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Abstract: This paper studies the moments and the distribution of the aggregate discounted claims
(ADCs) in a Markovian environment, where the claim arrivals, claim amounts, and forces of interest
(for discounting) are influenced by an underlying Markov process. Specifically, we assume that
claims occur according to a Markovian arrival process (MAP). The paper shows that the vector of joint
Laplace transforms of the ADC occurring in each state of the environment process by any specific time
satisfies a matrix-form first-order partial differential equation, through which a recursive formula is
derived for the moments of the ADC occurring in certain states (a subset). We also study two types
of covariances of the ADC occurring in any two subsets of the state space and with two different
time lengths. The distribution of the ADC occurring in certain states by any specific time is also
investigated. Numerical results are also presented for a two-state Markov-modulated model case.

Keywords: aggregate discounted claims; Markovian arrival process; partial integro-differential
equation; covariance

1. Introduction

Consider a line of business or an insurance portfolio to be insured by a property and casualty
insurance company. Suppose that random claims arrive in the future according to a counting process,
denoted by {N(t)}t≥0, i.e., N(t) is the random number of claims up to time t. Assume that {Tn}n≥1 is
a sequence of random claim occurrence times and {Xn}n≥1 is a sequence of corresponding random
positive claim amounts (also called claim severities), and δ(t) is the force of interest at time t, which is
modeled by a stochastic process. Then S(t) defined by

S(t) =
N(t)

∑
n=1

Xne−
∫ Tn

0 δ(s)ds , t ≥ 0 (1)

is the aggregate discounted claims (ADCs) up to certain time t, or the present value of the total amounts
paid out by the company up to time t, which describes the random change over time of the insurer’s
future liabilities at present time. Accordingly, {S(t)}t≥0 is the ADC process (compound discounted
claims) for this business. At a fixed time t, the randomness of S(t) comes from the number of claims up
to time t, claim occurrence times, and corresponding sizes as well as the values of δ(s), 0 ≤ s ≤ t. It is
an important quantity in the sense that, at the time of issue (t = 0), this quantity would help insurers
set a premium for this particular line of business, and predict and manage their future liabilities.

A simple case of model (1) is one in which the counting process {N(t)}t≥0 is a homogeneous
Poisson process, independent of claim amounts, and the force of interest is deterministic. In this
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paper, we assume that the counting process {N(t)}t≥0 is a Markovian arrival process (MAP) with
representation (γ, D0, D1), introduced by Neuts (1979). That is, claim arrivals are influenced by an
underlying continuous-time Markov process {J(t)}t≥0 on state space E = {1, 2, . . . , m} with an m×m
intensity matrix D and initial distribution γ, where D = D0 + D1 =

(
d0,ij

)
+
(
d1,ij

)
, and is assumed

to be irreducible. Precisely, d0,ij represents the intensity of transitions from state i to state j without
claim arrivals, while d1,ij(≥ 0) represents the intensity of transitions from state i to state j with an
accompanying claim, having a cumulative distribution function Fi, density function fi, k-th moment
µ
(k)
i , and Laplace transform f̂i(s) =

∫ ∞
0 e−sx fi(x)dx. Here, the process {J(t)}t≥0 models the random

environment, which affects the frequency and the severity of claims and thus the insurance business;
for example, it is well known that the weather or climate conditions have impacts on automobile,
property and casualty insurance claims.

Moreover, we assume that the force of interest process {δ(t)}t≥0 in (1) is also governed by the same
Markov process {J(t)}t≥0 and is assumed constant while staying at certain state, that is, when J(t) = i,
δ(t) = δi(> 0), for all i ∈ E. As the force of interest used for evaluation is mainly driven by the local
or global economics conditions, we would reasonably model its random fluctuations by a stochastic
process that is different from {J(t)}t≥0. Technically, we can assume a two-dimensional Markov
process as the environment or background process and other mathematical treatments would be the
same as we do below. Hence, we make the above assumption in this paper to simplify notations and
presentations. We note that studies of the influence of economic conditions such as interest and inflation
on the classical risk theory can be found in papers by Taylor (1979), Delbaen and Haezendonck (1987),
Willmot (1989), and Garrido and Léveill (2004).

The MAP has received considerable attention in recent decades due to its versatility and feasibility
in modeling stochastic insurance claims dynamics. MAPs include Poisson processes, renewal processes
with the inter-arrival times following phase-type distributions, and Markov-modulated Poisson
processes as special cases, which are intensively studied in actuarial science literature. Detailed
characteristics and properties of MAPs can be found in papers by Neuts (1979) and Asmussen (2003).
Below, we present a brief literature review on the related work based on models given by Equation (1)
(including its special cases).

