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Abstract: The stability of the financial system is associated with systemic risk factors such as
the concurrent default of numerous small obligors. Hence, it is of utmost importance to study
the mutual dependence of losses for different creditors in the case of large, overlapping credit
portfolios. We analytically calculate the multivariate joint loss distribution of several credit portfolios
on a non-stationary market. To take fluctuating asset correlations into account, we use an random
matrix approach which preserves, as a much appreciated side effect, analytical tractability and
drastically reduces the number of parameters. We show that, for two disjoint credit portfolios,
diversification does not work in a correlated market. Additionally, we find large concurrent portfolio
losses to be rather likely. We show that significant correlations of the losses emerge not only for
large portfolios with thousands of credit contracts, but also for small portfolios consisting of a few
credit contracts only. Furthermore, we include subordination levels, which were established in
collateralized debt obligations to protect the more senior tranches from high losses. We analytically
corroborate the observation that an extreme loss of the subordinated creditor is likely to also yield
a large loss of the senior creditor.

Keywords: portfolio credit risk; systemic risk; diversification; portfolio loss correlation; collateralized
debt obligations; non-stationarity

1. Introduction

The subprime crisis 2007–2009 had a drastic influence on the world economy, due to the almost
concurrent default of many small debtors (Hull 2009). Most of the credit contracts where bundled into
credit portfolios in the form of collateralized debt obligations (CDOs). Realistic estimates for credit
risks and the possible losses, particularly of large portfolios are important not only for the creditors,
also and maybe even more from a systemic viewpoint. There is a wealth of studies on credit risk
(see (Bielecki and Rutkowski 2013; Bluhm et al. 2016; Chava et al. 2011; Crouhy et al. 2000; Duffie
and Singleton 1999; Glasserman and Ruiz-Mata 2006; Heitfield et al. 2006; Lando 2009; Mainik and
Embrechts 2013; McNeil et al. 2005; Schönbucher 2003) and references therein). For a review on credit
contagion, see (Avkiran et al. 2018; Egloff et al. 2007; Giesecke and Weber 2004 2006; Hatchett and
Kühn 2009), and, for studies on practical investment and Value-at-Risk applications of copula theory
in evaluating systemic risk, see (Low et al. 2013; Low 2017).

In a credit portfolio, it is of utmost importance to consider the correlations of the asset values.
It has been shown that in the presence of even little correlations the concept of diversification is deeply
flawed (Glasserman 2004; Schäfer et al. 2007; Schmitt et al. 2014, 2015; Schönbucher 2001). Hence, it is
not possible to lower the tail risk significantly by enlarging the number of credit contracts in a credit
portfolio. In general, diversification is not always fruitful (Bardoscia et al. 2017; Corsi et al. 2016;
Humphrey et al. 2015; Ibragimov and Walden 2007; Wagner 2010).
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To obtain a comprehensive understanding of systemic credit risk, it is important to study and
model the mutual dependence of losses of different portfolios. Here, we are interested in the joint
probability distribution that contains all the information on the individual loss distributions as
well as their dependence structure. We apply the Merton (1974) model to several credit portfolios
simultaneously (Münnix et al. 2014). Additionally, we take fluctuating asset correlations into account.
These emerge because of the intrinsic non-stationarity of financial markets, which leads to a change of
the correlation and covariance matrix in time (Münnix et al. 2012; Sandoval and Franca 2012; Schmitt
et al. 2013; Song et al. 2011). To describe this non-stationarity, we use an random matrix approach
that was recently introduced (Chetalova et al. 2015); for a comprehensive review, see (Mühlbacher
and Guhr 2018). It results in a multivariate asset return distribution averaged over the fluctuating
correlation matrices. The validity of this approach has been confirmed by empirical data analysis
(Schmitt et al. 2013, 2015). The random matrix approach leads to a drastic reduction of the number
of parameters describing the distribution. Remarkably, only two parameters, the average correlation
coefficient of the asset values and the strength of the fluctuations are sufficient. The standard method
for the Merton model does merely incorporate stationary asset correlations, whereas our model takes
non-stationary asset correlations into account. This is an important feature that has a significant
influence on the tail of the loss distribution. Furthermore, the random matrix approach reduces the
numbers of relevant parameters significantly. With only two parameters, we are able to approximate
the formidable complexity of the return distribution of a financial market very well.

From the asset return distribution, we analytically derive a joint probability distribution of credit
portfolio losses. In addition, we derive a limiting distribution for infinitely large credit portfolios
(Lucas et al. 2001). We analyze in detail two non-overlapping credit portfolios that operate on the same
market. Moreover, we include subordination levels (An et al. 2015; Black and Cox 1976; Gorton and
Santomero 1990). At maturity time, the senior creditor is paid out first and the junior subordinated
creditor is only paid out if the senior creditor regained the full promised payment. This is related to
CDO tranches and gives further information on to multivariate credit risk (Benmelech and Dlugosz
2009; Duffie and Garleanu 2001; Longstaff and Rajan 2008).

Furthermore, we consider a single credit portfolio that operates on several markets which are
on average uncorrelated. We are able to derive a limiting distribution for an infinitely large credit
portfolio. Here, the tail risk is lower than in the case of one market with effective average correlation
structure, but still diversification is limited.

The paper is organized as follows. In Section 2, we introduce the Merton model and derive
the portfolio loss distributions for different debt structures. In Section 3, we present our results for
empirical estimated parameters. We conclude our observations in Section 4.

2. Model

We extend the Merton model to a multivariate scenario with two creditors and K correlated
obligors with asset values or economic states Vk(t), k = 1, . . . , K at time t. Each obligor may hold
a credit contract from each creditor. In the Merton model, the asset values Vk(t) are estimated by
the stock prices of the corresponding obligors. Thus, we assume that all K obligors are companies
that can be traded on a stock market. We claim that the asset values follow a geometric Brownian
motion. Furthermore, we assume subordinated debt where at maturity time T the senior creditor
is paid out first and the junior subordinated creditor is only paid out if the senior creditor regained
the full promised payment. Suppose each obligor has to pay back the face value Fk at maturity time
T. We consider large time scales such as one year or one month. The face value of each obligor is
composed of the face value of the senior creditor F(S)

k and the face value of the junior subordinated

creditor F(J)
k , which is Fk = F(S)

k + F(J)
k . A default occurs if the asset value drops below the face

value i.e., Vk(T) < Fk for at least one obligor. The severity of the loss depends on the value of the
obligors V(T) at time maturity. For Fk > Vk(T) > F(S)

k , the default is completely defrayed by the junior
subordinated creditor meaning that the senior creditor does not incur any loss. The senior creditor
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will incur a loss while the junior subordinated creditor will sustain a total loss only if Vk(T) < F(S)
k t.

A visualization of the underlying process for a single asset is shown in Figure 1.

Vk(0)

Vk(t)

Fk

T t

F
(J)
k

F
(S)
k

Figure 1. Schematic visualization of the Merton model. A default occurs if the asset value at maturity
VK(T) drops below the face value Fk. In the red sketched scenario, a default occurs only to the junior
subordinated creditor while the senior creditor obtains no loss.

The colored lines show two time-dependent asset values Vk(t). In the blue case, the asset value
of the company at maturity is above the face value and the promised payment can be made. In the red
case, the asset value at maturity is below the total face value Fk but still above the face value of the
senior creditor F(S)

k , which results in a default of the junior creditor, while the senior creditor regains
the full promised payment.

