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Abstract: Almost sure bootstrap consistency of the blockwise bootstrap for the Average Value at Risk
of single risks is established for strictly stationary β-mixing observations. Moreover, almost sure
bootstrap consistency of a multiplier bootstrap for the Average Value at Risk of collective risks is
established for independent observations. The main results rely on a new functional delta-method
for the almost sure bootstrap of uniformly quasi-Hadamard differentiable statistical functionals, to be
presented here. The latter seems to be interesting in its own right.
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1. Introduction

One of the most popular risk measures in practice is the so-called Average Value at Risk which is
also referred to as Expected Shortfall (see Acerbi and Szekely (2014); Acerbi and Tasche (2002a, 2002b);
Emmer et al. (2015) and references therein). For a fixed level α ∈ (0, 1), the corresponding Average
Value at Risk is the map AV@Rα : L1 → R defined by AV@Rα(X) := Rα(FX), where FX refers to the
distribution function of X, L1 is the usual L1-space associated with some atomless probability space, and

Rα(F) :=
∫ 1

0
F←(s) dgα(s) = −

∫ 0

−∞
gα(F(x)) dx +

∫ ∞

0

(
1− gα(F(x))

)
dx (1)

for any F ∈ F1 with F1 the set of the distribution functions FX of all X ∈ L1. Here, gα(t) := 1
1−α max{t−

α; 0} and F←(s) := inf{x ∈ R : F(x) ≥ s} denotes the left-continuous inverse of F. The statistical
functionalRα : F1 → R is sometimes referred to as risk functional associated with AV@Rα. Note that
AV@Rα(X) = E[X|X ≥ F←X (α)] when FX is continuous at F←X (α).

In this article, we mainly focus on bootstrap methods for the Average Value at Risk. Before doing
so, we briefly review nonparametric estimation techniques and asymptotic results for the Average
Value at Risk. Given identically distributed observations X1, . . . , Xn (, Xn+1, . . .) on some probability
space (Ω,F ,P) with unknown marginal distribution F ∈ F1, a natural estimator for Rα(F) is the
empirical plug-in estimator

Rα(F̂n) =
∫ 1

0
F̂←n (s) dgα(s) =

n

∑
i=1

{
gα

( i
n
)
− gα

( i−1
n
)}

Xi:n, (2)

where F̂n := 1
n ∑n

i=1 1[Xi ,∞) is the empirical distribution function of X1, . . . , Xn and X1:n, . . . , Xn:n refer
to the order statistics of X1, . . . , Xn. The second representation in Equation (2) shows thatRα(F̂n) is a
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specific L-statistic which was already mentioned in Acerbi (2002); Acerbi and Tasche (2002a); Jones
and Zitikis (2003).

In particular, if the underlying sequence (Xi)i∈N is strictly stationary and ergodic, classical results
of van Zwet (1980) and Gilat and Helmers (1997) show that Rα(F̂n) converges P-almost surely to
Rα(F) as n → ∞, i.e., that strong consistency holds. If X1, X2, . . . are i.i.d. and F has a finite second
moment and takes the value α only once, then a result of Stigler ((Stigler 1974, Theorems 1–2) ) yields
the asymptotic distribution of the estimation error:

√
n
(
Rα(F̂n)−Rα(F)

)
; Z ∼ N0,σ2

F
, (3)

where σ2
F :=

∫∫
g′α(F(x0))Γ(x0, x1)g′α(F(x1)) dx0 dx1 with Γ(x0, x1) := F(x0 ∧ x1)(1− F(x0 ∨ x1)) +

∑1
i=0 ∑∞

k=2 Cov(1{X1≤xi},1{Xk≤x1−i}), g′α := 1
1−α1(α,1], and ; refers to convergence in distribution (see

also Shorack 1972; Shorack and Wellner 1986). In fact, for independent X1, X2, . . . the second summand
in the definition of Γ(x0, x1) vanishes. Results of Beutner and Zähle (2010) show that Equation (3)
still holds if (Xi)i∈N is strictly stationary and α-mixing with mixing coefficients α(i) = O(i−θ) and
limx→∞(1− F(x))x2θ/(θ−1) < ∞ for some θ > 1 +

√
2. Tsukahara (2013) obtained the same result.

A similar result can also be derived from an earlier work by Mehra and Rao (1975), but under
a faster decay of the mixing coefficients and under an additional assumption on the dependence
structure. We emphasize that the method of proof proposed by Beutner and Zähle is rather flexible,
because it easily extends to other weak and strong dependence concepts and other risk measures (see
Beutner et al. 2012; Beutner and Zähle 2010, 2016; Krätschmer et al. 2013; Krätschmer and Zähle 2017).

Even in the i.i.d. case the asymptotic variance σ2
F depends on F in a fairly complex way. For the

approximation of the distribution of
√

n(Rα(F̂n)−Rα(F)), bootstrap methods should thus be superior
to the method of estimating σ2

F. However, to the best of our knowledge, theoretical investigations of
the bootstrap for the Average Value at Risk seem to be rare. According to Gribkova (2016), a result
of Gribkova (2002) yields bootstrap consistency for Efron’s bootstrap when X1, X2, . . . are i.i.d, while
Theorem 3 of Helmers et al. (1990) seems not to cover the Average Value at Risk, because there the
function J (which plays the role of g′α) is assumed to be Lipschitz continuous. In these articles, bootstrap
consistency is typically proved by first proving consistency of the bootstrap variance and then using
this result by showing that upper bounds for the difference between the sampling distribution and the
bootstrap distribution converge to zero. Employing different techniques, Beutner and Zähle (2016)
established bootstrap consistency in probability for the multiplier bootstrap when X1, X2, . . . are i.i.d.
as well as bootstrap consistency in probability for the circular bootstrap when X1, X2, . . . are strictly
stationary and β-mixing with mixing coefficients β(i) = O(i−b) and

∫
|x|pdF(x) < ∞ for some p > 2

and b > p/(p− 2). Recently, Sun and Cheng (2018) established bootstrap consistency in probability
for the moving blocks bootstrap when X1, X2, . . . are strictly stationary and α-mixing with mixing
coefficients α(i) ≤ cδi and

∫
|x|pdF(x) < ∞ for some p > 4, c > 0 and δ ∈ (0, 1). Strictly speaking, Sun

and Cheng did not consider the Average Value at Risk (Expected Shortfall) but the Tail Conditional
Expectation in the sense of Acerbi and Tasche (2002a, 2002b).

The contribution of the article at hand is twofold. First, we extend the results of
Beutner and Zähle (2016) on the Average Value at Risk from bootstrap consistency in probability to
bootstrap consistency almost surely. Second, we establish bootstrap consistency for the Average Value
at Risk of collective risks, i.e., forRα(F∗m) and more general expressions.

The rest of the article is organized as follows. In Section 2, we present and illustrate our main
results which are proved in Section 3. Section 3 is followed by the conclusions. The proofs of Section 3
rely on a new functional delta-method for the almost sure bootstrap which seems to be interesting
in its own right and which is presented in Appendix B. Roughly speaking, the (functional) delta
method studies properties of particular estimators for quantities of the form H(θ). Here, H is a known
functional, such as the Average Value at Risk functional, and θ is a possibly infinite dimensional
parameter, such as an unknown distribution function. The particular estimators covered by the
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(functional) delta method are of the form H(T̂n) where T̂n is an estimator for θ. In general and in the
particular application considered here, the appeal of the (functional) delta method lies in the fact that,
once “differentiability” of H (here, the Average Value at Risk functional) is established, the asymptotic
error distribution of H(T̂n) can immediately be derived from the asymptotic error distribution of
T̂n (here F̂n). This also applies to the (functional) delta method for the bootstrap where bootstrap
consistency of the bootstrapped version of H(T̂n) will follow from the respective property of the
bootstrapped version of T̂n (here F̂n). Thus, if in financial or actuarial applications the data show
dependencies for which the asymptotic error distribution and/or bootstrap consistency of plug-in
estimators for the Average Value at Risk have not been established yet, it would be enough to check if
for these dependencies the asymptotic error distribution and/or bootstrap consistency of F̂n is known;
thanks to the (functional) delta method the Average Value at Risk functional would inherit these
properties. In Appendix A.1, we give results on convergence in distribution for the open-ball σ-algebra
which are needed for the main results, and in Appendix A.2 we prove a delta-method for uniformly
quasi-Hadamard differentiable maps that is the basis for the method of Appendix B. Readers interested
in these methods used to prove the main results might wish to first work through Appendices A and B
before reading Sections 2 and 3.

2. Main Results

2.1. The Case of i.i.d. Observations

Keep the notation of Section 1. Assume that (Xi)i∈N is a sequence of i.i.d. real-valued random
variables on some probability space (Ω,F ,P) with distribution function F. Let F̂n := 1

n ∑n
i=1 1[Xi ,∞)

and (Wni) be a triangular array of nonnegative real-valued random variables on another probability
space (Ω′,F ′,P′) such that one of the following two settings is met.

S1. The random vector (Wn1, . . . , Wnn) is multinomially distributed according to the parameters n
and p1 = · · · = pn := 1/n for every n ∈ N.

S2. Wni = Yi/Yn for every i = 1, . . . , n and n ∈ N, where Yn := 1
n ∑n

j=1 Yj and (Yj) is any
sequence of nonnegative i.i.d. random variables on (Ω′,F ′,P′) with

∫ ∞
0 P′[Y1 > t]1/2 dt < ∞ and

Var′[Y1]
1/2 = E′[Y1] > 0.

Let (Ω,F ,P) := (Ω×Ω′,F ⊗F ′,P⊗ P′) and F̂∗n (ω, ω′) := 1
n ∑n

i=1 Wni(ω
′)1[Xi(ω),∞). Setting S1.

is nothing but Efron’s boostrap (Efron 1979). If in Setting S2. the distribution of Y1 is the exponential
distribution with parameter 1, then the resulting scheme is in line with the Bayesian bootstrap of
Rubin (1981). Let σ2

F :=
∫∫

g′α(F(x0))Γ(x0, x1)g′α(F(x1)) dx0 dx1 with Γ(x0, x1) := F(x0 ∧ x1)(1 −
F(x0 ∨ x1)).

Theorem 1. In the setting above assume that
∫

φ2 dF < ∞ for some continuous function φ : R→ [1, ∞) with∫
1/φ(x) dx < ∞ (in particular F ∈ F1), and that F takes the value α only once. Then

√
n
(
Rα(F̂n)−Rα(F)

)
; Z ∼ N0,σ2

F
(4)

and √
n
(
Rα(F̂∗n (ω, · ))−Rα(F̂n(ω))

)
; Z ∼ N0,σ2

F
, P-a.e. ω. (5)

Theorem 1 is a special case of Corollary 1 below. For the bootstrap Scheme S1. the result of
Theorem 1 can be also deduced from Theorem 7 in Gribkova (2002). According to Gribkova (2016),
Condition (1) of this theorem is satisfied if there are 0 = a0 < a1 < · · · < ak = 1 for some k ∈ N such
that J is Hölder continuous on each interval (ai−1, ai), 1 ≤ i ≤ k, and the measure dF−1 has no mass at
the points a1, . . . , ak−1. For the bootstrap Scheme S2. the result seems to be new.

We now consider the collective risk model. Let (Xi)i∈N and F̂n be as above, and let p = (pk)k∈N0

be the counting density of a distribution on N0. Let F denote the set of all distribution functions on
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R, and consider the functional Cp : F → F defined by Cp(F) := ∑∞
k=0 pkF∗k, where F∗k refers to the

k-fold convolution of F, i.e., F∗0 := 1[0,∞) and F∗k(x) :=
∫

F(x− xk−1)dF∗(k−1)(xk−1) =
∫
· · ·
∫

F(x−
xk−1 − · · · − x1)dF(x1) · · · dF(xk−1) for k ∈ N. If pm = 1 for some m ∈ N0, then Cp(F) = F∗m.
Let σ2

p,F :=
∫∫∫∫

g′α(F(x0))Γ(x0 − y0, x1 − y1)g′α(F(x1)) dHp,F(y0)dHp,F(y1) dx0 dx1 with Γ(z0, z1) :=

F(z0 ∧ z1)(1− F(z0 ∨ z1)) and Hp,F := ∑∞
k=1 kpkF∗(k−1).

Theorem 2. In the setting above assume that
∫
|x|2λ dF(x) < ∞ for some λ > 1 (in particular F ∈ F1) and

∑∞
k=1 pk k1+λ < ∞, and that Cp(F) takes the value α only once. Then,

√
n
(
Rα(Cp(F̂n))−Rα(Cp(F))

)
; Z ∼ N0,σ2

p,F
(6)

and √
n
(
Rα(Cp(F̂∗n (ω, ·)))−Rα(Cp(F̂n(ω)))

)
; Z ∼ N0,σ2

p,F
, P-a.e. ω. (7)

Theorem 2 is a special case of Corollary 4 below. Lauer and Zähle (2015, 2017) derive the
asymptotic distribution as well as almost sure bootstrap consistency for the Average Value at Risk (and
more general risk measures) of F∗mn when mn/n is asymptotically constant, but we do not know any
result in the existing literature which is comparable to that of Theorem 2.

2.2. The Case of β-Mixing Observations

Keep the notation of Section 1. Assume that (Xi)i∈N is a strictly stationary sequence of β-mixing
random variables on (Ω,F ,P) with distribution function F. As before let F̂n := 1

n ∑n
i=1 1[Xi ,∞). Let (`n)

be a sequence of integers such that `n ↗ ∞ as n → ∞, and `n < n for all n ∈ N. Set kn := dn/`ne
for all n ∈ N. Let (Inj)n∈N, 1≤j≤kn be a triangular array of random variables on (Ω′,F ′,P′) such that
In1, . . . , Inkn are i.i.d. according to the uniform distribution on {1, . . . , n − `n + 1} for every n ∈ N.
Let (Ω,F ,P) := (Ω×Ω′,F ⊗F ′,P⊗ P′) and F̂∗n (ω, ω′) := 1

n ∑n
i=1 Wni(ω

′)1[Xi(ω),∞) with

Wni(ω
′) :=

kn−1

∑
j=1

1{Inj≤i≤Inj+`n−1}(ω
′) + 1{Inkn≤i≤Inkn+(n−(kn−1)`n)−1}(ω

′). (8)

Note that the sequence (Xi) and the triangular array (Wni) regarded as families of random
variables on the product space (Ω,F ,P) := (Ω×Ω′,F ⊗F ′,P⊗ P′) are independent. At an informal
level, this means that, given a sample X1, . . . , Xn, we pick kn − 1 blocks of length `n and one block
of length n− (kn − 1)`n in the sample X1, . . . , Xn, where the start indices In1, In2, . . . , Inkn are chosen
independently and uniformly in the set of indices {1, . . . , n− `n + 1}:

block 1: XIn1 , XIn1+1, . . . , XIn1+`n−1
block 2: XIn2 , XIn2+1, . . . , XIn2+`n−1

...
block kn − 1: XIn(kn−1)

, XIn(kn−1)+1, . . . , XIn(kn−1)+`n−1

block kn: XInkn
, XInkn+1, . . . , XInkn+(n−(kn−1)`n)−1.

