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Abstract: Statistical modeling techniques—and factor models in particular—are extensively used in
practice, especially in the insurance and finance industry, where many risks have to be accounted
for. In risk management applications, it might be important to analyze the situation when fixing
the value of a weighted sum of factors, for example to a given quantile. In this work, we derive the
(n− 1)-dimensional distribution corresponding to a n-dimensional i.i.d. standard Normal vector
Z = (Z1, Z2, . . . , Zn)′ subject to the weighted sum constraint w′Z = c, where w = (w1, w2, . . . , wn)′

and wi 6= 0. This law is proven to be a Normal distribution, whose mean vector µ and covariance
matrix Σ are explicitly derived as a function of (w, c). The derivation of the density relies on the
analytical inversion of a very specific positive definite matrix. We show that it does not correspond
to naive sampling techniques one could think of. This result is then used to design algorithms for
sampling Z under constraint that w′Z = c or w′Z ≤ c and is illustrated on two applications dealing
with Value-at-Risk and Expected Shortfall.

Keywords: conditional distribution; conditional sampling; multi-factor models

1. Introduction

Factor models are extensively used in statistical modeling. In banking and finance, for instance,
it is a standard procedure to introduce a dependence structure among loans (see, e.g., Li’s model
Li (2016), but also Andersen and Sidenius (2004); Hull and White (2004); Laurent and Sestier (2016);
Vrins (2009), just to name a few). In the popular case of a one-factor Gaussian copula model, the default
of the i-th entity is jointly driven by a common risk factor, say Y, as well as an idiosynchratic risk,
all being independent and Normally distributed. In multi-factor models, the common factor is
replaced by a weighted sum of Normal risk factors Z̃ := (Z̃1, Z̃2, . . . , Z̃n)′ representing different
aspects of the global economy (like region, sector, etc.). The random vector Z̃ can typically be
expressed (via a Cholesky decomposition) as a weighted sum of n (or less) i.i.d. standard Normal
factors Z := (Z1, Z2, . . . , Zn)′. Interestingly, the asymptotic law (as the number of loans tends to
infinity) of these portfolios can be derived analytically when only one systematic factor (n = 1) is
considered (see Vasicek (1991) in the case of homogeneous pools and Gordy (2003) for an extension to
heterogeneous pools). However, the case n > 1 requires numerical methods, typically Monte Carlo
simulations. This raises the following question, whose practical interest will be illustrated with concrete
examples: given a value c of a common factor Y = w′Z where w = (w1, w2, . . . , wn)′ is a vector of
non-zero weights, what is the distribution of Z ? In other words, how can we sample Z conditional
upon Y = c ? It is of course straightforward to sample a vector Z of n Normal variables such that the
weighted sum is c. One possibility is to sample a (n− 1)-dimensional i.i.d. standard Normal vector
(Z1, Z2, . . . , Zn−1) and then set Zn = (c−∑n−1

i=1 wiZi)/wn (Method 1). Another possibility would be
to draw a sample of a n-dimensional i.i.d. standard Normal vector Q = (Q1, Q2, . . . , Qn)′ and set
Zi = Qi + (c−w′Q)/(nwi) (Method 2). Alternatively, one could just rescale such a vector and take
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Z = c
w′Q Q (Method 3). However, as discussed in Section 3, none of these approaches yield the correct

answer.
Conditional sampling methods have already been studied in the literature. One example is of

course sampling random variables between two bounds, which is a trivial problem solved by the
inverse transform, see e.g., the reference books Glasserman (2010) or Rubinstein and Kroese (2017).
In the context of data acquisition, Pham (2000) introduces a clever algorithm to draw m samples
from the n-dimensional Normal distribution N (µ, Σ) subject to the constraint that the empirical
(i.e., sample) mean vector µ̂(m) and covariance matrix Σ̂(m) of these m vectors agree with their
theoretical counterparts µ and Σ, respectively. Very recently, Meyer (2018) introduced a method to
draw n-dimensional samples from a given distribution conditional upon the fact that q < n entries
take known values. These works, however, do not provide an answer to the question we are dealing
with. In particular, we do not put constraints on the average of sampled vectors, nor force some of
their entries to take specific values, but instead work with a constraint on the weighted sum of the n
entries of each of these vectors.