The normalized loss L(S)
k that a senior creditor and the normalized loss L(J)

k that a junior
subordinated creditor is suffering can be expressed as

L(S)
k =

(
1− Vk(T)

F(S)
k

)
Θ
(

F(S)
k −Vk(T)

)
, (1)

L(J)
k =

(
1−

Vk(T)− F(S)
k

F(J)
k

Θ
(

Vk(T)− F(S)
k

))
Θ (Fk −Vk(T)) , (2)

respectively. The Heaviside step functions

Θ(x) =


0 , x < 0,
1
2 , x = 0,

1 , x > 0,

(3)

ensure that the losses are strictly positive. We introduce the fractional face values f (S)k and f (J)
k for the

senior and junior subordinated creditors

f (S)k =
F(S)

k

∑K
l=1 F(S)

l

and f (J)
k =

F(J)
k

∑K
l=1 F(J)

l

, (4)

respectively. This enables us to define the normalized portfolio losses L(S) and L(J) for the senior and
junior subordinated creditors as weighted sums

L(S) =
K

∑
k=1

f (S)k L(S)
k and L(J) =

K

∑
k=1

f (J)
k L(J)

k , (5)
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respectively. Our aim is to derive the bivariate distribution p(L(S), L(J)|Σ) of the portfolio losses,
which depends on the covariance matrix Σ. This can be done by integrating over all portfolio values
and filtering those that lead to a given bivariate total loss (L(S), L(J))

p(L(S), L(J)|Σ) =
∫

d[V]g(V|Σ) δ

(
L(S) −

K

∑
k=1

f (S)k L(S)
k

)
δ

(
L(J) −

K

∑
k=1

f (J)
k L(J)

k

)
, (6)

where g(V|Σ) is the multivariate distribution of the correlated asset values of the obligors at maturity,
Σ is the covariance matrix of the asset values, which is in our model well estimated by that of the
stock prices. δ(x) is the Dirac delta function and V = (V1(T), . . . , VK(T)) is the K component vector of
the asset values. The measure d[V] is the product of all differentials dVk and the integration domain
ranges from zero to infinity for every integral. Using the Fourier representation of the δ function
(Lighthill 1958) as well as Equations (1) and (2), we find

p(L(S), L(J)|Σ) = 1
(2π)2

∞∫
−∞

dν(S)e−iν(S)L(S)
∞∫
−∞

dν(J)e−iν(J)L(J)

×
K

∏
k=1


F(S)

k∫
0

dVk exp

(
iν(S) f (S)k

(
1− Vk

F(S)
k

)
+ iν(J) f (J)

k

)

+

Fk∫
F(S)

k

dVk exp

(
iν(J) f (J)

k

(
1−

Vk − F(S)
k

F(J)
k

))
+

∞∫
Fk

dVk

 g(V|Σ) ,

(7)

where we split the Vk integrals in three parts. We will use this expression later on, but we first need to
specify the multivariate distribution of the correlated asset values g(V|Σ).

Our goal is to calculate average joint loss distributions that take the non-stationarity of the
covariances into account

〈p〉(L(S), L(J)|Σ) =
∫

d[V]〈g〉(V|Σ) δ

(
L(S) −

K

∑
k=1

f (S)k L(S)
k

)
δ

(
L(J) −

K

∑
k=1

f (J)
k L(J)

k

)
(8)

and according to Equation (7). We will argue that this is achieved by properly averaging the
multivariate distribution g(V|Σ), resulting in 〈g〉(V|Σ).

2.1. Average Distribution

Following (Schmitt et al. 2013, 2015) and (Münnix et al. 2014), we use a random matrix concept
to capture the non-stationarity of the correlations between the asset values Vk. The covariances of
the returns

rk(t) =
Vk(t + ∆t)−Vk(t)

Vk(t)
, (9)

with the return interval ∆t are ordered in the K × K covariance matrix Σ. It can be expressed as
Σ = σCσ with the correlation matrix C and the diagonal matrix σ = diag (σ1, . . . , σK) containing the
volatilities of the different return time series rk.

In short time intervals where the covariance matrices can be viewed as stationary, the asset return
distribution is a multivariate Gaussian gs(r|Σ) (Schmitt et al. 2013). Importantly, we are interested
in longer time intervals where non-stationarity is present in the covariances. As the covariance
matrices differ significantly for different times, we empirically obtain an existing ensemble of different
covariance matrices. These covariance matrices can be modeled by means of K× N random matrices
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W, which contain as rows the model time series. Thus, WW†/N is the model random covariance
matrix and we replace

Σ→ 1
N

WW† , (10)

where we are free to choose the length N of the model time series. The symbol † denotes the transpose
of a vector or matrix. The larger N, the more terms contribute to the elements of the model covariance
matrix WW†/N. In (Münnix et al. 2014; Schmitt et al. 2013, 2015), it was demonstrated that the
empirical data ensemble can be very efficiently modeled by such random matrices W distributed
according to Wishart (1928)

w(W|Σ0, N) =

√
N

KN√
det(2πΣ0)

N exp
(
−N

2
tr W†Σ−1

0 W
)

. (11)

This distribution defines an ensemble of random covariance matrices WW†/N which fluctuate
around the average covariance matrix Σ0 that is empirically evaluated over the whole time interval.
In the limit N → ∞, the Wishart distribution fixes the random matrices WW†/N to the average
covariance matrix Σ0, which is empirical input. Hence, we replace the covariance matrices Σ with the
random matrices WW†/N according to (10) and average over the Wishart ensemble (11) to account
for the non-stationarity. The ensemble average leads to the following general result for the average
return distribution in the presence of fluctuating covariance matrices,

〈g〉 (r|Σ0, N) =

√
N

K

√
2

N−2
Γ(N/2)

√
det(2πΣ0)

K(K−N)/2

(√
Nr†Σ−1

0 r
)

√
Nr†Σ−1

0 r
(K−N)/2

, (12)

where K(K−N)/2 is the Bessel function of second kind and of order (K − N)/2 (Schmitt et al. 2013).
Σ0 is the covariance matrix averaged over the whole data interval considered and N controls the
strength of the fluctuations around the average covariance matrix Σ0. The smaller N, the larger are
the fluctuations. In this notation and all further notations, we omit the time dependences of r and
V. Hence, the heavier the tails of the distribution (12), the smaller the N. The distribution is very
non-Gaussian and differs considerably from gs(r|Σ). Since we assume all credit contracts to have the
form of zero coupon bonds, we consider our return intervals to have the same length as the maturity
time, i.e., ∆t = T.

Refs. (Schmitt et al. 2013, 2015) have shown that an effective average correlation matrix of the form

C = (1− c)1K + ceKe†
K =


1 c c . . .
c 1 c . . .
c c 1 . . .
...

...
...

. . .