The bootstrapped empirical distribution function F̂∗n is then defined to be the distribution function
of the discrete probability measure with atoms X1, . . . , Xn carrying masses Wn1, . . . , Wnn, respectively,
where Wni specifies the number of blocks which contain Xi. This is known as the blockwise bootstrap
(see, e.g., Bühlmann (1994, 1995) and references therein). Assume that the following assertions hold:

A1.
∫

φp dF < ∞ for some p > 4 (in particular F ∈ F1).
A2. The sequence of random variables (Xi) is strictly stationary and β-mixing with mixing coefficients

(βi) satisfying βi ≤ cδi for some constants c > 0 and δ ∈ (0, 1).
A3. The block length `n satisfies `n = O(nγ) for some γ ∈ (0, 1/2).
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Let Ĉn := E′ [F̂∗n ] = 1
n ∑n

i=1 wni1[Xi ,∞) with wni := E′[Wni], and note that

wni =



kn
i

n−`n+1 , i = 1, . . . , n− (kn − 1)`n

(kn − 1) i
n−`n+1 + n−(kn−1)`n

n−`n+1 , i = n− (kn − 1)`n + 1, . . . , `n

(kn − 1) `n
n−`n+1 + n−(kn−1)`n

n−`n+1 = n
n−`n+1 , i = `n + 1, . . . , n− `n

(kn − 1) n−i+1
n−`n+1 + 2n−kn`n−i+1

n−`n+1 , i = n− `n + 1, . . . , n− (kn`n − n)
(kn − 1) n−i+1

n−`n+1 , i = n− (kn`n − n) + 1, . . . , n

(9)

which can be verified easily. Let σ2
F :=

∫∫
g′α(F(x0))Γ(x0, x1)g′α(F(x1)) dx0 dx1 with Γ(x0, x1) :=

F(x0 ∧ x1)(1− F(x0 ∨ x1)) + ∑1
i=0 ∑∞

k=2 Cov(1{X1≤xi},1{Xk≤x1−i}).

Theorem 3. In the setting above (in particular under A1.–A3.) assume that F takes the value α only once.
Then, we have √

n
(
Rα(F̂n)−Rα(F)

)
; Z ∼ N0,σ2

F
(10)

and √
n
(
Rα(F̂∗n (ω, · ))−Rα(Ĉn(ω))

)
; Z ∼ N0,σ2

F
, P-a.e. ω. (11)

Theorem 3 is a special case of Corollary 1 below. To the best of our knowledge, there does not yet
exist any result on almost sure bootstrap consistency for the Average Value at Risk when the underlying
data are dependent.

2.3. Applications

2.3.1. Bootstrapping the Down Side Risk of an Asset Price

Let (Ai)i∈N0 be the price process of an asset. Let us assume that it is induced by an initial state
A0 ∈ R+ and a sequence of R+-valued i.i.d. random variables (Ri)i∈N via Ai := Ri Ai−1, i ∈ N. Here,
Ri is the return of the asset in between time i − 1 and time i. For instance, if A0, A1, A2, . . . are the
observations of a time-continuous Black–Scholes–Merton model with drift µ and volatility σ at the
points of the time grid {0, h, 2h, . . .}, then the distribution of R1 is the log-normal distribution with
parameters (µ− σ2/2)h and σ2h. However, the adequacy of a specific parametric model is usually
hard to verify. For this reason, we do not restrict ourselves to any particular parametric structure for
the dynamics of (Ri)i∈N.

Let us assume that we can observe the asset prices A0, . . . , An up to time n, and that we are
interested in the Average Value at Risk at level α of the negative price change An − An+1 (which
specifies the down side risk of the asset) in between time n and n+ 1. That is, since for any a0, . . . , an ∈ R+

the unconditional distribution of (1− Rn+1)an coincides with the factorized conditional distribution
of An − An+1 = (1− Rn+1)An given (A0, . . . , An) = (a0, . . . , an), we are in fact interested inRα(F) =
AV@Rα(X) for the distribution function F of X := (1− Rn+1)a for any fixed a ∈ R+. As the random
variables X1 := (1− R1)a, . . . , Xn := (1− Rn)a are i.i.d. copies of X, we can useRα(F̂n) as an estimator
forRα(F) and derive from Equation (4) an asymptotic confidence interval at a given level τ ∈ (0, 1) for
Rα(F) where one has to estimate σ2

F by
∫∫

g′α(F̂n(x0))F̂n(x0 ∧ x1)(1− F̂n(x0 ∨ x1))g′α(F̂n(x1)) dx0 dx1.
As the estimator for σ2

F depends on F̂n in a somewhat complex way, the bootstrap confidence interval[
Rα

(
F̂n(ω)

)
− 1√

n q̂ ∗1−τ/2(ω) ,Rα

(
F̂n(ω)

)
− 1√

n q̂ ∗τ/2(ω)
]

(12)

at level τ derived from Equations (4) and (5) is supposed to have a slightly better performance. Here,
q̂ ∗t (ω) denotes a t-quantile of (a Monte Carlo approximation of) the distribution of the left-hand side
in Equation (5) for fixed ω. For Equations (4) and (5) it suffices to assume that E[|R1|2+ε] < ∞ for some
arbitrarily small ε > 0.
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2.3.2. Bootstrapping the Total Risk Premium in Insurance Models

In actuarial mathematics, the collective risk model is frequently used for modeling the total
claim distribution of an insurance collective. If the counting density p = (pk)k∈N0 corresponds to the
distribution of the random number N of claims caused by the whole collective within one insurance
period, and if X1, . . . , XN (, XN+1, . . .) denote the i.i.d. sizes of the corresponding claims with marginal
distribution F, then Cp(F) is the distribution of the total claim ∑N

i=1 Xi (the latter sum is set to 0 if
N = 0). Now,Rα(Cp(F)) is a suitable insurance premium for the whole collective when the Average
Value at Risk at level α is considered to be a suitable premium principle.

Assume that p is known, for instance pm = 1 for some fixed m ∈ N, and let X1, . . . , Xn be observed
historical (i.i.d.) claims with n large. On the one hand, the construction of an exact confidence interval
for Rα(Cp(F)) at level τ ∈ (0, 1) based on X1, . . . , Xn is hardly possible. Likewise, the performance
of an asymptotic confidence interval at level τ derived from Equation (6) with (nonparametrically)
estimated σ2

p,F is typically only moderate. Take into account that σ2
p,F depends on the unknown F in a

fairly complex way. On the other hand, the bootstrap confidence interval[
Rα

(
Cp(F̂n(ω))

)
− 1√

n q̂ ∗1−τ/2(ω) ,Rα

(
Cp(F̂n(ω))

)
− 1√

n q̂ ∗τ/2(ω)
]

at level τ derived from Equation (7) should have a better performance. Here, q̂ ∗t (ω) denotes a t-quantile
of (a Monte Carlo approximation of) the distribution of the left-hand side in Equation (7) for fixed ω.

Note that Theorem 2 ensures that Equations (6) and (7) hold true when the marginal distribution
F of the Xi is any log-normal distribution, any Gamma distribution, any Pareto distribution with tail
index greater than 2, or any convex combination of one of these distributions with the Dirac measure
δ0, and the counting density p corresponds to any Dirac measure with atom in N, any binomial
distribution, any Poisson distribution, or any geometric distribution. The former distributions are
classical examples for the single claim distribution and the latter distributions are classical examples
for the claim number distribution.

3. Proofs of Main Results

Here, we prove the results of Section 2. In fact, Theorems 1–3 are special cases of Corollaries 1
and 4. The latter corollaries are proved with the help of the technique introduced in Appendix B.2,
which in turn avails the concept of uniform quasi-Hadamard differentiability (see Definition A1 in
Appendix B.1).

Keep the notation introduced in Section 1. Let D be the space of all cádlág functions v on R with
finite sup-norm ‖v‖∞ := supt∈R |v(t)|, and D be the σ-algebra on D generated by the one-dimensional
coordinate projections πt, t ∈ R, given by πt(v) := v(t). Let φ : R→ [1, ∞) be a weight function, i.e.,
a continuous function being non-increasing on (−∞, 0] and non-decreasing on [0, ∞). Let Dφ be the
subspace of D consisting of all x ∈ D satisfying ‖v‖φ := ‖vφ‖∞ < ∞ and lim|t|→∞ |v(t)| = 0. The latter
condition automatically holds when lim|t|→∞ φ(t) = ∞. We equip Dφ with the trace σ-algebra of D,
and note that this σ-algebra coincides with the σ-algebra B◦φ on Dφ generated by the ‖ · ‖φ-open balls
(see Lemma 4.1 in Beutner and Zähle (2016)).

3.1. Average Value at Risk functional

Using the terminology of Part (i) of Definition A1, we obtain the following result.

Proposition 1. Let F ∈ F1 and assume that F takes the value α only once. Let S be the set of all sequences
(Gn) ⊆ F1 with Gn → F pointwise. Moreover, assume that

∫
1/φ(x) dx < ∞. Then, the map Rα : F1 (⊆

D) → R is uniformly quasi-Hadamard differentiable with respect to S tangentially to Dφ〈Dφ〉, and the
uniform quasi-Hadamard derivative Ṙα;F : Dφ → R is given by

Ṙα;F(v) := −
∫

g′α(F(x))v(x) dx, (13)
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where as before g′α := 1
1−α1(α,1].

Proposition 1 shows in particular that for any F ∈ F1 which takes the value α only once, the map
Rα : F1 (⊆ D)→ R is uniformly quasi-Hadamard differentiable at F tangentially to Dφ〈Dφ〉 (in the
sense of Part (ii) of Definition A1) with uniform quasi-Hadamard derivative given by Equation (13).

Proof. (of Proposition 1) First, note that the map Ṙα;F defined in Equation (13) is continuous with
respect to ‖ · ‖φ, because

|Ṙα;F(v1)− Ṙα;F(v2)| ≤
∫ 1

1− α
|v1(x)− v2(x)| dx ≤

( 1
1− α

∫
1/φ(x) dx

)
‖v1 − v2‖φ

holds for every v1, v2 ∈ Dφ.
Now, let ((Fn), v, (vn), (εn)) be a quadruple with (Fn) ⊆ F1 satisfying Fn → F pointwise, v ∈ Dφ,

(vn) ⊆ Dφ satisfying ‖vn − v‖φ → 0 and (Fn + εnvn) ⊆ F1, and (εn) ⊆ (0, ∞) satisfying εn → 0.
It remains to show that

lim
n→∞

∣∣∣Rα(Fn + εnvn)−Rα(Fn)

εn
− Ṙα;F(v)

∣∣∣ = 0,

that is,

lim
n→∞

∣∣∣ ∫ ( gα

(
Fn(x)

)
− gα

(
(Fn + εnvn)(x)

)
εn

−
(
− g′α(F(x))v(x)

))
dx
∣∣∣ = 0. (14)

Let us denote the integrand of the integral in Equation (14) by In(x). In virtue of Fn → F pointwise,
‖vn − v‖φ → 0, εn → 0, and

|(Fn + εnvn)(x)− F(x)| ≤ |Fn(x)− F(x)|+ εn|vn(x)− v(x)|+ εn|v(x)|,

we have limn→∞ Fn(x) = F(x) and limn→∞(Fn(x) + εnvn(x)) = F(x) for every x ∈ R. Thus, for every
x ∈ R with F(x) < alpha, we obtain g′α(F(x))v(x) = 0 and

gα

(
Fn(x)

)
− gα

(
(Fn + εnvn)(x)

)
εn

= 0 for sufficiently large n,

i.e., limn→∞ In(x) = 0. Moreover, for every x ∈ R with F(x) > α, we obtain g′α(F(x))v(x) =
1

1−α v(x) and

gα

(
Fn(x)

)
− gα

(
(Fn + εnvn)(x)

)
εn

= −vn(x)
1− α

for sufficiently large n,

i.e., limn→∞ In(x) = 0. Since we assumed that F takes the value α only once, we can conclude that
limn→∞ In(x) = 0 for Lebesgue-a.e. x ∈ R. Moreover, by the Lipschitz continuity of gα with Lipschitz
constant 1

1−α we have

|In(x)| = |In(x)| φ(x) φ(x)−1

=
∣∣∣ gα

(
Fn(x)

)
− gα

(
(Fn + εnvn)(x)

)
εn

+ g′α(F(x))v(x)
∣∣∣ φ(x) φ(x)−1

≤ 1
1− α

(
‖vn‖φ + ‖v‖φ

)
φ(x)−1

≤ 1
1− α

(
sup
n∈N
‖vn‖φ + ‖v‖φ

)
φ(x)−1.

Since supn∈N ‖vn‖φ < ∞ (recall ‖vn − v‖φ → 0), the assumption
∫

1/φ(x) dx < ∞ ensures that
the latter expression provides a Borel measurable majorant of In. Now, the Dominated Convergence
theorem implies Equation (14).
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As an immediate consequence of Corollary A4, Examples A1 and A2, and Proposition 1, we obtain
the following corollary.

Corollary 1. Let F, F̂n, F̂∗n , Ĉn, and BF be as in Example A1 (S1. or S2.) or as in Example A2 respectively,
and assume that the assumptions discussed in Example A1 or in Example A2 respectively are fulfilled for some
weight function φ with

∫
1/φ(x) dx < ∞ (in particular F ∈ F1). Moreover, assume that F takes the value α

only once. Then, √
n
(
Rα(F̂n)−Rα(F)

)
; Ṙα;F(BF) in (R,B(R))

and √
n
(
Rα(F̂∗n (ω, ·))−Rα(Ĉn(ω))

)
; Ṙα;F(BF) in (R,B(R)), P-a.e. ω.

3.2. Compound Distribution Functional

Let Cp : F → F be the compound distribution functional introduced in Section 2.1. For any
λ ≥ 0, let the function φλ : R → [1, ∞) be defined by φλ(x) := (1 + |x|)λ and denote by Fφλ

the set
of all distribution functions F that satisfy

∫
φλ(x) dF(x) < ∞. Using the terminology of Part (ii) of

Definition A1, we obtain the following Proposition 2. In the proposition, the functional Cp is restricted
to the domain Fφλ

in order to obtain Dφλ′ as the corresponding trace. The latter will be important for
Corollary 3.

