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Abstract: Insurers issuing segregated fund policies apply dynamic hedging to mitigate risks related
to guarantees embedded in such policies. A typical industry practice consists of using fund mapping
regressions to represent basis risk stemming from the imperfect correlation between the underlying
fund and its corresponding hedging instruments. The current work discusses the implications of
using fund mapping regressions when the joint dynamics of the underlying and hedging assets is a
regime-switching process. The potential underestimation of capital requirements stemming from the
use of a fund mapping regression under such dynamics is discussed. The magnitude of the latter
phenomenon is quantified through simulations calibrated on market data.

Keywords: basis risk; hedging; segregated funds; variable annuities; risk measures; risk management;
regime-switching

1. Introduction

Variable annuities are hybrid investment and insurance contracts issued by insurers to individual
investors. Such products involve guarantees whose payoff is contingent on equity price movements,
interest rates and mortality. As indicated by Zhang (2010), within hedged portfolios of variable
annuities held by insurers, basis risk was a major source of losses during the recent financial crisis.
Canadian insurers issuing segregated fund policies face similar challenges related to basis risk when
applying dynamic hedging. Segregated funds are the Canadian version of variable annuities.

The main objective of this short note is to assess the adequacy of the use by insurers of fund
mapping regressions within hedging schemes applying to segregated fund policies. This is achieved
through three main contributions.

• The presence of basis risk between underlying assets of segregated funds and their corresponding
hedging instruments is assessed empirically. This fills an important gap in the literature as the
presence of basis risk is overlooked in the majority of papers treating of variable annuities, with a
few exceptions such as Ankirchner et al. (2014).

• Novel parallels between fund mapping-based hedges and minimal variance hedges are drawn.
Such conceptual parallels indicate that fund mapping regressions are likely to produce downward
biased estimates of capital requirements in the context of regime-switching models.

• The presence of such downward biases in this context are confirmed through simulation.

The paper is divided as follows. In Section 2, the empirical assessment of the magnitude of
basis risk between funds underlying segregated funds guarantees in Canada and their corresponding
hedging instrument is performed through the calibration of econometric models to joint segregated
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funds and index futures return time series. The current study considers Canadian and US equity
segregated funds.

Then, in Section 3, the adequacy of fund mapping regressions used by insurers to represent
basis risk is discussed in the context of regime-switching models. We show that assuming a constant
relationship between the underlying and hedging assets throughout the various market regimes
leads to constraints which can bias the estimated impact of basis risk. Investigating regime-switching
models is relevant due to their high popularity for modeling segregated funds policies, see for instance
Hardy (2003). Other papers from the literature applying various versions of the regime-switching
models in the context of equity-linked products, variable annuities or segregated funds include
Hardy (1999, 2002), Lin et al. (2009), Jin et al. (2011), Ng and Li (2011), Ngai and Sherris (2011),
Augustyniak and Boudreault (2012, 2015), Gaillardetz et al. (2012) and Azimzadeh et al. (2014).

Finally, in Section 4, this note illustrates that fund mapping procedures applied within are a
particular case of the family of hedging strategies developed by Trottier et al. (2018). The impact
induced by fund mapping regressions on hedging errors is discussed. Under regime-switching models,
fund mapping regressions are shown to lead to an under-estimation of capital requirements, the latter
being particularly severe if basis risk is omitted. This finding could have managerial implications since
it points towards the addition of a layer of conservatism over capital requirement estimates associated
with segregated funds hedging schemes if fund mapping regressions are used to represent basis risk.
Although the current results are presented in the context of segregated funds, the under-estimation of
risk provided by fund mapping regressions in regime-switching contexts might also apply to hedging
procedures for other long-term financial derivatives involving basis risk.

2. Assessment of the Basis Risk Magnitude for Segregated Funds

This section empirically assesses the importance of basis risk in the context of segregated funds
hedging. We consider Canadian and US equity funds. A sample of segregated funds issued by
insurers is selected. The TSX 60 and S&P 500 index futures are designated as the hedging instruments
respectively for Canadian and US equity funds.

The joint dynamics of each segregated fund along the hedging instrument is represented by a
bivariate regime-switching model that is estimated on historical data. This model is used among others
by Trottier et al. (2018). Regime switching processes are very popular in the segregated funds literature
to model equity return dynamics, see for instance Hardy (2001, 2003). Such models are particularly
well-suited for long-term liabilities; over the long-run, economic conditions can go through multiple
states throughout the life of the segregated fund policies.

2.1. Regime-Switching Model

Define discrete time steps T ≡ {0, 1, . . . , T}. Consider {ht}t∈T the homogeneous Markov chain
representing the market regime; ht takes values in {1, 2}. Transition probabilities from state i to
state j are denoted by Pi,j. Define Ft and St as the time-t value of the mutual fund underlying the

segregated fund and the hedging asset, respectively. For i = 1, 2, define µ
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where N2(µ, Σ) is the bivariate normal distribution with mean vector µ and covariance matrix Σ,
and z = {zt}t∈T is a strong standardized Gaussian bivariate white noise. See Trottier et al. (2018) for
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additional properties of this model. An implicit feature of this model is that conditional on being in a
given regime, the dependence between the two assets is driven by the Gaussian copula.