Most of the studies on model (1) are under the assumption that {δ(t)}t≥0 is deterministic. For the
ADC, Léveillé and Garrido (2001a) give explicit expressions for its first two moments in the compound
renewal risk process by using renewal theory arguments, while Léveillé and Garrido (2001b) further
derive a recursive formula for the moments calculation. Léveillé et al. (2010) study the moment
generating function (mgf) of the ADC by finite and infinite time under a renewal risk model or a delayed
renewal risk model. Recently, Wang et al. (2018) studied the distribution of discounted compound
phase-type renewal sums using the analytical results of their mgf obtained by Léveillé et al. (2010).
Jang (2004) obtains the Laplace transform of the distribution of the ADC using a shot noise process.
Woo and Cheung (2013) derive recursive formulas for the moments of the ADC using techniques
used by Léveillé and Garrido (2001b), for a renewal risk process with certain dependence between the
claim arrival and the amount caused. The impact of the dependency on the ADC are illustrated
numerically. Kim and Kim (2007) derive simple expressions for the first two moments of the
ADC when the rates of claim arrivals and the claim sizes depend on the states of an underlying
Markov process. Ren (2008) studies the Laplace transform and the first two moments of the ADC
following a MAP process, and Li (2008) further derives a recursive formula for the moments of the
discounted claims for the same model. Barges et al. (2011) study the moments of the ADC in a
compound Poisson model with dependence introduced by a Farlie–Gumbel–Morgenstern (FGM)
copula; Mohd Ramli and Jang (2014) further derive Neumann series expression of the recursive
moments by using the method of successive approximation.

There are few papers that study models described by Equation (1) with a stochastic process
{δ(t)}t≥0 in the literature of actuarial science. Leveille and Adekambi (2011, 2012) study the
covariance and the joint moments of the discounted compound renewal sum at two different times
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with a stochastic interest rate where the Ho–Lee–Merton and the Vasicek interest rate models are
considered. Their idea of studying the covariance and the joint moments is adopted and extended
in this paper. Here, we assume that the components of the ADC process {S(t)}t≥0 described by
Equation (1)—the number of claims, the size of the claims, and the force of interest for discounting—are
all influenced by the same Markovian environment process, which enhances the flexibility of the model
parameter settings. It follows that S(t) depends on the trajectory of this underlying process whose states
may represent different external conditions or circumstances that affect insurance claims. The main
objective of this paper is to study the moments and the distribution of S(t) given in Equation (1),
occurring in certain states (e.g., certain conditions) by time t.

In general, while the expectation of S(t) at any given time t can be used as a reference for the
insurer’s liability, the higher moments of S(t), describing further characteristics of the random variable
such as the variability around the mean and how extreme outcomes could go, may be used to determine
the marginals on reserves. Furthermore, the distributional results regarding S(t) would be useful for
obtaining the risk measures such as the value at risk and the conditional tail expectation, which may
help insurers prevent or minimize their losses from extreme cases.

Our work is basically a generalization of some aforementioned studies. We first obtain formulas
for calculating mean, variance, and distribution of the ADC occurring in a subset of states at a certain
time. The subset may represent a collection of similar conditions that the insurer would consider them
as a whole. We then derive explicit matrix-analytic expressions for covariances of the ADC occurring in
two subsets of the state space at a certain time and those occurring in a certain subset of states with two
different time lengths. The motivation of studying these two types of covariance is that we believe they
can reveal the correlation between the random discounted sums either between different underlying
conditions or with different time lengths, and the information would be helpful for insurers to set
their capital requirements for preventing future losses, and make strategic and contingency plans.
Moreover, we obtain a matrix-form partial integro-differential equation satisfied by the distribution
function of the ADC occurring in certain subset of states. The equation can be solved numerically to
obtain the probability distribution function of the ADC, which again could be useful for measuring
insurers’ risks of insolvency.

The rest of the paper is organized as follows. In Section 2, we study the joint Laplace transforms
of the ADC occurring in each state by time t and pay attention to some special cases. Recursive
formulas for calculating the moments of the ADC occurring in certain states are obtained. A formula
for computing the covariance of the ADC occurring in two subsets of the state space is derived in
Section 3, while the covariance of the ADC occurring in certain states with two different time lengths is
studied in Section 4. The distribution of the ADC occurring in certain states is investigated in Section 5.
Finally, some numerical illustrations are presented in Section 6.

