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Abstract: A quantum mechanics approach is proposed to model non-life insurance risks and to
compute the future reserve amounts and the ruin probabilities. The claim data, historical or simulated,
are treated as coming from quantum observables and analyzed with traditional machine learning tools.
They can then be used to forecast the evolution of the reserves of an insurance company. The following
methodology relies on the Dirac matrix formalism and the Feynman path-integral method.
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1. Introduction

The theory of non-life insurance risk is a major topic in actuarial sciences. The literature is wide
and varied, and a comprehensive review can be found in the books Asmussen and Albrecher (2010);
Dickson (2017); Schmidli (2018).

This paper proposes a quantum-type approach for the representation and analysis of non-life
insurance data. Quantum mechanics methods are successfully applied in various disciplines,
including finance for option pricing (e.g., Baaquie 2007, 2010) and econophysics for risk management
(e.g., Bouchaud and Potters 2003; Mantegna and Stanley 2000). Their application to insurance, however,
is an emerging field of research that has been introduced recently in Tamturk and Utev (2018).

Overall, the current approach is new and consists in representing the observations on an
insurance risk in the form of quantum data, that is to say from a quantum mechanical type model.
This methodology is based on the Dirac matrix formalism (Dirac 1933) and the Feynman path integral
method (Feynman 1948). First, claim data obtained from the past or by simulation are analyzed with
standard machine learning tools such as classification, maximum likelihood estimation and risk error
function techniques. Then, these data can be used to determine the distribution of the reserve process
and the associated finite-time ruin probabilities.

Data analysis plays a key role in many areas and learning techniques provide a key tool for this
purpose (e.g., Bishop 2006; Quinlan 1988). In actuarial sciences, practitioners use often such techniques
to analyze data and to predict future losses. Taking into account missing data is also important in
practice (Graham 2009). This arises in insurance with unreported claims and frauds; the topic will
be briefly addressed. Political and economical changes are another risk factor for companies due to
possible inflation and trade restrictions; such a situation will be sketched too. An advantage of our
framework pertains to handling unknown probabilities of repeated events which, in our experience,
can be bypassed with an adapted quantum data representation.
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The paper is organized as follows. Section 2 presents the compound Poisson risk process when
repeated claims are reported or not, and the two corresponding quantum risk models. For simplicity,
the claim amounts are assumed to have a two-point distribution. The data, however, will be
treated as values observed with errors, which broadens somewhat the applicability of the analysis.
In Section 3, the so-called quantum observables are constructed for the two quantum models. This leads
us to determine the eigenvalues of a Hermitian operator to find. In Section 4, the existence of
Maxwell-Boltzmann and Bose-Einstein statistics is explicitly indicated, and the associated likelihood
functions are derived. Section 5 deals with the estimation of the claim amount distribution from
a set of data, historical or simulated. As mentioned before, the followed method is rather simple
and standard, and we then discuss several numerical examples. In Section 6, we show how to
compute, in the quantum context, the distribution of the reserves of the company in the course of time.
We then continue by obtaining the probabilities of ruin over a finite time horizon and this is again
illustrated numerically.

2. Quantum Risk Models

Consider the classical compound Poisson risk process (Asmussen and Albrecher 2010;
Dickson 2017; Schmidli 2018). The reserve process {R(t), t ≥ 0} is defined by

R(t) = x0 + ct− S(t),

where x0 is the initial capital, c is the constant premium rate and S(t) denotes the total claim amount
up to time t defined by

S(t) =
N(t)

∑
j=1

Xj,

where N(t) is a Poisson process of rate λ and the Xj are the claim amounts which are i.i.d. random
variables (=d X).

For simplicity, we assume here that each claim has a two-point distribution given by

X =

{
d with probability q,

u with probability p.

Typically, d represents a small amount of claim and u a significant claim amount.

Complete data. In this case, the observed data are treated as coming from the classical model.
These data are collected at regular times ∆t, 2∆t, . . ., and they provide us with the cumulative claim
amounts during the interval. The periods ∆t are small enough to reasonably assume that there are at
most two claims per period. Hence, we have

S(∆t) =



0 with probability δ0,

d with probability qδ1,

u with probability pδ1,

d + u with probability 2qpδ2,

2d with probability q2δ2,

2u with probability p2δ2,

(1)
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where

δ1 = P[N(∆t) = 1] = e−λ∆tλ∆t,

δ2 = P[N(∆t) = 2] = e−λ∆t(λ∆t)2/2,

δ0 = 1− δ1 − δ2 ≈ P[N(∆t) = 0] = e−λ∆t.

Quantum data. This time, the observed data are treated as a sample of eigenvalues of operators
and are referred to as quantum data. Recall that from the mechanical quantum point of view,
the observables are eigenvalues of certain Hermitian operators / self-adjoint matrices. For a nice introduction
to that theory, the reader is referred e.g., to Griffiths and Schroeter (2018); Plenio (2002); a thorough
analysis is provided in Parthasarathy (1992).

Thus, the different possible claim amounts 0, d, u, d + u, 2d, 2u are considered as energy levels
of particles and they are treated as the eigenvalues of an operator H which has to be modelled.
This requires a special choice to make with care.

Data with missing values. As before, data on cumulative claim amounts are collected at
regular times ∆t, 2∆t, . . . with small ∆t. Now, however, we assume that the cases of repeated claims
(i.e., 2d and 2u) are not observed. Unreported claims of this kind can be viewed as a deliberate omission.
We then have

S(∆t) =


0 with some probability p0,

d with some probability p1,

u with some probability p2,

d + u with some probability p3.

(2)

This raises the question of how to deal with the unknown probabilities.

Adjusted quantum data. Quantum data can be adjusted to handle missing values in several
ways. Three cases are examined here.

