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Abstract: We solve the problem of optimal risk management for an investor holding an illiquid,
alpha-generating fund and hedging his/her position with a liquid futures contract. When the investor
is subject to a lower bound on net return, he/she is forced to reduce the total risk of his/her portfolio
after a loss. In this case, he/she faces a tradeoff of either paying the transaction costs and deleveraging
or keeping his/her current position in the illiquid instrument and hedging away some of the risk
while keeping the residual, unhedgeable risk on his/her balance sheet. We explicitly characterize this
tradeoff and study its dependence on asset characteristics. In particular, we show that higher alpha
and lower beta typically widen the no-trading zone, while the impact of volatility is ambiguous.

Keywords: optimal portfolio choice; transaction costs; hedging

1. Introduction

Many investment instruments are illiquid and costly to trade. This makes the corresponding
optimal risk and performance management a highly complex task: When the investor is subject to a
lower bound on net return, he/she is forced to reduce the total risk of his/her portfolio after a loss.
In this case, he/she faces a tradeoff of either paying the transaction cost and deleveraging or keeping
his/her current position in the illiquid instrument and hedging away some of the risk with more
liquid instruments (such as, e.g., futures contracts). While hedging is an attractive solution because it
allows one to economize the transaction costs, this solution is not perfect because it leaves the investor
with the residual, unhedgeable risk and thus may expose him/her to further losses. How should an
investor optimally exploit this tradeoff, and how do the corresponding optimal policies depend on the
portfolio characteristics? The goal of this paper is to address these questions.

To this end, we consider a modified version of the Merton (1969, 1971) problem for a finite horizon
investor (a portfolio manager) facing a lower bound on net return: the total return over the investment
horizon needs to stay above a given threshold. The investor has access to three securities: a risk-free
bond, a risky and illiquid alpha-generating asset (the asset) and a liquid futures contract, positively
correlated with the asset. After experiencing a loss, investor’s effective risk aversion naturally increases,
forcing him/her to reduce his/her risky positions and move into the risk-free bonds.

We perform our analysis in two steps. First, we study the “frictionless” problem without
transaction costs. Second, we assume that transaction costs are small and use recent results in portfolio
selection with small transaction costs (see Kallsen and Muhle-Karbe 2017) to solve for the optimal
portfolio in the case with frictions.
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For simplicity, we assume that the investment opportunity set (captured by the expected returns,
volatilities and correlations of all assets) is constant. As a result, the investor’s frictionless allocation
problem across the asset and the futures contract is effectively static, determined by the short-term
(instantaneous) mean-variance tradeoff. Thus, the only non-trivial part of the problem comes from
determining the total amount of leverage (or, equivalently, exposure to risk) as a function of the
investment horizon. We characterize this optimal risky exposure explicitly and study how it depends
on various model parameters. Then, using the explicit solution of Kallsen and Muhle-Karbe (2017),
we show that the optimal policy consists of keeping the asset position inside an explicitly given
no-trade region around the target asset position in the frictionless model; we then study the behavior
of this no-trade region.

2. Literature Review

The literature on optimal trading strategies with transaction costs is vast. Most papers consider
a setup with a single risky asset and show that the optimal strategy is characterized by a
no-trading zone around the frictionless solution. See, for example: Constantinides (1986); Davis
and Norman (1990); Dumas and Luciano (1991); Shreve and Soner (1994); Cvitanic and Karatzas
(1996); Whalley and Wilmott (1997); Almgren (2003); Liu (2005); Janecek and Shreve (2004, 2010);
Dai et al. (2010); Bichuch (2011); Martin and Schöneborn (2011); Kallsen and Muhle-Karbe (2015,
2017); De Lataillade et al. (2012); Bichuch and Shreve (2013); Martin (2014); Dumas et al. (2015); and
Hobson et al. (2016).

More recently, Garleanu and Pedersen (2013) and Collin-Dufresne et al. (2012) investigated a
dynamic version of the Markowitz (1952) portfolio choice problem with multiple assets and quadratic
transaction costs, assuming that returns were driven by multiple predictors. However, the quadratic
nature of the problem makes it difficult to study wealth effects.