2. The Laplace Transforms and Moments

We first decompose S(t) into m components as

S(t) =
m

∑
j=1

Sj(t)

where

Sj(t) =
N(t)

∑
n=1

Xn I(J(Tn) = j)e−
∫ Tn

0 δ(s)ds

is the ADC occurring in state j ∈ E, with I(·) being the indicator function. For a given k(1 ≤ k ≤ m),
1 ≤ l1 < l2 < . . . < lk ≤ m denote Ek = {l1, l2, . . . , lk} ⊆ E, a sub-state space of E. We then define

SEk (t) = ∑
j∈Ek

Sj(t)
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to be the ADC occurring in the subset of state space Ek. In particular, SE(t) = S(t) and S{j}(t) = Sj(t).
If δ(t) = 0 and Xi ≡ 1 for all i ∈ N+, then SEk (t) = NEk (t), where NEk (t) is the number of claims
occurring in the sub-state space Ek by time t.

Let Pi and Ei denote conditional probability and conditional expectation given J(0) = i,
respectively. Define

iL(ξ1, ξ2, . . . , ξm; t) = Ei

[
e−∑m

j=1 ξ jSj(t)
]

, ξ j ≥ 0, t ≥ 0, i ∈ E (2)

to be the joint Laplace transform of S1(t), S2(t), . . . , Sm(t), given that the initial state is i. In particular,
we have

iL(ξ; t) = Ei

[
e−ξS(t)

]
= iL(ξ, ξ, . . . , ξ; t)

iLEk (ξ; t) = Ei

[
e−ξSEk

(t)
]
= iL(ξ1, ξ2, . . . , ξm; t)

∣∣
ξ j=ξ I(j=ln),n=1,2,...,k

iLj(ξ j; t) = Ei

[
e−ξ jSj(t)

]
= iL(ξ1, ξ2, . . . , ξm; t)

∣∣
ξk=0,k 6=j .

We define, for n ∈ N+, the n-th moment of S(t), Sj(t), and SEk (t), respectively, as

iV(n)(t) = Ei [Sn(t)] , i ∈ E

iV
(n)
j (t) = Ei

[
Sn

j (t)
]

, i, j ∈ E

iV
(n)
Ek

(t) = Ei

[
Sn

Ek
(t)
]

, 1 ≤ k ≤ m

given that the initial state is i.
We write the following column vectors for the Laplace transforms

L(ξ1, ξ2, . . . , ξm; t) =
(

1L(ξ1, ξ2, . . . , ξm; t), . . . , mL(ξ1, ξ2, . . . , ξm; t)
)>

L(ξ; t) =
(

1L(ξ; t), 2L(ξ; t), . . . , mL(ξ; t)
)>

LEk (ξ; t) =
(

1LEk (ξ; t), 2LEk (ξ; t), . . . , mLEk (ξ; t)
)>

Lj(ξ j; t) =
(

1Lj(ξ j; t), 2Lj(ξ j; t), . . . , mLj(ξ j; t)
)>,

with L(0; t) = LEk (0; t) = Lj(0; t) = 1 = (1, 1, . . . , 1)>.
In this section, we first show that L(ξ1, ξ2, . . . , ξm; t) satisfies a matrix-form first-order partial

differential equation, and derive recursive formulas for calculating the moments of various ADC
depending on the initial state of the underlying Markovian process. We also consider some
special cases.

Theorem 1. L(ξ1, ξ2, . . . , ξm; t) satisfies

∂L(ξ1, ξ2, . . . , ξm; t)
∂t

+ δ
m

∑
j=1

ξ j
∂L(ξ1, ξ2, . . . , ξm; t)

∂ξ j

= D0L(ξ1, ξ2, . . . , ξm; t) + f̂(ξ1, ξ2, . . . , ξm)D1 L(ξ1, ξ2, . . . , ξm; t)

(3)

where δ = diag(δ1, δ2, . . . , δm) and f̂(ξ1, ξ2, . . . , ξm) = diag
(

f̂1(ξ1), f̂2(ξ2), . . . , f̂m(ξm)
)
.
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Proof. For an infinitesimal h > 0, conditioning on three possible events which can occur in [0, h]—no
change in the MAP phase (state), a change in the MAP phase accompanied by no claims, and a change
in the MAP phase accompanied by a claim—we have

iL(ξ1, ξ2, . . . , ξm; t) = [1 + d0,iih] iL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
+

m

∑
k=1,k 6=i

d0,ikh kL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
+

m

∑
k=1

d1,ikh f̂i
(
ξie−δih

)
kL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
.