2.2. Estimation Results

The selected funds are listed in Table 1. Since the majority of funds have a very short history
which does not not include data from the crisis, only funds with at least ten years of data were selected.
For each fund, the joint estimation with the hedging instrument is performed by maximum likelihood
on the entire data history that is available. From a consistency standpoint, it could have been desirable
to perform a joint estimation of parameters for all mutual funds with a common Markov chain driving
the whole market. However, such an estimation procedure would be highly non-trivial due to its high
dimensionality. We therefore do not attempt such a joint estimation and use a separate estimation for
each fund. Estimation results are given in Table 2. We observe that state 1 corresponds to a bull market
regime whereas state 2 represents a bear market regime. The correlation coefficients ρ1, ρ2 for both
regimes range from 65.9% to 98.2% across the various funds.

Table 1. List of funds considered for basis risk assessment. The three letters between brackets for each
fund is an identifier for further referral.

[GCE] GWL Canadian Equity (GWLIM) BEL
Issuer: Great-West Life
Strategy type: Canadian equity growth (active)

[GCV] GWL Canadian Value (FGP) NL
Issuer: Great-West Life
Strategy type: Canadian equity growth (active)

[GCI] GWL Equity Index (GWLIM) BEL
Issuer: Great-West Life
Strategy type: Canadian equity index (passive)

[MPC] Manulife Canadian Small Cap Segregated Funds—Cap Category B
Issuer: Manulife
Strategy type: Canadian equity small cap (active)

[MRA] Manulife Canadian Growth Segregated Funds—Series R Category A
Issuer: Manulife
Strategy type: Canadian equity growth (active)

[MNA] Canadian Equity Segregated Funds—NAL/VISTA
Issuer: Manulife
Strategy type: Canadian equity large cap (active)

[RCE] RBC Canadian Equity GIF Series 1
Issuer: Royal Bank of Canada
Strategy type: Canadian equity growth (active)

[AVL] Assumption/Louisbourg Canadian Equity Fund Series A
Issuer: Assomption Vie
Strategy type: Canadian equity growth (active)

[LCG] LL Canadian Equity Growth (CC&L) BEL
Issuer: London Life
Strategy type: Canadian equity growth (active)

[LCE] LL SRI Canadian Equity (GWLIM) BEL
Issuer: London Life
Strategy type: Canadian equity growth (active)

[RUS] RBC U.S. Equity GIF Series 1
Issuer: Royal Bank of Canada
Strategy type: US equity (active)

[AUS] Assumption/Louisbourg U.S. Equity Fund Series A
Issuer: Assomption Vie
Strategy type: US equity (active)
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Table 2. Maximum likelihood estimation results for the bivariate lognormal two-state regime-switching
model (1) for each respective mutual fund and the corresponding hedging instrument.
Fund descriptions are provided in Table 1.

GCE GCV GCI MPC MRA MNA RCE AVL LCG LCE RUS AUS

Mutual fund

µ
(F)
1

0.0083 0.0104 0.0091 0.0168 0.0139 0.0078 0.0100 0.0060 0.0113 0.0088 0.0050 0.0162
(0.0024) (0.0022) (0.0022) (0.0034) (0.0037) (0.0021) (0.0025) (0.0030) (0.0029) (0.0026) (0.0029) (0.0055)

σ
(F)
1

0.0330 0.0236 0.0321 0.0356 0.0375 0.0330 0.0297 0.0368 0.0308 0.0315 0.0306 0.0326
(0.0019) (0.0019) (0.0018) (0.0026) (0.0029) (0.0018) (0.0018) (0.0021) (0.0020) (0.0018) (0.0021) (0.0045)

µ
(F)
2
−0.0080 −0.0110 −0.0135 −0.0206 −0.0119 −0.0105 −0.0224 0.0023 −0.0089 −0.0094 −0.0096 −0.0031
(0.0104) (0.0061) (0.0119) (0.0128) (0.0097) (0.0104) (0.0125) (0.0105) (0.0064) (0.0099) (0.0049) (0.0032)

σ
(F)
2

0.0734 0.0493 0.0776 0.0971 0.0772 0.0760 0.0745 0.0783 0.0525 0.0664 0.0350 0.0375
(0.0081) (0.0041) (0.0085) (0.0094) (0.0061) (0.0081) (0.0089) (0.0081) (0.0048) (0.0072) (0.0037) (0.0022)

TSX 60 index futures (for CAD funds) / S&P 500 index futures (for US funds)

µ
(S)
1

0.0085 0.0117 0.0092 0.0116 0.0113 0.0082 0.0106 0.0076 0.0100 0.0081 0.0102 0.0193
(0.0026) (0.0025) (0.0025) (0.0024) (0.0027) (0.0024) (0.0024) (0.0025) (0.0028) (0.0027) (0.0028) (0.0036)

σ
(S)
1

0.0348 0.0286 0.0345 0.0252 0.0288 0.0353 0.0293 0.0315 0.0310 0.0328 0.0297 0.0208
(0.0022) (0.0023) (0.0021) (0.0018) (0.0025) (0.0020) (0.0018) (0.0018) (0.0020) (0.0019) (0.0019) (0.0026)

µ
(S)
2
−0.0134 −0.0114 −0.0190 −0.0109 −0.0095 −0.0178 −0.0224 −0.0078 −0.0057 −0.0084 −0.0145 −0.0028
(0.0127) (0.0093) (0.0146) (0.0105) (0.0074) (0.0141) (0.0130) (0.0115) (0.0074) (0.0105) (0.0062) (0.0034)

σ
(S)
2

0.0858 0.0764 0.0924 0.0849 0.0616 0.0938 0.0791 0.0856 0.0661 0.0761 0.0470 0.0397
(0.0097) (0.0071) (0.0104) (0.0077) (0.0055) (0.0114) (0.0093) (0.0087) (0.0055) (0.0076) (0.0042) (0.0023)