Way 1. We use the same quantum observable operator H as in the classical model. The missing
unknown probabilities are thus considered as 0.

Way 2. The values 2d and 2u are not eigenvalues of the observables. This requires to derive a
different Hamiltonian.

Way 3. We consider as only possible jumps either 0 or 1-step jumps d, u, d + u. A new Hamiltonian
is then obtained.

Data and simulation. We have assumed that each claim has only two possible values d and u.
Nevertheless, the data obtained by simulation are observed values tainted by errors. For example,
a simple dataset such as {4, 7, 2, 11, 3, 6} can be treated as generated both by (1) or (2) with (u = 3, d = 7)
observed with errors. In Section 5, we will discuss and illustrate different simulation procedures.

3. Quantum Observables

In this section, we will construct the Hermitian operator corresponding to the two quantum risk
models presented above. We start with some usual notation and preliminaries.

Independent observables. Given two observables A, B, the tensor product A⊗ B acts as a quantum
product of two independent observables. So, ln(A⊗ B) acts as a quantum sum of two independent
observables. In particular, B⊗ B is the quantum product of two i.i.d. observables, and ln(B⊗ B) the
quantum sum of two i.i.d. observables.

In our case, the basic 1-step quantum claim variable is a 2 × 2 matrix B with eigenvalues
exp(u), exp(d) and interpreted as a 1-step jump geometric random walk, B ⊗ B as a 2-step jump
geometric random walk, etc. To model the standard random walk, we first consider the geometric
random walk and then take the ln.
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An identity operator In (in dimension n) is introduced that does not affect the dynamics. Indeed,
In ⊗ B corresponds to multiply by 1 at the first step, while B⊗ In corresponds to multiply by 1 at the
second step. Note that in general, a tensor product is not commutative.

Partitioned space. To deal with an event space which is partitioned into n events, we work with the
n orthogonal projection (Hermitian) operators Pi onto the eigenspace of observable A.

3.1. Quantum Data

The operator H is constructed as a projection on three claim (jump) cases i = 0, 1, 2. Given that
case i occurs, the claims are defined as a quantum type random walk as described above. Applying
the argument outlined above with standard quantum-type calculations (Griffiths and Schroeter 2018;
Parthasarathy 1992; Plenio 2002), we derive our first observable operator

H = P0 ⊗O4 + P1 ⊗ ln(B⊗ I2) + P2 ⊗ ln(B⊗2). (3)

More explicitly, the matrices B and B⊗2 are the 1 and 2-step exponential jump claim operators
defined by

B = V∗DV = V∗
(

eu 0
0 ed

)
V, B⊗2 = (V∗ ⊗V∗)(D⊗ D)(V ⊗V),

where V is a 2× 2 unitary matrix, V∗ is its adjoint and I2 is a 2× 2 identity matrix that corresponds to
the absence of the second claim. Notice that I2 = V∗V. So, the actual 1-step claim operator is ln(B⊗ I2)

computed as

ln(B⊗ I2) = (V∗)⊗2


u 0 0 0
0 u 0 0
0 0 d 0
0 0 0 d

V⊗2,

and the 2-step claim operator is ln(B⊗2) given by

ln(B⊗2) = (V⊗2)∗


2u 0 0 0
0 u + d 0 0
0 0 d + u 0
0 0 0 2d

V⊗2.

Moreover, let Di|n, 1 ≤ i ≤ n, be a n× n diagonal matrix which has a single non-zero element given
by (Di|n)i,i = 1, i.e., (Di|n)k,m = 0 for (k, m) 6= (i, i). The 3× 3-matrices P0, P1, P2 are the 0, 1, 2 claim
occurrences operators (projections) defined by

Pi = W∗Di+1|3W, i = 0, 1, 2.

Finally, denote by On an extra n× n matrix with all elements being 0. The matrix O4 corresponds to a
0 claim size which is given by

O4 = (V∗)⊗2(O2 ⊗O2)V⊗2.
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Overall, we then obtain

H = U∗



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 u 0 0 0 0 0 0 0
0 0 0 0 0 u 0 0 0 0 0 0
0 0 0 0 0 0 d 0 0 0 0 0
0 0 0 0 0 0 0 d 0 0 0 0
0 0 0 0 0 0 0 0 2u 0 0 0
0 0 0 0 0 0 0 0 0 u+d 0 0
0 0 0 0 0 0 0 0 0 0 d+u 0
0 0 0 0 0 0 0 0 0 0 0 2d



U,

where U is a 12× 12 unitary matrix such that

U = W ⊗V⊗2, U∗ = W∗ ⊗ (V∗)⊗2.

3.2. Adjusted Quantum Data

We consider the three ways indicated before to handle missing data.

Way 1. This is the same as the previous quantum observable H. However, the probabilities p2u of
2u and p2d of 2d are taken equal to 0.

Way 2. Now, the values 2u and 2d are not taken into consideration as eigenvalues. The new
observable operator H′ is then

H′ = P0 ⊗O4 + P1 ⊗ ln(B⊗ I2) + P2 ⊗ (ln(B⊗2)⊗ S), (4)

where S = D2|4 + D3|4 is a projection type operator in the previous notation of Di|n.
This operator S is applied because the capital movement can be exposed to a unusual change at

the second step (it cannot go to 2u and 2d). In this case, the probabilities of 2u and 2d are not equal to 0.

Way 3. This time, we consider u + d as a first jump. The new observable operator H′′ is

H′′ = P0 ⊗O3 + P1 ⊗ ln(B⊗ I1). (5)

Here, I1 = [1] is the 1× 1-identity matrix and

ln(B⊗ I1) = ln(B) = Ṽ∗

 u 0 0
0 d 0
0 0 u+d

 Ṽ,

where Ṽ is a 3× 3 unitary matrix. Moreover, the 2× 2-matrices P̃0, P̃1 are the 0, 1 claim occurrence
operators defined by

P̃i = W̃∗Di+1|2W̃, i = 0, 1,

where W̃ is a 2× 2 unitary matrix.
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Therefore, we have

H′′ = Ũ∗



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 u 0 0
0 0 0 0 d 0
0 0 0 0 0 u+d

 Ũ,

where Ũ = W̃ ⊗ Ṽ.