 , (13)

with 1K being the K× K unit matrix and eK being a K component vector containing ones, yields a good
description of empirical data in the present setting. If we studied non-averaged quantities depending
on a specific correlation structure, this approach would be much less likely to give satisfactory results.
The choice has two major advantages. First, we achieve analytical tractability, which can be seen
later on in Section 2.2; second, we can describe the complexity of a correlated market with only
two parameters. The first parameter c is an effective average correlation coefficient and the second
parameter N describes the strength of the fluctuations around this average. Both parameters have to
be estimated from empirical data.
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Due to the fact that we need the asset values Vk(T) in our loss distribution (6) while covariances are
measured by means of returns, we have to perform a change of variables using Itô’s lemma (Itô 1944)

rk → ln
Vk(T)

Vk0
−
(

µk −
ρ2

k
2

)
T , (14)

where Vk0 = Vk(0) is the initial asset value. This is a geometric Brownian motion with drift µk and
volatility ρk with σk = ρk

√
T, where σk is the sample standard deviation. Expression (12) can now be

rewritten using Fourier integrals. After employing and adjusting the steps in (Schmitt et al. 2014),
we arrive at the double integral

〈g〉 (V|c, N) =
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N

2πz

√
N

2πz(1− c)T

K ∞∫
−∞

du exp
(
−N

2z
u2
)

×
K

∏
k=1

1
Vkρk

exp

− N
2z(1− c)Tρ2

k

(
ln

Vk
Vk0
−
(

µk −
ρ2

k
2

)
T +
√

cTuρk

)2
 .

(15)

The random matrix model of non-stationarity together with the effective average correlation
matrix results in an expression for the joint multivariate distribution of the asset values in terms
of a bivariate average of the product of geometric Brownian motions over a χ2 distribution in z and
a Gaussian in u. We do not perform the u integration yet because we will factorize the Vk integrals
when computing the loss distribution (6) later on.

Several on Average Uncorrelated Markets

To be more realistic, we consider not just one market but several markets that are, on average,
uncorrelated. This is an extension of unpublished work by (Nitschke 2014). We define the number
of uncorrelated markets to be β. In this case, the correlation matrix C = diag(C1, . . . , Cβ) is
block diagonal where Cl = (1− cl)1Kl + cleKl e

†
Kl

are matrices themselves with dimensions Kl × Kl

for l ∈ {1, . . . , β}. The correlation matrix C has dimension K × K and therefore ∑
β
l=1 Kl = K

holds. This block structure in not reflected in the random correlation matrices fluctuating about
C (see Equation (11)). Hence, there are correlations between the blocks, only their average is zero.
The correlation structure allows us to study the impact when going from one market to several
markets. Within one market, we again have an on average effectively correlation structure and,
across the markets, we have an average correlation of zero. Importantly, this only means the
absence of correlations on average. The correlations in our model and in reality fluctuate, implying
that in any short instant of time, correlations can be present whose strength is governed by the
parameter N. Furthermore, each market has its own standard deviation matrix σl = diag(σl1, . . . , σlKl

)

and drift vector µl = (µl1, . . . , µlKl
)† for l ∈ {1, . . . , β}. We properly extend the calculations in

(Schmitt et al. 2014) with the difference that we have to apply l Fourier integrals, yielding

〈g〉 (V|c, N) =
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N

2πz

β√
N

2πzT

K ( β

∏
l=1

Kl

∏
k=1

1
Vlkρlk

)

×
β

∏
l=1

1
√

1− cl
Kl

∞∫
−∞

dul exp
(
−N

2z
u2

l

)

× exp

− N
2zT ∑

k

(
ln Vlk

Vlk0
−
(

µlk −
ρ2

lk
2

)
T +
√

clTulρlk

)2

(1− cl)ρ
2
lk

 .

(16)
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This multiple integral depends on the number of markets β. The index l indicates each market,
the index k indicates the asset in a specified market l. In general, the index pair (l, k) denotes the kth
asset on the lth market.

2.2. Average Loss Distribution

We work out the average loss distribution (8) using the above results for the average distribution
〈g〉 (V|c, N). After inserting Equation (15) into Equation (7), we obtain

〈p〉 (L(S), L(J)|c, N) =
1

(2π)22N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N

2πz

∞∫
−∞

du exp
(
−N

2z
u2
)

×
∞∫
−∞

dν(S)e−iν(S)L(S)
∞∫
−∞

dν(J)e−iν(J)L(J)I
(

ν(S), ν(J), z, u
)

,

(17)

with the term

I
(

ν(S), ν(J), z, u
)
=

K

∏
k=1

1 +
∞

∑
j=1

ij

j!
m(SD)

j,k

(
ν(S), ν(J), z, u

)
+

∞

∑
j=1

(
iν(J) f (J)

k

)j

j!
m(J)

j,k (z, u)

 (18)

and

m(SD)
a,k

(
ν(S), ν(J), z, u

)
=

a

∑
j=0

(
a
j

)(
ν(S) f (S)k

)j (
ν(J) f (J)

k

)a−j
m(S)

j,k (z, u) (19)

and the moments

m(S)
j,k (z, u) =

F̂(S)
k∫
−∞

dV̂k

(
1− Vk0

F(S)
k

exp

(
√

zV̂k +

(
µk −

ρ2
k

2

)
T

))j

×
√

N
2π(1− c)Tρ2

k
exp

[
N

2(1− c)Tρ2
k

(
V̂k +

√
cTuρk

)2
] (20)

m(J)
j,k (z, u) =

F̂k∫
F̂(S)

k

dV̂k

(
1 +

F(S)
k

F(J)
k

− Vk0

F(J)
k

exp

(
√

zV̂k +

(
µk −

ρ2
k

2

)
T

))j

×
√

N
2π(1− c)Tρ2

k
exp

[
N

2(1− c)Tρ2
k

(
V̂k +

√
cTuρk

)2
]

,

(21)

where we use the change of variables V̂k = (ln Vk/Vk0 − (µk − ρ2
k/2)T)/

√
z with proper adjustment of

the integration bounds F̂k and F̂(S)
k . The moments m(S)

j,k (z, u) and m(J)
j,k (z, u) are given in Appendix A

for j = 0, 1, 2. The term m(SD)
j,k

(
ν(S), ν(J), z, u

)
formally corresponds to those events that lead to a loss

large enough that the senior creditor is affected. We use a binomial sum for the decoupling of the ν(S)

and ν(J) integrals later on.
Now, we assume large portfolios where all face values are of the same order, to carry out an

approximation to the second order in f (S)k and f (J)
k by performing steps generalizing the one in
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(Schmitt et al. 2014). This is justified when we consider all face values are of the same order, so all
fractional face values are of order 1/K. We finally arrive at

〈p〉 (L(S), L(J)|c, N) =
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N
2π

∞∫
−∞

du exp
(
−N

2
u2
)

× 1√
2πM(S)

2 (z, u)
exp

−
(

L(S) −M(S)
1 (z, u)

)2

2M(S)
2 (z, u)


× 1√

2πM2(z, u)
exp

−
(

L(J) −M1(L(S), z, u)
)2

2M2(z, u)


(22)

for the average distribution with

M1(L(S), z, u) = M(J)
1 (z, u) +

K

∑
k=1

f (J)
k f (S)k N(S)

k (z, u)
L(S) −M(S)

1 (z, u)

M(S)
2 (z, u)

, (23)

M2(z, u) = M(J)
2 (z, u)− 1

M(S)
2 (z, u)

(
K

∑
k=1

f (J)
k f (S)k N(S)

k (z, u)

)2

, (24)

M(S)
1 (z, u) =

K

∑
k=1

f (S)k m(S)
1,k , (25)

M(S)
2 (z, u) =

K

∑
k=1

f (S)k

2
(

m(S)
2,k −m(S)

1,k

2
)

, (26)

M(J)
1 (z, u) =

K

∑
k=1

f (J)
k

(
m(S)

0,k + m(J)
1,k

)
, (27)

M(J)
2 (z, u) =

K

∑
k=1

f (J)
k

2
(

m(S)
0,k + m(J)

2,k −m(S)
0,k

2
−m(J)

1,k

2
− 2m(S)

0,k m(J)
1,k

)
, (28)

N(S)
k (z, u) = m(S)

1,k

(
1−m(S)

0,k −m(J)
1,k

)
. (29)

Thus, we expressed the average loss distribution as double average of Gaussians with mean
values M1(L(S), z, u) and M(S)

1 (z, u) and variances M2(z, u) and M(S)
2 (z, u) that non-trivially depend

on the integration variables. To keep the notation transparent, we dropped the arguments of the
functions m(S)

j,k (z, u) and m(J)
j,k (z, u). Due to the complexity of the last two expressions in Equation (22),

the z and u integrals have to be evaluated numerically. We notice that the normalization of the average
distribution is, for L(S)

k , L(J)
k ∈ [0, 1], only valid up to the order of our approximation. Later on, we will

concentrate on the contributions of no default.