Proposition 2. Let λ > λ′ ≥ 0 and F ∈ Fφλ
. Assume that ∑∞

k=1 pk k(1+λ)∨2 < ∞. Then, the map
Cp : Fφλ

(⊆ D)→ F(⊆ D) is uniformly quasi-Hadamard differentiable at F tangentially to Dφλ
〈Dφλ

〉 with
trace Dφλ′ . Moreover, the uniform quasi-Hadamard derivative Ċp;F : Dφλ

→ Dφλ′ is given by

Ċp;F(v)(·) := v ∗ Hp,F( · ) :=
∫

v( · − x) dHp,F(x), (15)

where as before Hp,F := ∑∞
k=1 k pkF∗(k−1). In particular, if pm = 1 for some m ∈ N, then

Ċp;F(v)(·) = m
∫

v( · − x) dF∗(m−1)(x).

Proposition 2 extends Proposition 4.1 of Pitts (1994). Before we prove the proposition, we note that
the proposition together with Corollary A4 and Examples A1 and A2 yields the following corollary.

Corollary 2. Let F, F̂n, F̂∗n , Ĉn, and BF be as in Example A1 (S1. or S2.) or as in Example A2 respectively, and
assume that the assumptions discussed in Example A1 or in Example A2 respectively are fulfilled for φ = φλ for
some λ > 0. Then, for λ′ ∈ [0, λ)

√
n
(
Cp(F̂n)− Cp(F)

)
;◦ Ċp;F(BF) in (Dφ′λ

,B◦
φ′λ

, ‖ · ‖φλ′ )

and √
n
(
Cp(F̂∗n (ω, ·))− Cp(Ĉn(ω))

)
;◦ Ċp;F(BF) in (Dφ′λ

,B◦
φ′λ

, ‖ · ‖φλ′ ), P-a.e. ω.

To ease the exposition of the proof of Proposition 2, we first state a lemma that follows from
results given in Pitts (1994). In the sequel we use f ∗ H to denote the function defined by f ∗ H(·) :=∫

v( · − x) dH(x) for any measurable function f and any distribution function H of a finite (not
necessarily probability) Borel measure on R for which f ∗ H(·) is well defined on R.

Lemma 1. Let λ > λ′ ≥ 0, and (Fn) ⊆ Fφλ
and (Gn) ⊆ Fφλ

be any sequences such that ‖Fn − F‖φλ
→ 0

and ‖Gn − G‖φλ
→ 0 for some F, G ∈ Fφλ

. Then, the following two assertions hold.
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(i) There exists a constant C1 > 0 such that for every k, n ∈ N

‖1[0,∞) − F∗kn ‖φλ′ ≤ (2λ′−1 ∨ 1)(1 + kλ′∨1C1).

(ii) For every v ∈ Dφλ′ there exists a constant C2 > 0 such that for every k, `, n ∈ N

‖v ∗ (F∗kn ∗ G∗`n )‖φλ′ ≤ 2λ′(1 + 2λ′(2λ′−1 ∨ 1)(2 + (k + `)λ′∨1C2)
)
‖v‖φλ′ .

Proof. (i): From Equation (2.4) in Pitts (1994) we have

‖1[0,∞) − F∗kn ‖φλ′ ≤ (2λ′−1 ∨ 1)
(

1 + kλ′∨1
∫
|x|λ′ dFn(x)

)
,

so that it remains to show that
∫
|x|λ′ dFn(x) is bounded above uniformly in n ∈ N. The functions

1[0,∞)− Fn and 1[0,∞)− F both lie in Dφλ
, because Fn, F ∈ Fφλ

. Along with ‖Fn− F‖φλ
→ 0, this implies∫

|x|λ′ dFn(x)→
∫
|x|λ′ dF(x) (see Lemma 2.1 in Pitts (1994)). Therefore,

∫
|x|λ′ dFn(x) ≤ C1 for some

suitable finite constant C1 > 0 and all n ∈ N.
(ii): With the help of Lemma 2.3 of Pitts (1994) (along with ‖F∗kn ∗ G∗`n ‖∞ = 1), Lemma 2.4 of

Pitts (1994), and Equation (2.4) in Pitts (1994), we obtain

‖v ∗ (F∗kn ∗ G∗`n )‖φλ′

≤ 2λ′‖v‖φλ′
(
1 + ‖1[0,∞) − F∗kn ∗ G∗`n ‖φλ′

)
≤ 2λ′‖v‖φλ′

(
1 + 2λ′(‖1[0,∞) − F∗kn ‖φλ′ + ‖1(0,∞)−G∗`n ‖φλ′

))
≤ 2λ′‖v‖φλ′

(
1 + 2λ′(2λ′−1 ∨ 1)

(
1 + kλ′∨1

∫
|x|λ′ dFn(x) + 1 + `λ′∨1

∫
|x|λ′ dGn(x)

))
.

It hence remains to show that
∫
|x|λ′ dFn(x) and

∫
|x|λ′ dGn(x) are bounded above uniformly in

n ∈ N. However, this was already done in the proof of Part (i).

Proof. Proof of Proposition 2. First, note that for G1, G2 ∈ Fφλ
, we have

‖Cp(G1)− Cp(G2)‖φλ′ ≤ ‖Cp(G1)− 1[0,∞)‖φλ′ + ‖1[0,∞) − Cp(G2)‖φλ′

≤
∫
(1 + |x|)λ′ dCp(G1)(x) +

∫
(1 + |x|)λ′ dCp(G2)(x)

by Equation (2.1) in Pitts (1994). Moreover, according to Lemma 2.2 in Pitts (1994), we have that the
integrals

∫
|x|λ′dCp(F)(x) and

∫
|x|λ′dCp(G)(x) are finite under the assumptions of the proposition.

Hence, Dφλ′ can indeed be seen as the trace.
Second, we show (‖ · ‖φλ

, ‖ · ‖φλ′ )-continuity of the map Ċp;F : Dφλ
→ Dφλ′ . To this end let

v ∈ Dφλ
and (vn) ⊆ Dφλ

such that ‖vn − v‖φλ
→ 0. For every k ∈ N, we have

‖pkk(vn − v) ∗ F∗(k−1)‖φλ′

≤ 2λ′‖vn − v‖φλ′ pk k
(
‖1[0,∞) ‖F∗(k−1)‖∞ − F∗(k−1)‖φλ′ + ‖F

∗(k−1)‖∞
)

= 2λ′‖vn − v‖φλ′ pk k
(
‖1[0,∞) − F∗(k−1)‖φλ′ + 1

)
≤ 2λ′‖vn − v‖φλ′ pk k

(
(2λ′−1 ∨ 1)

(
1 + (k− 1)λ′∨1

∫
|x|λ′ dF(x)

)
+ 1
)

,

where the first and the second inequality follow from Lemma 2.3 and Equation (2.4) in Pitts (1994)
respectively. Hence,
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‖Ċp;F(vn)− Ċp;F(v)‖φλ′ = ‖vn ∗ Hp,F − v ∗ Hp,F‖φλ′

≤ 2λ′‖vn − v‖φλ′

∞

∑
k=1

pk k
(
(2λ′−1 ∨ 1)

(
1 + (k− 1)λ′∨1

∫
|x|λ′ dF(x)

)
+ 1
)

.

Now, the series converges due to the assumptions, and ‖vn − v‖φλ
→ 0 implies ‖vn − v‖φλ′ → 0.

Thus, ‖Ċp;F(vn)− Ċp;F(v)‖φλ′ → 0, which proves continuity.
Third, let ((Fn), v, (vn), (εn)) be a quadruple with (Fn) ⊆ Fφλ

satisfying ‖Fn − F‖φλ
→ 0, v ∈ Dφλ

,
(vn) ⊆ Dφλ

satisfying ‖vn − v‖φλ
→ 0 and (Fn + εnvn) ⊆ Fφλ

, and (εn) ⊆ (0, ∞) satisfying εn → 0.
It remains to show that

lim
n→∞

∥∥∥Cp(Fn + εnvn)− Cp(Fn)

εn
− Ċp;F(v)

∥∥∥
φλ′

= 0.

To do so, define for k ∈ N0 a map Hk : F× F :→ F by

Hk(G1, G2) :=
k−1

∑
j=0

G∗(k−1−j)
1 ∗ G∗j

2

with the usual convention that the sum over the empty set equals zero. We find that for every M ∈ N

∥∥∥Cp(Fn + εnvn)− Cp(Fn)

εn
− Ċp;F(v)

∥∥∥
φλ′

=
∥∥∥ 1

εn

( ∞

∑
k=0

pk(Fn + εnvn)
∗k −

∞

∑
k=0

pkF∗kn

)
− Ċp;F(v)

∥∥∥
φλ′

=
∥∥∥ 1

εn

( ∞

∑
k=1

(
pk(Fn + εnvn)

∗k − pkF∗kn
))
− Ċp;F(v)

∥∥∥
φλ′

=
∥∥∥ ∞

∑
k=1

pkvn ∗ Hk(Fn + εnvn, Fn)− Ċp;F(v)
∥∥∥

φλ′

≤
∥∥∥ ∞

∑
k=M+1

pkvn ∗ Hk(Fn + εnvn, Fn)
∥∥∥

φλ′
+
∥∥∥ M

∑
k=1

pk(vn − v) ∗ Hk(Fn + εnvn, Fn)
∥∥∥

φλ′

+
∥∥∥v ∗

∞

∑
k=M+1

kpkF∗(k−1)
∥∥∥

φλ′
+
∥∥∥ M

∑
k=1

pkv ∗ Hk(Fn + εnvn, Fn)− kpkv ∗ F∗(k−1)
∥∥∥

φλ′

=: S1(n, M) + S2(n, M) + S3(M) + S4(n, M),

where for the third “=” we use the fact that for G1, G2 ∈ F

(G1 − G2) ∗ Hk(G1, G2) = G∗k1 − G∗k2 . (16)

By Part (ii) of Lemma reflemma preceding qHD of compound (this lemma can be applied since
‖Fn + εnvn − F‖φλ

→ 0) there exists a constant C2 > 0 such that for all n ∈ N

S1(n, M) =
∥∥∥ ∞

∑
k=M+1

pkvn ∗ Hk(Fn + εnvn, Fn)
∥∥∥

φλ′

≤ 2λ′‖vn‖φλ′

∞

∑
k=M+1

pk k
(
1 + 2λ′(2λ′−1 ∨ 1)

(
2 + (k− 1)λ′∨1C2

))
.

(17)
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Since λ′ < λ and ‖vn − v‖φλ
→ 0, we have ‖vn‖φλ′ ≤ K1 for some finite constant K1 > 0 and all

n ∈ N. Hence, the right-hand side of Equation (17) can be made arbitrarily small by choosing M large
enough. That is, S1(n, M) can be made arbitrarily small uniformly in n ∈ N by choosing M large enough.

Furthermore, it is demonstrated in the proof of Proposition 4.1 of Pitts (1994) that S3(M) can be
made arbitrarily small by choosing M large enough.

Next, applying again Part (ii) of Lemma 1, we obtain

S2(n, M) =
∥∥∥ M

∑
k=1

pk(vn − v) ∗ Hk(Fn + εnvn, Fn)
∥∥∥

φλ′

≤ 2λ′
M

∑
k=1

pk k ‖vn − v‖φλ′
(
1 + 2λ′(2λ′−1 ∨ 1)

(
2 + (k− 1)λ′∨1C2

))
.

Using ‖vn − v‖φλ′ ≤ ‖vn − v‖φλ
→ 0, this term tends to zero as n→ ∞ for a given M.

It remains to consider the summand

S4(n, M) =
∥∥∥ M

∑
k=1

pkv ∗ Hk(Fn + εnvn, Fn)− kpkv ∗ F∗(k−1)
∥∥∥

φλ′

=
∥∥∥ M

∑
k=1

pk

k−1

∑
`=0

(
v ∗ (Fn + εnvn)

∗(k−1−`) ∗ F∗`n − v ∗ F∗(k−1)
)∥∥∥

φλ′
.

We show that for M fixed this term can be made arbitrarily small by letting n→ ∞. This would follow
if for every given k ∈ {1, . . . , M} and ` ∈ {0, . . . , k− 1} the expression

‖v ∗ (Fn + εnvn)
∗(k−1−`) ∗ F∗`n − v ∗ F∗(k−1)‖φλ′

could be made arbitrarily small by letting n → ∞. For every such k and ` we can find a linear
combination of indicator functions of the form 1[a,b), −∞ < a < b < ∞, which we denote by ṽ, such that

‖v ∗ (Fn + εnvn)
∗(k−1−`) ∗ F∗`n − v ∗ F∗(k−1)‖φλ′

≤ ‖v ∗ (Fn + εnvn)∗(k−1−`) ∗ F∗`n − ṽ ∗ (Fn + εnvn)∗(k−1−`) ∗ F∗`n ‖φλ′

+ ‖ṽ ∗ (Fn + εnvn)∗(k−1−`) ∗ F∗`n − ṽ ∗ F∗(k−1)‖φλ′

+ ‖ṽ ∗ F∗(k−1) − v ∗ F∗(k−1)‖φλ′

≤ 2λ′‖ṽ− v‖φλ′
(
‖1[0,∞) − (Fn + εnvn)∗(k−1−`) ∗ F∗`n ‖φλ′ + 1

)
+ c(λ′, ṽ) ‖(Fn + εnvn)∗(k−1−`) ∗ F∗`n − F∗(k−1)‖φλ′

+ 2λ′ ‖ṽ− v‖φλ′
(
‖1[0,∞) − F∗(k−1)‖φλ′ + 1

)
(18)

for some suitable finite constant c(λ′, ṽ) > 0 depending only on λ′ and ṽ. The first inequality in
Equation (18) is obvious (and holds for any ṽ ∈ Dφλ′ ). The second inequality in Equation (18) is
obtained by applying Lemma 2.3 of Pitts (1994) to the first summand (noting that ‖(Fn + εnvn)∗(k−1−`) ∗
F∗`n ‖∞ = 1; recall Fn + εnvn ∈ F), by applying Lemma 4.3 of Pitts (1994) to the second summand (which
requires that ṽ is as described above), and by applying Lemma 2.3 of Pitts (1994) to the third summand.

We now consider the three summands on the right-hand side of Equation (18) separately. We start
with the third term. Since v ∈ Dφλ

, Lemma 4.2 of Pitts (1994) ensures that we may assume that ṽ is
chosen such that ‖ṽ− v‖φλ′ is arbitrarily small. Hence, for fixed M the third summand in Equation (18)
can be made arbitrarily small.