The works most closely related to ours are the papers by Dai et al. (2011), Bichuch and Guasoni
(2003) and Choi (2018), who all studied the optimal investment problem with a risk-free asset and two
risky assets, a liquid and an illiquid one. All these papers derive the no-trade region explicitly under
very general conditions. However, none of them studies the dependence of the region on economic
parameters, as well as the implications for the choice between hedging and rebalancing. The closest to
ours is the paper by Dai et al. (2011), who studied a mutual fund that faces position limits and trades a
risk-free asset, a liquid stock and an illiquid stock that is subject to proportional transaction costs. As in
our paper, they assume a constant investment opportunity set and a finite horizon economy. Our model
is very similar to that of Dai et al. (2011), apart from the presence of a lower constraint on wealth.
However, instead of following the (much more complex) Hamilton-Jacobi-Bellman equation approach,
we use the general approximation of Kallsen and Muhle-Karbe (2017) to study the approximate optimal
policy for the case when transaction costs are small. This allows us to derive and study all expressions
and their dependence on model parameters fully explicitly.

3. Model

There is a risky asset (investment fund) whose price (net asset value) Rt, follows a geometric
Brownian motion process:

R−1
t dRt = αdt + βF−1

t dFt + σdBt .

Here, Bt is a Brownian motion, and Ft is the futures price that also follows a geometric Brownian motion,

F−1
t dFt = µdt + σFdZt ,

where dZt is a Brownian motion that is independent of Bt. By definition, σ measures the residual
(unhedgeable) risk of the asset. We assume that the risky asset is illiquid and trading it requires paying
a proportional cost of ε > 0 per share of the asset. Because of this illiquidity, the residual risk captured
by σ will play a crucial role in the risk-liquidity tradeoff that we study below.
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In addition to the risky investment opportunities (the asset and the futures contract), the agent in
our model has a bank account that grows continuously at the risk-free rate r. We assume that futures
are traded at margin, and hence, changes in the futures price are immediately included in the bank
account balance. Under this assumption, given the total notional exposure of yt to the futures contract,
the agents’ bank account evolves as:

dSt = rStdt + dκt + ytF−1
t dFt

where dκt is the cost of trading and rebalancing the illiquid asset, given by:

dκt = −εRtdVt − Rtd(xt/Rt) ,

where Vt is the total variation of the number of shares process, (xt/Rt), over the interval [0, t].1 Here,
xt/Rt is the number of shares of the risky asset in the agent’s portfolio, while xt represents the amount
of wealth invested in the fund. That is, the bank account grows at the rate r, and the agent uses it to
pay the transaction fees, εRt|d(xt/Rt)|, whenever he/she changes the number of shares by d(xt/Rt);
also, the fund value is transferred to/from the bank account whenever d(xt/Rt) 6= 0. Finally, the
futures contract position is continuously marked to market, generating the term ytF−1

t dFt in the bank
account dynamics.

We assume that the agent has constant relative risk aversion preferences over terminal wealth:

WT = ST + xT ,

given by the sum of the bank account value and the value of the illiquid asset; the agent maximizes the
value function:

V = max
xt , yt

1
1− γ

E
[
(WT −W)1−γ

]

for some γ > 0 under the terminal wealth constraint WT ≥W with:

W ≡ (1− c)W0 .

That is, his/her time T wealth is allowed to be at most c× 100 percent below his/her initial wealth W0.
The set of admissible strategies is defined as usual to be the set of progressively measurable

processes (xt, yt) satisfying the square integrability condition:

E
[∫ T

0
(x2

t + y2
t ) dt

]
< ∞

as well as the nonnegative liquidation value constraint St + xt − εx+t ≥ 0 almost surely for all t ≥ 0.