In this paper, we derive the (n − 1)-dimensional conditional distribution associated with the
(w′Z = c)-slice of the n-dimensional standard Normal density when wi 6= 0 for all i ∈ {1, 2, . . . , n},
n ≥ 2. More specifically, we restrict ourselves to derive the joint distribution of X = (X1, X2, . . . , Xn),
where Xi := wiZi (as the distribution of Z can be obtained by simple rescaling of that of X as X = DZ,
where D is an invertible diagonal matrix satisfying Di,i = wi). The result derives from the analytical
properties of a square positive definite matrix having a very specific form. We conclude the paper with
two sampling algorithms and two illustrative examples.

2. Derivation of the Conditional Density

The conditional distribution is derived by first noting that the conditional density takes the
general form

fX1,...,Xn

(
x1, . . . , xn

∣∣∣∣∣ n

∑
i=1

Xi = c

)
=

fX1,...,Xn−1,Xn

(
x1, . . . , xn−1, c−∑n−1

i=1 xi

)
f∑n

i=1 Xi
(c)

δ

(
n

∑
i=1

xi − c

)
, (1)

where δ is the Dirac measure centered at 0. This expression is likely to be familiar to most readers but
some technical details are provided in Appendix A.

We shall show that the random vector X = (X1, . . . , Xn)′ given ∑n
i=1 Xi = c is distributed as

(X̃1, . . . , X̃n−1, c−∑n−1
i=1 X̃i)

′ where the density of X̃ = (X̃1, . . . , X̃n−1)
′ is a multivariate Normal with

mean vector µ(c, w) and covariance matrix Σ(w) respectively given by

µi(c, w) :=
cw2

i
‖w‖2 , (2)

Σi,j(w) :=
w2

i
‖w‖2

(
δij

(
‖w‖2 − w2

i

)
+ (δij − 1)w2

j

)
. (3)

Note that, in these expressions, the indices i, j belong to {1, 2, . . . , n − 1} and δij is the
Kronecker symbol.

The denominator of Equation (1) collapses to the univariate centered Normal density with
standard deviation ‖w‖ evaluated at c, noted φ(c; 0, ‖w‖). Similarly, when ∑n

i=1 xi = c, the numerator
is just the product of univariate Normal densities. Using xn = c−∑n−1

i=1 xi,

n

∏
i=1

φ(xi; 0, wi) = φ

(
c−

n−1

∑
i=1

xi; 0, wn

)
n−1

∏
i=1

φ(xi; 0, wi) .
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Hence, when the vector x = (x1, . . . , xn)′ meets the constraint, (1) looks like a (n− 1)-th dimensional
Normal pdf:

n
∏
i=1

φ(xi; 0, wi)

φ(c; 0, ‖w‖) = k(w) e
c2

2‖w‖2 exp

{
−1

2

n−1

∑
i=1

((
1

w2
i
+

1
w2

n

)
x2

i +
xi
w2

n

n−1

∑
j=1,j 6=i

xj −
2c
w2

n
xi

)
− c2

2w2
n

}
, (4)

where

k(w) :=
1

(
√

2π)n−1

‖w‖
∏n

i=1 wi
.

On the other hand, the general expression of the Normal density of dimension n− 1 with mean
vector µ = (µ1, . . . , µn−1)

′ and covariance matrix Σ whose inverse has entries noted by αi,j = (Σ−1)i,j
can be obtained by expanding the matrix form of the multivariate Normal :

φ(x; µ, Σ) = K exp

{
−1

2

n−1

∑
i=1

(
αi,ix2

i + xi

n−1

∑
j=1,j 6=i

αi,jxj − xi

n−1

∑
j=1

(αj,i + αi,j)µj + µi

n−1

∑
j=1

αi,jµj

)}
, (5)

where K := 1/
√
(2π)n−1|Σ|. To determine the expression of the covariance matrix and mean vector of

the conditional density (4) (assuming it is indeed Normal), it remains to determine the entries of µ and
Σ−1 by inspection, comparing the expression of conditional density in (4) with that of the multivariate
Normal (5) and then to obtain Σ by analytical inversion.

Leaving only k(w) as a factor in front of the exponential in (4), the independent term (i.e., the term
that does not appear as a factor of any xi) reads w.l.o.g. as

c2

2‖w‖2 −
c2

2w2
n
= − c2

2w2
n

n−1
∑

i=1
w2

i

‖w‖2 = − c2

2w2
n‖w‖2

n−1

∑
i=1

γiw2
i

for any (γ1, γ2, . . . , γn−1) satisfying ∑n−1
i=1 γiw2

i = ∑n−1
i=1 w2

i (note that the constant case γi = 1 might be
a solution, but it is not guaranteed at this stage).