2.3. Homogeneous Portfolio

Apart from the large K approximation, all results above are valid in general and apply to all
portfolios for which the individual fractional face values are of order 1/K. To further evaluate our
results and to obtain a visualization, it is instructive to consider homogeneous portfolios, in which the
senior and junior face values are equal:

F(S)
k = F(S)

0 and F(J)
k = F(J)

0 , (30)
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such that

f (S)k = f (J)
k =

1
K

. (31)

Furthermore, we assume that the stochastic processes have the same initial values, drifts
and volatilities,

Vk0 = V0 , µk = µ0 , ρk = ρ0 . (32)

Of course, this does not mean that the realized stochastic processes are the same. By dropping the
dependence of k, the moments m(S)

a,k (z, u) = m(S)
a,0 (z, u) and m(J)

j,k (z, u) = m(J)
j,0 (z, u) and thus the average

distribution 〈p〉 (L(S), L(J)) can be computed much faster.

2.4. Distribution of the Loss Given Default

Only the full dynamics of our model without any approximations give us information on the
contribution of the non-analytic part of the average loss distribution. In particular, absence of losses is
reflected in non-analytic δ functions at zero. To examine this, we start from the averaged version of
Equation (7) by inserting the distribution of asset values for a homogeneous portfolio with an effective
average correlation matrix

〈g〉h (V|c, N) =
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2
√

N
2πz

∞∫
−∞

du exp
(
− N

2z
u2
)

×

√ N
2πz(1−c)T

1
Vρ0

exp

− N
2z(1−c)Tρ2

0

(
ln

V
V0
−
(

µ0 −
ρ2

0
2

)
T +
√

cTuρ0

)2
K

=

∞∫
0

dz
∞∫
−∞

du f (z, u)ω̃K(V, z, u),

(33)

with

f (z, u) =
1

2N/2Γ(N/2)
zN/2−1e−z/2

√
N

2πz
exp

(
− N

2z
u2
)

(34)

ω̃(V, z, u) =

√
N

2πz(1−c)T
1

Vρ0
exp

− N
2z(1−c)Tρ2

0

(
ln

V
V0
−
(

µ0 −
ρ2

0
2

)
T +
√

cTuρ0

)2
 . (35)

Due to the homogeneity, the product in Equation (7) also becomes a K-th power, to which we
apply the multinomial theorem. We thus arrive at

〈p〉 (L(S), L(J)|c, N) =

∞∫
0

dz
∞∫
−∞

du f (z, u)
1

(2π)2

∞∫
−∞

dν(S)e−iν(S)L(S)
∞∫
−∞

dν(J)e−iν(J)L(J)

× ∑
k1+k2+k3=K

(
K

k1, k2, k3

)eiν(J)/K
F(S)

0∫
0

dV exp

(
iν(S)

K

(
1− V

F(S)
0

))
ω̃(V, z, u)


k1

×


F0∫

F(S)
0

dV exp

(
iν(J)

K

(
1−

V − F(S)
0

F(J)
0

))
ω̃(V, z, u)


k2 ∞∫

F0

dVω̃(V, z, u)

k3

(36)
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with the multinomial coefficient (
K

k1, k2, k3

)
=

K!
k1!k2!k3!

. (37)

From Equation (36), we see that δ functions only appear under the condition k1 · k2 = 0.
For k1 = k2 = 0, we have no default at all. The only contribution to the distribution stems from the last
integral in Equation (36), leading to a δ peak δ(L(S)

k )δ(L(J)
k ) at the origin. This δ peak is associated with

the absence of default neither on the junior nor on the senior level. The probability therefore is

P(ND) =
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2
√

N
2πz

∞∫
−∞

du exp
(
− N

2z
u2
)

×
(

1
2
− 1

2
erf

[√
N

2z(1− c)Tρ2
0

(
ln

F0
V0
−
(

µ0 −
ρ2

0
2

)
T +
√

cTuρ0

)])K

,

(38)

which obviously decreases with increasing K.
For k1 = 0, k2 6= 0, we find the contribution of the events that lead to a total junior default but not

to a senior default. In this case, we have a single δ function δ(L(S)
k ) that represents a moderate loss such

that the senior subordinated creditor will not sustain a loss. The special case k1 6= 0, k2 = 0 leads to
a sum of δ functions δ(L(J)

k − k1/K) where k1 runs from 1 to K. This is due to the sum in Equation (36).
These δ functions belong to the events where there is either no default at all or k1 severe defaults such
that, for k1 = 1, . . . , K obligors, the junior subordinated creditor has a complete failure i.e., L(J)

k = 1 and
the senior subordinated creditor may sustain a loss i.e., L(S)

k ≥ 0. All of these δ functions are not
unmated but weighted with some integral prefactors to preserve the normalization of the distribution
〈p〉 (L(S), L(J)). Furthermore, the δ functions disappear when we only consider the loss given default,
which in our model means L(J) > 0 and also L(S) > 0. The non-analytic parts cannot be obtained in the
second order approximation we used to derive the average loss distribution (22).

2.5. Infinitely Large Portfolios

We now consider the case K → ∞ for the homogeneous portfolio to analyze whether diversification
works or not in the discussed multivariate scenarios. It has been shown that diversification does not
work in a correlated univariate model with only one bank (see (Schmitt et al. 2014)).

The homogeneous versions of Equations (24) and (26)

M2(z, u) =
1
K

m(S)
0,0 + m(J)

2,0 −m(S)
0,0

2
−m(J)

1,0

2
− 2m(S)

0,0 m(J)
1,0 −

m(S)
1,0

2 (
1−m(S)

0,0 −m(J)
1,0

)2

m(S)
2,0 −m(S)

1,0

2

 , (39)

M(S)
2 (z, u) =

1
K

(
m(S)

2,0 −m(S)
1,0

2
)

, (40)

imply that M2(z, u)→ 0 as well as M(S)
2 (z, u)→ 0 for K → ∞. This means that both Gaussians

1√
2πM(S)

2 (z, u)
exp

−
(

L(S)−M(S)
1 (z, u)

)2

M(S)
2 (z, u)

 and
1√

2πM2(z, u)
exp

−
(

L(J)−M1(L(S), z, u)
)2

M2(z, u)
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in Equation (22) become δ functions. Thus, we arrive at

〈p〉 (L(S), L(J)|c, N)

∣∣∣∣
K→∞

=
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2
√

N
2π

∞∫
−∞

du exp
(
−N

2
u2
)

× δ
(

L(S) −M(S)
1 (z, u)

)
δ
(

L(J) −M1(L(S), z, u)
)

=
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2
√

N
2π

∞∫
−∞

du exp
(
−N

2
u2
)

× δ
(

L(S) −m(S)
1,0

)
δ
(

L(J) −m(S)
0,0 −m(J)

1,0

)
.

