mortality forecasting.

Keywords: stochastic mortality modelling; forecasting; Age-Period-Cohort model; Cairns-Blake-
Dowd model; Lee-Carter model; Kou model; Jump Diffusion model

1. Introduction

Mortality modelling has become an increasingly significant area of interest among academics
and researchers during the past few centuries. This interest mainly arose for the simple calculation of
demographic and actuarial quantities, and the construction of life tables. Mortality modelling is the
most significant factor involved in the actuarial estimates of insurance and pension products whose
premium relies heavily on the expected future lifetime of the annuitant, insured or pensioner.

However, mortality modelling has taken a whole different meaning since the introduction of
mortality derivatives by Blake and Burrows (2001). Mortality and longevity derivatives are financial
contracts which do not depend on an underlying asset but instead rely on the mortality of a group of
insured individuals or pensioners. These contracts act as an effective hedge to mortality and longevity
risks. The development of such products has been led by the improvement of life expectancy in
developed countries since World War II. The issue with the pricing of such derivatives is that they are
priced in an incomplete market setting since mortality rates are not traded on the market. To allow
for a proper pricing technique, an appropriate stochastic process for mortality modelling has to be
adopted to capture the uncertainty aspect of mortality.
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Mortality modelling started long before the beginning of the 19th century. These models were
more subjective than extrapolative, indicating that they relied heavily on the opinions of the modellers
themselves. De Moivre (1725) suggested the construction of a life table from a mortality dataset using
a linear survival function. A century later, Gompertz (1825) empirically proved that mortality has
an exponential growth across ages, implying that death comes at a faster pace as one ages. On the
other hand, Brass (1971) and Wilmoth (1990) used a logistic and logarithmic transform, respectively, to
ensure positive mortality rates.

Despite these discoveries, Lee and Carter (1992) were the ones who initiated the whole concept
of mortality forecasting, using only a two-factor model, and thereby introducing what has now
become the leading mortality model in demographic literature (Deaton and Paxson 2004). From
this, several variants and extensions have been built, based on the weaknesses of the Lee-Carter
model. Some researchers such as Brouhns et al. (2002) and Giacometti et al. (2009) tried to tackle the
problem of normality assumption by making use of the Poisson distribution or generalized hyperbolic
distributions for the Lee-Carter random component. More recently, Mitchell et al. (2013) applied the
Lee-Carter parameterization to the detrended natural logarithm of mortality rates, thus creating the
Mitchell-Brockett-Mendoza-Muthuraman (MBMM) model.

Others have reviewed the parameterization of the Lee-Carter model. Among them, Renshaw
and Haberman (2006) proposed the addition of the cohort effect thus creating the famous
Age-Period-Cohort (APC) model while Cairns et al. (2006, 2007) detailed the implementation of
a GLM for the mortality odd ratios. The model is mainly known as the Cairns-Blake-Dowd (CBD)
model. Maccheroni and Nocito (2017) studied the forecasting performance of the Lee-Carter and the
CBD mortality models, employing Italian data. Their results found that CBD forecasts are reliable
prevalently for ages above 75, while Lee-Carter forecasts are basically more accurate for the Italian
mortality data.

Extensions of the Lee-Carter also include models which postulate a stochastic process which takes
into account both the jump and leptokurtic features of mortality data. Cox et al. (2006) made use of
the Geometric Brownian Motion (GBM) while Chen and Cox (2009) refuted this proposition because
of its inability to produce negative values even for a decreasing time series mortality index when its
initial value is a positive one. Chen and Cox (2009) proposed a model which considers transitory as
well as permanent jumps. Hainaut and Devolder (2008) and Chuang and Brockett (2014) made use
of Lévy processes in which a Normal Inverse Gaussian distribution is incorporated while Chen and
Cummins (2010) made use of the Extreme Value Theory (EVT) to model longevity jumps. Deng et al.
(2012) proposed the application of a stock pricing model to the Lee-Carter mortality index. Their study
was actually the first to explore the Double Exponential Jump Diffusion (DEJD) model proposed by
Kou (2002) which is also known as the Kou model on mortality data. They observed that mortality
jumps and longevity jumps might be analogous to the “bad news” and “good news”, respectively,
which are reflected in the behaviour of stock prices. In the case of mortality, the “good” and “bad”
news are the mortality jumps and longevity jumps which may be caused by a sudden outbreak of
epidemic, a war, sudden weather hazards or the medical innovations happening in the world. In
their studies, Deng et al. (2012) observed that their Kou-modified Lee-Carter model outperformed
the classical Lee-Carter model and the Chen-Cox model in the modelling of U.S. mortality data. The
Kou-modified Lee-Carter model actually displayed the lowest Bayesian Information Criterion (BIC).

The purpose of this research is to analyse the comparative forecasting performance of some
classical mortality models, namely, the Age-Period Cohort model, the Cairns-Blake-Dowd model
and the Lee-Carter model and assess their performance against a variant of the Lee-Carter model,
the Kou-Modified Lee-Carter model proposed by Deng et al. (2012). The models were employed on
mortality data of French males from age 0 to age 90, available for the years 1900–2015, making it the
first paper to apply the Kou model which is normally used in a stock pricing framework, on French
mortality data. The in-sample data were categorised into the 1900–1960 and the 1961–2015 periods.
The models were applied on the two different sets of data to evaluate the influence of extreme events
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on their performance. The mortality forecasts were then assessed using the RMSE, MAE, MPE and
MAPE metrics and conclusions were drawn from the results obtained.

The rest of this paper is split into the following sections. Section 2 is an overview of the models
being applied and their parameter estimation. Section 3 details the data under consideration, its
inaccuracies are pointed out and its trends are analyzed. Section 4 presents the application of the four
selected stochastic mortality models to our data and their accuracy is evaluated using the performance
metrics described in Section 5. The results obtained are discussed in Section 6, and finally, our
concluding remarks can be found in Section 7.