Comparing (4) and (5), it comes that the expression(
1

w2
i
+

1
w2

n

)
x2

i +
xi
w2

n

n−1

∑
j=1,j 6=i

xj −
2c
w2

n
xi +

c2γiw2
i

w2
n‖w‖2 (6)

must agree with

αi,ix2
i + xi

n−1

∑
j=1,j 6=i

αi,jxj − xi

n−1

∑
j=1

(αi,j + αj,i)µj + µi

n−1

∑
j=1

αi,jµj (7)

for all x1, x2, . . . , xn−1. Equating the xixj terms in (6) and (7) uniquely determines the components
of Σ−1:

αi,i = (Σ−1)i,i =
1

w2
i
+

1
w2

n
and αi,j 6=i = (Σ−1)i,j 6=i =

1
w2

n
.

It remains to show that k(w) = K, in order to find the expressions of the µis from the xi terms,
provides the expression of Σ by inverting Σ−1 and, finally, to check that the independent terms in (6)
and (7) agree and that the implied γi’s comply with ∑n−1

i=1 γiw2
i = ∑n−1

i=1 w2
i . To that end, we rely on the

following lemma.
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Lemma 1. Let A(m) denote a matrix with (i, j) elements Ai,j(m) = aiδij + a0, ak > 0 for all k ∈ {0, 1, . . . , m}.

Define π(m) :=
m
∏

k=0
ak and s(m) :=

m
∑

k=0
1/ak. Then:

(i) A(m) is positive definite ;
(ii) its determinant is given by

|A(m)| =
m

∑
k=0

m

∏
j=0,j 6=k

aj = π(m)s(m) ;

(iii) the (i, j)-element of the inverse B(m) := (A(m))−1 is given by

Bi,j(m) =
1

ais(m)

(
δij

ais(m)− 1
ai

+
δij − 1

aj

)
.

The proof is given in Appendix B.

Observe now that Σ−1 takes the form A(n − 1) with a0 ← 1/w2
n and ai ← 1/w2

i for
i ∈ {1, 2, . . . , n− 1}. We can call Lemma 1 (i) to show that Σ−1 is symmetric and positive definite,
proving that Σ is a valid covariance matrix satisfying |Σ| > 0 (notice however that in A(n− 1) the
summation and product indices agree with that of the ai’s, i.e., range from 0 to n− 1, but the index of
wi ranges from 1 to n). From Lemma 1 (ii), k(w) = K as

|Σ−1| =
(

n

∏
j=1

1
w2

j

)
‖w‖2 =

‖w‖2

∏n
j=1 w2

j
⇒ 1/

√
|Σ| =

√
|Σ−1| = ‖w‖

∏n
k=1 wk

.

We can then use Lemma 1 (iii) to determine βi,j := Bi,j(n− 1), the elements of Σ,

βi,j =
w2

i
‖w‖2

(
δij

(
‖w‖2 − w2

i

)
+ (δij − 1)w2

j

)
.

This expression agrees with the right-hand side of (3). Finally, the mean vector is obtained
by equating the xi terms in (6) and (7). Using that Σ−1 is symmetric, we observe that for all
i ∈ {1, 2, . . . , n− 1}:

2c
w2

n
= 2

n−1

∑
j=1

αi,jµj ⇒
n−1

∑
j=1

αi,jµj =
c

w2
n

. (8)

Hence, Σ−1µ = c
w2

n
1n−1 where 1m is the m-dimensional column vector with m entries all set to 1

so that µi =
c

w2
n

∑n−1
j=1 βi,j =

cw2
i

‖w‖2 . It remains to check that these expressions for µ and Σ also comply
with the independent term. Equating the independent terms of (6) and (7) and calling (8) yields

c2γiw2
i

w2
n‖w‖2 = µi

c
w2

n
⇒ µi =

cγiw2
i

‖w‖2

which holds true provided that we take γi = 1. This concludes the derivation of the conditional law as
these γi’s trivially comply with the constraint ∑n−1

i=1 γiw2
i = ∑n−1

i=1 w2
i = ‖w‖2 − w2

n. This expression of
µi corresponds to the right-hand side of (2).