Correlations

ρ1
0.9439 0.8727 0.9402 0.7349 0.8123 0.9001 0.9815 0.9016 0.9410 0.9366 0.9734 0.8208

(0.0090) (0.0230) (0.0091) (0.0448) (0.0415) (0.0146) (0.0034) (0.0151) (0.0109) (0.0101) (0.0054) (0.0565)

ρ2
0.9068 0.7120 0.9069 0.9232 0.6585 0.7486 0.9824 0.9080 0.8684 0.9306 0.9292 0.9455

(0.0269) (0.0584) (0.0279) (0.0210) (0.0654) (0.0716) (0.0068) (0.0252) (0.0318) (0.0226) (0.0229) (0.0090)

Transition matrix

P1,1
0.9767 0.9375 0.9788 0.9364 0.9272 0.9728 0.9749 0.9885 0.9754 0.9877 0.9848 0.9604

(0.0137) (0.0284) (0.0114) (0.0254) (0.0313) (0.0130) (0.0143) (0.0084) (0.0148) (0.0091) (0.0117) (0.0360)

P2,1
0.0850 0.1129 0.0906 0.1202 0.1377 0.1386 0.1009 0.0287 0.0373 0.0297 0.0254 0.0074

(0.0527) (0.0610) (0.0507) (0.0492) (0.0545) (0.0619) (0.0578) (0.0237) (0.0237) (0.0250) (0.0205) (0.0081)

Note: Standard errors are given in parentheses.

Trottier et al. (2018) develop a dynamic hedging scheme applicable to segregated funds policies
where an insurer makes periodic injections of liquidities in its hedging portfolio to offset gains and
losses on the fund guarantee value. In their model, the proportion of the hedging cash flow injection
standard deviation that can be eliminated through an Ederington (1979)-type local minimal variance
hedge is a regime-switching version of the thumb rule 1−

√
1− ρ2 where ρ is the correlation between

the mutual fund and the hedging asset.1 Such values are tabulated for different values of ρ in Table 3.
By comparing the latter to the estimated correlation coefficients ρ1, ρ2 from Table 2, one can deduce
that the magnitude of basis risk within hedging procedures is substantial.

Table 3. Proportion 1−
√

1− ρ2 of the standard deviation of cash flow injections that can be eliminated
through a local minimal variance hedge for a correlation between the mutual fund and the hedging
asset of ρ.

ρ 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1−
√

1− ρ2 0.240 0.286 0.339 0.400 0.473 0.564 0.688 1

1 See Proposition 3.3 of Trottier et al. (2018).
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3. Representation of Basis Risk Through Fund Mapping Regressions

The usual industry practice to represent basis risk between a segregated fund and its hedging
instrument is to use a fund mapping regression, see for instance Roncalli and Teïletche (2007) for
such mappings. The fund mapping regression assumes the following relationship between returns of
F and S:

log
(

Ft+1

Ft

)
= β0 + β1 log

(
St+1

St

)
+ σMzt+1, (2)

where z is a strong standardized Gaussian white noise and σM is the relationship noise volatility.
This model implicitly assumes the linkage between returns of assets F and S remains constant across
regimes. Coefficients β0 and β1 are computed through ordinary least squares regression on historical
data. Results of such regressions are presented in Table 4 for the various funds considered in the
previous section.

Table 4. Linear regression results for the fund mapping model (2) for each respective fund and the
corresponding hedging instrument. Mutual fund descriptions are provided in Table 1. For Canadian
equity funds, the hedging instrument is the TSX 60 index futures. For US equity funds, the hedging
instrument is the S&P 500 index futures.

GCE GCV GCI MPC MRA MNA RCE AVL LCG LCE RUS AUS

β0
0.0017 0.0010 0.0016 0.0009 0.0012 0.0022 −0.0004 0.0016 0.0011 0.0012 −0.0015 −0.0008

(0.0012) (0.0016) (0.0012) (0.0022) (0.0028) (0.0018) (0.0007) (0.0016) (0.0013) (0.0011) (0.0010) (0.0011)

β1
0.8159 * 0.5321 * 0.8052 * 1.0822 * 0.9188 * 0.6921 * 0.9485 * 0.8837 * 0.7938 * 0.8605 * 0.8342 * 0.9197 *
(0.0247) (0.0314) (0.0232) (0.0438) (0.0621) (0.0350) (0.0149) (0.0307) (0.0304) (0.0240) (0.0283) (0.0307)

σM
0.0175 0.0233 0.0172 0.0288 0.0403 0.0258 0.0079 0.0222 0.0180 0.0142 0.0107 0.0144

(0.0009) (0.0011) (0.0008) (0.0015) (0.0020) (0.0013) (0.0005) (0.0011) (0.0009) (0.0007) (0.0014) (0.0017)

Note: Standard errors are given in parentheses. For β0 and β1, “*” indicates 5% confidence level significance.