4. Quantum Likelihood

In the Dirac formalism, the so-called bra-ket notation has proven very useful and easy to
handle and has become standard in quantum mechanics. Recall it briefly; more detail can be found
e.g., in Griffiths and Schroeter (2018); Parthasarathy (1992); Plenio (2002). Consider a class of n × n
matrices treated as C∗ algebra. A column vector x is represented as a ket-vector |x >. An associated
bra-vector < x| is a row vector defined as its Hermitian conjugate. Then, < x|y > corresponds to the
usual inner product. Moreover, |x >< y| is the outer product, i.e., an operator/matrix defined by

|x >< y||z >=< y|z > |x > (abc = bca rule).

In particular, for any unit vector e, Pe = |e >< e| defines a projection operator which acts as

Pe|x >= |e >< e||x >=< e|x > |e > .

Let ρ be the density operator which describes the statistical state of the system. The projection
operator plays the role of an event, and the probability of finding the system in the state e is defined as
the expectation

E(Pe) = E[|e >< e|] = tr(ρPe),

where tr denotes trace. Now, an operator A ∈ C∗ is an observable if A is self-adjoint (A = A∗). Thanks
to that property, A can be expanded in its spectrum {βi} by projection operators, i.e.,

A = ∑
i

βiPei = ∑
i

βi|ei >< ei|,

in which ei is the eigenvector for βi. The probability of the measurement is extended by linearity of the
expectation as

E(A) = E
[
∑

i
βi|ei >< ei|

]
= ∑

i
βi E[|ei >< ei|] = ∑

i
βi tr(ρPei ).

We are ready to go back to the insurance risk process. First, we examine the case of quantum data
using two classical models developed in the literature.

4.1. Maxwell-Boltzmann Statistics

We consider the model (1) with the operator (3). The eigenvalues of the operator H are
0, u, d, u + d, 2u, 2d. The probabilities of finding the system in the corresponding eigenstates are
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defined via the quantum method sketched before. Now, we assume that the eigenvalues are observed
independently and that the density ρ is defined as

ρ = ρ1 ⊗ ρ2 = W∗

 δ0 0 0
0 δ1 0
0 0 δ2

W ⊗ (V∗)⊗2


p2 0 0 0
0 pq 0 0
0 0 qp 0
0 0 0 q2

V⊗2,

with ρ2 too having an independence type tensor product representation given by

ρ2 = ρ′2 ⊗ ρ′′2 = V∗
(

p 0
0 q

)
V ⊗V∗

(
p 0
0 q

)
V,

to satisfy the following restrictions

tr(ρ⊗ P0) = δ0, tr(ρ⊗ Pu) = pδ1,

tr(ρ⊗ Pd) = qδ1, tr(ρ⊗ Pu+d) = 2pqδ2, (6)

tr(ρ⊗ P2u) = p2δ2, tr(ρ⊗ P2d) = q2δ2,

where Pβ is a projection operator on the eigenvalue β given by

Pβ = U∗DβU,

where, using the notation Di|n,

D0 = D1|3 ⊗ (D1,4 + . . . + D4|4), Du = D2|3 ⊗ (D1,4 + D2|4), Dd = D2|3 ⊗ (D3,4 + D4|4),

D2u = D3|3 ⊗ D1|4, D2d = D3|3 ⊗ D4|4, Du+d = D3|3 ⊗ (D2|4 + D3|4).

After standard but relatively lengthy calculations, we obtain the following existence result.

Lemme 1 (Maxwell-Boltzmann density). The set of densities satisfying the above restrictions (6) is not
empty. Moreover, there exists a density of the form ρ = ρ1 ⊗ ρ2 corresponding to Maxwell-Boltzmann statistics.

4.2. Bose-Einstein Statistics

We examine the same model (1) with the operator (3) but when the eigenvalues are not observed
independently. More precisely, we assume that the eigenvalues u+ d and d+ u cannot be distinguished
and that the density ρ has to satisfy the following restrictions

tr(ρ⊗ P0) = δ0, tr(ρ⊗ Pu) = pδ1,

tr(ρ⊗ Pd) = qδ1, tr(ρ⊗ Pu+d) = Cpqδ2, (7)

tr(ρ⊗ P2u) = Cp2δ2, tr(ρ⊗ P2d) = Cq2δ2,

where Pλ is defined as before and C is chosen to satisfy the normalization condition

C(p2 + pq + q2) = 1.

As before, an existence result is proved after lengthy calculations.

Lemme 2 (Bose-Einstein density). The set of densities satisfying the above restrictions (7) is not empty.

We now move on to the case with missing data.
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4.3. Adjusted Quantum Data

One possibility is to apply statistics of the Bose-Einstein type. Again the three previous methods
with the observable operators (3)–(5) are considered. For each one, it can be shown that the set of
densities satisfying the restrictions is not empty.

Way 1. Here, we choose for the probabilities

tr(ρ⊗ P0) = C′δ0, tr(ρ⊗ Pu) = C′pδ1, (8)

tr(ρ⊗ Pd) = C′qδ1, tr(ρ⊗ Pu+d) = C′pqδ2,

where Pλ is the same as above and C′ is chosen to satisfy the normalization condition C′(δ0 + δ1(p +

q) + pqδ2) = 1.