3. Discussion

It is clear from (2) that the construction scheme based on the conditional distribution derived
above (referred to as Method 4) is incompatible with the three other construction schemes discussed
in the Introduction. Indeed, Method 1 yields E(Xi) = cδin, whereas Method 2 leads to E(Xi) = c/n.
Finally, Method 3 corresponds to take as Xi the ratio of two jointly Normal variables, for which it is
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known that the moments do not exist (for instance, the ratio of two independent and zero-mean Normal
variables leads to a Cauchy distribution; see e.g., Fieller (1932) or more recently Cedilnik et al. (2004)).
This is illustrated in Figure 1, which shows 250 samples of X for these four methods in the bivariate
case (n = 2). The same mismatch happens with the covariance, as shown in Figure 2 in the n = 3
case: Method 1 yields Cov(X1, X2) = 0, Method 2 leads to Cov(X1, X2) = (‖w‖/3)2 − (w2

1 + w2
2)/3,

the covariance is undefined for Method 3 and for Method 4 Cov(X1, X2) = − (w1w2/‖w‖)2, from (3).
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(d) Method 4

Figure 1. Scatter plot of 250 samples (x1, x2) drawn for the four methods with n = 2, w2
1 = 0.4,

w2
2 = 0.6 and c = 1. Method 4 yields the correct answer. The vertical and horizontal dashed lines show

the empirical means of x1 and x2 for that specific run, respectively. The diagonal (red) solid line is
x2 = c− x1. The horizontal and vertical widths of the gray rectangles show the confidence intervals
(µ̂xi ± 1.96× σ̂xi ) for both X1 and X2 based on 100 runs of 250 pairs each.
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(d) Method 4

Figure 2. Scatter plot of 250 samples (x1, x2) drawn for the four methods with n = 3, w2
1 = w2

2 = 0.4,
w2

3 = 0.2 and c = 4. Method 4 yields the correct answer. Only the first two components of the
vector (x1, x2, x3) are shown to enhance readability; the third component is set to x3 = c− (x1 + x2).
The vertical and horizontal dashed lines show the empirical means of x1 and x2 for that specific run,
respectively. The horizontal and vertical widths of the gray rectangles show the confidence intervals
(µ̂xi ± 1.96× σ̂xi ) for both X1 and X2 based on 100 runs of 250 pairs each.

4. Sampling Algorithms

From the above result, it is easy to design sampling algorithms. We first derive an algorithm
to sample a multivariate Normal distribution under a weighted sum constraint according to the
density derived above (Algorithm 1). Next, we show that one can also easily extend this algorithm to
sample the multivariate Normal distribution under an upperbound constraint on the weighted sum
(Algorithm 2).
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Algorithm 1. Sampling of Z given w′Z = c.

1. From the vector of weights w and the constraint c, compute the (n − 1)-dimensional mean vector
µ(c, w) and symmetric matrix Σ(w) from (2) and (3);
2. Compute the eigen decomposition of the covariance matrix Σ(w) = VΛV′;
3. Sample (n− 1) i.i.d. standard Normal variates z̃ = (z̃1, . . . , z̃n−1)

′;
4. Transform these variates using the mean vector and covariance matrix

x̃← µ(c, w) + V
√

Λz̃ ;
5. Enlarge the (n− 1)-dimensional vector x̃ with the n-th component to get x,

x←
(

x̃′, c−∑n−1
i=1 x̃i

)′
;

6. Return Z where zi ← xi/wi for i ∈ {1, 2, . . . , n}.

The above algorithm can be extended to sample an n-th dimensional vector Z given w′Z ≤ c.
To that end, it suffices to first draw a sample from the conditional distribution of w′Z. Clearly,
w′Z ∼ N (0, ‖w‖) so that

Fw′Z;c(x) := P(w′Z ≤ x|w′Z ≤ c) =


Φ
(

x
‖w‖

)
Φ
(

c
‖w‖

)
,

if x < c,

1, otherwise.

From the inverse transform, the random variable

Y := F−1
w′Z;c(U)

has cumulative distribution function Fw′Z;c whenever U is a Uniform-[0, 1] random variable. This leads
to the following sampling procedure.

Algorithm 2. Sampling of Z given w′Z ≤ c.