4. The Frictionless Case

In this section, we present a solution to the optimization problem in the frictionless case without
transaction costs, corresponding to ε = 0. In this case, standard results imply that markets are complete
and there is a unique stochastic discount factor (state price density) process Mt such that any terminal
wealth WT satisfying the budget constraint E[MTWT ] = W0 can be achieved by continuously trading
the underlying securities. Rewriting the price dynamics as:

R−1
t dRt = (α + βµ)dt + βσFdZt + σdBt,

F−1
t dFt = µdt + σFdZt,

(1)

1 For processes with infinite total variation, losses from transaction costs are infinite.
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we get that the market price of risk is given by:

λ =

(
λ1

λ2

)
=

(
βσF σ

σF 0

)−1 (
α + βµ− r

µ

)
=

(
µ/σF

(α− r)/σ

)
,

and the unique state price density process satisfies:

Mt = e−rt − λ1Zt −λ2Bt−0.5t(λ2
1+λ2

2) .

It will be instructive to rewrite the state price density in terms of the securities prices Rt, Ft.
The following is true.

Lemma 1. We have:

Mt = exp

(
− α− r

σ2 log(Rt/R0)−
(

µ

σ2
F
− (α− r)β

σ2

)
log(Ft/F0)− tΥ

)

with:
Υ ≡ r + 0.5(λ2

1 + λ2
2)−

µ

σF
(µ− 0.5σ2

F)−
α− r

σ2 (α− 0.5((β2 − β)σ2
F + σ2)) . (2)

Proof. See Appendix A.

The frictionless wealth dynamics satisfies the standard inter-temporal budget constraint:

dWt = rWtdt + xt(R−1
t dRt − rdt) + ytF−1

t dFt ,

and the agent’s objective is to solve the following optimization problem:

max
WT : E[MTWT ]=W0

E[(WT −W)1−γ] . (3)

Standard martingale techniques imply that the following is true:

Lemma 2. The optimal terminal wealth profile for the frictionless case is given by:

W∗T = W + νM−1/γ
T

where ν is determined by:

ν =
W0 − e−rTW

E[M1−γ−1

T ]
.

The frictionless wealth process is then given by:

W∗t = e−r(T−t)

(
W + νM−γ−1

t er(T−t)γ−1+0.5(λ2
1+λ2

2)(γ
−2−γ−1)(T−t)

)
.

The optimal dynamic portfolio replicating this wealth profile is given by:

xt =
α− r

σ2 γ−1
(

W∗t − e−r(T−t)W
)

yt =

(
µ

σ2
F
− β

α− r
σ2

)
γ−1

(
W∗t − e−r(T−t)W

)
.

(4)
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Thus, the optimal number of shares is given by:

st =
W∗t − e−r(T−t)W

Rt
s∗

with:
s∗ =

α− r
σ2 γ−1 .

Proof. See Appendix A.

5. Approximately Optimal Strategies with Small Transaction Costs

In this section, we use the general results of Kallsen and Muhle-Karbe (2017) to derive
approximately optimal trading strategies for the case with small transaction costs. Recall that we use
xt to denote the amount of wealth invested into the illiquid fund, so that the optimal number of shares
in the fund for the frictionless case is given by st = xt/Rt. As Kallsen and Muhle-Karbe (2017) show,
in this case, the approximate optimal strategy is characterized by a no-trading zone [st − ∆t, st + ∆t]

around the frictionless optimal policy, so that the agent always keeps his/her total number of shares st

of the illiquid asset inside this zone and trades towards the boundary of the zone every time when
his/her position crosses the boundary. This policy is approximately optimal in the sense that the
expected utility loss from following this policy is of the order of ε2/3. The optimal half-width of the
approximate no-trading zone, ∆t, is given by:

∆t =

(
3Γt

2
d〈s〉t
d〈R〉t

εRt

)1/3

, (5)

where 〈s〉t and 〈R〉t denote the realized quadratic variations of the trading strategy st and the fund
value Rt, respectively. Furthermore, Γt is the effective risk tolerance of the agent.

We thus arrive at the following result.