Way 2. The eigenvalue u + d is observed twice and so, a natural choice is

tr(ρ⊗ P0) = C′′δ0, tr(ρ⊗ Pu) = C′′pδ1, (9)

tr(ρ⊗ Pd) = C′′qδ1, tr(ρ⊗ Pu+d) = C′′δ2 pq,

where C′′(δ0 + δ1(p + q) + pqδ2) = 1. Note that using the Maxwell-Boltzmann case, we may also write
tr(ρ⊗ Pu+d) = 2C′δ2 pq.

Way 3. The choice of the probabilities is quite arbitrary and to restrict it, we add the unobserved
probabilities of 2d and 2u to the probabilities observed in the Bose-Einstein statistics. Thus, the resulting
probabilities are

tr(ρ⊗ P0) = C′′′δ0, tr(ρ⊗ Pu) = C′′′pδ1, (10)

tr(ρ⊗ Pd) = C′′′qδ1, tr(ρ⊗ Pu+d) = C′′′δ2(pq + p2 + q2),

where C′′′(δ0 + δ1(p + q) + (pq + p2 + q2)δ2) = 1.

4.4. Likelihood Functions

The corresponding likelihood functions are now straightforward. Denote by #x the number of x
observed in the data set. For the Maxwell-Boltzmann statistics, the likelihood is given by

L(p, q) = (p2δ2)
#2u(q2δ2)

#2d(2qpδ2)
#u+d(pδ1)

#u(qδ1)
#d(δ0)

#0. (11)

For the Bose-Einstein statistics,

L(p, q) = (Cp2δ2)
#2u(Cq2δ2)

#2d(Cqpδ2)
#u+d=d+u(pδ1)

#u(qδ1)
#d(δ0)

#0. (12)

For the adjusted quantum data, following the way 2 for example,

L(p, q) = (C′′qpδ2)
#u+d=d+u(C′′pδ1)

#u(C′′qδ1)
#d(C′′δ0)

#0. (13)

5. Data Analysis

We want to analyze the claims data by the non-traditional quantum representation (3)–(5) of
the models (1) and (2). This can be done by applying the supervised machine learning method
(Bishop 2006; Hastie and Tibshirani 1996; Hastie et al. 2009).

The method uses the cross-validation technique, which is based on dividing the dataset into test
data (also known as validation data) and training data. The nearest neighbors algorithms are applied
to classify the data, then the maximum likelihood estimate and the error risk calculation are performed
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to find the optimal parameters. Finally, the part of the training information obtained is applied to
analyze the test data.

In the k-fold cross-validation, all data is divided into k subsets of equal size. In each iteration,
a subset is chosen as training data and the remaining subsets are used as test data. The process is
repeated k times and each subset is chosen only once as a training piece in general. Finally, the estimator
is an average of all the iteration results. For illustration, a simple example where k = 2 is presented in
the Section 5.2.

5.1. Estimation Procedure

Our goal is to estimate the values (u, d) of the claim amounts and their probabilities (p, q = 1− p).
The dataset V = {v1, v2, . . . , vn} consists of claim amounts in successive time intervals ∆t = (t− 1, t]
(t = 1, . . . , m say). We assume that the likelihood function is defined by one of the functions given
in (11)–(13).

The estimation method proposed is slightly similar to the EM algorithm and its successive steps
are as follows.

- Choose an initial estimate (u0, d0).
- Classify and label the data with respect to (u = u0, d = d0) by using the nearest neighbour

algorithm. This leads to the classes

G2u, G2d, Gu+d, Gu, Gd, G0 for the representation (3),(4),

and Gu+d, Gu, Gd, G0 for the representation (5).

- Given u, d, estimate p, q = 1− p by maximizing the appropriate likelihood function L(p, q) given
in (11)–(13).

- Estimate u, d by minimizing the corresponding error risk function F(u, d) defined below
in (14)–(16), for all possible u > d > 0.

- Loop it until |F(ui+1, di+1)− F(ui, di)| < M small enough.

For the k−fold cross-validation strategy, the steps are first applied to the training data and yield
an estimate for (u, d) which is then used in the test data as the initial estimate (u0, d0).

Estimating (u, d) by risk functions. Consider a dataset {βi}. The target set to estimate is a set of
eigenvalues µ with observed probabilities and clusters pµ and Gµ. This can be done by minimizing the
weighted L1-norm risk function

F(µ) = ‖µ− β‖ = ∑
µ

pµ ∑
βi∈Gµ

|βi − µ|.

Note that a L2-norm risk function is, of course, a possible alternative.
For the Maxwell-Boltzmann statistic, this risk function is

F(u, d) = p2δ2 ∑
βi∈G2u

|βi − 2u|+ q2δ2 ∑
βi∈G2d

|βi − 2d|+ 2pqδ2 ∑
βi∈Gu+d

|βi − (u + d)|

+ pδ1 ∑
βi∈Gu

|βi − u|+ qδ1 ∑
βi∈Gd

|βi − d|+ δ0 ∑
βi∈G0

|βi − 0|. (14)

For the Bose-Einstein statistics,

F(u, d) = Cp2δ2 ∑
βi∈G2u

|βi − 2u|+ Cq2δ2 ∑
βi∈G2d

|βi − 2d|+ Cpqδ2 ∑
βi∈Gu+d

|βi − (u + d)|

+ pδ1 ∑
βi∈Gu

|βi − u|+ qδ1 ∑
βi∈Gd

|βi − d|+ δ0 ∑
βi∈G0

|βi − 0|. (15)
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For the adjusted quantum data, following the way 2,

F(u, d) = C′′pqδ2 ∑
βi∈Gu+d

|βi − (u + d)|+ C′′pδ1 ∑
βi∈Gu

|βi − u|+ C′′qδ1 ∑
βi∈Gd

|βi − d|

+ C′′δ0 ∑
βi∈G0

|βi − 0|. (16)

5.2. Numerical Illustrations

We first examine a simple numerical example for quantum data, then a case of data with errors
and finally a case of misreported claims. For all the cases, we take λ = 1 and ∆t = 1, for instance.