1. Draw a sample u from a Uniform-[0, 1] distribution;
2. Draw a sample c̃ from the conditional law of w′Z given w′Z ≤ c :

c̃← ‖w‖Φ−1
(

uΦ
(

c
‖w‖

))
;

3. Apply Algorithm 1 using c̃ as constraint (i.e., c← c̃);
4. Return Z.

Observe that it is very easy to adjust Algorithm 2 to deal with the alternative constraint w′Z ≥ c.
To that end, it suffices to replace uΦ

(
c
‖w‖

)
by (1− u) + uΦ

(
c
‖w‖

)
.

5. Applications

In this section, we provide two applications that are kept simple on purpose for the sake of
illustration.

5.1. Conditional Portfolio Distribution

The application consists of computing the distribution of a portfolio conditional upon the fact that
one stock reaches an extreme level, i.e., S = qα(S) where qα(X) is the α-quantile of the random variable
X. We consider K stocks with Normal dollar-returns Si ∼ N (mi, σ2

i ) and note J the dollar-return of a
portfolio composed of these stocks with weigths π = (π1, π2, . . . , πK)

′. We postulate the following
n-factor dependence structure :

Si = mi + σi

(
n

∑
j=1

Wi,jZj + Wi,n+1εi

)
,

√√√√n+1

∑
j=1

W2
i,j = 1 , i ∈ {1, 2, . . . , K},
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where W is the K-by-(n + 1) matrix of loadings, Z is the vector of n i.i.d. systematic standard Normal
risk factors and the εis, i ∈ {1, 2, . . . , K} are the i.i.d. idiosynchratic standard Normal risk factors,
independent from the Zjs. Hence,

J ∼
K

∑
i=1

πi

(
mi + σi

(
n

∑
j=1

Wi,jZj + Wi,n+1εi

))
.

Set D = diag(σ1, . . . , σK), m = (m1, . . . , mK)
′ and M the K-by-n matrix made of the first n columns of

W. The portfolio return satisfies J ∼ N (µ̃, σ̃2) with

µ̃ =
K

∑
i=1

πimi = π′m,

σ̃2 =
n

∑
j=1

(
K

∑
i=1

πiσiWi,j

)2

+
K

∑
i=1

(πiσiWi,n+1)
2 = π′DMM′Dπ +

K

∑
i=1

(πiσiWi,n+1)
2 ,

where the first term in the right-hand side of σ̃2 is the contribution of the n systematic factors and the
second results from the K independent idiosynchratic components.

Let us now compute the conditional distribution of the portfolio given that S1 is equal to its
percentile α, i.e., when

S1 = m1 + σ1Φ−1(α) .

Noting c = Φ−1(α), we conclude that

n

∑
j=1

W1,jZj + W1,n+1ε1 = c . (9)

Applying the above result with w = w1 = (W1,1, . . . , W1,n+1)
′, the density of the random vector

(W1,jZ1, . . . , W1,nZn, W1,n+1ε1) conditional upon (9) is jointly Normal with mean vector µ and
covariance matrix Σ given by

µi := µi(c, w1) = cW2
1,i,

Σi,j := Σi,j(w1) = W2
1,i

(
δij

(
1−W2

1,i

)
+ (δij − 1)W2

1,j

)
= W2

1,i

(
δij −W2

1,j

)
,

where i, j in {1, 2, . . . , n + 1}. In order to find the joint distribution of Z, we need to correct for
the scaling coefficients and disregard ε1. Correcting for the scaling coefficients simply requires
rescaling the entries of the mean vector and covariance matrix by 1/W1,i and 1/(W1,iW1,j), respectively.
The conditional distribution of Z is a n-dimensional Normal with mean vector and covariance matrix
found by taking the first n entries of the above mean vector and the n-by-n upper-left of the covariance
matrix. This leads to

µi = cW1,i , Σi,j =
W1,i

W1,j

(
δij −W2

1,j

)
, i, j ∈ {1, 2, . . . , n} .

The eigen decomposition of the covariance matrix is noted Σ = VΛV′, so that Z ∼ µ + V
√

ΛZ̃,
where Z̃ is a n-variate vector of independent standard Normal variables.