(41)

To make this equation numerically manageable, we use the identity

δ ( f (u)) = ∑
i

δ(u− ui)

| f ′(ui)|
, (42)

where ui are the roots of the function f (u), with f ′(ui) 6= 0. This result is a direct consequence of the
elementary theory of distributions (Lighthill 1958). Using this identity three times allows us to solve
the remaining two integrals and we finally obtain the limiting loss distribution

〈p〉 (L(S), L(J)|c, N)

∣∣∣∣
K→∞

=
1

2N/2Γ(N/2)

√
N
2π

zN/2−1
0 exp

(
− z0

2

)
exp

(
−N

2
u(S)2

(L(S), z0)

)
× 1∣∣∣∣ ∂

∂u m(S)
1,0 (z0, u)

∣∣∣
u=u(S)(L(S) ,z0)

∣∣∣∣ · ∣∣∣∣ ∂
∂u

[
m(S)

0,0 (z0, u) + m(J)
1,0(z0, u)

]
u=u(S)(L(S) ,z0)

∣∣∣∣
× 1∣∣∣ ∂

∂z
[
u(S)(L(S), z)− u(J)(L(J), z)

]
z=z0

∣∣∣ .

(43)

Here, the implicit functions

u(S) = u(S)(L(S), z) with 0 = L(S) −m(S)
1,0 (z, u(S)), (44)

u(J) = u(J)(L(J), z) with 0 = L(J) −m(S)
0,0 (z, u(J))−m(J)

1,0(z, u(J)), (45)

z0 = z0(L(S), L(J)) with u(S)(L(S), z0) = u(J)(L(J), z0) , (46)

are unique and have to be calculated numerically. The dependence on L(S) and L(J) is now implicit in the
functions u(S), u(J) and z0. The very last derivatives in Equation (43) can be done by using the implicit
function theorem. They can be traced back to derivatives of m(S)

0,0 , m(S)
1,0 and m(J)

1,0 . The functions m(S)
1,0 and

m(S)
0,0 + m(J)

1,0 are strictly monotonically increasing in u and z for fixed z and u, respectively. Thus, we can
solve Equations (44) and (45) locally to u, where we obtain u(S) and u(J). These equations can be derived
by z using

∂u(S)

∂z
(L(S), z0) = −

∂
∂z m(S)

1,0 (z, u)
∂

∂u m(S)
1,0 (z, u)

∣∣∣∣∣∣
u=u(S)(L(S) ,z0)

(47)

and

∂u(J)

∂z
(L(J), z0) = −

∂
∂z

(
m(S)

0,0 (z, u) + m(J)
1,0(z, u)

)
∂

∂u

(
m(S)

0,0 (z, u) + m(J)
1,0(z, u)

)
∣∣∣∣∣∣
u=u(J)(L(J) ,z0)

. (48)
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2.6. Absence of Subordination

Now, we consider the same model as discussed before, but without taking subordination into
account. This means that a loss is evenly distributed among the creditors. This model is closely related
to that in (Sicking et al. 2018). Here, we have B ≥ 2 creditors with the face value F(b)

k , b = 1, . . . , B,

k = 1, . . . , K of obligor k within creditor b and the normalized loss according to obligor k

L(b)
k =


(

1− Vk(T)
Fk

)
Θ (Fk −Vk(T)) if F(b)

k > 0,

0 else ,
(49)

with the total face value Fk = ∑B
b=1 F(b)

k of obligor k and asset value Vk(t). In Equation (49) for F(b)
k > 0,

the losses do not have any dependence on the obligors. In case of default, the creditors are not
distinguished and suffer the same normalized loss. Hence, we write Lk instead of L(b)

k . Again, we define
the normalized portfolio losses L(b) and the fractional face values f (b)k ,

L(b) =
K

∑
k=1

f (b)k Lk and f (b)k =
F(b)

k
K
∑

k=1
F(b)

k

, (50)

corresponding to creditor b, respectively. The multivariate distribution of the total average loss is

〈p〉 (L|Σ) =
∫

d[V] 〈g〉 (V|Σ) δ

(
L−

K

∑
k=1

fk Lk

)
, (51)

with L = (L(1), . . . , L(B))† and fk = ( f (1)k , . . . , f (B)
k )†. Adjusting our calculations in the subordinated case

above and also applying a second order approximation for f (b)k , we arrive at the final result

〈p〉 (L|c, N) =
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N
2π

∞∫
−∞

du exp
(
−N

2
u2
)

× 1√
det (2πM2(z, u))

exp
(
− 1

2
(L−M1(z, u))† M−1

2 (z, u) (L−M1(z, u))
)

,

(52)

where

M1(z, u) =
K

∑
k=1

fkm1,k(z, u), (53)

M2(z, u) =
K

∑
k=1

Dk

(
m2,k(z, u)−m2

1,k(z, u)
)

, (54)

with the dyadic matrices

Dk = fk f †
k (55)

and with

mj,k(z, u) =
F̂k∫
−∞

dV̂k

(
1− Vk0

Fk
exp

(
√

zV̂k +

(
µk −

ρ2
k

2

)
T

))j

×
√

N
2π(1− c)Tρ2

k
exp

[
N

2(1− c)Tρ2
k

(
V̂k +

√
cTuρk

)2
]

,

(56)

F̂k =
1√
z

(
ln

Fk
Vk0
−
(

µk −
ρ2

k
2

)
T

)
. (57)
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The moments mj,k(z, u) are the same as in Equation (20). For this model, we only consider
heterogeneous portfolios for the whole market as homogeneous portfolios would lead to singular
matrices Dk as defined in Equation (55), and the losses would be exactly the same for all creditors.
Instead, we consider cases where the volume of credit differs among the creditors or we consider cases
where the portfolios are non-overlapping or may only partially overlap.

Although our results are general, we now only consider B = 2 creditors to feasibly render
a visualization. We denote them as creditor one and creditor two, respectively. Moreover, we address
the most general set-up where two credit portfolios may partially overlap. Again, we consider K

obligors in total. Let R1 be the number of obligors with only one credit contract, say from creditor one.
Let R12 be the number of creditors that raise credits from both creditors. The proportions correspond
to the fractions r1 = R1/K and r12 = R12/K. Creditor one deals in R1 + R12 credits and creditor two deals
in K− R1 credits. This model, for example, also includes two disjoint portfolios, and we just have to
set r12 = 0. The face value of the R12 obligors consist of the sum of two face values Fk = F(1)

k + F(2)
k that

do not necessarily have the same size. For later convenience, we consider homogeneous portfolios
Fk = F0 and we assume that the face values in the overlapping part of the portfolios are equal within
a portfolio but can differ across the portfolios. That means we introduce a parameter γ ∈ [0, 1] with
F(1)

k = γF0 and F(2)
k = (1− γ)F0.