We next consider the the second summand in Equation (18). Obviously,
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‖(Fn + εnvn)
∗(k−1−`) ∗ F∗`n − F∗(k−1)‖φλ′

= ‖(Fn + εnvn)∗(k−1−`) ∗ F∗`n − F∗(k−1)
n + F∗(k−1)

n − F∗(k−1)‖φλ′

≤
∥∥((Fn + εnvn)∗(k−1−`) − F∗(k−1−`)

n
)
∗ F∗`n

∥∥
φλ′

+ ‖F∗(k−1)
n − F∗(k−1)‖φλ′ .

(19)

We start by considering the first summand in Equation (19). In view of Equation (16), it can be
written as ∥∥((Fn + εnvn)

∗(k−1−`) − F∗(k−1−`)
n

)
∗ F∗`n

∥∥
φλ′

=
∥∥((Fn + εnvn − Fn) ∗ Hk−1−`(Fn + εnvn, Fn)

)
∗ F∗`n

∥∥
φλ′

=
∥∥(εnvn ∗ Hk−1−`(Fn + εnvn, Fn)

)
∗ F∗`n

∥∥
φλ′

.

Applying Lemma 2.3 of Pitts (1994) with f = εnvn ∗ Hk−`−1(Fn + εnvn, Fn) and H = F∗`n we obtain∥∥(εnvn ∗ Hk−1−`(Fn + εnvn, Fn)
)
∗ F∗`n

∥∥
φλ′

≤ 2λ′
∥∥(εnvn ∗ Hk−`−1(Fn + εnvn, Fn)

)∥∥
φλ′

(
‖1[0,∞)‖F∗`n ‖∞ − F∗`n ‖φλ′ + ‖F

∗`
n ‖∞

)
= 2λ′

∥∥(εnvn ∗ Hk−`−1(Fn + εnvn, Fn)
)
‖φλ′

(
‖1[0,∞) − F∗`n ‖φλ′ + 1

)
≤ 2λ′

∥∥(εnvn ∗ Hk−`−1(Fn + εnvn, Fn)
)∥∥

φλ′

{
(2λ′−1 ∨ 1)

(
1 + `λ′∨1C1

)
+ 1
}

,

(20)

where we applied Part (i) of Lemma 1 to ‖1[0,∞) − F∗`n ‖φλ′ to obtain the last inequality. Hence, for the
left-hand side of Equation (20) to go to zero as n → ∞ it suffices to show that ‖(εnvn ∗ Hk−`−1(Fn +

εnvn, Fn))‖φλ′ → 0 as n→ ∞. The latter follows from∥∥(εnvn ∗ Hk−`−1(Fn + εnvn, Fn)
)∥∥

φλ′

≤ 2λ′(k− `− 1)εn‖vn‖φλ′
(
1 + 2λ′(2λ′−1 ∨ 1)

(
2 + ((k− `− 2))λ′∨1C2

))
,

(21)

where we applied Part (ii) of Lemma 1 with v = εnvn to all summands in Hk−`−1(Fn + εnvn, Fn).
For every k and ` ∈ {0, . . . , k − 1} this expression goes indeed to zero as n → ∞, because, as
mentioned before, ‖vn‖φλ′ is uniformly bounded in n ∈ N, and we have εn → 0. Next, we consider the

second summand in Equation (19). Applying Equation (16) to F∗(k−1)
n and F∗(k−1) and subsequently

Part (ii) of Lemma 1 to the summands in Hk−1(Fn, F), we have

‖F∗(k−1)
n − F∗(k−1)‖φλ′ ≤ 2λ′(k− 1)‖Fn − F‖φλ′

(
1 + 2λ′(2λ′−1 ∨ 1)(2 + ((k− 2))λ′∨1C2)

)
.

Clearly for every k this term goes to zero 0 as n → ∞, because ‖Fn − F‖φλ′ ≤ ‖Fn − F‖φλ
→ 0 as

n→ ∞ by assumption. This together with the fact that Equation (20) goes to zero 0 as n→ ∞ shows
that Equation (19) goes to zero in ‖ · ‖φλ′ as n→ ∞. Therefore, the second summand in Equation (18)
goes to zero as n→ ∞.

It remains to consider the first term in Equation (18). We find

2λ′‖ṽ− v‖φλ

(
‖1[0,∞) − (Fn + εnvn)

∗(k−1−`) ∗ F∗`n ‖φλ′ + 1
)

≤ 2λ′‖ṽ− v‖φλ′
(
‖1[0,∞) − (Fn + εnvn)∗(k−1−`) ∗ F∗`n ‖φλ′ + 1

)
≤ 2λ′‖ṽ− v‖φλ′

(
‖1[0,∞) − F∗(k−1) + F∗(k−1) − (Fn + εnvn)∗(k−1−`) ∗ F∗`n ‖φλ′ + 1

)
≤ 2λ′‖ṽ− v‖φλ′

(
‖1[0,∞) − F∗(k−1)‖φλ′ + ‖F

∗(k−1) − (Fn + εnvn)∗(k−1−`) ∗ F∗`n ‖φλ′ + 1
)

≤ 2λ′‖ṽ− v‖φλ′ (2
λ′−1 ∨ 1)

(
1 + kλ∨1

∫
|x|λ′ dF(x)

)
+ 2λ′‖ṽ− v‖φλ′

(∥∥F∗(k−1) − (Fn + εnvn)∗(k−1−`) ∗ F∗`n
∥∥

φλ′
+ 1
)
,

(22)

where for the last inequality we used Formula (2.4) of Pitts (1994). In the following, Equation (19)
we showed that ‖F∗(k−1) − (Fn + εnvn)∗(k−1−`) ∗ F∗`n ‖φλ′ goes to zero as n → ∞ for every k and
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` ∈ {0, . . . , k − 1}. Hence, for every such k and `, it is uniformly bounded in n ∈ N. Therefore,
we can make Equation (22) arbitrarily small by making ‖ṽ− v‖φλ′ small which, as mentioned above, is
possible according to Lemma 4.2 of Pitts (1994). This finishes the proof.

3.3. Composition of Average Value at Risk Functional and Compound Distribution Functional

Here, we consider the composition of the Average Value at Risk functional Rα defined in
Equation (1) and the compound distribution functional Cp introduced in Section 2.1. As a consequence
of Propositions 1 and 2, we obtain the following Corollary 3. Note that, for any λ > 1, Lemma 2.2 in
Pitts (1994) yields Cp(Fφλ

) ⊆ F1 so that the compositionRα ◦ Cp is well defined on Fφλ
.

Corollary 3. Let λ > 1 and assume ∑∞
k=1 pk k1+λ < ∞. Let F ∈ Fφλ

, and assume that Cp(F) takes the value
α only once. Then, the map Tα,p := Rα ◦ Cp : Fφλ

(⊆ D) → R is uniformly quasi-Hadamard differentiable
at F tangentially to Dφλ

〈Dφλ
〉, and the uniform quasi-Hadamard derivative Ṫα,p;F : Dφλ

→ R is given by
Ṫα,p;F = Ṙα;Cp(F) ◦ Ċp;F, i.e.,

Ṫα,p;F(v) =
∫

g′α(Cp(F)(x))(v ∗ Hp,F)(x) dx for all v ∈ Dφλ

with g′α and v ∗ Hp,F as in Proposition 1 and 2, respectively.

Proof. We intend to apply Lemma A1 to H = Cp : Fφλ
→ F1 and H̃ = Rα : F1 → R. To verify that the

assumptions of the lemma are fulfilled, we first recall from the comment directly before Corollary 3 that
Cp(Fφλ

) ⊆ F1. It remains to show that the Assumptions (a)–(c) of Lemma A1 are fulfilled. According
to Proposition 2 we have that for every λ′ ∈ (1, λ) the functional Cp is uniformly quasi-Hadamard
differentiable at F tangentially to Dφλ

〈Dφλ
〉 with trace Dφλ′ , which is the first part of Assumption (b).

The second part of Assumption (b) means Ċp,F(Dφλ
) ⊆ Dφλ′ and follows from

‖Ċp;F(v)‖φλ′ =
∥∥∥v ∗

∞

∑
k=1

pk kF∗(k−1)
∥∥∥

φλ′

≤ 2λ′‖v‖φλ′

∞

∑
k=1

pk k
(

1 + (2λ′−1 ∨ 1)
(

1 + kλ′∨1
∫
|x|λ′ dF(x)

))
(for which we applied Lemma 2.3 and Inequality (2.4) in Pitts (1994)), the convergence of the latter
series (which holds by assumption), and ‖v‖φλ′ ≤ ‖v‖φλ

< ∞. Further, it follows from Proposition 1
that the map Rα is uniformly quasi-Hadamard differentiable tangentially to Dφλ′ 〈Dφλ′ 〉 at every
distribution function of Fφλ′ that takes the value 1− α only once. This is Assumption (c) of Lemma A1.

It remains to show that Assumption (a) of Lemma A1 also holds true. In the present setting,
Assumption (a) means that for every sequence (Fn) ⊆ Fφλ

with ‖Fn − F‖φλ
→ 0 we have Cp(Fn) →

Cp(F) pointwise. We show that we even have ‖Cp(Fn)− Cp(F)‖φλ′ → 0. Thus, let (Fn) ⊆ Fφλ
. Then,

‖Cp(Fn)− Cp(F)‖φλ′ =
∥∥∥ ∞

∑
k=1

pk(F∗kn − F∗k)
∥∥∥

φλ′

=
∥∥∥(Fn − F) ∗

∞

∑
k=1

pk Hk(Fn, F)
∥∥∥

φλ′

≤ 2λ′‖Fn − F‖φλ′

∞

∑
k=1

pk k
(
1 + 2λ′(2λ′−1 ∨ 1)

(
2 + (k− 1)λ′∨1C2

))
,

where we used Equation (16) for the second “=” and applied Part (ii) of Lemma 1 to the summands of
Hk to obtain the latter inequality. Since the series converges, we obtain ‖Cp(Fn)− Cp(F)‖φλ′ → 0 when
assuming ‖Fn − F‖φλ

→ 0.
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As an immediate consequence of Corollary A4, Examples A1 and A2, and Corollary 3, we obtain
the following corollary.

Corollary 4. Let F, F̂n, F̂∗n , Ĉn, and BF be as in Example A1 (S1. or S2.) or as in Example A2, respectively, and
assume that the assumptions discussed in Example A1 or in Example A2 respectively are fulfilled for φ = φλ

for some λ > 1 (in particular F ∈ F1). Moreover, assume ∑∞
k=1 pk k1+λ < ∞ and that Cp(F) takes the value α

only once. Then, √
n
(
Tα,p(F̂n)− Tα,p(F)

)
; Ṫα,p;F(BF) in (R,B(R))

and √
n
(
Tα,p(F̂∗n (ω, ·))− Tα,p(Ĉn(ω))

)
; Ṫα,p;F(BF) in (R,B(R)), P-a.e. ω.

4. Conclusions

In this paper, we consider the sub-additive risk measure Average Value at Risk and presented
in Sections 2.1 and 2.2 results on almost sure bootstrap consistency for the corresponding empirical
plug-in estimator based on i.i.d. or strictly stationary, geometrically β-mixing observations. Our results
supplement those by Beutner and Zähle (2016) on bootstrap consistency in probability and those by Sun
and Cheng (2018) on bootstrap consistency in probability for the Tail Conditional Expectation (which is
not sub-additive). In Section 2.1, we also look at the case where one is interested in Average Value of
Risk in the collective risk model. Note that one might interpret the collective risk model as a pooling
of independent risks. In the context of Solvency II, pooling of risks has received increased attention
(see, for example, Bølviken and Guillen 2017). However, one should keep in mind that our results of
Section 2.1 can typically not be applied in the Solvency II context. In Solvency II applications risks are
usually dependent, whereas in the collective risk model the different risks (claims) are assumed to
be independent.

Appendix A. Convergence in Distribution◦

Let (E, d) be a metric space and B◦ be the σ-algebra on E generated by the open balls Br(x) :=
{y ∈ E : d(x, y) < r}, x ∈ E, r > 0. We refer to B◦ as open-ball σ-algebra. If (E, d) is separable, then B◦
coincides with the Borel σ-algebra B. If (E, d) is not separable, then B◦ might be strictly smaller than B
and thus a continuous real-valued function on E is not necessarily (B◦,B(R))-measurable. Let C◦b be
the set of all bounded, continuous and (B◦,B(R))-measurable real-valued functions on E, andM◦

1 be
the set of all probability measures on (E,B◦).

Let Xn be an (E,B◦)-valued random variable on some probability space (Ωn,Fn,Pn) for every
n ∈ N0. Then, referring to Billingsley (1999, sct. 1.6), the sequence (Xn) = (Xn)n∈N is said to converge
in distribution◦ to X0 if ∫

f dP ◦ X−1
n −→

∫
f dP0 ◦ X−1

0 for all f ∈ C◦b .

In this case, we write Xn ;◦ X0. This is the same as saying that the sequence (Pn ◦ X−1
n ) converges

to P0 ◦ X−1
0 in the weak◦ topology onM◦

1 ; for details see Appendix A of Beutner and Zähle (2016).
It is worth mentioning that two probability measures µ, ν ∈ M◦

1 coincide if µ[E0] = ν[E0] = 1 for
some separable E0 ∈ B◦ and

∫
f dµ =

∫
f dν for all uniformly continuous f ∈ C◦b (see, for instance,

(Billingsley 1999, Theorem 6.2)).
In Appendices A–C in Beutner and Zähle (2016), several properties of convergence in distribution◦

(and weak◦ convergence) have been discussed. The following two subsections complement
this discussion.
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Appendix A.1. Slutsky-Type Results for the Open-Ball σ-Algebra

For a sequence (Xn) of (E,B◦)-valued random variables that are all defined on the same
probability space (Ω,F ,P), the sequence (Xn) is said to converge in probability◦ to X0 if the mappings
ω 7→ d(Xn(ω), X0(ω)), n ∈ N, are (F ,B(R+))-measurable and satisfy

lim
n→∞

P[d(Xn, X0) ≥ ε] = 0 for all ε > 0. (A1)

In this case, we write Xn →p,◦ X0. The superscript ◦ points to the fact that measurability of the
mapping ω 7→ d(Xn(ω), X0(ω)) is a requirement of the definition (and not automatically valid). Note,
however, that in the specific situation where X0 ≡ x0 for some x0 ∈ E, measurability of the mapping
ω 7→ d(Xn(ω), X0(ω)) does hold (see Lemma B.3 in Beutner and Zähle (2016)). In addition, note that
the measurability always hold when (E, d) is separable; in this case, we also write→p instead of→p,◦.

Theorem A1. Let (Xn) and (Yn) be two sequences of (E,B◦)-valued random variables on a common probability
space (Ω,F ,P), and assume that the mapping ω 7→ d(Xn(ω), Yn(ω)) is (F ,B(R+))-measurable for every
n ∈ N. Let X0 be an (E,B◦)-valued random variable on some probability space (Ω0,F0,P0) with P0[X0 ∈
E0] = 1 for some separable E0 ∈ B◦. Then, Xn ;◦ X0 and d(Xn, Yn)→p 0 together imply Yn ;◦ X0.