Let us note π j the vector π whose j-th entry is set to 0, i.e., π j = π − πjej where ej is the j-th
basis vector. Letting Ẑ be a standard Normal random variable independent from Z̃,

J ∼ π′m + π1σ1c + π1′DMµ + π1′DMV
√

ΛZ̃ +

√√√√ K

∑
i=2

(πiσiWi,n+1)2Ẑ
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so that J ∼ N
(
µ̃, σ̃2) where

µ̃ = π′m + π1σ1c + π1′DMµ ,

σ̃2 = π1′DMΣM′Dπ1 +
K

∑
i=2

(πiσiWi,n+1)
2 .

5.2. Expected Shortfall of a Defaultable Portfolio

The next example consists of approximating the Conditional Value-at-Risk (a.k.a. Expected
Shortfall) associated with the portfolio of m defaultable assets in a multi-factor model. The total loss L
on such a portfolio up to the time horizon T is the sum of the individual losses L = ∑m

i=1 Li, where
the contribution of the loss of the i-th asset is of the form Li = wi1{τi≤T}, where wi is the weight
of the asset in the portfolio and τi is the default time of the i-th obligor. Whereas the expected loss
is independent from the possible correlation across defaults, it is a key driver of the Value-at-Risk,
and hence of the economic and regulatory capital. Most credit risk models introduce such dependency
by relying on latent variables, like 1{τi≤T} ⇔ 1{ξi≤F−1(πi)}, where the ξis are correlated random
variables with cumulative distribution function F and πi is the marginal probability that τi ≤ T under
the chosen measure. The most popular choice (although debatable) is to rely on multi-factor Gaussian
models, i.e., to consider ξi = w′iZ +

√
1− ‖wi‖2εi, where wi is a n-dimensional vector of weights

with norm smaller than 1, Z is the vector of n i.i.d. standard Normal systematic factors and the εi are
i.i.d. standard Normal random variables independent from the Zjs representing the idiosynchratic
risks. Computing the Expected Shortfall in a multi-factor framework is very time-consuming as
there is no closed-form solution and many simulations are required. A possible alternative to the
plain Monte Carlo estimator is to rely on the ASRF∗ model of Pykhtin, which can be seen as the
single-factor model that “best” approximates the multi-factor model in the left tail, in some sense (see
Pykhtin (2004) for details). The ASRF∗ model thus deals with a loss variable L∗ relying on a single
factor Y, but such that qα(L∗) ≈ qα(L), where L is the loss variable in the multi-factor model. By
the law of large numbers, the idiosynchratic risks are diversified away for m large enough, so that
conditional upon Y = x, the portfolio loss in the ASRF∗ model converges almost surely, as m → ∞,
to L∗(x) with L∗(Y) := E[L∗|Y]. Moreover, L∗(x) is a monotonic and decreasing function of x.
Consequently, the Value-at-Risk of the ASRF∗ model satisfies qα(L∗) ≈ L∗(Φ−1(1− α)) for m large
enough. The asymptotic analytical expression L∗(Φ−1(1− α)) is known as the large pool approximation
(see e.g., Gordy (2003)). In the derivation of the ASRF∗ analytical formula, Pykhtin implicitly models Y
as a linear combination of the factors Zj appearing in the multi-factor model, i.e., Y = b′Z s.t. ‖b‖ = 1.
One can thus draw samples for the Zjs by using Algorithm 2 as follows: (i) draw a value for the standard
Normal factor Y conditional upon Y ≤ Φ−1(1− α), i.e., set Y = Φ−1(U(1− α)) with U a Uniform-[0, 1]
random variable so that L∗(Y) ≥ L∗(Φ−1(1− α)), and then (ii) sample Z conditional upon b′Z = Y
from the joint density derived in the paper. Therefore, we use L∗(Y) ≥ L∗(Φ−1(1− α)) as a proxy
for the condition L ≥ qα(L) involved in the expected shortfall definition (observe that both L and L∗

depend on the same random vector Z), but use the actual (multi-factor) loss to estimate the expected
loss under this condition. In other words, we effectively compute Ê[L|L∗(b′Z) ≥ L∗(Φ−1(1− α))] as
a proxy of the genuine Expected Shortfall, defined as E[L|L ≥ qα(L)], leading to a drastic reduction of
the computational cost.