It can be shown that the above model can be expressed in the form of the bivariate
regime-switching model (1) under the following constraints for i ∈ {1, 2}:

µ
(F)
i = β0 + β1µ

(S)
i , σ

(F)
i =

[(
β1σ

(S)
i

)2
+ σ2

M

]1/2
, ρi = β1σ

(S)
i

[(
β1σ

(S)
i

)2
+ σ2

M

]−1/2
. (3)

Applying such constraints to the parameters of the mutual fund dynamics yields the new
parameters presented in Table 5, where it is presumed for simplicity that the parameters of the
hedging instrument and the Markov chain remain unchanged from their previously estimated values
presented in Table 2. One can notice a considerable worsening of the underlying fund dynamics in the
first regime (the bull market regime) for the purpose of hedging; its expected return is generally lower,
its volatility is generally higher, and its correlation with the hedging instrument is lower. For instance,
when an insurer issues a Guaranteed Minimal Maturity Benefit (GMMB) segregated funds policy, it has
a short position on an implicit put option over the underlying fund. Since the delta of a put option is
negative, the short put option translates into an implicit long position on the underlying fund. A lower
expected return on the fund F therefore is a negative outcome for the insurer. A higher volatility is also
undesirable as it will require holding additional short positions on the hedging futures S which entail
shorting the equity risk premium and earning a smaller expected return. Finally, a lower correlation is
clearly negative for hedging as it increases the impact of basis risk. Conversely, an improvement is
noted for the underlying fund dynamics in the second regime; its expected return is generally higher,
its volatility is generally lower, and its correlation with the hedging instrument is higher.
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Table 5. Calculation of the fund mapping parameters obtained under constraints (3) for the various funds described in Table 1. The difference compared to the
unconstrained model (see Table 2) is given in brackets. Teal brackets indicate an improvement from the perspective of the insurer performing the hedge (i.e., higher
mean, lower volatility, or higher correlation), and red brackets indicate a worsening (i.e., lower mean, higher volatility, or lower correlation).

GCE GCV GCI MPC MRA MNA RCE AVL LCG LCE RUS AUS

First regime

µ
(F)
1

0.0086 0.0072 0.0090 0.0135 0.0116 0.0079 0.0097 0.0084 0.0090 0.0082 0.0070 0.0170
[+0.0003] [−0.0032] [−0.0001] [−0.0033] [−0.0023] [+0.0001] [−0.0003] [+0.0024] [−0.0023] [−0.0006] [+0.0020] [+0.0008]

σ
(F)
1

0.0333 0.0278 0.0327 0.0397 0.0482 0.0355 0.0289 0.0356 0.0305 0.0316 0.0270 0.0240
[+0.0003] [+0.0042] [+0.0006] [+0.0041] [+0.0107] [+0.0025] [−0.0008] [−0.0012] [−0.0003] [+0.0001] [−0.0036] [−0.0086]

ρ1
0.8515 0.5469 0.8501 0.6872 0.5492 0.6872 0.9624 0.7813 0.8076 0.8937 0.9186 0.7985

[−0.0924] [−0.3260] [−0.0901] [−0.0477] [−0.2631] [−0.2129] [−0.0192] [−0.1203] [−0.1334] [−0.0429] [−0.0548] [−0.0223]

Second regime

µ
(F)
2

−0.0093 −0.0050 −0.0137 −0.0109 −0.0076 −0.0101 −0.0216 −0.0053 −0.0034 −0.0060 −0.0136 −0.0033
[−0.0013] [+0.0060] [−0.0002] [+0.0097] [+0.0043] [+0.0004] [+0.0008] [−0.0076] [+0.0055] [+0.0034] [−0.0040] [−0.0002]

σ
(F)
2

0.0722 0.0469 0.0764 0.0963 0.0695 0.0699 0.0754 0.0788 0.0555 0.0670 0.0406 0.0393
[−0.0012] [−0.0024] [−0.0012] [−0.0008] [−0.0077] [−0.0061] [+0.0009] [+0.0005] [+0.0030] [+0.0006] [+0.0056] [+0.0018]

ρ2
0.9702 0.8676 0.9743 0.9541 0.8148 0.9292 0.9946 0.9594 0.9461 0.9774 0.9650 0.9301

[+0.0634] [+0.1556] [+0.0674] [+0.0309] [+0.1563] [+0.1806] [+0.0122] [+0.0514] [+0.0777] [+0.0468] [+0.0358] [−0.0154]
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The higher (lower) correlation observed in the bear (bull) market for fund mapping parameters
in comparison to the unconstrained case is due to the last constraint in (3); the function ρi defined
therein is increasing in σ

(S)
i for β1 > 0. This constraint could lead to an upward biased estimate for

the correlation in the bear market (high volatility) regime. Therefore, the hedging efficiency might
be overestimated during crises, a time at which hedges of segregated funds are the most crucial.
One might suspect that using the fund mapping parameters will yield downward biased estimators
of quantile-based risk metrics applied to hedging errors since the tail thickness of the loss side of the
distribution is mainly driven by the bear market regime which is too optimistic. The impact of such
bias on capital requirement estimates is investigated in the next section.

4. Hedging of Variable Annuities

We consider the variable annuities hedging framework developed in Trottier et al. (2018), which is
recalled in Appendix A. In the latter setup, an insurance company hedges the risk pertaining to a
GMMB contract on the underlying mutual fund F. The latter scheme considers risk on a standalone
basis for a single policy at a time. The incorporation of portfolio effects where risk associated with a
given policy can be partially offset by other policies is not considered in the current study and is left
out for further research.