Proposition 1. Let Wt be the wealth process after transaction costs. The approximately optimal no-trading
zone is given by:

Wt − e−r(T−t)W
Rt

[s∗ − C∗, s∗ + C∗] . (6)

where:

C∗ =
1
γ


ε

3
2

(
α−r
σ2

)2 [(
γ−1µ/σF − βσF

)2
+
(
γ−1(α− r)/σ− σ

)2
]

((βσF)2 + σ2)




1/3

.

Here, Wt is the optimal wealth process with transaction costs. The optimal strategy s̃t is to keep the number of
shares inside the band, by minimally buying it when s̃t reaches the lower boundary and minimally selling when
it reaches the upper boundary of the band. That is,

s̃t = s̃0 + `+t − `−t

where `±t are the minimal nondecreasing processes that such that s̃t always stays inside the band (6). In particular,
`±t satisfy:

`±τ =
∫ τ

0
1

s̃t=
Wt−e−r(T−t)W

Rt
(s∗∓C∗)

d`±t , τ ≥ 0 .
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When the number of illiquid asset shares, s, is inside the no-trading zone, the width of the zone is proportional to
the hedging ratio, yt/(sRt):

2∆t = 2C∗
Wt − e−r(T−t)W

Rt

yt

sRt
=

(
µ

σ2
F
− β

α− r
σ2

)
γ−1s−1 Wt − e−r(T−t)W

Rt
.

(7)

Recall that, by Lemma 2, the optimal policy in the frictionless case is to keep the ratio between the

number of fund shares, st, and the quotient Wt−e−r(T−t)W
Rt

of the benchmark-adjusted wealth process,

Wt− e−r(T−t)W, to the fund value, Rt, at a constant level s∗ given by the risk-return tradeoff of the fund,
α−r
σ2 , normalized by the risk aversion γ. Proposition 1 shows that in the presence of transaction costs,

the optimal policy is to keep the number of shares within a band around the quotient Wt−e−r(T−t)W
Rt

.
The width of this band is increasing in the transaction costs size ε : the larger the cost, the costlier
it is to track the optimal position st because the latter is too volatile and moves too much with Wt

and Rt. Figure 1 illustrates the inefficiency of frequent rebalancing: while following st of Lemma 2
would be optimal absent costs, in the presence of costs, it leads to significant losses, and the returns
from following the strategy of Proposition 1 significantly dominate the returns from following the
frictionless strategy, despite infrequent rebalancing.

Our explicit expression for the width parameter of the no-trading zone, C∗, allows us to derive
several interesting comparative statics results. The following result follows directly from the expression:

Proposition 2. The following is true:

• If α > r + γσ2, then C∗ is monotone increasing in α and monotone decreasing in σ;
• if α > r + γσ2 and γ−1µ/σF > βσF, then C∗ is monotone decreasing in γ;
• If γ−1µ/σF > βσF, then C∗ is monotone decreasing in both β and σF;
• C∗ is monotone decreasing in µ for µ ∈ (−∞, βσ2

Fγ), and is monotone increasing in µ otherwise.

Proposition 2 and Figure 2 show that C∗ may exhibit complex behavior. First, C∗ tends to be
monotone increasing in α : when the asset is good (with α large relative to risk, σ), it is less expensive
to hedge and stay exposed to α than to rebalance. Second, when risk aversion is higher, the agent
finds it optimal to track the target portfolio as close as possible because the utility cost of an inefficient
amount of risk taking is high; hence, C∗ tends to be decreasing in γ. The effect of unhedgeable risk is
similar: a larger σ increases the utility cost of inefficient portfolio and hence triggers a more frequent
rebalancing, implying that C∗ is decreasing in σ. The effects of σF and µ (the parameters of the futures
price process) are more subtle. For small values of σF and µ, the risk-return tradeoff effect of the illiquid
asset dominates: a larger µ or a larger σF makes it more costly to deviate from the target. However,
when µ is large, the ratio α/µ is small, and hence, the liquid futures contract becomes a good substitute
for the illiquid asset. Thus, it becomes less important to hold the efficient exposure to the illiquid asset,
and the no-trade band widens.
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Figure 1: Simulated discrete time approximation of the P&L of the two strategies (the frictionless one, st,
from Lemma 2; and the optimal one, s̃t, of Proposition 3), net after transaction costs. Parameter values
are: γ = 5, c = 0.2, µ = 0.05, r = 0, σ = 0.02, σF = 0.2, α = 0.01, β = 0.6, ε = 0.01, W0 = 1. Given
the simulated paths of the two Brownian motions, the wealth curve reports cumulative wealth of an agent
following the respective strategy, net of costs. Since the frictionless strategy trades too frequently, losses
due to costs are larger, and hence the wealth of an agent following the frictionless strategy is lower than the
wealth of an agent following the optimal strategy that account for costs.