For a market with homogeneous parameters, we find the result (52) with

M1(z, u) = m1,0(z, u)

[
1

1

]
, (58)

M2(z, u) =
(

m2,0(z, u)−m2
1,0(z, u)

) 1
K

[
α1 α12

α12 α2

]
, (59)

where

α1 =
r1 + γ2r12

(r1 + γr12)2 , (60)

α12 =
γ(1− γ)r12

(r1 + γr12)(1− r1 − γr12)
, (61)

α2 =
1− r1 − γ(2− γ)r12

(1− r1 − γr12)2 . (62)

We notice α12 = 0 for γ = 0 or γ = 1.

Absence of Subordination on Several Markets

To treat several uncorrelated markets, we perform the same calculations as in the previous section.
We insert the average asset value distribution (16) into Equation (51) with the slight difference that we
have to replace the sum over k by two sums over l and k. We arrive at the final result, which is up to
a factor formally identical to Equation (52)

〈p〉 (L|c, N) =
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N
2π

β ∫
d[u] exp

(
−N

2
u2
)

× 1√
det (2πM2(z, u))

exp
(
− 1

2
(L−M1(z, u))† M−1

2 (z, u) (L−M1(z, u))
)

,

(63)

with

M1(z, u) =
β

∑
l=1

Kl

∑
k=1

flkm1,l,k(z, ul), (64)

M2(z, u) =
β

∑
l=1

Kl

∑
k=1

Dlk

(
m2,l,k(z, ul)−m2

1,l,k(z, ul)
)

with Dlk = flk f †
lk, (65)
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and u = (u1, . . . , uβ). Here, d[u] denotes the product of all differentials dul . The moments m1,l,k(z, ul) and
m2,l,k(z, ul) are the same as in Equation (57) including an additional index for each market l ∈ {1, . . . β}.
In this way, we are able to vary the parameters like drift and volatility across the markets. We found
it useful depending on the size of β, to use polar or spherical coordinates for the evaluation of the
multivariate u integral.

2.7. Absence of Subordination and Infinitely Large Portfolios

We now consider two infinitely large portfolios, taking the limit K → ∞. We point out that r1 and
r12 do not scale with K in the case of two infinitely large portfolios. We will consider the case of one
infinitely large portfolio and one portfolio of finite size later on. Now, the matrix M2(z, u) converges to
a zero matrix. This implies that the exponential term and its prefactor converge to δ functions and we
find the final result

〈p〉 (L(1), L(2)|c, N)

∣∣∣∣
K→∞

=
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N
2π

∞∫
−∞

du exp
(
−N

2
u2
)

× δ
(

L(1) −m1,0(z, u)
)

δ
(

L(2) − L(1)
)

.

(66)

This result is quite remarkable. We first point out that there is no dependence on the structure
of the portfolios anymore as the distribution (66) is independent of the parameters α1, α12 and α2.
Second, in the limiting case, the losses of both portfolios will always be equal to each other so that
they are perfectly correlated. In other words, the loss of one large creditor can be used as a forecast for
the loss of another large creditor on the same market. This holds even if the creditors have disjoint
portfolios and it also does not depend on the strength of the correlations across the asset values.

A different situation appears when we consider a portfolio of finite size and another infinitely
large one. Due to the high asymmetry of the market shares of the portfolios, we solely examine two
disjoint portfolios. Say, portfolio one is the finite one with R1 companies. Then, the matrix element
α1 in Equation (59) scales with K and α2 converges to one. By calculating the limit K → ∞, only one δ

function emerges, and, by using property (42) of the δ function, we find

〈p〉 (L(1), L(2)|c, N)

∣∣∣∣
K→∞

=
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2

√
N
2π

exp
(
−N

2
u2

0

)

×
√

R1

2π(m2,0(z, u0)−m2
1,0(z, u0))

exp

(
− R1(L(1) −m1,0(z, u0))

2

2(m2,0(z, u0)−m2
1,0(z, u0))

)

× 1
|∂m1,0(z, u)/∂u|z,u0

,

(67)

where u0(L(2), z) is an implicit function defined by

0 = L(2) −m1,0(z, u0) . (68)

We note that the dependence on L(2) in the limit distribution is encoded in u0(L(2), z). Moreover,
the above result is in line with the second order approximation even though one of the matrix elements
does not scale with K.

Finally, we analyze two disjoint infinitely large portfolios, where each portfolio invests in
a separate market. We start from distribution (63) and perform the limit K → ∞. Again, we find
two δ functions and, by applying Equation (42) twice, we obtain

〈p〉 (L(1), L(2)|c, N)

∣∣∣∣
K→∞

=
1

2N/2Γ(N/2)

∞∫
0

dzzN/2−1e−z/2 N
2π

exp
(
−N

2
u2

10

)
exp

(
−N

2
u2

20

)

× 1
|∂m1,1,0(z, u)/∂u|z,u10

1
|∂m1,2,0(z, u)/∂u|z,u20

,

(69)
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where

0 = L(1) −m1,1,0(z, u10) and 0 = L(2) −m1,2,0(z, u20) (70)

define the implicit functions u10(L(1), z) and u20(L(2), z).

3. Model Calibration and Visualization of the Results

We always employ the approximation (13) to the mean correlation matrix, which yields, as already
emphasized, very good fits to empirical data due to the very nature of the ensemble average.
Furthermore, we restrict our analysis to homogeneous portfolios.

3.1. Adjustability to Different Market Situations

There are four parameters in our model, the average drift µ, the average volatility ρ, the average
correlation coefficient c and the parameter N, which controls the strength of the fluctuations
around the mean correlation coefficient. The values of the parameters are directly estimated from
empirical stock price data. The parameter N is determined by a fit of distribution (12) to the data.
These consists of stocks that are taken from the S&P500 index traded continuously in the given time
interval (Yahoo n.d.).

Importantly, we are able to adjust the parameters to different periods, i.e., different market
situations. This is a significant feature of the model as the tail of the loss distribution changes for
different market situations. The stronger correlations during crises lead to more pronounced tails
of the loss distribution. Our model fully grasps this effect. To demonstrate this, we consider two
market periods. The first period 2002–2004 is rather calm, whereas the second period 2008–2010
contains the global financial crisis. For simplicity, we solely consider one creditor on one homogeneous
market. The empirical results for the period 2002–2004 are µ = 0.015 month−1, ρ = 0.1 month−1/2, c = 0.3
and for the period 2008–2010 µ = 0.01 month−1, ρ = 0.12 month−1/2 and c = 0.46. For both periods,
we find N = 5, see (Schmitt et al. 2015). In Figure 2, we show the corresponding loss distributions.
As anticipated, we find a significantly higher tail in times of crisis.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

10-4

10-3

10-2

10-1

100

101

102

〈p
〉(
L
|c
,
N
)

L

2008–2010

2002–2004

Figure 2. Average portfolio loss distribution for one creditor with size K = 100 on a homogeneous
market and different periods. The dashed line corresponds to the global financial crisis 2008–2010;
the solid line corresponds to the calm period 2002–2004.

We estimate the value of the correlations by empirical data. However, the multivariate return
distribution (12) that we construct is strongly non-Gaussian and describes the empirical data well. Thus,
in the present context copulas, which capture the lower tail dependence, are not needed. However,
a comparison with copulas can be found in (Wollschläger and Schäfer 2016).