The insurer performs a cross-hedge by taking positions on the futures S, which creates basis
risk since the assets F and S are not perfectly correlated. The insurer sets up a hedging portfolio
taking positions in two assets: the risk-free asset B = {Bt}t∈T and the risky equity futures contract
S = {St}t∈T . The risk-free asset is assumed to grow at a constant risk-free rate r, i.e., Bt = ert.
The number of long positions2 within the hedging portfolio during the time interval (t, t + 1]
are respectively denoted by θ

(B)
t+1 and θ

(S)
t+1, with the convention θ

(B)
0 = θ

(S)
0 = 0. The insurer

performs periodic injections or withdrawals of liquidities from the hedging portfolio at each time step.
The injection at time t is denoted by It (negative amounts correspond to withdrawals). Such injections
are characterized by Proposition 2.1 of Trottier et al. (2018). As shown in the latter work, they can be
approximated by

It+1 ≈ Θt + ∆tδFt − θ
(S)
t+1δSt, (4)

where δFt ≡ Ft+1− Ft, δSt ≡ St+1− St, and Θt and ∆t are the time-t Greeks of the GMMB guarantee as
defined in Equation (A4). The Insurer must hold reserves and capital to meet future variable annuity
guarantee liabilities. The Total Gross Capital Required (TGCR) at time t = 0 is given by

TGCR = CVaRP
0.95

[
T

∑
t=1

e−rt It

]
(5)

where CVaRP
0.95 denotes the Conditional Value-at-Risk measure under the physical measure P at the

95% confidence level, see Rockafellar and Uryasev (2002).

4.1. Minimal Variance Hedging

The minimal variance strategy is formulated as the solution to the problem

θ
(S)∗
t+1 = arg min

θ
(S)
t+1

VarP
[
It+1

∣∣Ft
]
, t ∈ {0, . . . , T − 1} (6)

where Ft ≡ σ(Su, Fu : u = 0, . . . , t) is the information available at time t. As shown in
Trottier et al. (2018), the solution under the approximation (4) is

2 A negative number of long positions represents a short position.
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θ
(S)∗
t+1 = ∆t

CovP[Ft+1, St+1|Ft]

VarP[St+1|Ft]
. (7)

Interestingly, in the absence of basis risk, i.e., if St and Ft are perfectly correlated, the minimal
variance strategy coincides with the usual form of delta hedging.

4.2. Fund Mapping Delta Hedging

A common industry practice is to set up the hedging portfolio which neutralizes the sensitivity
of the guarantee with respect to risk factors (the Greeks). The application of the usual delta hedging
procedure is not straightforward in the presence of basis risk; theoretical positions in the mutual fund
F suggested by delta hedging must be translated into positions on the futures S. The common industry
practice is to use the fund mapping regression relationship (2) to obtain the number θ

(S)
t+1 of futures

contract positions to be included in the hedging portfolio between time t and t + 1, see for instance
Fredricks et al. (2010). Equation (2) implies that

Ft = F0 exp

(
β0t +

t

∑
k=1

σMzk

)(
St

S0

)β1

.

⇒ ∂Ft

∂St
= F0 exp

(
β0t +

t

∑
k=1

σMzk

)
β1

S0

(
St

S0

)β1−1
=

β1Ft

St
.

Define the delta of a segregated fund guarantee by ∆(Π)
t ≡ ∂Πt

∂Ft
where Πt is the time-t value of the

guarantee. This leads to the use of the following delta-hedge strategy:3

θ
(S)
t+1 =

∂Πt

∂St
=

∂Πt

∂Ft

∂Ft

∂St
= ∆(Π)

t
β1Ft

St
. (8)

4.3. Links between Fund Mapping and Minimal Variance Hedging

Under the fund mapping regression model, it can be shown that the delta hedging strategy (8) is
actually a minimal variance hedge based on a coarse approximation.

First, define the function f (s, u) ≡ (1 + u)sβ1 , s > 0, u ∈ R, whose first-order Taylor expansion
centered on (s0, u0) is given by

f (s, u) ≈ (1 + u0)s
β1
0 + (s− s0)β1(1 + u0)s

β1−1
0 + (u− u0)s

β1
0 . (9)

Defining
Ut+1 ≡ eβ0+σMzt+1 − 1, (10)

the fund mapping relationship (2) can be expressed as

Ft+1 = Fteβ0+σMzt+1

(
St+1

St

)β1

=
Ft

Sβ1
t

f (St+1, Ut+1). (11)

Using the Taylor approximation (9) with (s0, u0) = (St, 0) in (11) yields

Ft+1 ≈ Ft + δSt
β1Ft

St
+ FtUt+1 ⇐⇒ δFt ≈ δSt

β1Ft

St
+ FtUt+1. (12)

Hence, the injection approximation formula (4) can be further approximated:

It+1 ≈ Θt + ∆tδFt − θ
(S)
t+1δSt ≈ Θt + δSt

[
∆t

β1Ft

St
− θ

(S)
t+1

]
+ ∆tFtUt+1.

3 There exists a very slight difference between the definition of ∆(Π)
t and ∆t which are two versions of the guarantee’s delta,

see Appendix A. However this difference is negligible in practice, i.e., ∆(Π)
t ≈ ∆t. It can thus be overlooked.
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Using the fact that δSt and Ut+1 are independent, it is straightforward to show that the minimal
variance strategy is given by

θ
(S)∗
t+1 = ∆t

β1Ft

St
. (13)

This matches the fund mapping delta hedging strategy (8) up to a slightly different definition
of the GMMB contract’s delta, i.e., ∆(Π)

t versus ∆t. To sum up, the fund mapping delta hedge is
the minimal variance hedging strategy under the approximation (12) for δFt, which is usually quite
accurate for monthly returns. Hence, both methods lead to the same hedging strategy if the fund
mapping constraints (3) are satisfied.