Numerical example. Consider the following dataset

V = {20, 8, 1, 7, 15, 17, 11, 0, 19, 1},

which is divided in two subsets

V1 = {20, 8, 1, 7, 15}, V2 = {17, 11, 0, 19, 1}.

The successive steps of the procedure described in Section 5.1 are applied from the estimate
(u0, d0) = (40, 25).

(1) Maxwell-Boltzmann likelihood (11) with risk function (14). We obtain the following results
(Table 1).

Table 1. Maxwell-Boltzmann statistics for quantum data.

Given
(u, d)

Maximum
Likelihood (L)

Optimum
(p, q)

Optimum
u

Optimum
d

Risk
F(u, d)

|F(ui, di)−
F(ui+1, di+1)|

(40,25) 4.361099 × 10−5 (0.01,0.99) 18 17 12.8500 12.8500
(18,17) 1.569022 × 10−6 (0.4,0.6) 19 15 7.7255 5.1245
(19,15) 9.962820 × 10−7 (0.33,0.67) 19 11 6.6365 1.089
(19,11) 3.810307 × 10−7 (0.43,0.57) 19 10 3.5169 3.1196
(19,10) 1.141128 × 10−7 (0.38,0.62) 17 9 2.5768 0.9401
(17,9) 9.649455 × 10−8 (0.22,0.78) 15 9 2.668082 0.091282
(15,9) 2.198608 × 10−7 (0.1,0.9) 15 9 2.987181 0.319099
(15,9) 2.198608 × 10−7 (0.1,0.9) 15 9 2.987181 0

Choosing M = 0.01, we see that (u, d) = (15, 9) and (p, q) = (0.1, 0.9). The associated minimum
risk is 2.987181 and the maximum likelihood value is 2.198608 × 10−7. The loop takes 8 steps,
i.e., it works very fast for a small data set.

To reduce overfitting, we apply the k-fold cross-validation method with k = 2. This gives the
results below (Table 2).

Table 2. Using k-fold cross-validation with k = 2.

Training Data Test Data
Training Set Test Set (u, d) (p, q) (u, d) (p, q)

V1 V2 (15,8) (0.4,06) (11,9) (0.2,0.8)
V2 V1 (17,11) (0.67,0.33) (15,8) (0.4,0.6)

When V1 is the training set, we get (ū, d̄) = (1/2)(u1 + u2, d1 + d2) = (13, 8.5) and ( p̄, q̄) =

(1/2)(p1 + p2, q1 + q2) = (0.3, 0.7), with F(13, 8.5) = 1.9884. Thus, there is a significant reduction in
the risk function with a somewhat close (u, d).
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(2) Bose-Einstein likelihood (12) with risk function (15). Here are the numerical results (Table 3).

Table 3. Bose-Einstein statistics for quantum data.

Given
(u, d)

Maximum
Likelihood (L)

Optimum
(p, q)

Optimum
u

Optimum
d

Risk
F(u, d)

|F(ui, di)−
F(ui+1, di+1)|

(40,25) 4.361099 × 10−5 (0.01,0.99) 18 17 12.8500 12.8500
(18,17) 1.569022 × 10−6 (0.4,0.6) 19 15 7.7255 5.1245
(19,15) 9.962820 × 10−7 (0.33,0.67) 19 11 6.6365 1.089
(19,11) 3.810307 × 10−7 (0.43,0.57) 19 10 3.5169 3.1196
(19,10) 1.492842 × 10−7 (0.38,0.62) 17 9 2.620360 0.89654
(17,9) 1.434357 × 10−7 (0.25,0.75) 15 9 2.681275 0.060915
(15,9) 3.019659 × 10−7 (0.13,0.87) 15 9 2.963947 0.282672
(15,9) 3.019659 × 10−7 (0.13,0.87) 15 9 2.963947 0

Observe that we obtain the same (u, d) = (15, 9) but with probabilities (p, q) = (0.13, 0.87). Again
it takes 8 steps to reach the level M = 0.01.

A 2-fold cross-validation method improves the results as follows (Table 4).

Table 4. Using k-fold cross-validation.

Training Data Test Data
Training Set Test Set (u, d) (p, q) (u, d) (p, q)

V1 V2 (15,8) (0.41,0.59) (11,9) (0.25,0.75)
V2 V1 (17,11) (0.67,0.33) (15,8) (0.41,0.59)

With V1 as training set, we get (ū, d̄) = (13, 8.5) and ( p̄, q̄) = (0.33, 0.67), with F(13, 8.5) = 2.0047
instead of 2.963947 obtained before.

(3) Bose-Einstein likelihood (13) with risk function (16). The results are in the following table
(Table 5), again for M = 0.01.

Table 5. Bose-Einstein statistics for adjusted quantum data.

Given
(u, d)

Maximum
Likelihood L

Optimum
(p, q)

Optimum
u

Optimum
d

Risk
F(u, d)

|F(ui, di)−
F(ui+1, di+1)|

(40,25) 4.361099 × 10−5 (0.01,0.99) 18 17 17.421881 17.421881
(18,17) 1.569022 × 10−6 (0.4,0.6) 19 15 9.905660 7.516221
(19,15) 9.962820 × 10−7 (0.33,0.67) 19 11 8.547535 1.358125
(19,11) 3.810307 × 10−7 (0.43,0.57) 19 10 4.504016 4.043519
(19,10) 3.810307 × 10−7 (0.57,0.43) 17 9 3.835010 0.669006
(17,9) 3.810307 × 10−7 (0.57,0.43) 17 9 3.835010 0

The results here are somewhat different since (u, d) = (17, 9) and (p, q) = (0.57, 0.43). The loop
now takes only six steps. For this dataset, the model which fits best, i.e., with the smallest risk function,
is using Bose-Einstein statistics.