2. The Model Specification

In this section, we describe the four models which are compared for the purpose of this paper.
Booth and Tickle (2008) categorized mortality forecasting into “expectation”, “extrapolation” and
“explanation” methods. While the expectation methods are based entirely on personal opinions and
are consequently highly subjective, explanatory methods require the different causes of death of the
population under study and may not be applied to long-term forecasting. The four models chosen for
the purpose of our study are all examples of extrapolative methods for which past mortality trends
repeating themselves in the future is an important and strong assumption. The Lee-Carter model, the
Age-Period-Cohort (APC) model and the Cairns-Blake-Dowd (CBD) model actually consider abnormal
jumps present in past mortality data as any other observation. They assume that these jumps are just
events which will inappropriately influence the results. This study performs a proper comparison
of these models with no account of extreme events, to the Kou-Modified Lee-Carter model, which
incorporates such abnormal jumps for a more reliable forecasting.

2.1. The Lee-Carter Model

A significant milestone in mortality forecasting was the work of Lee and Carter (1992). The
Lee-Carter model is actually the backbone of mortality forecasting and the pioneering idea behind
future models of mortality. It is described as a parsimonious model since it does not require subjective
judgment or causes of death. Since it incorporates period (in years) and age mortality dynamics, the
modelling mortality is based on past trends in age and time. The formulation of the Lee-Carter model
is as follows:

ln(mx,t) = β
(1)
x + β

(2)
x k(2)t + εx,t (1)

where β
(1)
x represents the general tendency in mortality for different ages or age bands, and β

(2)
x shows

the rate of change in the central rate of mortality with respect to changes in k(2)t which can be proved

by taking the derivative of ln(mx,t) with respect to time, t. The mortality index, k(2)t , demonstrates the
period effect which is the relationship between time-dependent events and mortality rates, and the
error term, εx,t takes into consideration the random historical fluctuations not captured by the model.
The εx,t is assumed to be an independent and identically distributed Gaussian random variable with
mean 0 and variance σ2.

Lee and Carter (1992) estimate the parameters by imposing two constraints on β
(2)
x and k(2)t to

avoid the identification issue that arises when there is more than one solution to a parameter estimate.
Uniqueness of parameters is therefore ensured. β

(2)
x is thus summed to unity and the summation of

k(2)t is brought to zero.
With the constraint imposed on the mortality index, it can be concluded that the parameter is being

distributed equally with the instances eliminating each other so that the sum of all the time-dependent
parameters gives a value of zero. As a result of these parameter restrictions, β

(1)
x can be estimated as
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the mean over time of the natural logarithms of mortality rates for individuals aged x years. For a total
number of periods T, the estimation of β

(1)
x can be written as follows.

β̂
(1)
x =

∑T
t=1 ln(mx,t)

T
(2)

Once the first parameter is estimated for all values of x, they are subtracted from the Lee-Carter
model equation to estimate their respective β

(2)
x and the mortality index k(2)t . The Maximum

Likelihood Estimation could have been used to estimate the remaining parameters but as it has
been pointed out in Girosi and King (2007), the parameter constraints will cause the optimization
to give poor results. Historical data is therefore necessary since the straightforward Ordinary Least
Squares (OLS) method cannot be used to fit a model having unobservable parameters. Wilmoth (1993)
and Brouhns et al. (2002) suggested the Maximum Likelihood Estimation (MLE) method while Lee and
Carter (1992) proposed the Singular Value Decomposition (SVD) method. Renshaw and Haberman
(2006) however chose the method of Generalized Linear model (GLM). The SVD procedure is detailed
in Appendix A.

Mortality tends to decline over the years and this implies that the mortality index is non-stationary.
A stochastic process is therefore applied to k(2)t and an appropriate Autoregressive Integrated Moving
Average (ARIMA) time series model is employed to model the mortality index. The ARIMA (p, d, q)
first popularized by Box and Box and Jenkins (1976), makes predictions based on an arrangement of
past and future values. After using the Box-Jenkins methodology (Box and Jenkins 1976), Lee and
Carter found out that an ARIMA (0, 1, 0) with drift, which is a random walk with drift, properly fits
the data of several countries. This ARIMA specification has proved to hold for several countries. They
also added an indicator variable, “ f lu”, in an attempt to cater for the 1918 influenza outbreak which
was the only abnormal event in their U.S. data. Their intervention model was postulated as follows:

k(2)t = k(2)t−1 + c + d. f lu + et (3)

where

f lu =

{
0 i f there is no abnormal jump in 1918
1 i f there is an abnormal jump in 1918

and c is the drift while d represents the constant showing by how much the mortality index of the U.S.
population had increased when it was struck by the 1918 influenza pandemic.

2.2. The Age-Period-Cohort Model

Renshaw and Haberman (2006) developed the Lee-Carter model with cohort effect, most
commonly known as the Age-Period-Cohort (APC) model. They added an extra term to capture
the observation that people born in the same generation will experience the same trend in mortality.
The formulation is shown below:

ln(mx,t) = β
(1)
x + β

(2)
x k(2)t + β

(3)
x γ

(3)
t−x + εx,t (4)

where γ
(3)
t−x is the parameter which captures the cohort effect of individuals aged x years and born in

the year t− x.
This model was designed because the Lee-Carter model failed to fit U.K. and Australian mortality

data. In fact, the research surrounding the addition of the cohort effect of this model comes from
the Continuous Mortality Investigation (CMI) Bureau, with support from the United Kingdom’s
Government Actuary’s Department, which published evidence that people born in the U.K. between
1925 and 1945, particularly those born in the year 1931, have experienced a different mortality pattern
and mortality improvement than those born outside of the period. The Renshaw and Haberman model
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therefore overcomes the inability of the Lee-Carter model to consider the cohort effect which has been
proved to be present in several countries.