Moreover, by adjusting the parameter N, we are able to control the strength of the fluctuations
around the mean correlation coefficient. The larger the N, the smaller the fluctuations are.
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In the case N → ∞, the fluctuations are suppressed and the correlation matrix becomes stationary.
Hence, the average return distribution (12) becomes a multivariate Gaussian and the benefits of the
random matrix approach are not given anymore. The results for the multivariate average portfolio loss
distribution in the absence of subordination are

lim
N→∞

〈p〉 (L|c, N) =
1√
2π

∞∫
−∞

du exp
(
−u2

2

)

× 1√
det (2πM2(u))

exp
(
− 1

2
(L−M1(u))

† M−1
2 (u) (L−M1(u))

)
,

(71)

with M1(u) = M1(1, u) from (53) and M2(u) = M2(1, u) from (54). In Figure 3, we compare the univariate
portfolio loss distribution for one creditor on a single homogeneous market and a fixed correlation
coefficient of c = 0.3 for different values of N.
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N = 100
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Figure 3. Average portfolio loss distribution for one creditor on a homogeneous market and different
values of N.

The tail of the loss distribution clearly decreases with increasing N. The larger N becomes,
the smaller are the outliers of the random correlations around the mean correlation coefficient.
This shows the benefit of our random matrix approach compared to standard methods using stationary
asset correlations and a multivariate Gaussian for the asset return distribution. Due to the asymmetry
of credit risk, outliers that exceed the average correlation coefficient by far have a much stronger
impact on the loss distribution than outliers which remain below the average correlation coefficient.
This effect is more pronounced for smaller N and leads to an increasing tail.

3.2. One Portfolio, Two Markets

In the following, we use parameters determined by data consisting of 307 stocks that are taken
from the S&P500 index traded in the period from 1992 to 2012 (Yahoo n.d.). We find the following
empirical results for T = 1 year: µ = 0.17 year−1, ρ = 0.35 year−1/2, N = 6 and c = 0.28.

We study the impact of investing into two uncorrelated markets. We thus assume two identical
uncorrelated markets with the same average correlation coefficient. Furthermore, we assume the
empirical parameters to be the same for both markets. The results are shown in Figure 4.
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Figure 4. Average loss distribution on a logarithmic scale for a different number of markets and market
size. The markets are homogeneous and we choose a face value of F0 = 75 and the initial asset value
V0 = 100.

For a comparison, we also show the limiting distribution for only one market β = 1 with
the same parameters as in the case of two markets. This distribution is the univariate version of
the distribution (66) (see also (Schmitt et al. 2015)). As expected, we see that the diversification, i.e.,
the separation of the correlation matrix into two blocks leads to a reduction of large portfolio losses.
Hence, reducing the risk of large losses can be achieved more effectively by splitting the portfolio
onto different uncorrelated markets than by solely increasing the number of credit contracts on one
single market. Obviously, this is due to the on-average zero correlations in the off-diagonal blocks.
A further reduction of the risk can only be achieved by either splitting the portfolio in more than
two markets or investing into markets where the average correlation coefficient is low with little
fluctuations. Nevertheless, by increasing the number of uncorrelated markets β, we obtain for β→ ∞

the same scenario as in the case of one market with average correlation zero. Here, the diversification
effect is limited to the strength of the fluctuations N, where the tail of the loss distribution would only
vanish for large N.

This effect has been discussed before, for example, in (Goetzmann et al. 2005), in an empirical
setting. We emphasize that we with our results are able to quantitatively model the effect of
diversification. According to the adjustability of our model, the benefits of diversification can be
modeled for different markets and different market situations.

3.3. Absence of Subordination and Disjoint Portfolios of Equal Size

We begin with varying the number of companies K and study the impact on the multivariate loss
distribution as well as on the default correlation and the default probabilities. Figure 5 shows the
average loss distribution (52) with effective average correlation matrix and homogeneous parameters
for two disjoint portfolios of equal size, for different numbers of companies K = 10, 20, 100 and empirical
values for the parameters.

We choose the face value F0 = 75 and the initial asset value V0 = 100. The distribution is symmetric.
It converges to the limiting distribution (66) as K increases. We thus infer a high correlation of the
portfolio losses even for a small number of obligors. The striking peak around the origin L(1) = L(2) = 0

corresponds to those events that lead to little portfolio loss. This peak arises because of the large
drift. Due to the positive drift, the overall number of companies that do not default is larger than
the number of companies that default at maturity. Still, this peak does not represent the δ peak at
the origin, which stands for the probability of total survival of all companies. This becomes clear
when we calculate the survival probability for all companies. This probability does not depend on
whether we have subordinated debt or not and it also does not depend on the composition of our
portfolios (see Equation (38)). The effect of different drift parameters µ is shown in Figure 6.
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Figure 5. Average loss distribution for two disjoint portfolios of same sizes on a logarithmic scale.
We show different market sizes, K = 10 orange, K = 20 blue and K = 100 green. The parameters are
µ = 0.17 year−1, ρ = 0.35 year−1/2, N = 6, c = 0.28 and a maturity time of T = 1 year.
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Figure 6. Probability of zero portfolio loss depending on the portfolio size K for different drift
parameters µ on a logarithmic scale.

For every value of µ, the probability of having zero total portfolio loss decreases with an increasing
number of companies K. Hence, the weight of the δ peak on the portfolio loss distribution at
L(1) = L(2) = 0 becomes smaller. This is quite intuitive; the larger the K, the more likely is the default of
at least one company.

When looking at the portfolio loss correlations, we find large values for little or even zero asset
correlation. For a market size of K = 100, i.e., each portfolio is of size 50, we obtain for an average
asset correlation of c = 0 a correlation of the portfolio losses of 0.71. This high loss correlation is based
on the fact that the asset correlations fluctuate around the mean asset correlation of zero. Due to this
fluctuation, we have individual positive and negative correlations. The negative correlations only
have a limited effect because the asymmetry of credit risk projects all non defaulting events onto zero
while only defaulting events contribute to the loss distribution. Hence, the positive asset correlations
dominate the negative ones causing a high portfolio loss correlation. The results are shown in Figure 7.
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Figure 7. Portfolio loss correlation on a linear scale depending on the asset correlation c. Both portfolios
are homogeneous and have the same size. The market size K ranges from 2 (blue) over 4, 8, 10, 20, 30,
50, 100, 200 to 500 (green). The bisecting line is shown in black.

They are in accordance with the simulation results in (Sicking et al. 2018). The portfolio loss
correlation is a monotonic function of the asset correlation c and, for a fixed asset correlation, we find
with increasing K an increasing portfolio loss correlation. Depending on the number of companies,
the portfolio loss correlation is a convex function (namely, K = 2, 4) or a concave function (K ≥ 8).
However, we emphasize that these results are subject to the second order approximation, which yields
better results the larger the K. Large numbers of K lead to very high loss correlations. This confirms
that, even without average asset correlation c = 0, the loss of one large portfolio serves as a forecast for
another large portfolio.

3.4. Absence of Subordination and Disjoint Portfolios of Various Sizes

Looking at portfolios of various sizes yields much improved understanding of whether
diversification works or not. To analyze this, we consider portfolio one with fixed size R1 = 10
and we consider the overall size of the market K = 30, 110 and the limit K → ∞. In this scenario,
the market share of portfolio one will steadily decrease and converge to zero in the limiting case.
Hereby, we are able to compare somewhat smaller portfolios with very large ones.

For our calculations, we use the same empirical parameters as in Section 3.3. The effect of different
market size K on the loss distribution 〈p〉 (L(1), L(2)) is shown in Figure 8.