We also performed several numerical experiments with simulated data. In the examples (4)–(7)
below, the simulations yield datasets of size n = 100 (n = 1000 was used too), and the calculations are
made with M = 0.1.

(4) Uniform random data (Table 6). As in the examples (1), (2), we apply the usual
Maxwell-Boltzmann and Bose-Einstein statistics.
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Table 6. Uniformly generated data.

Model Maxwell-Boltzmann Bose-Einstein
n n = 100 n = 1000 n = 100 n = 1000

p 0.30 0.99 0.33 0.99
q 0.70 0.01 0.67 0.01

Likelihood 5.5996 × 10−84 0 3.1488 × 10−86 0
u 56 42 56 40
d 35 23 35 21

Risk value 132.2545 771.4357 129.8278 773.2864
Loop size 7 16 7 16

We notice that the best fit is not always given by the Maxwell-Boltzmann statistics.

Data with errors. We wish to examine a dataset disturbed by an error. For that, we start with
a set {j1, j2, . . . , jn} of true observables {0, u, d, u + d, 2u, 2d}. Then, we add a special random error
{e1, e2, . . . , en} so that the dataset generated is given by

V = {v1, v2, . . . , vn} ≡ {j1, j2, . . . , jn}+ {e1, e2, . . . , en}. (17)

Below, we choose ei ∈ {µ, 0,−µ} where µ has three possible values 1, 2, 10.

(5) Random data with errors (Table 7). The non-perturbed data {j1, j2, . . . , jn} come from a uniform
sampling in {0, u, d, u + d, 2u, 2d}.

Table 7. Random data with errors.

Model Maxwell-Boltzmann Bose-Einstein
µ µ = 1 µ = 2 µ = 10 µ = 1 µ = 2 µ = 10

p 0.99 0.99 0.99 0.99 0.99 0.99
q 0.01 0.01 0.01 0.01 0.01 0.01

Likelihood 0 0 0 0 0 0
u 60 60 80 60 60 60
d 40 40 50 40 40 40

Risk value 79.5889 141.8641 821.6990 79.6845 141.9939 630.2925
Loop size 2 2 7 2 2 2

We see that, as before, the best model depends on the dataset. In the case of a small error µ, the
results are of course very close.

(6) Adjusted random data with errors (Table 8). The non-perturbed dataset {j1, j2, . . . , jn} is
obtained by simulation according to the way 2.

Table 8. Adjusted random data with errors.

Model Maxwell-Boltzmann Bose-Einstein
µ µ = 1 µ = 2 µ = 10 µ = 1 µ = 2 µ = 10
p 0.44 0.52 0.27 0.45 0.52 0.16
q 0.56 0.48 0.73 0.55 0.48 0.84

Likelihood 2.0197 × 10−64 3.4390 × 10−59 1.1716 × 10−59 5.0452 × 10−66 3.0095 × 10−60 1.6389 × 10−55

u 60 60 70 60 60 70
d 40 40 50 40 40 50

Risk value 13.2531 30.1508 134.9512 13.0994 30.0282 156.9196
Loop size 2 2 2 2 2 4

The results are close when µ is small and slightly different when µ increases.
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Misreported data. Data samples may not report or misreport claims, either by mistake or
voluntarily. This can also occur because of a change of risk. Let V be a dataset with n reported
claims and m misreported claims:

V = {v1, v2, . . . , vn+m},

where m is known but the true claim amounts are unknown. To handle the missing data, we apply
a nearest neighbour approach and approximate the missing quantity by the average of the k closest
neighbours. Below, we choose k =

√
n.

(7) Random data with misreports (Table 9). First, data {v1, v2, . . . , vn} are generated according
to the Maxwell-Boltzman model perturbed by errors via (17). Then, random errors {e1, e2, . . . , em}
are generated to replace missing data, where m is of values 0, 5, 20 (m = 0 meaning no missing data).
Finally, the two datasets are combined by putting the errors at random position.

Table 9. Random data with misreports.

Model Maxwell-Boltzmann Bose-Einstein
m m = 0 m = 5 m = 20 m = 0 m = 5 m = 20

p 0.37 0.38 0.38 0.39 0.39 0.37
q 0.63 0.62 0.62 0.61 0.61 0.63

Likelihood 2.7343 × 10−69 4.3868 × 10−69 3.3073 × 10−68 5.4464 × 10−69 1.3609 × 10−68 1.0870 × 10−67

u 60 60 68 60 60 68
d 40 40 50 40 40 50

Risk value 142.4854 142.8270 133.9227 141.6344 142.7307 134.5446
Loop size 2 2 3 2 2 5

As expected, a small value of m does not affect the results very much. What is a little surprising
is that for a relatively large value m = 20 (20%), estimates of probabilities change slightly (2%) but
estimates for claim amounts are significantly modified (20%).

In practice, the algorithm works well and quickly in most situations. We also performed numerical
calculations with a grid size of ∆t = 0.1, and it is essentially the value of the risk function that is affected.

6. Quantum Reserve Process

One of the main objectives of the risk theory is to forecast the evolution of the reserves of an
insurance company. This problem has generated a great deal of research using probabilistic techniques.
We present below some introductory elements for an alternative quantum approach.