Our explicit expression for the width parameter of the no-trading zone, C∗, allows us to derive several

interesting comparative statics results. The following result follows directly from the expression
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Figure 1. Simulated discrete time approximation of the P&L of the two strategies (the frictionless one,
st, from Lemma 2; and the optimal one, s̃t, of Proposition 1), net after transaction costs. Parameter
values are: γ = 5, c = 0.2, µ = 0.05, r = 0, σ = 0.02, σF = 0.2, α = 0.01, β = 0.6, ε = 0.01, W0 = 1.
Given the simulated paths of the two Brownian motions, the wealth curve reports the cumulative
wealth of an agent following the respective strategy, net of costs. Since the frictionless strategy trades
too frequently, losses due to costs are larger, and hence, the wealth of an agent following the frictionless
strategy is lower than the wealth of an agent following the optimal strategy that account for costs.
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Figure 2: The dependence of C∗ on model parameters. In each plot, except for the varying parameter, all
other parameters are fixed at their values of γ = 5, c = 0.2, µ = 0.05, r = 0, σ = 0.02, σF = 0.2, α =
0.01, β = 0.6, ε = 0.01, W0 = 1.

5.1 The response of the no-trading zone to shocks

The following proposition follows by direct calculation.

Proposition 5 Inside the no-trade region, the wealth dynamics is given by

Wt = Ξt

(
W0 +

∫ t

0

r + sRτ (α+ βµ− r)− y∗e−r(T−τ)Wµ− sRτβσF y∗σF
Ξτ

dτ

+

∫ t

0

sRτβσF
Ξτ

dZτ +

∫ t

0

sRτσ

Ξτ
dBτ

)

with

Ξt ≡ e(y
∗µ−0.5(y∗σF )2)t+y∗σFZt ,

12

Figure 2. The dependence of C∗ on the model parameters. In each plot, except for the varying parameter,
all other parameters are fixed at their values of γ = 5, c = 0.2, µ = 0.05, r = 0, σ = 0.02, σF = 0.2,
α = 0.01, β = 0.6, ε = 0.01, W0 = 1.

The Response of the No-Trading Zone to Shocks

The following proposition follows by direct calculation.

Proposition 3. Inside the no-trade region, the wealth dynamics is given by:

Wt = Ξt

(
W0 +

∫ t

0

r + s Rτ(α + βµ− r)− y∗e−r(T−τ)Wµ− sRτ βσFy∗σF
Ξτ

dτ

+
∫ t

0

sRτ βσF
Ξτ

dZτ +
∫ t

0

sRτσ

Ξτ
dBτ

) (8)

with:
Ξt ≡ e(y

∗µ−0.5(y∗σF)
2)t+y∗σFZt ,

where s is the number of shares of the illiquid asset.

Proof. See Appendix A.