The same parameter constraints as in the Lee-Carter model are imposed with two additional
limits being ∑x β

(3)
x = 1 and γ

(3)
t−x = 0, in order to avoid the identification problem whereby the

variables are linearly dependent to each other.
Booth and Tickle (2008) found that one benefit of cohort models is that they overcome the problem

of “tempo effects”. A “tempo effect” is defined as an increase or decrease in a demographic incidence
(in this case, mortality cases) resulting from a change in the average age at which an event occurs. This
means that despite the decreasing pattern in mortality due to a change in the mean age of an event,
life expectancy is not overestimated when mortality is modelled using a cohort model such as the
APC model.

One of the main disadvantages of the APC model is its demand for detailed datasets. However,
this drawback is of less importance when only one age band is of interest. Moreover, the APC model
has been found to accurately estimate past mortality rates but has been less successful in extrapolating
mortality rates for future periods.

2.3. The Cairns-Blake-Dowd Model

Cairns et al. (2006, 2007) detail the implementation of a GLM for the mortality odd, which is
defined as the ratio of mortality rate to survival rate. The formulation of the model is as follows:

logit(qx,t) = k(1)t + k(2)t (x− x) (5)

where x represents the mean age of the population under consideration, k(1)t and k(2)t are the two

time-dependent parameters of the model and logit(qx,t) = log
(

qx,t
1−qx,t

)
. Contrary to the Lee-Carter

model, the Cairns-Blake-Dowd (CBD) model has no parameter constraints, implying that updating the
existing data with additional data will have no effect on already estimated parameters. After estimation
of parameters and implementation of the CBD model on English and Welsh data, Cairns et al. (2007)
found evidence of a cohort effect in the plot of their parameters, thus confirming the cohort effect in
the U.K discussed by Renshaw and Haberman (2006).

2.4. The Kou-Modified Lee-Carter Model

The Double Exponential Jump Diffusion (DEJD) model proposed by Kou (2002) is applied to the
Lee-Carter mortality index, k(2)t . The following structure is therefore derived:

dk(2)t = µdt + σdZ(t) + d

(
N(t)

∑
i=1

(
Vi − 1

))
(6)

where Z(t) is a standard Brownian motion, N(t) is a Poisson process with intensity λ and Vi is a
series of identically and independently distributed (IID) non-negative random variables such that
Y = log(V).

The Kou model is in reality similar to the model proposed by Merton (1976) with the only
difference being that it does not assume a normal distribution for its jumps. It instead assumes a
weighted double exponential distribution of the following form for up- and down-jumps:

fY(y) = pηue−ηuyI{y≥0} + qηdeηdyI{y<0},ηu > 1; ηd > 0 (7)

with p being the probability of an up-jump, q being the probability of a down-jump and p + q = 1,
where p and q are both greater or equal to zero. The indicator function IA is equal to 1 when event A
is true and 0 otherwise. It should be noted that the standard Brownian motion, the Poisson process
and the Y’s are all assumed to be independent to each other.



Risks 2018, 6, 123 6 of 26

In addition to the modelling of extreme events found in mortality data, another advantage of this
model is its ability to simultaneously incorporate the asymmetry, peakedness and fat-tailedness of the
mortality index while being sufficiently mathematically operationalizable to give a neat solution. As
seen previously, the incorporation of the leptokurtic features of the mortality index has been attempted
by several modellers. But few have succeeded in solving these two different inconveniences using
only a single model. Moreover, several parameters are included in the model to properly define the
jumps, such as their intensity, frequency and magnitude. The aim was to price longevity/mortality
derivatives to transfer demographic risk to capital markets. Deng et al. (2012) observed that their
Kou-modified Lee-Carter model outperformed the original Lee-Carter model and the Chen-Cox model
in the modelling of U.S. mortality data. One of the reasons for this result is the fact that the jumps,
which can be seen as outliers, cause the mortality index to have leptokurtic features. The presence of
outliers is actually not accounted for by the Lee-Carter model. In addition, the leptokurtic features
contradict the Chen-Cox model since the distribution of the outliers does not match the assumed
normal distribution. Moreover, Deng et al. (2012) state that the DEJD model has a major advantage
over the Chen-Cox regarding the extrapolation of mortality rates. The DEJD actually benefits from a
very specific mathematical equation which the Chen-Cox model does not have.

Deng et al. (2012) also followed the method employed by Chen and Cox (2009) to further support
the impressive performance of the Kou model and the importance of properly modelling jumps by
taking into consideration their real features. They proceeded with an outlier removal technique,
thereby removing all abnormal jumps from their U.S. data from 1900 to 2000. The result was similar to
that formerly obtained by the Lee-Carter model. This clearly implies that the Kou model on mortality
data having no presence of abnormal jumps converges to the Lee-Carter model where outliers are
treated as any other observation. The Bayesian Information Criterion (BIC) criterion for both the Kou
model and the Lee-Carter model was roughly the same when jumps were disregarded. However,
jumps exist in practically all mortality data and they cannot be ignored. With the presence of these
extreme events, the BIC yielded by the Kou model was significantly less than that of the Lee-Carter
model. This is evidence of the importance of jumps as a source of information and it shows that the
Kou model was able to properly incorporate the specific features of the jumps and of the mortality
index. However, the computational complexity remains a major challenge in the application of the
Kou model. In addition, the issue of overparametrization may arise which leads to an increase in the
variance error.

Therefore, there is the need for the parameters of the Kou model to be estimated using another
stochastic process. The Pareto-Beta Jump Diffusion (PBJD) model presents itself as an interesting
candidate. The “dlib Version 19.7” library in Microsoft Visual Studio Community 2017 (Version 15.5.7,
Microsoft Corporation, Redmond, WA, USA) offers some features which facilitates the optimization of
the PBJD likelihood. Ramezani and Zeng (2007) established a link between the Kou model and the
PBJD process. This is detailed in the next subsection.