4.4. Impact of the Fund Mapping Constraints

In this section, we perform capital requirements estimation under the fund mapping model and
compare the results with the unconstrained regime-switching model to determine which is most
conservative. The simulation setup and parameters are as described in Trottier et al. (2018). Parameters
are recalled in Appendix B and the simulation approach is described below.

The performance of the minimal variance strategy under both dynamics (the unconstrained model
and the fund mapping regression) is studied. In the first numerical experiment, the data generating
mechanism for F is given by the values in Table 2 (the unconstrained model) and the hedging strategy
is performed consistently with this assumption. This simulation/hedging step is repeated 50,000 times
to yield CVaR estimates for the discounted sum of injections. The CVaR risk measure is considered
since this risk metric is used to determine reserves and capital requirements both in Canada and
the US, see OSFI (2002) and AAA (2011). The injections are simulated according to their dynamics
described in Appendix A. The same experiment is carried out for the data generating process of Table 5
(under fund mapping constraints), with the hedging strategy performed consistently with this new
assumption. As shown in the preceding section, the usual fund mapping delta hedge then coincides
with the minimal variance strategy.

The simulation results are presented in Table 7. For all twelve funds considered the risk statistics
are higher under the unconstrained model, compared to the fund mapping constrained model (with
the exception of the standard deviation for AUS). Hence, the fund mapping representation of basis
risk leads to less conservative estimators of capital requirements. In other words, the constraints (3)
result in downward biased risk measures.

4.5. Impact of Neglecting the Error Term in the Fund Mapping Regression

In this last section, the aim is to study the impact of neglecting the error term in the fund mapping
regression model. In Canada, the Canadian Institute of Actuaries recognizes that an error term should
be added to reflect basis risk,4 but insurers are not required to do so in practice. Under such an
assumption, the parameters are calculated using the constraints (3) with the fund mapping regression
coefficients of Table 4 except for the standard error parameter which is set to σM = 0. This yields
the parameters in Table 6. Compared to the unconstrained model, one can see that the correlation
between F and S is now 100% in both regimes (indeed we assume no basis risk). The other parameters
characterizing the underlying fund F dynamics (drifts and volatilities) are also generally biased
towards values that are favorable for the insurer (i.e., higher expected returns and smaller volatilities).
Indeed, carrying out the minimal variance hedging strategy under such parameters, i.e., by using them
both to calculate the hedging strategy and as the data-generating model for simulated paths, yields
much lower capital requirements as it can be seen in Table 7 where the statistics are estimated from
50,000 simulation runs. The omission of basis risk in a segregated funds hedging framework therefore
leads to a severe underestimation of risk.

4 See Section 5.2 of the report “Reflection of Hedging in Segregated Fund Valuation. Document 212027” (http://www.cia-ica.
ca/docs/default-source/2012/212027e.pdf) by the Canadian Institute of Actuaries.

http://www.cia-ica.ca/docs/default-source/2012/212027e.pdf
http://www.cia-ica.ca/docs/default-source/2012/212027e.pdf
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Table 6. Calculation of the fund mapping parameters obtained under constraints (3) assuming no basis risk (i.e., σM = 0) for the various funds described in
Table 1. The difference compared to the unconstrained model (see Table 2) is given in brackets. Teal brackets indicate an improvement from the perspective of the
insurer performing the hedge (i.e., higher mean, lower volatility, or higher correlation), and red brackets indicate a worsening (i.e., lower mean, higher volatility,
or lower correlation).

GCE GCV GCI MPC MRA MNA RCE AVL LCG LCE RUS AUS

First regime

µ
(F)
1

0.0086 0.0072 0.0090 0.0135 0.0116 0.0079 0.0097 0.0084 0.0090 0.0082 0.0070 0.0170
[+0.0003] [−0.0032] [−0.0001] [−0.0033] [−0.0023] [+0.0001] [−0.0003] [+0.0024] [−0.0023] [−0.0006] [+0.0020] [+0.0008]

σ
(F)
1

0.0284 0.0152 0.0278 0.0273 0.0265 0.0244 0.0278 0.0278 0.0246 0.0282 0.0248 0.0191
[−0.0046] [−0.0084] [−0.0043] [−0.0083] [−0.0110] [−0.0086] [−0.0019] [−0.0090] [−0.0062] [−0.0033] [−0.0058] [−0.0135]

ρ1
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

[+0.0561] [+0.1273] [+0.0598] [+0.2651] [+0.1877] [+0.0999] [+0.0185] [+0.0984] [+0.0590] [+0.0634] [+0.0266] [+0.1792]

Second regime

µ
(F)
2

−0.0093 −0.0050 −0.0137 −0.0109 −0.0076 −0.0101 −0.0216 −0.0053 −0.0034 −0.0060 −0.0136 −0.0033
[−0.0013] [+0.0060] [−0.0002] [+0.0097] [+0.0043] [+0.0004] [+0.0008] [−0.0076] [+0.0055] [+0.0034] [−0.0040] [−0.0002]

σ
(F)
2

0.0700 0.0407 0.0744 0.0919 0.0566 0.0649 0.0750 0.0756 0.0525 0.0655 0.0392 0.0365
[−0.0034] [−0.0086] [−0.0032] [−0.0052] [−0.0206] [−0.0111] [+0.0005] [−0.0027] [−0.0001] [−0.0009] [+0.0042] [−0.0010]

ρ2
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

[+0.0932] [+0.2880] [+0.0931] [+0.0768] [+0.3415] [+0.2514] [+0.0176] [+0.0920] [+0.1316] [+0.0694] [+0.0708] [+0.0545]
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Table 7. Results for the minimal variance hedge applied under the unconstrained model (top panel),
under the fund mapping constraints (middle panel), and under the fund mapping constraints with
σM = 0 (bottom panel). Funds are described in Table 1. The statistics are for the discounted sum of
injections: ∑T

t=1 e−rt It.