6.1. Distribution of the Reserves

The future reserves of an insurance can be computed by applying path integral methods
(Feynman 1948; Feynman and Hibbs 2010). Let x0, x1, . . . , xn be the capital values at time
0 = t0, t1, . . . , tn = t. Arguing as in Tamturk and Utev (2018), we first obtain that

P(R(tn) = xn|x0) = (1 + o(1))∑
x1

< x0|e−∆t1 H |x1 > ∑
x2

< x1|e−∆t2 H |x2 >

. . . ∑
xn−1

< xn−2|e−∆tn−1 H |xn−1 >< xn−1|e−∆tn H |xn >, (18)

with ∆ti = ti+1 − ti. For simplicity, take ∆ti ≡ ∆t. The error term o(1) depends on ∆t/t (the grid
size relative to the observation time t which is usually small). The propagator for each sub-interval
< xi|e−∆tH |xi+1 > plays the role of the transition probability P(xi → xi+1). It is expressed in terms of
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a Markovian generator −H called Markovian Hamiltonian. Then, by the completeness property in
Dirac’s formalism, we find that

P(xi → xi+1) =< xi|e−∆tH |xi+1 > =
∫ 2π

0

dα

2π
< xi|e−∆tH |α >< α|xi+1 >

=
∫ 2π

0

dα

2π
< xi|α >< α|xi+1 > e−∆tKα (19)

=
1

2π

∫ 2π

0
(eixiαe−ixi+1α)e−∆tKα dα,

where {|α >, Kα} is the set of eigenvalues and eigenstates in the spectral decomposition of the
Hamiltonian operator H.

In the risk model discussed here, the reserve process is defined via the Hamiltonian whose
eigenvalues Kα in the basis |α > are given by

Kα = −ln[eiαc(e−λ + e−iαuδ1 p + e−iαdδ1q + e−iα(2u)δ2 p2 + e−iα(2d)δ2q2 + e−iα(u+d)δ22pq)].

For the Maxwell-Boltzmann statistics, the transition probabilities (19) become

< xi|e−MtH |xi+1 > =
∫ 2π

0

dα

2π
< xi|e−MtH |α >< α|xi+1 >

=



e−λ for xi − xi+1 + c = 0,

δ1 p for xi − xi+1 + c− u = 0,

δ1q for xi − xi+1 + c− d = 0,

δ2 p2 for xi − xi+1 + c− 2u = 0,

δ2q2 for xi − xi+1 + c− 2d = 0,

δ22pq for xi − xi+1 + c− (u + d) = 0.

For the Bose-Einstein statistics, we have

< xi|e−MtH |xi+1 > =
∫ 2π

0

dα

2π
< xi|e−MtH |α >< α|xi+1 >

=



e−λ for xi − xi+1 + c = 0,

δ1 p for xi − xi+1 + c− u = 0,

δ1q for xi − xi+1 + c− d = 0,

Cδ2 p2 for xi − xi+1 + c− 2u = 0,

Cδ2q2 for xi − xi+1 + c− 2d = 0,

Cδ2 pq for xi − xi+1 + c− (u + d) = 0.

For the adjusted quantum data, following the way 2,

< xi|e−MtH |xi+1 > =
∫ 2π

0

dα

2π
< xi|e−MtH |α >< α|xi+1 >

=


C′′e−λ for xi − xi+1 + c = 0,

C′′δ1 p for xi − xi+1 + c− u = 0,

C′′δ1q for xi − xi+1 + c− d = 0,

C′′δ2 pq for xi − xi+1 + c− (u + d) = 0.
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6.2. Finite-Time Ruin Probability

Let T be the ruin time, i.e., the first instant when the reserves become negative or null. To obtain
the probability of non-ruin up to time tn, we just have to proceed as in (18) and delete the paths where
xi is negative or null. This gives directly

P(T > tn|x0) = (1 + o(1)) ∑
x1≥1

< x0|e−∆t1 H |x1 > ∑
x2≥1

< x1|e−∆t2 H |x2 >

∑
x3≥1

< x2|e−∆t3 H |x3 > . . . ∑
xn≥1

< xn−1|e−∆tn−1 H |xn > .

Extension. The method can be applied to more advanced risk models. For instance, suppose that
a change in risk occurs at time t f so that the reserve process is modified as

R(t) = x0 +
∫ t

0
c f dt−

N(t)

∑
j=1

Xj,

where

for t ≤ t f : c f = c1, and Xj = d1 = d or u1 = u with probabilities q1 or p1,

for t > t f : c f = c2, and Xj = d2 = d + fd or u2 = u + fu with probabilities q2 or p2.

In such a situation, the non-ruin probability when tn > t f is given by

P(T > tn|x0) = E
[
P1(T > t f |x0) P2(T > tn − t f |R(t f ))

]
,

where P1 (resp. P2) means that the computation is made with the parameters (u1, d1), (p1, q1) (resp.
(u2, d2), (p2, q2)).

(8) Change of risk. Consider the dataset of example (1), i.e., V = {20, 8, 1, 7, 15, 17, 11, 0, 19, 1},
and take λ = 0.1, c = 1, ∆t = 1 and M = 0.05. When the analysis is by the Maxwell-Boltzmann
statistics, we find (u, d) = (15, 8) and (p, q) = (0.2, 0.8), with L = 6.1720e − 14 and F = 2.1151.
Given an initial capital x0 = 5, we compute the probability of non-ruin until time 30 and obtain
P(T > 30|5) = 0.4021.

Suppose that, as in example (1), V is divided in two subsets V1, V2. With the dataset V1, we find
similarly (u1, d1) = (15, 8) and (p1, q1) = (0.4, 0.6), with L1 = 2.0962× 10−7 and F1 = 0.9656. With V2,
we have (u2, d2) = (17, 11) and (p2, q2) = (0.67, 0.33), with L2 = 8.9850× 10−5 and F2 = 1.0261.

Now, let us examine a model with an unexpected risk which arises at time t f = 15. The data sets
before and after t f are precisely V1 and V2. Given x0 = 5, the non-ruin probability until time 30 is
defined by

P(T > 30|5) = E
[
P1(T > 15|5) P2(T > 15|R(15))

]
.

Below (Table 10), we calculated probabilities of non-ruin when c1 = c2 = c = 1 and fu = fd ≡ f with
possible values 0, 1, 2, 3, 4.