2.4.1. Equivalence of the PBJD Model and DEJD Process

The PBJD model is described using a stochastic differential equation of the following form, with
the change in mortality index being denoted by dk(2)t .

dk(2)t = µdt + σdZ(t) + ∑
j=u, d

(
V j

N j(λtt)
− 1
)

dN j(λjt
)

(8)

µ is the drift component, σ is the volatility term, Z(t) is a standard Weiner process, V j is the jump
magnitude for j = u, d and N j(λj

)
are independent Poisson processes with intensity λj for j = u, d

which represent mortality jumps and longevity jumps respectively.
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The PBJD model assumes that the mortality jump magnitude, denoted by Yu, follows a Pareto
distribution with parameter ηu. Yu has therefore the following density function:

fYu(Yu) = ηu

(
1

Yu

)ηu+1
, Yu ≥ 1 (9)

On the other hand, the longevity jump magnitude, Yd, is assumed to be drawn from a Beta (ηd, 1)
distribution with the following density function:

fYd(Yd) = ηd(Yd)
ηd−1, 0 < Yd < 1 (10)

The PBJD model and the Kou model are equivalent in their parameters and after some careful
analysis and transformation of the jump magnitudes, it can be seen that they employ similar
distributions for their up- and down-jumps.

Let λ = λu + λd, p = λu
λ and q = 1− p. Then the distribution of jump magnitudes Ṽ, is a

weighted probability mixture of the Pareto distribution and the Beta distribution.

fṼ(x) = p
ηu

xηu+1 I{x>1} + qηdxηdI{0<x<1}; ηu > 1, ηd > 0 (11)

Setting Y = ln
(

Ṽ
)

and noting that the logarithm of the Beta and Pareto distributions are
exponential, a weighted sum of two exponential distributions is obtained. This matches the distribution
employed under the Kou model in Equation (7). Through this connection, it is worth pointing out
that both the PBJD model and the DEJD model share the same set of parameter space, θ where
θPBJD = θDEJD = {µ, σ, λu, λd, ηu, ηd}.

The up-jumps are exponentially distributed with mean ηu
−1 and expected frequency pλ = λu

while the down-jumps are exponentially distributed with mean ηd
−1 and expected frequency qλ = λd.

The larger the magnitude ηu of mortality jumps, the smaller will be their severity, that is, their mean,
and the larger the magnitude ηd of longevity jumps, the smaller will be their severity.

Having established the equivalence of the two models, both of them will from now on be referred
to as the Kou model.

2.4.2. Parameter Estimation

Several methods have been proposed to estimate parameters of jump diffusion processes. These
include the Generalized Method of Moments (GMM) developed by Hansen (1982), the simulated
moment estimated and the Markov Chain Monte Carlo (MCMC) methods. These methods are detailed
in Aït-Sahalia et al. (2004). However, the Maximum Likelihood Estimation (MLE) method proved to be
the best method in Sorensen (1991), offering ease in distinguishing jumps from diffusion as mentioned
in Aït-Sahalia et al. (2004). Moreover, the MLE method produces estimates which have desirable
statistical properties. Indeed, for large samples, MLE generates parameters which are consistent,
asymptotically normal and asymptotically efficient.

The problem in computing maximum likelihood estimates resides in the specification of the
transition density which may be difficult to obtain for non-linear models. Fortunately, the Kou model
is a linear process with independent increments and an explicit transition density, as detailed in
Ramezani and Zeng (2004).
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Let K =
{

k(2)0 , k(2)1 , k(2)2 , . . . , k(2)T

}
denote the mortality index at equally-spaced time periods

t = 1, 2, . . . , T. The one-period change in mortality index k(2)t is denoted by ri = k(2)i − k(2)i−1 and is
IID. The unconditional density for the s-period change in mortality index is specified below.

fr(s)(r) = e−(λu+λd) fr(s)|0, 0(r) + e−λu
∞
∑

n=1
P(n, λd) fr(s)|0, n(r)

+e−λd
∞
∑

m=1
P(m, λd) fr(s)|m, 0(r) +

∞
∑

m=1

∞
∑

n=1
P(n, λd)P(m, λu) fr(s)|n, m(r)

(12)

where P(n, λd) =
e−λd (λd)

n

n! represents a Poisson variable with parameter λd and similarly, P(m, λu) =
e−λu (λu)

m

m! denotes a Poisson variable with parameter λu for n ≥ 0 and m ≥ 0. The function fr(s)|0, n(r)
is the density for s periods, conditional on the number of up-jumps n while fr(s)|m, 0(r) is the density
for s periods, conditional on the number of down-jumps m. The function fr(s)|m, n(r) is the density
for s periods, conditional on both the number of up- and down-jumps. The unconditional density is
therefore a mixed distribution of several weighted Poisson distributions.

The formulae for the densities involved in the unconditional density for the s-period change in
the mortality index are defined below.

fr(s)|0, 0(r) =
1√

2πsσ
exp

{
−
(
r− µs + 0.5σ2s

)2

2σ2s

}
(13)

fr(s)|0, n(r) =
ηn

d

(n− 1)!
√

2πsσ

∫ 0

−∞
(−x)n−1exp

{
−ηdx−

(
r− x− µs + 0.5σ2s

)2

2σ2s

}
dx (14)

fr(s)|m, 0(r) =
ηm

u

(m− 1)!
√

2πsσ

∫ ∞

0
xm−1exp

{
−ηux−

(
r− x− µs + 0.5σ2s

)2

2σ2s

}
dx (15)

fr(s)|m, n(r) =
ηm

u ηn
d

(m−1)!(n−1)!
√

2πsσ

∫ 0
−∞

(∫ min(0, t)
−∞ (−x)n−1(t− x)m−1e(ηu+ηd)xdx

)
.

exp
{
−ηut− (r−t−µs+0.5σ2s)

2

2σ2s

}
dt

(16)

The log-likelihood, L, given T equally-spaced changes in the mortality index is

L(K; µ, σ, λd, λu, ηd, ηu) =
T

∑
i=1

ln( f (ri)) (17)

One drawback of MLE is the fact that an initial value is required for each parameter. Ramezani and
Zeng (1998) made use of cumulant estimates detailed in Kendall and Stuart (1977), as initial values for
the Kou parameters. In spite of the simplicity of computing them, the reason why cumulant estimates
are not used to directly compute the Kou parameters is their inefficiency, despite the consistency of
their estimators. However, Ramezani and Zeng (1998) found out that the choice of initial parameters is
not an issue since “good” initial parameters have no impact on the final results of the MLE and are
thus not necessary. We therefore bypass the cumulant estimation procedure and use the unit value of 1
for all the initial parameters of the Kou model.