Proof. In view of Xn ;◦ X, we obtain for every fixed f ∈ BL◦1

lim sup
n→∞

∣∣∣ ∫ f dPYn −
∫

f dPX0

∣∣∣
≤ lim sup

n→∞

∣∣∣ ∫ f dPYn −
∫

f dPXn

∣∣∣+ lim sup
n→∞

∣∣∣ ∫ f dPXn −
∫

f dPX0

∣∣∣
≤ lim sup

n→∞

∫
| f (Yn)− f (Xn)| dP.

Since f lies in BL◦1 and we assumed d(Xn, Yn)→p 0, we also have

lim sup
n→∞

∫
| f (Yn)− f (Xn)| dP ≤ lim sup

n→∞

∫
| f (Yn)− f (Xn)|1{d(Xn ,Yn)≥ε} dP + 2ε

≤ 2 lim sup
n→∞

P[d(Xn, Yn) ≥ ε] + 2ε

for every ε > 0. Thus, lim supn→∞
∫
| f (Yn)− f (Xn)| dP = 0 which together with the Portmanteau

theorem (in the form of (Beutner and Zähle 2016, Theorem A.4)) implies the claim.

Set E := E× E and let B◦ be the σ-algebra on E generated by the open balls with respect to the
metric

d((x1, x2), (y1, y2)) := max{d(x1, y1); d(x2, y2)}.

Recall that B◦ ⊆ B◦ ⊗B◦, where the inclusion may be strict.

Corollary A1. Let (Xn) and (Yn) be two sequences of (E,B◦)-valued random variables on a common
probability space (Ω,F ,P). Let X0 be an (E,B◦)-valued random variable on some probability space (Ω0,F0,P0)

with P0[X0 ∈ E0] = 1 for some separable E0 ∈ B◦. Let y0 ∈ E0. Let (Ẽ, d̃) be a metric space equipped with the
corresponding open-ball σ-algebra B̃◦. Then, Xn ;◦ X0 and Yn →p,◦ y0 together imply:

(i) (Xn, Yn) ;◦ (X0, y0).
(ii) h(Xn, Yn) ;◦ h(X0, y0) for every continuous and (B◦, B̃◦)-measurable h : E→ Ẽ.

Proof. Assertion (ii) is an immediate consequence of Assertion (i) and the Continuous Mapping
theorem in the form of (Billingsley 1999, Theorem 6.4); take into account that (X0, y0) takes values only
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in E0 := E0 × E0 and that E0 × E0 is separable with respect to d. Thus, it suffices to show Assertion (i).
First note that we have

(Xn, y0) ;◦ (X0, y0). (A2)

Indeed, for every f ∈ C◦b (with C◦b the set of all bounded, continuous and (B◦,B(R))-measurable
real-valued functions on E) we have limn→∞

∫
f (Xn, y0) dP =

∫
f (X0, y0) dP0 by the assumption

Xn ;◦ X0 and the fact that the mapping x 7→ f (x, y0) lies in C◦b (the latter was shown in the proof of
Theorem 3.1 in Beutner and Zähle (2016)).

Second, the distance d((Xn, Yn), (Xn, y0)) = d(Yn, y0) is (F ,B(R+))-measurable for every n ∈ N,
because Yn is (F ,B◦)-measurable and x 7→ d(x, y0) is (B◦,B(R))-measurable (due to Lemma B.3 in
Beutner and Zähle (2016)). Along with Yn →p,◦ y0, we obtain in particular that d((Xn, Yn), (Xn, y0))→p

0. Together with Equation (A2) and Theorem A1 (applied to X′n := (Xn, y0), X′0 := (X0, y0), Y′n :=
(Xn, Yn)), this implies (Xn, Yn) ;◦ (X0, y0); take into account again that (X0, y0) takes values only in
E0 := E0 × E0 and that E0 × E0 is separable with respect to d.

Corollary A2. Let (E, ‖ · ‖E) be a normed vector space and d be the induced metric defined by d(x1, x2) :=
‖x1 − x2‖E. Let (Xn) and (Yn) be two sequences of (E,B◦)-valued random variables on a common probability
space (Ω,F ,P). Let X0 be an (E,B◦)-valued random variable on some probability space (Ω0,F0,P0) with
P0[X0 ∈ E0] = 1 for some separable E0 ∈ B◦. Let y0 ∈ E0. Assume that the map h : E → E defined by
h(x1, x2) := x1 + x2 is (B◦,B◦)-measurable. Then, Xn ;◦ X0 and Yn →p,◦ y0 together imply Xn + Yn ;◦

X0 + y0.

Proof. The assertion is an immediate consequence of Corollary A1 and the fact that h is
clearly continuous.

Appendix A.2. Delta-Method and Chain Rule for Uniformly Quasi-Hadamard Differentiable Maps

Now, assume that E is a subspace of a vector space V. Let ‖ · ‖E be a norm on E and assume that
the metric d is induced by ‖ · ‖E. Let Ṽ be another vector space and Ẽ ⊆ Ṽ be any subspace. Let ‖ · ‖Ẽ
be a norm on Ẽ and B̃◦ be the corresponding open-ball σ-algebra on Ẽ. Let 0Ẽ denote the null in Ẽ.

Moreover, let Ẽ := Ẽ× Ẽ and B̃◦ be the σ-algebra on Ẽ generated by the open balls with respect to the

metric d̃((x̃1, x̃2), (ỹ1, ỹ2)) := max{‖x̃1 − ỹ1‖Ẽ; ‖x̃2 − ỹ2‖Ẽ}.
Let (Ωn,Fn,Pn) be a probability space and T̂n : Ωn → V be any map for every n ∈ N. Recall that

;◦ and →p,◦ refer to convergence in distribution◦ and convergence in probability◦, respectively.
Moreover, recall Definition A1 of quasi-Hadamard differentiability.

Theorem A2. Let H : VH → Ẽ be a map defined on some VH ⊆ V. Let E0 ∈ B◦ be some ‖ · ‖E-separable
subset of E. Let (θn) ⊆ VH and define the singleton set S := {(θn)}. Let (an) be a sequence of positive real
numbers tending to ∞, and consider the following conditions:

(a) T̂n takes values only in VH .
(b) an(T̂n − θn) takes values only in E, is (Fn,B◦)-measurable and satisfies

an(T̂n − θn) ;◦ ξ in (E,B◦, ‖ · ‖E) (A3)

for some (E,B◦)-valued random variable ξ on some probability space (Ω0,F0,P0) with ξ(Ω0) ⊆ E0.
(c) an(H(T̂n)− H(θn)) takes values only in Ẽ and is (Fn, B̃◦)-measurable.
(d) The map H is uniformly quasi-Hadamard differentiable with respect to S tangentially to E0〈E〉 with trace

Ẽ and uniform quasi-Hadamard derivative ḢS : E0 → Ẽ.
(e) (Ωn,Fn,Pn) = (Ω,F ,P) for all n ∈ N.
(f) The uniform quasi-Hadamard derivative ḢS can be extended to E such that the extension ḢS : E→ Ẽ is

continuous at every point of E0 and (B◦, B̃◦)-measurable.
(g) The map h : Ẽ→ Ẽ defined by h(x̃1, x̃2) := x̃1 − x̃2 is (B̃◦, B̃◦)-measurable.
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Then, the following two assertions hold:

(i) If Conditions (a)–(d) hold true, then ḢS (ξ) is (F0, B̃◦)-measurable and

an
(

H(T̂n)− H(θn)
)
;◦ ḢS (ξ) in (Ẽ, B̃◦, ‖ · ‖Ẽ).

(ii) If Conditions (a)–(g) hold true, then

an
(

H(T̂n)− H(θn)
)
− ḢS

(
an(T̂n − θn)

)
→p,◦ 0Ẽ in (Ẽ, ‖ · ‖Ẽ). (A4)

Proof. The proof is very similar to the proof of Theorem C.4 in Beutner and Zähle (2016).
(i): For every n ∈ N, let En := {xn ∈ E : θn + a−1

n xn ∈ VH} and define the map hn : En → Ẽ by

hn(xn) :=
H(θn + a−1

n xn)− H(θn)

a−1
n

.

Moreover, define the map h0 : E0 → Ẽ by

h0(x) := ḢS (x).

Now, the claim would follow by the extended Continuous Mapping theorem in the form of
Theorem C.1 in Beutner and Zähle (2016) applied to the functions hn, n ∈ N0, and the random variables
ξn := an(T̂n − θn), n ∈ N, and ξ0 := ξ if we can show that the assumptions of Theorem C.1 in Beutner
and Zähle (2016) are satisfied. First, by Assumption (a) and the last part of Assumption (b), we have
ξn(Ωn) ⊆ En and ξ0(Ω0) ⊆ E0. Second, by Assumption (c), we have that hn(ξn) = an(H(T̂n)− H(θn))

is (Fn, B̃◦)-measurable. Third, the map h0 is continuous by the definition of the quasi-Hadamard
derivative. Thus, h0 is (B◦0 , B̃◦)-measurable, because the trace σ-algebra B◦0 := B◦ ∩ E0 coincides with
the Borel σ-algebra on E0 (recall that E0 is separable). In particular, ḢS (ξ) is (F0, B̃◦)-measurable.
Fourth, Condition (a) of Theorem C.1 in Beutner and Zähle (2016) holds by Assumption (b). Fifth,
Condition (b) of Theorem C.1 in Beutner and Zähle (2016) is ensured by Assumption (d).

(ii): For every n ∈ N, let En and hn be as above and define the map hn : En → Ẽ by

hn(xn) := (hn(xn), ḢS (xn)).

Moreover, define the map h0 : E0 → Ẽ by

h0(x) := (h0(x), ḢS (x)) = (ḢS (x), ḢS (x)).

We first show that
hn(an(Tn − θn)) ;◦ h0(ξ) in (Ẽ, B̃◦, d̃). (A5)

For Equation (A5), it suffices to show that the assumption of the extended Continuous Mapping
theorem in the form of Theorem C.1 in Beutner and Zähle (2016) applied to the functions hn and ξn

(as defined above) are satisfied. The claim then follows by Theorem C.1 in Beutner and Zähle (2016).
First, we have already observed that ξn(Ωn) ⊆ En and ξ0(Ω0) ⊆ E0. Second, we have seen in
the proof of Part (i) that hn(ξn) is (Fn, B̃◦)-measurable, n ∈ N. By Assumption (f), the extended
map ḢS : E → Ẽ is (B◦, B̃◦)-measurable, which implies that ḢS (ξn) is (Fn, B̃◦)-measurable. Thus,
hn(ξn) = (hn(ξn), ḢS (ξn)) is (Fn, B̃◦ ⊗ B̃◦)-measurable (to see this note that, in view of B̃◦ ⊗ B̃◦ =
σ(π1, π2) for the coordinate projections π1, π2 on Ẽ = Ẽ × Ẽ, Theorem 7.4 of Bauer (2001) shows
that the map (hn(ξn), ḢS (ξn)) is (Fn, B̃◦ ⊗ B̃◦)-measurable if and only if the maps hn(ξn) = π1 ◦
(hn(ξn), ḢS (ξn)) and ḢS (ξn) = π2 ◦ (hn(ξn), ḢS (ξn)) are (Fn, B̃◦)-measurable). In particular, the

map hn(ξn) = (hn(ξn), ḢS (ξn)) is (Fn, B̃◦)-measurable, n ∈ N. Third, we have seen in the proof of
Part (i) that the map h0 = ḢS is (B◦0 , B̃◦)-measurable. Thus, the map h0 is (B◦0 , B̃◦ ⊗ B̃◦)-measurable
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(one can argue as above) and in particular (B◦0 , B̃◦)-measurable. Fourth, Condition (a) of Theorem C.1
in Beutner and Zähle (2016) holds by Assumption (b). Fifth, Condition (b) of Theorem C.1 in Beutner
and Zähle (2016) is ensured by Assumption (d) and the continuity of the extended map ḢS at every
point of E0 (recall Assumption (f)). Hence, Equation (A5) holds.

By Assumption (g) and the ordinary Continuous Mapping theorem (see (Billingsley 1999,
Theorem 6.4)) applied to Equation (A5) and the map h : Ẽ→ Ẽ, (x̃1, x̃2) 7→ x̃1 − x̃2, we now have

hn(an(T̂n − θn))− ḢS (an(T̂n − θn)) ;◦ ḢS (ξ)− ḢS (ξ),

i.e.,
an
(

H(T̂n)− H(θn)
)
− ḢS

(
an(T̂n − θn)

)
;◦ 0Ẽ.

By Proposition B.4 in Beutner and Zähle (2016), we can conclude Equation (A4).

The following lemma provides a chain rule for uniformly quasi-Hadamard differentiable maps (a

similar chain rule with different S was found in Varron (2015)). To formulate the chain rule, let ˜̃V be a
further vector space and ˜̃E ⊆ ˜̃V be a subspace equipped with a norm ‖ · ‖˜̃E.

Lemma A1. Let H : VH → ṼH̃ and H̃ : ṼH̃ →
˜̃V be maps defined on subsets VH ⊆ V and ṼH̃ ⊆ Ṽ such

that H(VH) ⊆ ṼH̃ . Let E0 and Ẽ0 be subsets of E and Ẽ, respectively. Let S and S̃ be sets of sequences in VH
and ṼH̃ , respectively, and assume that the following three assertions hold.

(a) For every (θn) ∈ S , we have (H(θn)) ∈ S̃ .
(b) H is uniformly quasi-Hadamard differentiable with respect to S tangentially to E0〈E〉 with trace Ẽ and

uniform quasi-Hadamard derivative ḢS : E0 → Ẽ, and we have ḢS (E0) ⊆ Ẽ0.
(c) H̃ is uniformly quasi-Hadamard differentiable with respect to S̃ tangentially to Ẽ0〈Ẽ〉 with trace ˜̃E and

uniform quasi-Hadamard derivative ˙̃HS̃ : Ẽ0 → ˜̃E.

Then, the map T := H̃ ◦ H : VH → ˜̃V is uniformly quasi-Hadamard differentiable with respect to S
tangentially to E0〈E〉 with trace ˜̃E, and the uniform quasi-Hadamard derivative ṪS is given by ṪS := ˙̃HS̃ ◦ ḢS .