GCE GCV GCI MPC MRA MNA RCE AVL LCG LCE RUS AUS

Unconstrained model
Mean 3.13 6.78 3.39 6.10 3.07 2.91 8.00 1.42 8.24 6.23 14.31 10.48
Std.Dev. 4.97 8.24 5.19 9.62 10.17 6.91 4.11 8.05 8.21 6.78 6.06 4.71
CVaRP

0.70 9.16 17.27 9.79 17.76 15.65 11.36 13.06 10.29 18.66 14.80 21.69 16.07
CVaRP

0.80 10.73 19.58 11.46 20.22 18.75 13.60 14.05 12.19 20.82 16.65 23.28 17.41
CVaRP

0.90 13.04 22.73 13.90 23.76 23.12 16.93 15.48 15.11 23.77 19.32 25.48 19.53
CVaRP

0.95 15.04 25.26 16.01 26.78 26.54 19.78 16.73 17.61 26.23 21.61 27.21 21.51
CVaRP

0.99 18.96 29.90 20.16 32.60 32.66 25.23 19.22 22.19 31.02 26.10 30.17 25.75

Fund mapping model
Mean 2.46 4.32 2.71 2.83 1.67 0.84 7.47 2.34 3.73 3.62 10.77 8.70
Std.Dev. 4.86 6.93 4.85 7.54 10.15 6.53 3.78 6.21 5.16 4.50 4.36 4.85
CVaRP

0.70 8.36 12.95 8.60 11.80 14.04 8.81 12.08 9.88 10.05 9.13 15.86 14.52
CVaRP

0.80 9.79 14.92 10.02 13.82 17.03 10.84 12.99 11.60 11.54 10.36 16.88 15.67
CVaRP

0.90 11.92 17.72 12.13 16.78 21.35 13.90 14.28 14.14 13.74 12.14 18.41 17.33
CVaRP

0.95 13.75 20.02 13.95 19.36 24.90 16.49 15.38 16.29 15.61 13.64 19.70 18.75
CVaRP

0.99 17.27 24.29 17.36 24.38 31.40 21.36 17.49 20.42 19.14 16.53 22.16 21.49

Fund mapping model without basis risk
Mean 2.91 5.15 3.16 3.89 3.61 1.75 7.60 3.19 4.21 4.04 10.97 9.03
Std.Dev. 2.01 2.15 2.13 2.26 1.65 1.68 2.71 2.89 2.10 2.45 3.02 2.97
CVaRP

0.70 5.41 7.63 5.79 6.58 5.65 3.85 10.88 6.77 6.81 7.11 14.27 11.91
CVaRP

0.80 5.97 7.96 6.38 7.23 6.04 4.37 11.40 7.54 7.27 7.73 14.70 12.18
CVaRP

0.90 6.86 8.45 7.31 8.31 6.62 5.18 12.18 8.75 7.95 8.67 15.19 12.53
CVaRP

0.95 7.70 8.89 8.19 9.35 7.16 6.00 12.91 9.86 8.57 9.53 15.50 12.81
CVaRP

0.99 9.61 9.90 10.14 11.69 8.42 7.71 14.45 12.03 9.88 11.29 16.03 13.37

5. Conclusions

The current work illustrates that basis risk is highly material within hedging procedures associated
with segregated funds guarantees for most of the considered funds among a sample of Canadian and
US equity mutual funds that was selected. A bivariate regime-switching model is utilized to represent
the joint dynamics of the fund and the hedging asset. Under this particular framework, the impact
of using a simplifying fund mapping regression to quantify the relation between the mutual fund
and the hedging asset under the bivariate regime switching model is assessed. The current work
shows that, assuming the unconstrained regime switching model is the true model driving the assets
dynamics, the use of fund mapping regressions can generate biases in parameter estimates which can
translate into a downward bias for capital requirement estimates. Moreover, the omission of basis
risk within fund mapping regression-based hedging is shown to lead to a severe under-estimation of
capital requirements. Although fund mapping regressions might continue being utilized in practice
due to their convenience, keeping in mind their limitations is important. This points out towards the
need of developing a convenient estimation method applicable to regime-switching frameworks for
the joint dynamics of the underlying fund and the hedging instrument which is not subject to biases
induced by fund mapping regressions.

An interesting question for further research would be to determine if estimated capital
requirements are also biased downward when using fund mapping regressions in conjunction with
other models and assess if results presented in the current paper are idiosyncratic to regime-switching
models. Intuitively, other models producing scenarios where simultaneously the mutual fund’s drift is
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highly negative, its volatility is very large and its correlation is not larger than usual could produce
similar effects than the regime-switching model outlined in this paper; fund mapping regressions
which reflect the stationary (i.e., average) relationship between both the underlying and hedging assets
might not be able to capture such highly unfavorable scenarios which are the ones driving capital
requirements. A multivariate GARCH-in-mean with a highly negative volatility premium for the
mutual fund would be an example of a model possessing such features.