6. Conclusions

Many practical applications in the area of risk management deal with factor models, and often
these factors are taken to be Gaussian. In various cases, it can be interesting to analyse the picture
under some constraints on the weighted sum of these factors. This might be the case for instance
when it comes to perform scenario analyses in adverse circumstances, to compute conditional risk
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measures or to speed up simulations (in the same vein as importance sampling). In this paper, we
derive the density of a n-dimensional Normal vector with independent components subject to the
constraint that the weighted sum takes a given value. It is proven to be a (n− 1)-multivariate Normal
whose mean vector and covariance matrix can be computed in closed-form by relying on the specific
structure of the (inverse) covariance matrix. This result naturally leads to various sampling algorithms,
e.g., to draw samples with weighted sum being equal to, below or above a given threshold. Interestingly,
the proposed scheme is shown to differ from various “standard rescaling” procedures applied to
independent samples. Indeed, the latter fail to comply with the actual conditional distribution found,
both in terms of expectation and variance.
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to Monique Jeanblanc for suggestions about Appendix A.
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Appendix A. General Expression of the Conditional Density

Define Y := ∑n
i=1 Xi, where (X1, X2, . . . , Xn) has joint density f and fY is the density of Y. Let us

note Φ as the conditional expectation of h(X1, . . . , Xn) given Y for some h:

Φ(Y) := E[h(X1, . . . , Xn)|Y] .

The conditional density we are looking for is the function g(x1, . . . , xn; c) satisfying

Φ(c) =
∫

x1

. . .
∫

xn
h(x1, . . . , xn)g(x1, . . . , xn; c)dx1 . . . dxn , (A1)

for all c and every function h. By the law of iterated expectations, Φ(u) is defined as the function
satisfying, for any function ψ,

E[ψ(Y)h(X1, . . . , Xn)] = E
[

ψ

(
n

∑
i=1

Xi

)
h(X1, . . . , Xn)

]
︸ ︷︷ ︸

:=I1

= E[ψ(Y)E[h(X1, . . . , Xn)|Y]] = E[ψ(Y)Φ(Y)]︸ ︷︷ ︸
:=I2

.

A change of variable xn = u−∑n−1
i=1 xi yields

I1 =
∫

x1

. . .
∫

xn−1

∫
u

h

(
x1, . . . , xn−1, u−

n−1

∑
i=1

xi

)
ψ(u) f

(
x1, . . . , xn−1, u−

n−1

∑
i=1

xi

)
dx1 . . . dxn−1du

=
∫

u
ψ(u)

∫
x1

. . .
∫

xn−1

h

(
x1, . . . , xn−1, u−

n−1

∑
i=1

xi

)
f

(
x1, . . . , xn−1, u−

n−1

∑
i=1

xi

)
dx1 . . . dxn−1du

I2 =
∫

x1

. . .
∫

xn−1

∫
u

Φ(u)ψ(u) f

(
x1, . . . , xn−1, u−

n−1

∑
i=1

xi

)
dx1 . . . dxn−1du,

=
∫

u
ψ(u)Φ(u)

∫
x1

. . .
∫

xn−1

f

(
x1, . . . , xn−1, u−

n−1

∑
i=1

xi

)
dx1 . . . dxn−1︸ ︷︷ ︸

= fY(u)

du .

This leads to
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Φ(c) =

∫
x1

. . .
∫

xn−1
h(x1, . . . , xn−1, c−∑n−1

i=1 xi) f
(

x1, . . . , xn−1, c−∑n−1
i=1 xi

)
dx1 . . . dxn−1

fY(c)

=
∫

x1

. . .
∫

xn−1

h

(
x1, . . . , xn−1, c−

n−1

∑
i=1

xi

)
f
(

x1, . . . , xn−1, c−∑n−1
i=1 xi

)
fY(c)

dx1 . . . dxn−1 .

From (A1), the conditional density reads

Φ(c) =
∫

x1

. . .
∫

xn
h(x1, . . . , xn)

f (x1, . . . , xn)δ(∑n
i=1 xi − c)

fY(c)︸ ︷︷ ︸
g(x1,...,xn ;c)

dx1 . . . dxn

or equivalently g(x1, . . . , xn; c) =
f (x1,...,xn−1,c−∑n−1

i=1 xi)δ(∑n
i=1 xi−c)

fY(c)
.

Appendix B. Proof of Lemma 1.

The matrix A(m) is the sum of two positive definite matrices: a diagonal matrix with strictly
positive entries a1, . . . , am and a constant matrix with entries all set to a0 > 0. Hence, A(m) is positive
definite, showing (i).