Proof. Obviously, since H(VH) ⊆ ṼH̃ and H̃ is associated with trace ˜̃E, the map H̃ ◦ H can also be

associated with trace ˜̃E.
Now, let ((θn), x, (xn), (εn)) be a quadruple with (θn) ∈ S , x ∈ E0, (xn) ⊆ E satisfying ‖xn −

x‖E → 0 as well as (θn + εnxn) ⊆ VH , and (εn) ⊆ (0, ∞) satisfying εn → 0. Then,

∥∥∥ ˙̃HS̃ (ḢS (x))− H̃(H(θn + εnxn))− H̃(H(θn))

εn

∥∥∥˜̃E
=

∥∥∥ ˙̃HS̃ (ḢS (x))−
H̃
(

H(θn) + εn
H(θn+εnxn)−H(θn)

εn

)
− H̃(H(θn))

εn

∥∥∥˜̃E.

Note that by assumption, H(θn) ∈ ṼH̃ and in particular (H(θn)) ∈ S̃ . By the uniform
quasi-Hadamard differentiability of H with respect to S tangentially to E0〈E〉 with trace Ẽ,

lim
n→∞

∥∥∥H(θn + εnxn)− H(θn)

εn
− ḢS (x)

∥∥∥
Ẽ
= 0.
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Moreover, (H(θn + εnxn) − H(θn))/εn ∈ Ẽ and ḢS (x) ∈ Ẽ0, because H is associated with trace Ẽ
and ḢS (E0) ⊆ Ẽ0. Hence, by the uniform quasi-Hadamard differentiability of H̃ with respect to S̃
tangentially to Ẽ0〈Ẽ〉, we obtain

lim
n→∞

∥∥∥ ˙̃HS̃ (ḢS (x))−
H̃
(

H(θn) + εn
H(θn+εnxn)−H(θn)

εn

)
− H̃(H(θn))

εn

∥∥∥˜̃E = 0.

This completes the proof.

Appendix B. Delta-Method for the Bootstrap

The functional delta-method is a widely used technique to derive bootstrap consistency for
a sequence of plug-in estimators with respect to a map H from bootstrap consistency of the
underlying sequence of estimators. An essential limitation of the classical functional delta-method for
proving bootstrap consistency in probability (or outer probability) is the condition of Hadamard
differentiability on H (see Theorem 3.9.11 of van der Vaart Wellner (1996)). It is commonly
acknowledged that Hadamard differentiability fails for many relevant maps H. Recently, it was
demonstrated in Beutner and Zähle (2016) that a functional delta-method for the bootstrap in probability
can also be proved for quasi-Hadamard differentiable maps H. Quasi-Hadamard differentiability
is a weaker notion of “differentiability” than Hadamard differentiability and can be obtained for
many relevant statistical functionals H (see, e.g., Beutner et al. 2012; Beutner and Zähle 2010, 2012;
Krätschmer et al. 2013; Krätschmer and Zähle 2017). Using the classical functional delta-method to
prove almost sure (or outer almost sure) bootstrap consistency for a sequence of plug-in estimators with
respect to a map H from almost sure (or outer almost sure) bootstrap consistency of the underlying
sequence of estimators requires uniform Hadamard differentiability on H (see Theorem 3.9.11 of
van der Vaart Wellner (1996)). In this section, we introduce the notion of uniform quasi-Hadamard
differentiability and demonstrate that one can even obtain a functional delta-method for the almost
sure bootstrap and uniformly quasi-Hadamard differentiable maps H.

To explain the background and the contribution of this section more precisely, assume that we
are given an estimator T̂n for a parameter θ in a vector space, with n denoting the sample size, and
that we are actually interested in the aspect H(θ) of θ. Here, H is any map taking values in a vector
space. Then, H(T̂n) is often a reasonable estimator for H(θ). One of the main objects in statistical
inference is the distribution of the error H(T̂n)− H(θ), because the error distribution can theoretically
be used to derive confidence regions for H(θ). However, in applications, the exact specification of the
error distribution is often hardly possible or even impossible. A widely used way out is to derive the
asymptotic error distribution, i.e., the weak limit µ of law{an(H(T̂n)− H(θ))} for suitable normalizing
constants an tending to infinity, and to use µ as an approximation for µn := law{an(H(T̂n)− H(θ))}
for large n. Since µ usually still depends on the unknown parameter θ, one should use the notation µθ

instead of µ. In particular, one actually uses µT̂n
:= µθ |θ=T̂n

as an approximation for µn for large n.
Not least because of the estimation of the parameter θ of µθ , the approximation of µn by µT̂n

is typically only moderate. An often more efficient alternative technique to approximate µn is the
bootstrap. The bootstrap has been introduced by Efron (1979) and many variants of his method have
been introduced since then. One may refer to Davison and Hinkley (1997); Efron (1994); Lahiri (2003);
Shao and Tu (1995) for general accounts on this topic. The basic idea of the bootstrap is the following.
Re-sampling the original sample according to a certain re-sampling mechanism (depending on the
particular bootstrap method) one can sometimes construct a so-called bootstrap version T̂∗n of T̂n for
which the conditional law of an(H(T̂∗n )− H(T̂n)) “given the sample” has the same weak limit µθ as the
law of an(H(T̂n)− H(θ)) has. The latter is referred to as bootstrap consistency. Since T̂∗n depends only
on the sample and the re-sampling mechanism, one can at least numerically determine the conditional
law of an(H(T̂∗n )− H(T̂n)) “given the sample” by means of a Monte Carlo simulation based on L� n
repetitions. The resulting law µ∗L can then be used as an approximation of µn, at least for large n.
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In applications, the roles of θ and T̂n are often played by a distribution function F and the
empirical distribution function F̂n of n random variables that are identically distributed according to
F, respectively. Not least for this particular setting several results on bootstrap consistency for T̂n are
known (see also Section B.2). The functional delta-method then ensures that bootstrap consistency also
holds for H(T̂n) when H is suitably differentiable at θ. Technically speaking, as indicated above, one
has to distinguish between two types of bootstrap consistency. First bootstrap consistency in probability
for H(T̂n) can be associated with

lim
n→∞

Pout[{ω ∈ Ω : d◦BL(Pn(ω, · ), µθ) ≥ δ
}]

= 0 for all δ > 0, (A6)

where ω represents the sample, Pn(ω, ·) denotes the conditional law of an(H(T̂∗n )− H(T̂n)) given the
sample ω, d◦BL is the bounded Lipschitz distance, and the superscript out refers to outer probability.
At this point, it is worth pointing out that we consider weak convergence (respectively, convergence
in distribution) with respect to the open-ball σ-algebra, in symbols⇒◦ (respectively, ;◦), as defined
in (Billingsley 1999, sct. 6) (see also Dudley 1966, 1967; Pollard 1984; Shorack and Wellner 1986) and
that by the Portmanteau theorem A.3 in Beutner and Zähle (2016) weak convergence µn ⇒◦ µ holds if
and only if d◦BL(µn, µ)→ 0. Second bootstrap consistency almost surely for H(T̂n) means that

law
{

an
(

H(T̂∗n (ω, · ))− H(T̂n(ω))
)}
⇒◦ µθ P-a.e. ω. (A7)

In Beutner and Zähle (2016), it has been shown that Equation (A6) follows from the respective
analogue for T̂n when H is suitably quasi-Hadamard differentiable at θ. This extends Theorem 3.9.11
of van der Vaart Wellner (1996) which covers only Hadamard differentiable maps. In this section,
we show that Equation (A7) follows from the respective analogue for T̂n when H is suitably uniformly
quasi-Hadamard differentiable at θ; the notion of uniform quasi-Hadamard differentiable is introduced
in Definition A1 below. This extends Theorem 3.9.13 of van der Vaart Wellner (1996) which covers only
Hadamard differentiable maps.

Appendix B.1. Abstract Delta-Method for the Bootstrap

Theorem A4 provides an abstract delta-method for the almost sure bootstrap. It is based
on the notion of uniform quasi-Hadamard differentiability which we introduce first. This sort of
differentiability extends the notion of quasi-Hadamard differentiability as introduced in Beutner and
Zähle (2010, 2016). The latter corresponds to the differentiability concept in (i) of Definition A1 ahead
with S and Ẽ as in (iii) and (v) of this definition. Let V and Ṽ be vector spaces. Let E ⊆ V and Ẽ ⊆ Ṽ
be subspaces equipped with norms ‖ · ‖E and ‖ · ‖Ẽ, respectively. Let

H : VH −→ Ṽ

be any map defined on some subset VH ⊆ V.

Definition A1. Let E0 be a subset of E, and S be a set of sequences in VH .
(i) The map H is said to be uniformly quasi-Hadamard differentiable with respect to S tangentially to

E0〈E〉 with trace Ẽ if H(y1)− H(y2) ∈ Ẽ for all y1, y2 ∈ VH and there is some continuous map ḢS : E0 → Ẽ
such that

lim
n→∞

∥∥∥ḢS (x)− H(θn + εnxn)− H(θn)

εn

∥∥∥
Ẽ
= 0 (A8)

holds for each quadruple ((θn), x, (xn), (εn)), with (θn) ∈ S , x ∈ E0, (xn) ⊆ E satisfying ‖xn − x‖E → 0 as
well as (θn + εnxn) ⊆ VH , and (εn) ⊆ (0, ∞) satisfying εn → 0. In this case, the map ḢS is called uniform
quasi-Hadamard derivative of H with respect to S tangentially to E0〈E〉.
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(ii) If S consists of all sequences (θn) ⊆ VH with θn − θ ∈ E, n ∈ N, and ‖θn − θ‖E → 0 for some fixed
θ ∈ VH , then we replace the phrase “ with respect to S” by “at θ” and “ḢS” by “Ḣθ”.

(iii) If S consists only of the constant sequence θn = θ, n ∈ N, then we skip the phrase “uniformly”
and replace the phrase “ with respect to S” by “at θ” and “ḢS” by “Ḣθ”. In this case, we may also replace
“H(y1)− H(y2) ∈ Ẽ for all y1, y2 ∈ VH” by “H(y)− H(θ) ∈ Ẽ for all y ∈ VH”.

(iv) If E = V, then we skip the phrase “quasi-”.
(v) If Ẽ = Ṽ, then we skip the phrase “with trace Ẽ”.

The conventional notion of uniform Hadamard differentiability as used in Theorem 3.9.11 of van
der Vaart Wellner (1996) corresponds to the differentiability concept in (i) with S as in (ii), E as in
(iv), and Ẽ as in (v). Proposition 1 shows that it is beneficial to refrain from insisting on E = V as
in (iv). It was recently discussed in Belloni et al. (2017) that it can be also beneficial to refrain from
insisting on the assumption of (ii). For E = V (“non-quasi” case), uniform Hadamard differentiability
in the sense of Definition B.1 in Belloni et al. (2017) corresponds to uniform Hadamard differentiability
in the sense of our Definition A1 (Parts (i) and (iv)) when S is chosen as the set of all sequences
(θn) in a compact metric space (Kθ , dK) with θ ∈ Kθ ⊆ VH for which dK(θn, θ) → 0. In Comment
B.3 of Belloni et al. (2017), it is illustrated by means of the quantile functional that this notion of
differentiability (subject to a suitable choice of (Kθ , dK)) is strictly weaker than the notion of uniform
Hadamard differentiability that was used in the classical delta-method for the almost sure bootstrap,
Theorem 3.9.11 in van der Vaart Wellner (1996). Although this shows that the flexibility with respect
to S in our Definition A1 can be beneficial, it is somehow even more important that we allow for the
“quasi” case.

Of course, the smaller the family S the weaker the condition of uniform quasi-Hadamard
differentiability with respect to S . On the other hand, if the set S is too small, then Condition
(e) in Theorem A4 ahead may fail. That is, for an application of the functional delta-method in the form
of Theorem A4 the set S should be large enough for Condition (e) to be fulfilled and small enough for
being able to establish uniform quasi-Hadamard differentiability with respect to S of the map H.

We now turn to the abstract delta-method. As mentioned in Section 1, convergence in distribution
will always be considered for the open-ball σ-algebra. We use the terminology convergence in
distribution◦ (symbolically ;◦) for this sort of convergence; for details see Appendix A and Appendices
A–C of Beutner and Zähle (2016). In a separable metric space the notion of convergence in distribution◦

boils down to the conventional notion of convergence in distribution for the Borel σ-algebra. In this
case, we use the symbol ; instead of ;◦.

Let (Ω,F ,P) be a probability space, and (T̂n) be a sequence of maps

T̂n : Ω −→ V.

Regard ω ∈ Ω as a sample drawn from P, and T̂n(ω) as a statistic derived from ω.
Somewhat unconventionally, we do not (need to) require at this point that T̂n is measurable with
respect to any σ-algebra on V. Let (Ω′,F ′,P′) be another probability space and set

(Ω,F ,P) := (Ω×Ω′,F ⊗F ′,P⊗ P′).

The probability measure P′ represents a random experiment that is run independently of the random
sample mechanism P. In the sequel, T̂n will frequently be regarded as a map defined on the extension
Ω of Ω. Let

T̂∗n : Ω −→ V
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be any map. Since T̂∗n (ω, ω′) depends on both the original sample ω and the outcome ω′ of the
additional independent random experiment, we may regard T̂∗n as a bootstrapped version of T̂n.
Moreover, let

Ĉn : Ω −→ V

be any map. As with T̂n, we often regard Ĉn as a map defined on the extension Ω of Ω. We use Ĉn

together with a scaling sequence to get weak convergence results for T̂∗n . The role of Ĉn is often played
by T̂n itself (see Example A1), but sometimes also by a different map (see Example A2). Assume that
T̂n, T̂∗n , and Ĉn take values only in VH .

Let B◦ and B̃◦ be the open-ball σ-algebras on E and Ẽ with respect to the norms ‖ · ‖E and
‖ · ‖Ẽ, respectively. Note that B◦ coincides with the Borel σ-algebra on E when (E, ‖ · ‖E) is separable.

The same is true for B̃◦. Set Ẽ := Ẽ × Ẽ and let B̃◦ be the σ-algebra on Ẽ generated by the open

balls with respect to the metric d̃((x̃1, x̃2), (ỹ1, ỹ2)) := max{‖x̃1 − ỹ1‖Ẽ; ‖x̃2 − ỹ2‖Ẽ}. Recall that

B̃◦ ⊆ B̃◦ ⊗ B̃◦, because any d̃-open ball in Ẽ is the product of two ‖ · ‖Ẽ-open balls in Ẽ.
Theorem A3 is a consequence of Theorem A2 in Appendix A.2 as we assume that T̂n takes

values only in VH . The proof of the measurability statement of Theorem A3 is given in the proof of
Theorem A4. Theorem A3 is stated here because, together with Theorem A4, it implies almost sure
bootstrap consistency whenever the limit ξ is the same in Theorem A3 and Theorem A4.