Table 10. Non-ruin probabilities under a change of risk.

f = 0 f = 1 f = 2 f = 3 f = 4

P(T > 30|5) 0.1745 0.1676 0.1573 0.1470 0.1368

Intuitively, increasing the economic burden f implies a larger risk. This is confirmed above since
it yields a smaller non-ruin probability.
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Discussion. The theory of insurance risk has attracted considerable interest in the actuarial field
(see the books Asmussen and Albrecher 2010; Dickson 2017; Schmidli 2018). In particular, problems
of ruin have been the subject of numerous investigations. Thus, different methods of calculating
ruin probabilities have been proposed (e.g., Dufresne and Gerber 1989; Ignatov et al. 2001 and the
Picard-Lefèvre formula (De Vylder 1999; Picard and Lefèvre 1997; Rullière and Loisel 2004)).

Risk theory has a long tradition as a branch of applied probability. In this paper, we present a
quantum mechanics approach whose implementation in insurance is novel. This approach requires
different techniques, including new representation and data processing in insurance. We have
illustrated the methodology by various numerical examples. The advantages and the weaknesses of
this approach remain a problem to be discussed in the future.

Author Contributions: All authors contributed equally to this work.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

Asmussen, Søren, and Hansjörg Albrecher. 2010. Ruin Probabilities, 2nd ed. Singapore: World Scientific.
Baaquie, Belal Ehsan. 2007. Quantum Finance: Path integrals and Hamiltonians for Options and Interest Rates.

Cambridge: Cambridge University Press.
Baaquie, Belal Ehsan. 2010. Interest Rates and Coupon Bonds in Quantum Finance. Cambridge: Cambridge University Press.
Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin: Springer.
Bouchaud, Jean-Philippe, and Marc Potters. 2003. Theory of Financial Risk and Derivative Pricing: From Statistical

Physics to Risk Management, 2nd ed. Cambridge: Cambridge University Press.
De Vylder, F. Etienne. 1999. Numerical finite-time ruin probabilities by the Picard-Lefèvre formula. Scandinavian

Actuarial Journal 2: 97–105. [CrossRef]
Dickson, David C. M. 2017. Insurance Risk and Ruin, 2nd ed. Cambridge: Cambridge University Press.
Dirac, Paul Adrien Maurice. 1933. The Lagrangian in quantum mechanics. Physikalische Zeitschrift der Sowjetunion

3: 64–72.
Dufresne, François, and Hans U. Gerber. 1989. Three methods to calculate the probability of ruin. Astin Bulletin

19: 71–90. [CrossRef]
Feynman, Richard P. 1948. Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics

20: 367–87. [CrossRef]
Feynman, Richard P., and Albert R. Hibbs. 2010. Quantum Mechanics and Path Integrals. Edited by Daniel F. Styer.

New York: Dover Editions.
Graham, John W. 2009. Missing data analysis: Making it work in the real world. Annual Review of Psychology 60:

549–76. [CrossRef] [PubMed]
Griffiths, David J., and Darrell F. Schroeter. 2018. Introduction to Quantum Mechanics, 3rd ed. Cambridge:

Cambridge University Press.
Hastie, Trevor, and Robert Tibshirani. 1996. Discriminant adaptive nearest neighbor classification and regression.

Advances in Neural Information Processing Systems 18: 409–15.
Hastie, Trevor, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements of Statistical Learning, 2nd ed.

New York: Springer.
Ignatov, Zvetan G., Vladimir K. Kaishev, and Rossen S. Krachunov. 2001. An improved finite-time ruin probability

formula and its Mathematica implementation. Insurance: Mathematics and Economics 29: 375–86. [CrossRef]
Mantegna, Rosario N., and H. Eugene Stanley. 2000. An Introduction to Econophysics: Correlations and Complexity in

Finance. Cambridge: Cambridge University Press.
Parthasarathy, Kalyanapuram Rangachari. 1992. An Introduction to Quantum Stochastic Calculus. Basel: Springer.
Picard, Philippe, and Claude Lefèvre. 1997. The probability of ruin in finite time with discrete claim size

distribution. Scandinavian Actuarial Journal 1: 58–69. [CrossRef]
Plenio, Martin. 2002. Quantum Mechanics. Ebook. London: Imperial College.
Quinlan, Ross. 1988. C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann.

http://dx.doi.org/10.1080/03461239950132598
http://dx.doi.org/10.2143/AST.19.1.2014916
http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1146/annurev.psych.58.110405.085530
http://www.ncbi.nlm.nih.gov/pubmed/18652544
http://dx.doi.org/10.1016/S0167-6687(01)00078-6
http://dx.doi.org/10.1080/03461238.1997.10413978


Risks 2018, 6, 99 17 of 17

Rullière, Didier, and Stéphane Loisel. 2004. Another look at the Picard-Lefèvre formula for finite-time ruin
probabilities. Insurance: Mathematics and Economics 35: 187–203. [CrossRef]

Schmidli, Hanspeter. 2018. Risk Theory. Cham: Springer.
Tamturk, Muhsin, and Sergey Utev. 2018. Ruin probability via quantum mechanics approach. Insurance:

Mathematics and Economics 79: 69–74. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.insmatheco.2004.07.001
http://dx.doi.org/10.1016/j.insmatheco.2017.12.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Quantum Risk Models
	Quantum Observables
	Quantum Data
	Adjusted Quantum Data

	Quantum Likelihood
	Maxwell-Boltzmann Statistics
	Bose-Einstein Statistics
	Adjusted Quantum Data
	Likelihood Functions

	Data Analysis
	Estimation Procedure
	Numerical Illustrations

	Quantum Reserve Process
	Distribution of the Reserves
	Finite-Time Ruin Probability

	References