Let us now compute the determinant of A(m). We proceed by recursion, showing that it is true
for m + 1 whenever it holds for m ≥ 2. It is obvious to check that it is true for m = 2. The key point is
to notice that it is enough to establish the following recursion rule :

|A(m + 1)| = π(m + 1)s(m + 1) =
m

∑
k=0

π(m + 1)
ai

+
π(m + 1)

am+1
= am+1|A(m)|+ π(m) .

We now apply the standard procedure for computing determinants, taking the product of each
element Am+1,j(m) of the last row of A(m) with the corresponding cofactor matrix Am+1,j(m) and
computing the sum. Recall that the cofactor matrix associated with Ai,j(m) is the submatrix Ai,j(m)

obtained by deleting the i-th row and j-th column of A(m) Gentle (2007). This yields

|A(m + 1)| = a0

m

∑
i=1

(−1)m+1+i|Am+1,i(m + 1)|+ (am+1 + a0)|Am+1,m+1(m + 1)|,

where |Ai,j(m + 1)| is the minor associated with the (i, j) element of A(m), i.e., the determinant of
the cofactor matrix Ai,j(m + 1). Interestingly, the cofactor matrices Ai,j(m + 1) take a form that is
similar to A(m). For instance, Am+1,m+1(m + 1) = A(m) and Am+1,m(m + 1) is just A(m) with am ← 0.
Similarly, Am+1,1(m + 1) is the same as A(m) with a1 ← 0 provided that we shift all columns to the
left, and put the last column back in first place (potentially changing the sign of the corresponding
determinant), etc. More generally, for i ∈ {1, 2, . . . , m}, the determinant of the (i, j) cofactor matrix of
A(m), |Ai,j(m + 1)| is exactly that of A(m) with ai ← am+1 if i = j or that of A(m) with ai ← 0 and
aj ← am+1 when j 6= i, up to some permutations of rows and columns. In fact :

|Ai,i(m + 1)| =
m+1

∑
k=0,k 6=i

∏m
p=0 ap

ak

am+1

ai
+

∏m
k=0 ak

ai
=

π(m + 1)
ai

m+1

∑
k=0,k 6=i

1
ak

, (A2)

|Ai,j 6=i(m + 1)| = −(−1)i+j
(

∑m+1
k=0,k/∈{i,j}

π(m+1)
ak

0
ai
+ π(m)

ai

am+1
aj

)
= −(−1)i+j π(m+1)

aiaj
. (A3)
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The minor |Am+1,i(m + 1)| when i 6= m + 1 can be obtained from the expression of |A(m)|
provided that we adjust the sign and replace ai by 0:

|Am+1,i(m + 1)| = −(−1)i+m+1 π(m)

ai
, i ∈ {1, 2, . . . , m}

(recall that A(m) is symmetric so that Am+1,i(m + 1) = Ai,m+1(m + 1)). Therefore,

|A(m + 1)| = (am+1 + a0)|A(m)|+ a0

m

∑
i=1

(−1)m+1+i|Am+1,i(m + 1)|

= am+1|A(m)|+ a0|A(m)|+ a0

m

∑
i=1
−(−1)2(m+1+i) π(m)

ai

= am+1|A(m)|+ a0

(
π(m)

a0
+

m

∑
i=1

π(m)

ai

)
− a0

m

∑
i=1

π(m)

ai

= am+1|A(m)|+ π(m)

and this recursion is equivalent to (ii).

Eventually, the expression of B(m) := (A(m))−1 is given by 1/|A(m)| times the adjunct matrix
of A(m), which is the (symmetric) cofactor matrix C(m). Observe that the elements Ci,j(m) are
given by (−1)i+j|Ai,j(m)|. Using the minors expressions (A2) and (A3) derived above replacing m by
m− 1 yields :

Bi,i(m) =
|Ai,i(m)|
|A(m)| =

∑m
k=0,k 6=j

1
ak

ai ∑m
k=0

1
ak

=
s(m)− 1/ai

ais(m)
=

ais(m)− 1
a2

i s(m)

Bi,j 6=i(m) = (−1)i+j |Ai,j 6=i(m)|
|A(m)| = − π(m)

aiaj|A(m)| =
−1

aiaj ∑m
k=0

1
ak

=
−1

aiajs(m)
.

This concludes the proof.
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