Theorem A3. Let (θn) be a sequence in VH and S := {(θn)}. Let E0 ⊆ E be a separable subspace and assume
that E0 ∈ B◦. Let (an) be a sequence of positive real numbers with an → ∞, and assume that the following
assertions hold:

(a) an(T̂n − θn) takes values only in E, is (F ,B◦)-measurable, and satisfies

an(T̂n − θn) ;◦ ξ in (E,B◦, ‖ · ‖E) (A9)

for some (E,B◦)-valued random variable ξ on some probability space (Ω0,F0,P0) with ξ(Ω0) ⊆ E0.
(b) an(H(T̂n)− H(θn)) takes values only in Ẽ and is (F , B̃◦)-measurable.
(c) H is uniformly quasi-Hadamard differentiable with respect to S tangentially to E0〈E〉 with trace Ẽ and

uniform quasi-Hadamard derivative ḢS .

Then, ḢS (ξ) is (F0, B̃◦)-measurable and

an
(

H(T̂n)− H(θn)
)
;◦ ḢS (ξ) in (Ẽ, B̃◦, ‖ · ‖Ẽ).

Theorem A4. Let S be any set of sequences in VH . Let E0 ⊆ E be a separable subspace and assume that
E0 ∈ B◦. Let (an) be a sequence of positive real numbers with an → ∞, and assume that the following
assertions hold:

(a) an(T̂∗n − Ĉn) takes values only in E, is (F ,B◦)-measurable, and satisfies

an
(
T̂∗n (ω, · )− Ĉn(ω)

)
;◦ ξ in (E,B◦, ‖ · ‖E), P-a.e. ω (A10)

for some (E,B◦)-valued random variable ξ on some probability space (Ω0,F0,P0) with ξ(Ω0) ⊆ E0.
(b) an(H(T̂∗n )− H(Ĉn)) takes values only in Ẽ and is (F , B̃◦)-measurable.
(c) H is uniformly quasi-Hadamard differentiable with respect to S tangentially to E0〈E〉 with trace Ẽ and

uniform quasi-Hadamard derivative ḢS .
(d) The uniform quasi-Hadamard derivative ḢS can be extended from E0 to E such that the extension ḢS :

E→ Ẽ is (B◦, B̃◦)-measurable and continuous at every point of E0.
(e) (Ĉn(ω)) ∈ S for P-a.e. ω.

(f) The map h : Ẽ→ Ẽ defined by h(x̃1, x̃2) := x̃1 − x̃2 is (B̃◦, B̃◦)-measurable.
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Then, ḢS (ξ) is (F0, B̃◦)-measurable and

an
(

H(T̂∗n (ω, · ))− H(Ĉn(ω))
)
;◦ ḢS (ξ) in (Ẽ, B̃◦, ‖ · ‖Ẽ), P-a.e. ω. (A11)

Remark A1. In Condition (a) of Theorem A4, it is assumed that an(T̂∗n − Ĉn) is (F ,B◦)-measurable for
F := F ⊗ F ′. Thus, the mapping ω′ 7→ an(T̂∗n (ω, ω′)− Ĉn(ω)) is (F ′,B◦)-measurable for every fixed
ω ∈ Ω. That is, an(T̂∗n (ω, ·)− Ĉn(ω)) can be seen as an (E,B◦)-valued random variable on (Ω′,F ′,P′)
for every fixed ω ∈ Ω, so that assertion (A10) makes sense. By the same line of reasoning one can regard
an(H(T̂∗n (ω, ·))− H(Ĉn(ω))) as an (Ẽ, B̃◦)-valued random variable on (Ω′,F ′,P′) for every fixed ω ∈ Ω,
so that also assertion (A11) makes sense.

Remark A2. Condition (c) in Theorem A3 (respectively, Theorem A4) assumes that the trace is given by Ẽ, which
implies that the first part of Condition (b) in Theorem A3 (respectively, Theorem A4) is automatically satisfied.

Remark A3. Condition (f) of Theorem A4 is automatically fulfilled when (Ẽ, ‖ · ‖Ẽ) is separable. Indeed, in

this case we have B̃◦ = B̃◦ ⊗ B̃◦ so that every continuous map h : Ẽ → Ẽ (such as h(x̃1, x̃2) := x̃1 − x̃2) is
(B̃◦, B̃◦)-measurable.

Proof. Proof of Theorem A4. First note that by the assumption imposed on ξ (see Assumption (a))
and Assumption (c) the map ḢS (ξ) is (F0, B̃◦)-measurable. Next, note that

an
(

H(T̂∗n (ω, ω′))− H(Ĉn(ω))
)

=
{

an
(

H(T̂∗n (ω, ω′))− H(Ĉn(ω))
)
− ḢS

(
an(T̂∗n (ω, ω′)− Ĉn(ω))

)}
+ ḢS

(
an(T̂∗n (ω, ω′)− Ĉn(ω))

)
=: S1(n, ω, ω′) + S2(n, ω, ω′).

By Equation (A10) in Assumption (a) and the Continuous Mapping theorem in the form of
(Billingsley 1999, Theorem 6.4) (along with P0 ◦ ξ−1[E0] = 1 and the continuity of ḢS ), we have that
S2(n, ω, ·) ;◦ ḢS (ξ) for P-a.e. ω. Moreover, for every fixed ω we have that ω′ 7→ S1(n, ω, ω′) is
(F ′, B̃◦)-measurable by Assumption (f), and for P-a.e. ω we have

an
(

Hn(T̂∗n (ω, · ))− Hn(Ĉn(ω))
)
− ḢS

(
an(T̂∗n (ω, · )− Ĉn(ω))

)
→p,◦ 0Ẽ

by Part (ii) of Theorem A2 (recall that T̂∗n was assumed to take values only in VH), where→p,◦ refers to
convergence in probability◦ (see Section A.1) and T̂∗n (ω, ·), Ĉn(ω), {(Ĉn(ω))} play the roles of T̂n(·),
θn, S , respectively. Hence, from Corollary A2, we get that Equation (A11) holds.

Appendix B.2. Application to Plug-In Estimators of Statistical Functionals

Let D, Dφ, B◦φ be as introduced at the beginning of Section 3. Let Cφ ⊆ Dφ be a ‖ · ‖φ-separable

subspace and assume Cφ ∈ B◦φ. Moreover, let H : D(H) → Ṽ be a map defined on a set D(H) of

distribution functions of finite (not necessarily probability) Borel measures on R, where Ṽ is any vector
space. In particular, D(H) ⊆ D. In the following, D, (Dφ,B◦φ, ‖ · ‖φ), Cφ, and D(H) play the roles of

V, (E,B◦, ‖ · ‖E), E0, and VH , respectively. As before, we let (Ẽ, ‖ · ‖Ẽ) be a normed subspace of Ṽ
equipped with the corresponding open-ball σ-algebra B̃◦.

Let (Ω,F ,P) be a probability space. Let (Fn) ⊆ D(H) be any sequence and (Xi) be a sequence of
real-valued random variables on (Ω,F ,P). Moreover, let F̂n : Ω → D be the empirical distribution
function of X1, . . . , Xn, which will play the role of T̂n. It is defined by

F̂n :=
1
n

n

∑
i=1

1[Xi ,∞). (A12)
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Assume that F̂n takes values only in D(H). Let (Ω′,F ′,P′) be another probability space and set
(Ω,F ,P) := (Ω×Ω′,F ⊗F ′,P⊗ P′). Moreover, let F̂∗n : Ω → D be any map. Assume that F̂∗n take
values only in D(H). Furthermore, let Ĉn : Ω→ D be any map that takes values only in D(H). In the
present setting Theorems A3 and A4 can be reformulated as follows, where we recall from Remark A3
that Condition (f) of Theorem A4 is automatically fulfilled when (Ẽ, ‖ · ‖Ẽ) is separable.

Corollary A3. Let (Fn) be a sequence in D(H) and S := {(Fn)}. Let (an) be a sequence of positive real
numbers with an → ∞, and assume that the following assertions hold:

(a) an(F̂n − Fn) takes values only in Dφ and satisfies

an(F̂n − Fn) ;◦ B in (Dφ,B◦φ, ‖ · ‖φ) (A13)

for some (Dφ,B◦φ)-valued random variable B on some probability space (Ω0,F0,P0) with B(Ω0) ⊆ Cφ.
(b) an(H(F̂n)− H(Fn)) takes values only in Ẽ and is (F , B̃◦)-measurable.
(c) H is uniformly quasi-Hadamard differentiable with respect to S tangentially to Cφ〈Dφ〉 with trace Ẽ and

uniform quasi-Hadamard derivative ḢS .

Then, ḢS (B) is (F0, B̃◦)-measurable and

an
(

H(F̂n)− H(Fn)
)
;◦ ḢS (B) in (Ẽ, B̃◦, ‖ · ‖Ẽ).

Note that the measurability assumption in Condition (a) of Theorem A3 is automatically satisfied
in the present setting (and is therefore omitted in Condition (a) of Corollary A3). Indeed, an(F̂n − F) is
easily seen to be (F ,B◦φ)-measurable, because B◦φ coincides with the trace σ-algebra of D.

Corollary A4. Let S be any set of sequences in D(H). Let (an) be a sequence of positive real numbers with
an → ∞, and assume that the following assertions hold:

(a) an(F̂∗n − Ĉn) takes values only in Dφ, is (F ,B◦φ)-measurable, and

an
(

F̂∗n (ω, ·)− Ĉn(ω)
)
;◦ B in (Dφ,B◦φ, ‖ · ‖φ), P-a.e. ω (A14)

for some (Dφ,B◦φ)-valued random variable B on some probability space (Ω0,F0,P0) with B(Ω0) ⊆ Cφ.
(b) an(H(F̂∗n )− H(Ĉn)) takes values only in Ẽ and is (F , B̃◦)-measurable.
(c) H is uniformly quasi-Hadamard differentiable with respect to S tangentially to Cφ〈Dφ〉 with trace Ẽ and

uniform quasi-Hadamard derivative ḢS .
(d) The uniform quasi-Hadamard derivative ḢS can be extended from Cφ to Dφ such that the extension

ḢS : Dφ → Ẽ is (B◦φ, B̃◦)-measurable, and continuous at every point of Cφ.
(e) (Ĉn(ω)) ∈ S for P-a.e. ω.

(f) The map h : Ẽ→ Ẽ defined by h(x̃1, x̃2) := x̃1 − x̃2 is (B̃◦, B̃◦)-measurable.

Then, ḢS (B) is (F0, B̃◦)-measurable and

an
(

H(F̂∗n (ω, ·))− H(Ĉn(ω))
)
;◦ ḢS (B) in (Ẽ, B̃◦, ‖ · ‖Ẽ), P-a.e. ω.

The following examples illustrate F̂∗n and Ĉn. In Example A1, we have Ĉn = F̂n, and in Example A2
Ĉn may differ from F̂n. Examples for uniformly quasi-Hadamard differentiable functionals H can be
found in Section 3. In the examples in Sections 3.1 and 3.3 we have Ṽ = Ẽ = R, and in the Example in
Section 3.2 we have Ṽ = D and Ẽ = Dφ for some φ.

Example A1. Let (Xi) be a sequence of i.i.d. real-valued random variables on (Ω,F ,P) with distribution
function F satisfying

∫
φ2 dF < ∞ , and F̂n be given by Equation (A12). Let (Wni) be a triangular array of
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nonnegative real-valued random variables on (Ω′,F ′,P′) such that Setting S1. or Setting S2. of Section 2.1
is met. Define the map F̂∗n : Ω → D by F̂∗n (ω, ω′) := 1

n ∑n
i=1 Wni(ω

′)1[Xi(ω),∞). Recall that Setting S1. is
nothing but Efron’s boostrap (Efron (1979)), and that Setting S2. is in line with the Bayesian bootstrap of
Rubin (1981) if Y1 is exponentially distribution with parameter 1.

In Section 5.1 in Beutner and Zähle (2016), it was proved with the help of results of
Shorack and Wellner (1986) and van der Vaart Wellner (1996) that respectively Condition (a) of Corollary A3
(with Fn := F) and Condition (a) of Corollary A4 (with Ĉn := F̂n) hold for an :=

√
n and B := BF, where BF is

an F-Brownian bridge. Here, Cφ can be chosen to be the set Cφ,F of all v ∈ Dφ whose discontinuities are also
discontinuities of F. In addition, note that, in view of Ĉn = F̂n, Condition (e) holds if S is (any subset of) the set
of all sequences (Gn) of distribution functions on R satisfying Gn − F ∈ Dφ, n ∈ N, and ‖Gn − F‖φ → 0 (see,
for instance, Theorem 2.1 in Zähle (2014)).

Example A2. Let (Xi) be a strictly stationary sequence of β-mixing random variables on (Ω,F ,P) with
distribution function F, and F̂n be given by Equation (A12). Let (`n) be a sequence of integers such that `n ↗ ∞
as n→ ∞, and `n < n for all n ∈ N. Set kn := dn/`ne for all n ∈ N. Let (Inj)n∈N, 1≤j≤kn be a triangular array
of random variables on (Ω′,F ′,P′) such that In1, . . . , Inkn are i.i.d. according to the uniform distribution on
{1, . . . , n− `n + 1} for every n ∈ N. Define the map F̂∗n : Ω→ D by F̂∗n (ω, ω′) := 1

n ∑n
i=1 Wni(ω

′)1[Xi(ω),∞)

with Wni given by Equation (8), and recall from Section 2.2 that this is the blockwise bootstrap. Similar
as in Lemma 5.3 in Beutner and Zähle (2016) it follows that an(F̂∗n − Ĉn), with Ĉn := E′ [F̂∗n ], takes values
only in Dφ and is (F ,B◦φ)-measurable. That is, the first part of Condition (a) of Corollary A4 holds true

for Ĉn := E′ [F̂∗n ]. Now, assume that Assumptions A1.–A3. of Section 2.2 hold true. Then, as discussed
in Example 4.4 and Section 5.2 of Beutner and Zähle (2016), it can be derived from a result in Arcones
and Yu (1994) that under Assumptions A1. and A2. we have that Condition (a) of Corollary A3 holds for
an :=

√
n, B := BF, and Fn := F, where BF is a centered Gaussian process with covariance function

Γ(t0, t1) = F(t0 ∧ t1)(1− F(t0 ∨ t1)) + ∑1
i=0 ∑∞

k=2 Cov(1{X1≤ti},1{Xk≤t1−i}). Here, Cφ can be chosen to be
the set Cφ,F of all v ∈ Dφ whose discontinuities are also discontinuities of F. Moreover, Theorem A5 below shows
that under the assumptions A1.–A3. the second part of Condition (a) (i.e.„ Equation (A14)) and Condition (e)
of Corollary A4 hold for Ĉn := E′ [F̂∗n ] = 1

n ∑n
i=1 wni1[Xi ,∞) with wni := E′[Wni] (see also Equation (9)) and

the same choice of an, B, and Fn, when S is the set of all sequences (Gn) ⊆ D(H) with Gn − F ∈ Dφ, n ∈ N,
and ‖Gn − F‖φ → 0.