It would also be relevant to investigate portfolio effects related to insurer capital requirements
associated segregated funds; the basis risk associated with a given policy could be partially mitigated
by offsetting risk associated with other policies.
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Appendix A. The Trottier et al. (2018) Hedging Framework

In the Trottier et al. (2018) hedging framework, a GMMB policy with guaranteed value K is
considered. The post-fee policy account value {At}t∈T evolves according to

At+1 = At(1−ωtot)
Ft+1

Ft
, t ∈ {0, . . . , T − 1},

where A0 is the initial account value and ωtot is the periodic total percentage of fees charged to the
policyholder. Let ωopt be the periodic fee rate used for hedging purposes (e.g., removing profits
and overhead costs) and `t being the proportion of policies that are still active at time t i.e., whose
policyholder did not lapse nor die before or at time t. The proportion of policies that are still active at
time t is assumed to be given by

`t = (1− b)t
t px, t ∈ T , (A1)

where b is a constant monthly lapse rate and t px is defined as the probability that a policyholder aged
x months at time 0 survives t months.

At each time t, the net cash outflow for the insurer is given by

CFt = −
ωopt

1−ωtot
At`t−1 + 1{t=T}max(0, K− AT)`T , t ∈ {1, . . . , T},

where the first term corresponds to fees charged to policyholders that are still active (a negative outflow
means an inflow to the insurer), and the second term corresponds to the benefit at maturity. Using a
risk-neutral evaluation, the time-t GMMB guarantee contract value Πt is given by

Πt = Bt EQ
[

T

∑
j=t+1

CFj

Bj

∣∣∣∣∣Ft

]
t ∈ T .

where Ft is the information available at time t and Q is a suitable martingale measure. The chosen
martingale measure is model invariant; the asset dynamics are identical between the physical measure
P and the martingale measure Q, except that drifts are translated to the risk-free rate (or zero for the
futures contract) minus a convexity correction in both regimes. Πt is the post-cash flow value as it
does not take into account CFt, the cash flow at time t. The fee rate ωopt is assumed to be a fair fee rate
which is set such that Π0 = 0.
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The insurer holds a hedging portfolio to mitigate the risk associated with the GMMB guarantee.
The hedging portfolio is invested in the trading strategy θ = {θ(B)

t , θ
(S)
t }t∈T where θ

(B)
t+1 and θ

(S)
t+1

denote respectively the number of long positions within the hedging portfolio of the risk-free asset and
the risky hedging asset during the time interval (t, t + 1], with the convention θ

(B)
0 = θ

(S)
0 = 0. At each

time t, the insurer performs an injection or a withdrawal of liquidities from the hedging portfolio.
The time-t injection is denoted by It, where negative amounts correspond to withdrawals. Injections
are made such that the hedging portfolio values exactly tracks the guarantee value i.e., that its value
and the guarantee value are exactly equal after the injection. Defining Vθ

t− as the hedging portfolio
value before the injection It and the cash flow CFt, we obtain

It = Πt −Vθ
t− + CFt, t ∈ T . (A2)

Since liquidities and futures margin amounts are assumed to be invested at the risk-free asset,
we have θ

(B)
t+1 = Πt

Bt
for t = 0, . . . , T. Therefore, the choice of the trading strategy θ by the insurer

is characterized by choosing the number of hedging asset positions θ
(S)
t+1 taken in each period t.

The portfolio value evolves according to

Vθ
(t+1)− = θ

(B)
t+1Bt+1 + θ

(S)
t+1(St+1 − St), (A3)

which is obtained by summing the value of the position in the risk-free asset and gains from the hedging
futures position. Trottier et al. (2018) show that using a first order Taylor expansion approximations,
one obtains

It+1 ≈ Θt + ∆tδFt − θ
(S)
t+1δSt

where the option Greeks (discrete-time theta and delta) are given by

γt ≡
A0

F0
(1−ωtot)

t`t,

Θt ≡ Πt(1− er) + γT

[
g
(
t + 1, Ft, ηQ

1,t
)
− g
(
t, Ft, ηQ

1,t
)]

,

∆t ≡ −ωopt

T

∑
j=t+1

γj−1 + γT
∂g
∂F
(
t + 1, Ft, ηQ

1,t
)
,

(A4)

with ηQ
1,t ≡ Q[ht = 1|Ft] and g being the GMMB benefit pricing functional such that

g
(
t, Ft, ηQ

1,t
)

= Bt EQ
[

max
(
0, K̃− FT

)
BT

∣∣∣∣∣Ft

]
,

K̃ ≡ KF0

A0(1−ωtot)T .

Appendix B. The Trottier et al. (2018) Simulation Setup

Parameters used for simulations of the GMMB hedging portfolio injections are provided in
Table A1. Policyholders aged 55 years at time t = 0 purchasing an at-the-money GMMB segregated
fund with a 10-year maturity (T = 120) are considered. Survival probabilities are obtained using the
Canadian Institute of Actuaries’ recommended methodology; base mortality rates are drawn from
the CPM2014 table, see CIA (2014). Mortality improvements are projected with rates proposed in
Appendix C of CIA (2010). Monthly mortality rates are obtained from annual rates by assuming a
constant force of mortality throughout the year.
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Table A1. Baseline parameters in monthly frequency used in simulations of Sections 4.4 and 4.5.

Maturity (in months) T 120
Survival probability t p660 Projected CPM2014
Lapse rate b 0.34%
Total fee rate ωtot 0.29%
Risk-free rate r 0.25%
GMMB guarantee K 100
Initial value of F and A F0 = A0 100
Initial value of S S0 100
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