Because the number of shares does not change inside the no-trading zone, the frictional wealth
process Wt deviates from its frictionless counterpart in Lemma 2. In particular, while the hedging
ratio, yt/(stRt) is constant in the frictionless case, it exhibits a non-trivial behavior in the presence of
frictions. The following is a direct consequence of Proposition 3 and Lemma 2:
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Corollary 1. Inside the no-trading zone, given the illiquid asset position, s, the hedging ratio satisfies:

d
(

yt

sRt

)
= µ

y
t dt + y∗

(
1 − Wt − e−r(T−t)W

sRt

)
R−1

t dRt + (y∗)2 Wt − e−r(T−t)W
sRt

F−1
t dFt . (9)

Thus, the sensitivity of the hedging ratio to shocks dRt is positive if and only if sRt > (Wt − e−r(T−t)W). That
is, when Rt is high relative to Wt, a negative shock to Rt leads to a drop in the hedging ratio. By contrast,
when Rt is low, hedging substitutes for rebalancing: a negative shock to Rt leads to a drop in the hedging ratio.
Furthermore, the sensitivity of the hedging ratio to shocks dFt is always positive.

Proof. See Appendix A.

The intuition behind this result is straightforward: the response of yt to dRt depends on the
contribution of Rt to total wealth (net of benchmark), Wt − e−r(T−t)W. When this contribution is large,
its contribution to the numerator in yt

Rt
dominates, and the hedging ratio responds positively to shocks

to Rt. By contrast, when sRt is low, Wt barely responds to shocks to Rt, and hence, the denominator in
yt
Rt

dominates, making the hedging ratio respond negatively to shocks to Rt.
By Proposition 1, the width 2∆t of the no-trading zone is proportional to yt/sRt. Thus, all results

of Corollary 1 translate directly into analogous results for the no-trading zone.

Corollary 2. Inside the no-trading zone, given the illiquid asset position, s, the sensitivity of ∆t to shocks dRt

is positive if and only if sRt > (Wt − e−r(T−t)W). That is, when Rt is high relative to Wt, a negative shock to
Rt narrows the no-trading zone. By contrast, when Rt is low, a negative shock to Rt leads to a widening of the
no-trading zone. Furthermore, the sensitivity of the hedging ratio to shocks dFt is always positive.

Proof. See Appendix A.

The intuition behind this result is similar to that for Corollary 1: when sRt is large relative to
Wt − e−r(T−t)W, it is less expensive for the agent to hedge rather then to sell. By contrast, when sRt is
small, the illiquid asset’s contribution is already so small that it is more efficient for the agent to sell.

Author Contributions: Conceptualization: F.G. and S.K.; validation: F.G. and S.M., formal analysis: F.G., S.K.,
and S.M.; original draft preparation: F.G., S.K., and S.M.

Funding: This research received no external funding.

Conflicts of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content
and writing of the paper.

Appendix A. Proofs

Proof of Lemma 1. We have:

log(Rt/R0) = (α + βµ− 0.5(β2σ2
F + σ2))t + βσFZt + σBt

log(Ft/F0) = (µ− 0.5σ2
F)t + σFZt .

(A1)

Thus,

(
Zt

Bt

)
=

(
0 σ−1

F
σ−1 − β

σ

)(
log(Rt/R0)− (α + βµ− 0.5(β2σ2

F + σ2))t
log(Ft/F0)− (µ− 0.5σ2

F)t

)

=

(
σ−1

F (log(Ft/F0)− (µ− 0.5σ2
F)t)

σ−1(log(Rt/R0)− (α + βµ− 0.5(β2σ2
F + σ2))t)− β

σ (log(Ft/F0)− (µ− 0.5σ2
F)t)

)

=

(
σ−1

F (log(Ft/F0)− (µ− 0.5σ2
F)t)

σ−1 log(Rt/R0)− β
σ log(Ft/F0)− σ−1(α− 0.5((β2 − β)σ2

F + σ2))t

)

(A2)
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and therefore:

Mt = e−rt − λ1Zt −λ2Bt−0.5t(λ2
1+λ2

2)

= e−rt − µ
σF
(σ−1

F (log(Ft/F0)−(µ−0.5σ2
F)t)) − α−r

σ

(
σ−1 log(Rt/R0)− β

σ log(Ft/F0)−σ−1(α−0.5((β2−β)σ2
F+σ2))t

)
−0.5t(λ2

1+λ2
2)