3. Mortality Data

The two datasets used for the purpose of this paper are the exposure-to-risk and the number
of deaths of French males available for the years 1900–2015. They are obtained from the online
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Human Mortality Database (HMD)1. In HMD, both datasets are classified by single ages from age 0
representing babies aged less than one-year old, up to age 110+ respresenting those individuals who
are 110 years and above, for the years 1900–2015.

France has a similar pattern in mortality to the U.S. data used by Deng et al. (2012). Indeed,
both countries were significantly affected by the World Wars and consequently experienced extreme
jumps in mortality, resulting from the deaths of millions of individuals. Moreover, mortality has
been improving in recent years, thus generating a gradual and persistent decrease in the mortality
of these developed countries. The purpose of applying the Kou model is to assess how well they
can capture the asymmetry of its mortality and longevity jumps and incorporate the presence of
such extreme events for a more accurate prediction. The Kou model will be assessed on the basis
of its forecasting power compared to the Lee-Carter model, the Age-Period-Cohort (APC) model
and the Cairns-Blake-Dowd (CBD) model. The mortality of French males has experienced several
jumps with different intensities and severities for reasons ranging from wars and epidemics to medical
advancement and an improvement in the way of living. Mortality data of French males is therefore an
appropriate choice for the methodology of this paper.

However, we proceeded in a different way from Deng et al. (2012) who applied the Kou model on
the entire U.S. data. They actually used the whole in-sample data to forecast out-sample data for the
purpose of pricing mortality-contingent securities.

This paper differentiates between two periods when implementing the four mortality models.
The first one relates to the years 1900–1960 where mortality was unpredictable and extreme events
were frequent. The First World War (WWI) and the Second World War (WWII) actually took place
in 1914–1918 and 1939–1945 respectively. The second period corresponds to the years 1961–2015
where mortality had the tendency to follow a downward trend. This study therefore evaluates how
accurately mortality data can be forecasted when abnormal jumps are incorporated in stochastic
mortality modelling. The forecast of already available mortality data (1938–1960 and 1990–2015)
enables the use of performance metrics, which measure the extent by which the forecasts deviate from
the true values. This allows for backtesting of the models in forecasting mortality.

However, inaccurate information regarding deaths in France was reported in the 20th century,
leading to a spurious pattern in mortality for individuals at higher ages. Indeed, proof of age
exaggeration has been observed by Wilmoth and Lundström (1996) after a thorough analysis of
the trend in mortality at older ages. This age misreporting results in the tendency for the number of
deaths to irrationally exceed the population number. Consequently, data from single ages 91–110+ and
data from 1816 to 1899 were excluded in this paper for a more precise fitting of the models.

3.1. Data Analysis

The evolution of the mortality of French males can be illustrated using a mortality surface which
simultaneously shows the mortality across years and ages. From the mortality surfaces in Figure 1,
it can be observed that infant mortality was high during the first part of the 20th century, eventually
stabilizing to a lower level towards the end of the century, and up to the year 2000 because of advances
in technology and the medical field. Up to approximately 50 years, the mortality surface allows
for occasional humps along the years, with mortality gradually increasing as individuals get older.
However, these occasional humps tend to appear in specific years, suggesting that they might be the
consequence of the wars that France was involved in, such as World War I or World War II. These
jumps were incorporated in the Kou model.

1 Data downloaded on September 2017. Source: https://www.mortality.org/.

https://www.mortality.org/
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Figure 1. Evolution of mortality of French males aged 0–90 for the years 1900–2015.

In Figure 2, the log of mortality rates and the survival curve for the years 1918 (influenza epidemy)
and 1944 (during World War II) have similar shapes, with the log of mortality rates experiencing a
bump for the French males aged between 18 and 40 years due to military losses. This is reflected in
Figure 3 where the probability of survival for the years 1918 and 1944 experienced a fall for French
males aged between 18 and 40 years. This is the case because young males who fell in this range
of age were called to serve in the Army at that time. The decrease in log of mortality rates at infant
stages for all the years under consideration is due to infant mortality, which significantly decreased in
the year 2000, due to advancement in technology and the medical field, and improvement in living
conditions. The convex survival curves may be attributed to the first and second global wars with
the more concave survival curves being for the end of the 20th century and attributing their shape to
innovations, better hygiene, more awareness of the benefits of living a healthy life, and progress in the
medical sector.

Figure 2. Mortality rates (log) of French males from 1900–2000.
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Figure 3. Probability of survival of French males from 1900–2000.

3.2. The Backtesting Procedure

Following the steps of Dowd et al. (2008), we used a backtesting procedure to assess the reliability
of the models under study.

Both in-sample data (1900–1960 and 1961–2015 periods) are therefore split into two different
datasets. A “lookforward” window with a period of N − t is chosen with N being the first year in
our out-sample data and t being the first year included in the “lookforward” window. The “lookback”
window, on the other hand, is a time horizon of n years chosen for the estimation of the APC, CBD and
Lee-Carter parameters. Therefore, observations from the year t− n to t− 1 are used for the purpose of
parameter estimation.