Further examples for Condition (a) in Corollary A4 for dependent observations can, for example,
be found in Bühlmann (1994); Naik-Nimbalkar and Rajarshi (1994); Peligrad (1998).

Theorem A5. In the setting of Example A2 assume that assertions A1.–A3. of Section 2.2 hold, and let S be
the set of all sequences (Gn) ⊆ D(H) with Gn − F ∈ Dφ, n ∈ N, and ‖Gn − F‖φ → 0. Then, the second part
of assertion (a) (i.e.„ Equation (A14)) and assertion (e) in Corollary A4 hold.

Proof. Proof of second part of (a): It is enough to show that under assumptions A1.–A3. the Assumptions
(A1)–(A4) of Theorem 1 in Bühlmann (1995) hold when the class of functions is Fφ := F−φ ∪ F+

φ .
Here, F−φ := { fx : x ≤ 0} and F+

φ := { fx : x > 0} with fx(·) := φ(x)1(−∞,x](·) for x ≤ 0 and
fx(·) := −φ(x)1(x,∞)(·) for x > 0. Due to A2. and A3. we only have to verify Assumptions (A3) and
(A4) of Theorem 1 in Bühlmann (1995). That is, we show that the following two assertions hold.

(1) There exist constants b, c > 0 such that N[ ](ε, Fφ, ‖ · ‖p) ≤ c ε−b for all ε > 0.
(2)

∫
f

p
dF < ∞ for the envelope function f (z) := supx∈R | fx(z)|.

Here, the bracketing number N[ ](ε, Fφ, ‖ · ‖p) is the minimal number of ε-brackets with respect
to ‖ · ‖p (Lp-norm with respect to dF) to cover Fφ, where an ε-bracket with respect to ‖ · ‖p is the set,
[`, u], of all functions f with ` ≤ f ≤ u for some Borel measurable functions `, u : R→ R+ with ` ≤ u
pointwise and ‖u− `‖p ≤ ε.
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(1) We only show that (1) with Fφ replaced by F−φ holds true. Analogously, one can show that
the same holds true for F+

φ (and therefore for Fφ). On the one hand, since I−p :=
∫
(−∞,0] φp dF < ∞ by

Assumption (a), we can find for every ε > 0 a finite partition −∞ = yε
0 < yε

1 < · · · < yε
kε
= 0 such that

max
i=1,...,kε

∫
(yε

i−1,yε
i ]

φp dF ≤ (ε/2)p (A15)

and kε ≤ dI−p /(ε/2)pe. On the other hand, using integration by parts we obtain

∫
(−∞,0]

F d(−φp) = φ(0)pF(0)−
∫
(−∞,0]

(−φp) dF = φ(0)pF(0) + I−p ,

so that we can find a finite partition −∞ = zε
0 < zε

1 < · · · < zε
mε

= 0 such that

max
i=1,...,mε

∫
(zε

i−1,zε
i ]

F d(−φp) ≤ (ε/2)p (A16)

and mε ≤ d(φ(0)pF(0) + I−p )/(ε/2)pe.
Now, let−∞ = xε

0 < xε
1 < · · · < xε

kε+mε
= 0 be the partition consisting of all points yε

i and zε
i , and set

`ε
i (·) := φ(xε

i )1(−∞,xε
i−1]

(·),

uε
i (·) := φ(xε

i−1)1(−∞,xε
i−1]

(·) + φ(·)1(xε
i−1,xε

i ]
(·).

(A17)

Then, `ε
i ≤ uε

i . Moreover,

‖uε
i − `ε

i‖p =
( ∫ (

uε
i − `ε

i
)p dF

)1/p

≤
( ∫

(−∞,xε
i−1]

(
φ(xε

i−1)− φ(xε
i )
)p dF

)1/p
+
( ∫

(xε
i−1,xε

i ]
φp dF

)1/p

≤
( ∫

(−∞,xε
i−1]

(
φ(xε

i−1)
p − φ(xε

i )
p) dF

)1/p
+ ε/2

≤
((

φ(xε
i−1)

p − φ(xε
i )

p)F(xε
i−1)

)1/p
+ ε/2

where we used Minkovski’s inequality and Equation (A15), and that φ is non-increasing on (−∞, 0]
and xε

i−1 ≤ xε
i . Since F is at least F(xε

i−1) on (xε
i−1, xε

i ], we have

(
φ(xε

i−1)
p − φ(xε

i )
p)F(xε

i−1) ≤
∫
(xε

i−1,xε
i ]

F d(−φp) ≤ (ε/2)p

due to Equation (A16). Thus, ‖uε
i − `ε

i‖p ≤ ε, so that [`ε
i , uε

i ] provides an ε-bracket with respect
to ‖ · ‖p. It is moreover obvious that the ε-brackets [`ε

i , uε
i ], i = 1, . . . , kε + mε, cover F−φ . Thus,

N[ ](ε, F−φ , ‖ · ‖p) ≤ c ε−p for a suitable constant c > 0 and all ε > 0.

(2) The envelope function f is given by f (y) = φ(y) for y ≤ 0 and by f (y) = φ(y−) = φ(y) (recall
that φ is continuous) for y > 0. Then, under Assumption (a) the integrability condition 2) holds.

Proof of (e): We have to show that ‖Ĉn − F‖φ = supx∈R |Ĉn(x)− F(x)|φ(x) → 0 P-a.s. We only
show that

sup
x∈(−∞,0]

|Ĉn(x)− F(x)|φ(x) −→ 0 P-a.s., (A18)

because the analogue for the positive real line can be shown in the same way. Let `ε
i and uε

i be as
defined in Equation (A17). By assumption A1. we have

∫
φ dF < ∞, so that similar as above we can

find a finite partition −∞ = xε
0 < xε

1 < · · · < xε
kε+mε

= 0 such that [`ε
i , uε

i ], i = 1, . . . , kε + mε, are
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ε-brackets with respect to ‖ · ‖1 (L1-norm with respect to F) covering the class Fφ := { fx : x ∈ R}
introduced above. We proceed in two steps.

Step 1. First we show that

sup
x≤0

∣∣Ĉn(x)− F(x)
∣∣φ(x) ≤ max

i=1,...,kε+mε

max
{ ∫

uε
i d(Ĉn − F) ;

∫
`ε

i d(F− Ĉn)
}
+ ε (A19)

holds true for every ε > 0. Since (Ĉn(x) − F(x))φ(x) =
∫

fx dĈn −
∫

fx dF, for Equation (A19) it
suffices to show

sup
x≤0

∣∣∣ ∫ fx dĈn −
∫

fx dF
∣∣∣

≤ max
i=1,...,kε+mε

max
{ ∫

uε
i d(Ĉn − F) ;

∫
`ε

i d(F− Ĉn)
}
+ ε.

(A20)

To prove Equation (A20), we note that for every x ∈ (−∞, y] there is some ix ∈ {1, . . . , kε + mε}
such that fx ∈ [`ε

ix
, uε

ix
] (see Step 1). Therefore, since [`ε

ix
, uε

ix
] is an ε-bracket with respect to ‖ · ‖1,

∫
fx dĈn −

∫
fx dF ≤

∫
uε

ix
dĈn −

∫
fx dF

=
∫

uε
ix

d(Ĉn − F) +
∫
(uε

ix
− fx) dF

≤
∫

uε
ix

d(Ĉn − F) +
∫
(uε

ix
− `ε

ix
) dF

≤ max
i=1,...,kε+mε

∫
uε

i d(Ĉn − F) + ε.

Analogously, we obtain∫
fx dĈn −

∫
fx dF ≥ −

(
max

i=1,...,kε+mε

∫
`ε

i d(F− Ĉn) + ε
)

.

That is, Equation (A19) holds true.
Step 2. Because of Equation (A19), for Equation (A18) to be true, it suffices to show that∫

`ε
i d(F− Ĉn) −→ 0 and

∫
uε

i d(Ĉn − F) −→ 0 P-a.s. (A21)

for every i = 1, . . . , kε + mε. We only show the second convergence in Equation (A21), the first
convergence can be shown even easier. We have

∫
uε

i d(Ĉn − F) =
1
n

n

∑
j=1

(
wni φ(xε

i−1)1(−∞,xε
i−1]

(Xj)−E
[
φ(xε

i−1)1(−∞,xε
i−1]

(X1)
])

+
1
n

n

∑
j=1

(
wni φ(Xj)1(xε

i−1,xε
i ]
(Xj)−E

[
φ(X1)1(xε

i−1,xε
i ]
(X1)

])
=: S1(n)+S2(n).

The first summand on the right-hand side of

S2(n) =
1
n

n

∑
j=1

(
φ(Xj)1(xε

i−1,xε
i ]
(Xj)−E

[
φ(X1)1(xε

i−1,xε
i ]
(X1)

])
+

1
n

n

∑
j=1

(wni − 1)φ(Xj)1(xε
i−1,xε

i ]
(Xj)
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converges P-a.s. to 0 by Theorem 1 (ii) (and Application 5, p. 924) in Rio (1995) and our assumption A1.
The second summand converges P-a.s. to 0 too, which can be seen as follows. From Equation (9), we
obtain for n sufficiently large

|wni − 1| ≤


2 , i = 1, . . . , `n
`n−1

n−`n+1 , i = `n + 1, . . . , n− `n

2 , i = n− `n + 1, . . . , n
,

so that for n sufficiently large

∣∣∣ 1
n

n

∑
j=1

(wni − 1)φ(Xj)1(xε
i−1,xε

i ]
(Xj)

∣∣∣
≤ `n − 1

n− `n + 1
1
n

n−`n

∑
j=`n+1

φ(Xj)1(xε
i−1,xε

i ]
(Xj)

+ 2
2`n

n
1

2`n

( `n

∑
j=1

φ(Xj)1(xε
i−1,xε

i ]
(Xj) +

n

∑
j=n−`n+1

φ(Xj)1(xε
i−1,xε

i ]
(Xj)

)
=: S2,1(n) + S2,2(n).

We have seen above that 1
n ∑n

j=1 φ(Xj)1(xε
i−1,xε

i ]
(Xj) converges P-a.s. to the constant

E[φ(X1)1(xε
i−1,xε

i ]
(X1)]. Since `n converges to ∞ at a slower rate than n (by assumption A3.), it follows

that S2,1(n) converges P-a.s. to 0. Using the same arguments we obtain that S2,2(n) converges P-a.s. to
0. Hence, S2(n) converges P-a.s. to 0. Analogously, one can show that S1(n) converges P-a.s. to 0.
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Jones, Bruce L., and Ričardas Zitikis. 2003. Empirical estimation of risk measures and related quantities. North

American Actuarial Journal 7: 44–54.
Krätschmer, Volker, Alexander Schied, and Henryk Zähle. 2013. Quasi-Hadamard differentiability of general risk

functionals and its application. Statistics and Risk Modeling 32: 25–47.
Krätschmer, Volker, and Henryk Zähle. 2017. Statistical inference for expectile-based risk measures. Scandinavian

Journal of Statistics 44: 425–54.
Lahiri, Soumendra Nath. 2003. Resampling Methods for Dependent Data. New York: Springer-Verlag.
Lauer, Alexandra, and Henryk Zähle. 2015. Nonparametric estimation of risk measures of collective risks. Statistics

and Risk Modeling 32: 89–102.
Lauer, Alexandra, and Henryk Zähle. 2017. Bootstrap consistency and bias correction in the nonparametric

estimation of risk measures of collective risks. Insurance: Mathematics and Economics 74: 99–108.
Mehra, K. L., and Sudhakara Rao. 1975. On functions of order statistics for mixing processes. Annals of Statistics 3:

874–83.
Naik-Nimbalkar, Uttara V., and M.B. Rajarshi . 1994. Validity of blockwise bootstrap for empirical processes with

stationary observations. Annals of Statistics 22: 980–94.
Peligrad, Magda. 1998. On the blockwise bootstrap for empirical processes for stationary sequences. Annals of

Probability 26: 877–901.
Pitts, Susan M. 1994. Nonparametric estimation of compound distributions with applications in insurance. Annals

of the Institute of Mathematical Statistics 46: 537–55.
Pollard, David. 1984. Convergence of Stochastic Processes. New York: Springer-Verlag.
Rio, Emmanuel. 1995. A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws. Annals of

Probability 23: 918–37.
Rubin, Donald. 1981. The Bayesian bootstrap. Annals of Statistics 9: 130–34.
Shao, Jun, and Dongsheng Tu. 1995. The Jackknife and Bootstrap. New York: Springer-Verlag.
Shorack, Galen R. 1972. Linear functions of order statistics. Annals of Mathematical Statistics 43: 412–27.
Shorack, Galen R., and Jon A. Wellner. 1986. Empirical Processes with Applications to Statistics. New York: Wiley.
Stigler, Stephen M. 1974. Linear functions of order statistics with smooth weight functions. Annals of Statistics 2:

676–93.
Sun, Shuxia, and Fuxia Cheng. 2018. Bootstrapping the Expected Shortfall. Theoretical Economics Letters 8: 685–98.



Risks 2018, 6, 96 30 of 30

Tsukahara, Hideatsu. 2013. Estimation of distortion risk measures. Journal of Financial Econometrics 12: 213–35.
Van der Vaart, Aad W., and Jon A. Wellner. 1996. Weak Convergence and Empirical Processes. New York:

Springer-Verlag.
Van Zwet, Willem R. 1980. A strong law for linear functionals of order statistics. Annals of Probability 8: 986–90.
Varron, Davit. 2015. Laboratoire de Mathématiques de Besançon, University of Franche-Comté, Besançon, France.

Personal communication.
Zähle, Henryk. 2014. Marcinkiewicz–Zygmund and ordinary strong laws for empirical distribution functions and

plug-in estimators. Statistics 48: 951–64.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Main Results
	The Case of i.i.d. Observations
	The Case of -Mixing Observations
	Applications
	Bootstrapping the Down Side Risk of an Asset Price
	Bootstrapping the Total Risk Premium in Insurance Models


	Proofs of Main Results
	Average Value at Risk functional
	Compound Distribution Functional
	Composition of Average Value at Risk Functional and Compound Distribution Functional

	Conclusions
	Convergence in Distribution
	Slutsky-Type Results for the Open-Ball -Algebra
	Delta-Method and Chain Rule for Uniformly Quasi-Hadamard Differentiable Maps

	Delta-Method for the Bootstrap
	Abstract Delta-Method for the Bootstrap
	Application to Plug-In Estimators of Statistical Functionals

	References