= exp

(
− α− r

σ2 log(Rt/R0)−
(

µ

σ2
F
− (α− r)β

σ2

)
log(Ft/F0)− tΥ

) (A3)

where we have defined:

Υ ≡ r + 0.5(λ2
1 + λ2

2)−
µ

σF
(µ− 0.5σ2

F)−
α− r

σ2 (α− 0.5((β2 − β)σ2
F + σ2)) (A4)

Proof of Lemma 2. Since markets are dynamically complete, standard duality results imply that the
optimal wealth profile is given by the solution to (3). By direct calculation, this solution is given by:

W∗T = W + νM−1/γ
T

where ν is determined by:

ν =
W0 − e−rTW

E[M1−γ−1

T ]
.

Thus, it remains to find the unique replicating portfolio.
By the Girsanov theorem,

(ZQ
T

BQ
T

)
= λT +

(
ZT
BT

)

is a Brownian motion under the risk neutral measure, so that:

MT = e−rT − λ1ZT −λ2BT−0.5T(λ2
1+λ2

2) = e−rT − λ1(ZQ
T −Tλ1) −λ2(BQ

T−Tλ2)−0.5T(λ2
1+λ2

2) = AT e−λ1ZQ
T −λ2BQ

T ,

where we have defined:
AT = e−rT+0.5T(λ2

1+λ2
2).

We have:
X(t, ζt) = EQ

t [M
−1/γ
T ] = EQ

t [A
−1/γ
T eγ−1(λ1ZQ

T +λ2BQ
T )]

= A−1/γ
T eγ−1ζt EQ

t [e
γ−1(λ1(ZQ

T −ZQ
t )+λ2(BQ

T−BQ
t ))]

= b eγ−1ζt ,

(A5)

where we have defined:
b = A−1/γ

T e0.5((γ−1λ1)
2+γ−2λ2

2)(T−t)

and:
ζt ≡ (λ1ZQ

t + λ2BQ
t ) .

Thus,
X(t, ζt) = (e−rT+0.5T(λ2

1+λ2
2))−1/γe0.5((γ−1λ1)

2+γ−2λ2
2)(T−t) eγ−1ζt

= (e(−r+0.5(λ2
1+λ2

2))T)−1/γe0.5((γ−1λ1)
2+γ−2λ2

2)(T−t)Aγ−1

t M−γ−1

t

= M−γ−1

t e−(−r+0.5(λ2
1+λ2

2))(T−t)γ−1
e0.5((γ−1λ1)

2+γ−2λ2
2)(T−t)

= M−γ−1

t er(T−t)γ−1+0.5(λ2
1+λ2

2)(γ
−2−γ−1)(T−t)

(A6)



Risks 2018, 6, 112 11 of 14

Then, we have:

Wt = Et[(MT/Mt)WT ] = e−r(T−t)W + νM−1
t Et[M

1−γ−1

T ] = e−r(T−t)(W + νEQ
t [M

−1/γ
T ]) .

Furthermore,

WT = erT W0 +
∫ T

0
er(T−t)(xt(R−1

t dRt − rdt) + ytF−1
t dFt)

= erT W0 +
∫ T

0
er(T−t)(xt((α + βµ)dt + βσFdZt + σdBt − rdt) + yt(µdt + σFdZt))

= erT W0 +
∫ T

0
er(T−t)(xt(βσFdZQ

t + σdBQ
t ) + ytσFdZQ

t )

= erT W0 +
∫ T

0
(x̂tdZQ

t + ŷtdBQ
t ) ,

(A7)

where we have defined:

x̂t = er(T−t)(βσFxt + ytσF), ŷt = er(T−t)xtσ .

Define:
F(Z, B) ≡ νA−1/γeγ−1(λ1Z+λ2B) + W ,

Then,
WT = νM−1/γ

T + W = F(ZQ
T , BQ

T )

By the Clark–Ocone formula, (A7) implies that:

x̂t = EQ
t [FZ(ZQ

T , BQ
T )] , ŷt = EQ

t [FB(ZQ
T , BQ

T )]

and then, you recover xt, yt from:

e−r(T−t) x̂t = βσFxt + ytσF, e−r(T−t)ŷt = xtσ ,

so that:

xt = e−r(T−t)σ−1ŷt, yt = e−r(T−t)σ−1
F (x̂t − βσFxt) = e−r(T−t)(σ−1

F x̂t − βσ−1ŷt) .