Figure 8. Average loss distribution for portfolios of different sizes on a logarithmic scale. Portfolio
one is of fixed size R1 = 10 and the market size is K = 30 (orange), K = 110 (blue) and K → ∞
(green). The parameters are µ = 0.17 year−1, ρ = 0.35 year−1/2, N = 6, c = 0.28 and a maturity time
of T = 1 year.
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There are regions where we have heavy-tailed behavior of the distributions but also others where
the distributions decay very fast. In this latter regions that always fulfill the condition L1 > L2, the loss
distribution decays considerably faster with increasing market size K. Hence, we find large deviations
between the distributions of different market sizes. These deviations only play a minor role because
they emerge at a significant low order of the loss distribution. In general, for increasing market size
K, the second portfolio describes the market in a better manner. Hence, it is very unlikely for the
first portfolio to suffer a big loss in times when the second portfolio of large size exhibits little loss.
This explains the fast decay of the loss distribution in the L1 > L2 corner. However, the most important
fact is that, along the diagonal L1 = L2 and in the upper corner L1 < L2, significant deviations between
the loss distributions for different market sizes do not occur. Here, we also observe heavy-tails of
the loss distribution. Especially when we consider the diagonal, we find no deviations and thus
no diversification at all. This means that increasing the size of portfolio 2 while keeping the size
of portfolio 1 constant does not yield a decrease of concurrent large portfolio losses of equal size.
Interestingly, it is more likely to find an event in the upper off-diagonal corner with L1 < L2 than in
the lower corner. This can be explained by the fluctuations around the mean correlation coefficient
of c = 0.28 and the positive drift µ = 0.17 year−1. The fluctuations ensure that there is a probability
for the assets of portfolio one to be adversely correlated to the assets of portfolio two. Accordingly,
there is a significant probability that the small portfolio one suffers no or little default while the second
portfolio suffers a major one. This probability decreases when we enlarge the size of portfolio one
while keeping the size of portfolio two fixed and still larger than the size of portfolio one. Due to the
asymmetry of the portfolio loss distributions regarding the diagonal, we find lower loss correlation for
the same market size than in the case of two equal sized portfolios (see Figure 9).
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Figure 9. Portfolio loss correlation as a function of asset correlation c on a linear scale. Portfolio one
is of fixed size R1 = 10 and the market size K ranges from 30 (blue) over 50, 100, 200 to 500 (green).
The limiting curve K → ∞ is shown in black and the bisecting line is shown in red.

In contrast to two portfolios of equal size, there is a limit correlation of the portfolio losses
depending on c in the limit K → ∞. One clearly sees that the limiting curve is reached very quickly for
increasing market size. This is due to the fixed size of portfolio one. Increasing its size and the market
size would raise the portfolio loss correlation.

3.5. Subordinated Debt

The subordinated debt structure brings a high degree of asymmetry into effect (see Figure 10).
We show the joint probability density of two equal-sized portfolios with face values F(S)

k = 37 and
F(J)

k = 38. Both senior and junior subordinated creditors operate on the entire market.
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Figure 10. Average portfolio loss distribution of a subordinated debt structure on a logarithmic scale.
Both portfolios operate on the entire market. We show different market sizes K = 10 orange, K = 200
blue and K → ∞ green.

The loss of the junior subordinated creditor is always larger or equal than the loss of the senior
creditor. We thus have an cutoff along the diagonal line L(S) = L(J). Besides the near region of a curved
line, which we define as the back of the distribution, the number of obligors K influences the joint
probabilities drastically. Along the back of the distribution, there is almost no deviation between
the surfaces of the joint probability densities. Independent of K, the back of the distribution shows
heavy tails. Importantly, the curvature reaches for high losses of the junior subordinated creditor
evermore to higher losses of the senior creditor. This is an important consequence in times of crisis.
When the loss of the junior subordinated creditor becomes extremely large, it is most likely that also
the senior creditor suffers a significant loss. Furthermore, we show that, in times of crisis, the majority
of an additional loss will be distributed to the senior creditor when there is already a large loss of the
junior subordinated creditor.

This explains why strong diversification effects do not exist, when we consider the marginal
distributions of each creditor (see Figure 11).
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Figure 11. Marginal distributions of senior and junior subordinated creditor on a logarithmic scale.
The upper three lines belong to the junior subordinated creditor and the lower three lines to the
senior creditor.
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The upper three curves belong to the marginal distributions of the junior subordinated creditor
and the lower three curves belong to the senior creditor. All distributions show heavy tails and the gap
between the senior and junior subordinated creditor enlarges with increasing loss L. The size of this
gap becomes smaller when the ratio F(S)

k /F(J)
k becomes larger.

4. Conclusions

Within the Merton model, we calculated a multivariate joint average portfolio loss distribution,
taking fluctuating asset correlations into account. We used a random matrix model, which is,
most advantageously, analytically tractable and also empirically a good match of stock market data.
The multivariate average asset value distribution depends on two parameters only, the effective
average asset value correlation and the strength of the fluctuations around this average.

We showed that diversification is achieved much more efficiently by splitting a credit portfolio
onto different markets that are, on average, uncorrelated than by solely increasing the number of credit
contracts on one single market.

For two non-overlapping portfolios of equal size, we found a symmetric portfolio loss distribution.
Studying the portfolio loss correlations, we showed that significant correlations emerge not only for
large portfolios containing thousands of credit contracts, but also in accordance with a second order
approximation, for small portfolios containing only a few credit contracts. Two non-overlapping
portfolios of infinite size have a loss correlation of one and will always suffer the same relative loss.

When we analyzed two non-overlapping portfolios of different size, we found the loss correlations
to be limited. Nevertheless, the distributions show heavy tails that make large concurrent portfolio
losses likely.

Furthermore, we included subordinated debt, related to CDO tranches. At maturity time,
the senior creditor is paid out first and the junior subordinated creditor only if the senior creditor
regained the full promised payment. Here, we analytically substantiate that, in case of crisis, i.e.,
when a large loss of the junior subordinated creditor is highly likely, a large loss of the senior creditor
is also very likely. Thus, the concept of subordination does not work as intended in times of crisis.
In addition, the marginal distributions show that increasing the size of both portfolios fails to reduce
the tail risk significantly.

There are some limitations of our model. Our approach is based on the Merton model, which as
discussed in the literature, has some weaknesses (see, e.g., (Duan 1994; Elizalde 2005)). Furthermore,
due to the second order approximation in f (S)k and f (J)

k necessary for analytical tractability, we assume
that the face values of all companies are of the same order. Hence, in this approximation, we are not
able to analyze the influence of one large company in the loss distribution. Credit default data is very
hard to get, implying that we are unfortunately not able to compare the results of our model with
empirical data. Nevertheless, our results, when compared to credit risk data in the future, provide an
excellent test of the Merton model because we use stock market data for calibration.

The novelty of our approach is the ability to quantitatively model diversification effects that have
been mainly qualitatively discussed in the economic literature. Hence, we corroborate qualitative
reasoning in the economic literature. Additionally, by obtaining the joint portfolio loss distribution,
further quantities such as any kind of risk measure can be calculated.

For further research, it is interesting to analyze avalanche and contagion effects. These effects are
included only indirectly in our model, namely by calibrating to stock market states of crisis.
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Appendix A. Moments

We define
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where ι = S, J and λ = S, J, as well as c(S) = 1 and c(J) = Fk

F(J)
k

. Hence, we can write the moments
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With the following definition,
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and the error function
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we can express the quantities τι,λ
j,k (z, u) for j = 0, 1, 2
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