This article aims to distinguish which model is better calibrated to capture the sudden jumps
which occurred in France during the 1900–1960 period and analyse the performance of the models
during the 1960–2015 period where no significant extreme event occurred. For the 1900–1960 period,
the “lookback” window will thus consist of those years during which the First World War (WWI)
happened, given that it is a period during which sudden increases in mortality were highly significant.
This will allow us to assess which model can better grasp information from the incorporation of the
jumps to predict mortality from the Second World War. The testing dataset consists of post-WWI data
(1939–1960) during which jumps of severe intensity occurred.

Similarly, the 1961–2015 period dataset is split into a training dataset and a testing dataset. The
training dataset begins in 1961 and ends in 1990, with the testing dataset consisting of the remaining
years. This second period was considered to assess the performance of the models when no jumps of
high intensity occur.

4. Application of the Models

4.1. Application of the APC Model

From Figure 4, it can be seen that the age pattern of mortality is more linear for the period
following the World Wars. The sudden volatility in mortality for individuals who are 20–40 years of
age, can be attributed to the deployment of soldiers for the War which hit the world during the first
quarter of the 20th century. This same observation is reflected in the APC mortality index in Figure 5,
with the mortality index for the 1961–1990 period following a more monotonic decrease than that of
the 1900–1938 period. Indeed, the sudden peaks present in the first plot are again indicative of a very
unpredictable mortality for French males, especially during World War I and the period after.
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Figure 4. The evolution of the first age-dependent parameter of the APC model during the (a) 1900–1938
period and (b) 1961–1990 period.

Figure 5. Cont.
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Figure 5. The evolution of the APC model mortality index during the (a) 1900–1938 period and
(b) 1961–1990 period.

On the other hand, Figure 6 shows the rate at which cohort mortality increases or decreases for
different cohorts. It can be concluded that mortality was on an upward trend for people born in the
19th century with mortality eventually decreasing for those individuals born in the 20th century.

Figure 6. The evolution of the parameter showing the cohort effects during the (a) 1900–1938 period
and (b) 1961–1990 period.
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The forecasts of the mortality index are similar to that of the Lee-Carter model since the APC
model is an extension of the Lee-Carter model. In Figure 7, it can be clearly seen that the confidence
intervals for the 1991–2015 period is smaller than that of the 1939–1960 period since the extreme events
occurring in the latter give rise to more uncertainty than in a time period of no mortality jumps.

Figure 7. The forecast of the mortality index using the APC model for the (a) 1939–1960 period and
(b) 1991–2015 period.

4.2. Application of the CBD Model

Figures 8 and 9 show the evolution of the two time-dependent parameters of the CBD model for
the two periods under consideration. For the 1900–1938 period, the first mortality index is seen to
be declining over time despite experiencing a few jumps which may be attributed to the First World
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War. It has the same interpretation as the APC mortality index and the Lee-Carter mortality index and
therefore exhibits a similar pattern to these parameters.

Figure 8. Plots of the two time-dependent parameters of the CBD model during the 1900–1938 period.

Figure 9. Plots of the two time-dependent parameters of the CBD model during the 1961–1990 period.

For the 1961–1990 period, the first CBD mortality index shows a monotonic decrease in mortality,
indicating that during the second half of the 20th century, there were no extreme events that had the
same drastic impact as the World Wars, which occurred during the first half of the 20th century.

The second time-dependent mortality index of the CBD model can be interpreted as the slope of the
model. It therefore measures the improvements in mortality. For the 1900–1938 period, mortality was
improved until the outbreak of the First World War, thus generating a big decrease in the improvement
in mortality, with death rates reaching their maximum due to the death toll that the First World
War caused.
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In Figures 10 and 11, the forecasts of the mortality indices show the same pattern for both testing
datasets under consideration despite showing more uncertainty for the first half of the 20th century
due to the events that occurred during that period of time.

Figure 10. Forecasts of the two time-dependent parameters of the CBD model for the 1939–1960 period.

Figure 11. Forecasts of the two time-dependent parameters of the CBD model for the 1991–2015 period.

4.3. Application of the Lee-Carter Model

Using the 1900–1938 and 1961–1990 datasets and implementing the SVD procedure, estimates for
the age-dependent and time dependent parameters were obtained. In Figures 12 and 13, the shape
of the first age-dependent parameter β

(1)
x shows the trend in mortality across ages. Mortality is high

at infancy and reaches its lowest point for individuals who are less than 20 years old and this can be
observed for both time periods. From there, mortality experiences a bump for young adults and keeps
on increasing at a more or less constant pace until old ages. The β

(2)
x plot, on the other hand, shows

the change in the mortality index for the different ages, with high values for French males who are
20–40 years of age during the 1900–1938 period and very low values for the 1961–1990 period.
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Figure 12. Estimation of the Lee-Carter parameters for the 1900–1938 period.

Figure 13. Estimation of the Lee-Carter parameters for the 1961–1990 period.

The visible mortality jumps, that is, the sudden rise in the mortality index as shown in Figure 12
can be attributed to historical events. The 20th century witnessed what were probably the worst
conflicts in history, in terms of death tolls. During the first quarter of the 20th century (1900–1925),
World War I (1914–1918) caused a rapid rise in the mortality for males.

The second half of the 20th century, up to the year 1990 experienced a decreasing trend in the
mortality of males. Advancement in technology and medical discoveries contributed to the increasing
life expectancy of people, leading to a gradual, continuous and approximately linear decrease in the
mortality of males living in France from 1961 onwards.

Figure 14 shows that for the 1900–1938 period, some residuals tend to cluster around 0, indicating
that those are symmetrically distributed. However, it can also be observed that there are several
residuals corresponding to the ages 20–40 years old that tend to exhibit values which are indicative of
outliers. On the other hand, Figure 15 shows that there are more residuals which cluster around 0 than
outliers. However, it can be observed from both figures that the mortality data are more volatile at the
extreme ages. Overall, the Lee-Carter model tends to exhibit a better performance for the 1961–1990
period than for the 1900–1938 period.