By direct calculation, we have:

FZ(ZQ
T , BQ

T ) = γ−1λ1νA−1/γeγ−1(λ1Z+λ2B)

and:
FB(ZQ

T , BQ
T ) = γ−1λ2νA−1/γeγ−1(λ1Z+λ2B)

and hence:
x̂t = γ−1λ1νX(t, ζt) , ŷt = γ−1λ2νX(t, ζt) ,

and therefore:

xt = e−r(T−t)σ−2γ−1(α− r) νX(t, ζt), yt = e−r(T−t)(σ−1
F (γ−1µσ−1

F )− βσ−2γ−1(α− r)) νX(t, ζt)

Proof of Proposition 1. We first compute the effective risk aversion. We have:

U(t, Wt, ζt) = Et[(WT −W)1−γ] = Et[ν
1−γ
t M1−1/γ

T ] , (A8)
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where:

νt =
Wt − e−r(T−t)W

Et[M
1−γ−1

T ]
,

and hence:
Γt = − Uw

Uww
=

1
γ
(Wt − e−r(T−t)W) .

Then, we have:

dst = d(xt/Rt) = ∗dt + R−1
t dxt − R−2

t xtdRt

= ∗dt + R−1
t νe−r(T−t) α− r

σ2 γ−1X(t, ζt)(γ
−1(λ1dZQ

t + λ2dBQ
t ))

− R−1
t xt(βσFdZQ

t + σdBQ
t ) ,

(A9)

and hence, the quadratic variation of the number of shares in the fund is given by:

χt ≡
d〈s〉t

dt

= R−2
t x2

t

[(
γ−1µ/σF − βσF

)2
+
(
γ−1(α− r)/σ− σ

)2
]

.
(A10)

The claim now follows from the general result in Kallsen and Muhle-Karbe (2017).

Proof of Proposition 3 . We have:

dWt = rWtdt + s (dRt − rRtdt) + y∗(Wt − e−r(T−t)W)F−1
t dFt

= rWtdt + s Rt(α + βµ− r)dt + sRt(βσFdZt + σdBt) + y∗(Wt − e−r(T−t)W)(µdt + σFdZt)

= (r + y∗µ)Wtdt + (s Rt(α + βµ− r)− y∗e−r(T−t)Wµ)dt + (sRtβσF + y∗WtσF)dZt

+ sRtσdBt .

(A11)

Define:
Ξt ≡ e(y

∗µ−0.5(y∗σF)
2)t+y∗σFZt .

Then,

Wτ = Ξτ

(
W0 +

∫ τ

0

r + s Rt(α + βµ− r)− y∗e−r(T−t)Wµ− sRtβσFy∗σF
Ξt

dt

+
∫ τ

0

sRtβσF
Ξt

dZt +
∫ τ

0

sRtσ

Ξt
dBt

) (A12)

Proof of Corollary 1. The dynamics of the hedging ratio is given by:

sd(yt/(sRt)) = R−1
t dyt − R−2

t ytdRt + 0.5
(
−2R−2

t d〈Rt, yt〉+ 2ytR−3
t d〈Rt〉

)

= R−1
t y∗dWt − R−2

t ytdRt + 0.5
(
−2R−2

t d〈Rt, yt〉+ 2ytR−3
t d〈Rt〉

)

= R−1
t y∗(rWtdt + s (dRt − rRtdt) + y∗(Wt − e−r(T−t)W)F−1

t dFt)

− R−2
t y∗(Wt − e−r(T−t)W)dRt + 0.5

(
−2R−2

t d〈Rt, yt〉+ 2ytR−3
t d〈Rt〉

)
.

(A13)

The claim follows.
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