The violation of the IID and normality assumption of the Lee-Carter model demonstrates that
the Lee-Carter model was unable to properly fit the French male mortality data during the first half
of the 20th century, due to the extreme events occurring during that period of time. The presence of
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jumps therefore distorts the mortality rates when computed using the Lee-Carter model. Moreover,
the presence of outliers is evidence that the normality assumption does not hold and it confirms the
leptokurticity of the mortality index. Later, this was verified by performing the Shapiro-Wilk test on
the Lee-Carter mortality index and by comparing its underlying probability distribution to the normal
distribution curve, for both time periods.

Figure 14. Lee-Carter residuals plotted against (a) age, (b) calendar year, and (c) year of birth for the
1900–1938 period.

Figure 15. Lee-Carter residuals plotted against (a) age, (b) calendar year, and (c) year of birth for the
1961–1990 period.

The forecasts of the mortality index again show a decreasing trend, similar to the APC mortality
index and CBD mortality index, with the confidence intervals of the 1939–1960 time period being
broader than those of the 1991–2015 time period. This induces more uncertainty due to the sudden
deaths caused by World War I.

4.3.1. Random Walk with Drift

The random walk with drift assumes Gaussian increments. Once we have a closer look at the
histogram of the change in mortality index, compared to a normal probability curve, it can be concluded
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that the change in k(2)t , dk, does not satisfy the symmetric and low kurtosis properties of the normal
distribution for the 1900–1938 period, contrary to that of the 1961–1990 period.

When we consider the 1900–1938 period, the change in k(2)t has several extreme observations
resulting in high peaks and fat tails, as can be seen from the graphical representation of its probability
distribution. The non-normality of the distribution can be statistically assessed by carrying out the
Shapiro-Wilk test on the change in mortality index. The negligible p-value obtained (6.126 × 10−5)

leads to rejection of the null hypothesis in favour of the alternative hypothesis, thereby refuting the
assumed normality of the change in the mortality index. Indeed, the value of its skewness is 1.358484,
implying a positively skewed distribution, and the value of its kurtosis is 9.811049, implying that the
distribution of the difference in the mortality index is leptokurtic relative to the normal distribution.

On the other hand, the change in k(2)t for the 1961–1990 period is seen to follow more of a

Gaussian distribution than the change in k(2)t for the 1900–1938 period. This is confirmed by the
p-value generated from the Shapiro-Wilk test carried out. The p-value, which is equal to 0.6262, leads
to the rejection of the alternative hypothesis which states that the change in k(2)t does not follow a
normal distribution. This is further supported by a low skewness of −0.1748003, thereby satisfying the
symmetric property of a normal distribution, and a kurtosis of 3.090847 which is very close to 3, the
kurtosis value of a normal distribution.

The assumption of the Gaussian distribution being validated in the 1961–1990 period indicates
that the Lee-Carter model might exhibit accurate forecasting performance. On the other hand, it is
expected that the performance will be quite poor for the 1900–1938 period.

4.3.2. Application of the Kou Model on the Lee-Carter Mortality Index

From Figure 16 which shows the plot of the mortality index throughout the years, it is apparent
that mortality among French males has seen some sudden fluctuations, especially during the first half
of the 20th century. The Kou model is thus employed to take into account the several jumps in the
1900–1938 period which violate the normality assumption of the ARIMA process employed by the
Lee-Carter model. The departure from the normality assumption is illustrated in Figure 17. The results
of the Kou model will thus be compared for the two periods to examine the forecasting accuracy of the
Kou model in the presence and absence of extreme events.

Figure 16. Cont.
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Figure 16. Forecasts of the Lee-Carter mortality index for the (a) 1939–1960 period and
(b) 1991–2015 period.

Figure 17. Comparison between a normal probability curve and the shape distribution of the change in
the Lee-Carter mortality index for (a) 1900–1938 period, and (b) 1961–1990 period.

The maximum likelihood estimates of the Kou model for the 1900–1938 period are θ =(
µ, σ2, λu, λd, ηu, ηd

)
=
(
64.3462, 50.03922, 49.7899, 43.2786, 50.4527, 50.4527

)
. All the estimates are

statistically significant at a level of 5%. The value of the likelihood function is −47073.237478. From the
estimated parameters, it can be deduced that λ = 93.0685. The parameter estimates of the 1961–1990
period are

(
µ, σ2, λu, λd, ηu, ηd

)
=
(
93.5987, 50.04062, 49.6722, 43.0902, 61.5849, 50.1861

)
.

Due to the extreme events occurring from the outbreak of Spanish influenza in 1918 and from the
First World War, the Kou model predicts sudden jumps in mortality for the 1939–1960 period. The
Kou model also predicts jumps for the 1991–2015 period, however, the absence of outliers during this
period of time might result in underperformance from the Kou model.
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5. Performance Metrics

The test for accuracy is carried out by comparing forecasted mortality rates to actual mortality
rates. Mortality data for the years 1938–1960 and 1990–2015 have been left out of our original data for
the purpose of backtesting. The accuracy metrics that are used to determine which process performed
better on the mortality index are the Root Mean Squared Error (RMSE), the Mean Absolute Error
(MAE), the Mean Percentage Error (MPE), and the Mean Absolute Percentage Error (MAPE), all of
which are defined below.

The Mean Error (ME) is highly biased since it is the mere average of the deviations between the
actual values and the forecasted values. Since the deviations may cancel themselves out, the metric
may seldom return a value of zero. The ME has been therefore excluded from the list of adopted
metrics. The RMSE eliminates the drawback of the ME by considering the square of the deviations
between actual and forecasted values while the MAE does so by considering the absolute value of
those deviations. On the other hand, the MPE and the MAPE both rely on percentage errors which
enjoy the benefit of being scale-independent (Hyndman and Koehler 2006).

To compute a single metric for forecasted years, the accuracy metrics are averaged across the
years 1939–1960 and 1991–2015 and the models are compared based on these figures.

6. Results

From Tables 1 and 2 below, it can be seen that the Lee-Carter model with a Kou-modified mortality
index gives the smallest value for all of the average of the metrics for the 1900–1960 period, thus
outperforming the Lee-Carter model which is in turn outperformed by the APC model and the CBD
model. This implies that the deviation between the actual and forecast values is less significant for the
Kou model than for the Lee-Carter model, the APC model and the CBD model. Unlike the three other
models, the Kou model was able to capture the jumps caused by the extreme events in the 1900–1938
period during which the World War I and the influenza epidemy occurred.

Table 1. Comparison of accuracy measures for the four models under consideration for the
1900–1960 period.

1900–1960 Period

Models Average RMSE Average MAE Average MPE Average MAPE

APC 0.013063 0.006709 12.8334 16.30235
CBD 0.014837 0.007495 15.08032 18.38768

Lee-Carter 0.012102 0.006798 13.65589 15.49652
Lee-Carter Kou-Modified

Mortality Index 0.003029 0.003153 10.27675 13.58456

Table 2. Comparison of accuracy measures for the four models under consideration for the
1961–2015 period.

1961–2015 Period

Models Average RMSE Average MAE Average MPE Average MAPE

APC 0.008016 0.016184 16.03057 18.92784
CBD 0.013744 0.02708 25.13116 26.68533

Lee-Carter 0.006764 0.00852 13.48385 15.88327
Lee-Carter Kou-Modified

Mortality Index 0.018139 0.030101 28.11825 30.23325

On the other hand, the 1961–2015 period sees the complete opposite. The Kou model displays the
worse values for all of the accuracy metrics. This underperformance is due to the absence of significant
extreme events in the 1960–1990 data. The contrary performance of the Kou-modified Lee-Carter
model for the two periods under consideration confirms that the consideration of jumps does convey
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important information for mortality forecasting. Furthermore, the use of the Kou model to forecast
mortality is irrelevant in the absence of extreme events. The problem of over-parametrisation therefore
arises and leads to an increase in the variance error.

These jumps can be observed in Figure 18a, whereby the double exponential distribution of the
Kou model appropriately takes into consideration mortality jumps from the 1900–1938 period by
reproducing possible future sudden increases and decreases in the mortality pattern of the French
male population, which approximate the death toll caused by World War II in the 1939–1960 period.
This is contrary to the Lee-Carter model, which as can be seen from Figure 16, experiences a monotonic
decreasing trend in its forecasts and is unable to cater for unexpected events that might occur. The
monotonic decreasing pattern of the Lee-Carter model stems from the linear dependency of one
mortality index for the year t on the mortality index for the year t − 1. The Lee-Carter model,
however, exhibits the best forecasting accuracy for the 1961–2015 period where no significant extreme
event occurred.

Figure 18. Cont.
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Figure 18. Forecasts of the Lee-Carter mortality index using the Kou model for the (a) 1939–1960 period
and (b) 1991–2015 period.

7. Concluding Remarks

The Kou model is a jump diffusion process which is primarily used to model financial asset prices.
It captures two empirical phenomena in financial markets: the leptokurticity and abnormal jumps of
financial log-returns. The Kou-Modified Lee-Carter model is a combination of the classical Lee-Carter
mortality model and the Kou model. In this mortality context, the Kou model improves the Lee-Carter
model by taking into consideration the abnormal jumps and leptokurticity of the mortality index.

This paper performs a comparative analysis of the mortality forecasting accuracy of the APC
model, the CBD model, the classical Lee-Carter model and the Kou-Modified Lee-Carter model. It
is the first study to employ the Kou model to forecast mortality data for French males. The dataset
comprises death data for French males from age 0 to age 90, available for the years 1900–2015. The
models chosen were tested on two periods of time, namely, the 1900–1960 period and the 1961–2015
period. Some extreme events such as the First World War, the Second World War and the epidemic
influenza occurred during the 1900–1960 period while no such significant abnormal events happened
in the 1961–2015 period. On the basis of the RMSE, MAE, MPE and MAPE metrics, the Kou-modified
Lee-Carter model turns out to give the best mortality forecasts for the 1900–1960 time period. This
confirms that the consideration of jumps and leptokurtic features conveys important information
for mortality forecasting. The volatile trend reproduced by the Kou model provides evidence that
it incorporates jumps and makes the most out of the information that they capture for future time
periods. The Kou model contributes to mortality modelling since it enables an in-depth analysis of the
possible jumps in mortality.
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The application of the Kou model on the Lee-Carter mortality index could also be used for
mortality data of countries which are more prone to experiencing jumps in mortality. For example, they
may be countries which are at war or suffering terrorist attacks. Desirable results could be obtained for
countries such as Iraq or Syria which experience sudden increases in mortality due to the upsetting
ongoing wars and unforeseen bombings there. However, the limited accessibility of data for such
countries makes mortality modelling quite difficult.
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Appendix A. SVD Procedure Used in the Lee-Carter Model

SVD is applied on Zx,t which is the n× T matrix representing the different estimates of β
(2)
x k(2)t . n

represents the total number of ages which are being accounted for in the model and T is the total
number of periods under consideration.

SVD(Zx,t) = ULV′ (A1)

When applying SVD to Zx,t , the matrix is decomposed into the product of three matrices. U is an
n× n matrix representing the age component, L is a diagonal n× T matrix of singular values and V′

is the transpose of the T × T matrix V which represents the time component.
The following matrix shows the estimates obtained for β

(2)
x and k(2)t after application of SVD.

Zx,t =


β̂
(2)
x1 k̂(2)t1

β̂
(2)
x1 β̂
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x2 k̂(2)t1

β̂
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 (A2)
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