(4)

As iL(ξ1, ξ2, . . . , ξm; t) is differentiable with respect to ξi (i ∈ E) and t (the differentiability of iL
with respect to t is justified in Appendix), we have

iL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
= iL(ξ1, ξ2, . . . , ξm; t)− h

∂ iL(ξ1, ξ2, . . . , ξm; t)
∂t

− δih
m

∑
l=1

ξl
∂ iL(ξ1, ξ2, . . . , ξm; t)

∂ξl
+ o(h)

(5)

where limh→0(o(h)/h) = 0. Substituting the expression above into Equation (4), dividing both sides
by h, and letting h→ 0, we have

δi

m

∑
l=1

ξl
∂ iL(ξ1, ξ2, . . . , ξm; t)

∂ξl
+

∂ iL(ξ1, ξ2, . . . , ξm; t)
∂t

=
m

∑
k=1

d0,ik kL(ξ1, ξ2, . . . , ξm; t) +
m

∑
k=1

d1,ik f̂i
(
ξi
)

kL(ξ1, ξ2, . . . , ξm; t) .
(6)

Rewriting Equation (6) in matrix form gives Equation (3).

Remark 1. Using the same argument, we have the follow results.

(1) LEk (ξ; t) satisfies the following matrix-form first-order partial differential equation:

∂LEk (ξ; t)
∂t

+ δξ
∂LEk (ξ; t)

∂ξ
= D0LEk (ξ; t) + f̂Ek (ξ)D1LEk (ξ; t) (7)

where f̂Ek (ξ) is an m× m diagonal matrix with the li-th entry being f̂li (ξ), for i = 1, 2, . . . , k and all
other entries being 1.

(2) L(ξ; t) satisfies

∂L(ξ; t)
∂t

+ δξ
∂L(ξ; t)

∂ξ
= D0L(ξ; t) + f̂(ξ)D1L(ξ; t)

where f̂(ξ) = diag
(

f̂1(ξ), f̂2(ξ), . . . , f̂m(ξ)
)
.

(3) Lj(ξ j; t) satisfies

∂Lj(ξ j; t)
∂t

+ δξ j
∂Lj(ξ j; t)

∂ξ j
= D0Lj(ξ j; t) + f̂j(ξ j)D1Lj(ξ j; t)

where f̂j(ξ j) = diag
(
1, 1, . . . , f̂ j(ξ j), 1, . . . , 1

)
.
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We now study the moments of the ADC considered in Theorem 1. Denote the vectors of the n-th
moment of the corresponding ADC as

Vn(t) =
(

1V(n)(t), 2V(n)(t), . . . , mV(n)(t)
)>

Vn,Ek (t) =
(

1V(n)
Ek

(t), 2V(n)
Ek

(t), . . . , mV(n)
Ek

(t)
)>

Vn,j(t) =
(

1V(n)
j (t), 2V(n)

j (t), . . . , mV(n)
j (t)

)> .

From Equation (7), we obtain in Theorem 2 a matrix-form first-order differential equation satisfied by
the moments of SEk (t), Vn,Ek (t) and then, in Theorem 3, obtain recursive formulas for calculating them.

Theorem 2. The moments of SEk (t) satisfy

V′n,Ek
(t) +

(
nδ−D0 −D1

)
Vn,Ek (t) =

n

∑
r=1

(
n
r

)
IEk µr D1 Vn−r,Ek (t) , n ∈ N+, (8)

with initial conditions Vn,Ek (0) = 0 and V0,Ek (t) = 1. In particular,

V′1,Ek
(t) +

(
δ−D0 −D1

)
V1,Ek (t) = IEk µ1D11 , t ≥ 0

where µr = diag
(
µ
(r)
1 , µ

(r)
2 , . . . , µ

(r)
m
)
, IEk is an m×m diagonal matrix with the li-th entry being 1, for i =

1, 2, . . . , k, and all other diagonal entries being 0.

Proof. By Taylor’s expansion (its existence is easily justified as we assume that fi has moment µ
(n)
i for

any n ∈ N+), we have

f̂i(ξ) = 1 +
∞

∑
n=1

(−1)nξn

n!
µ
(n)
i .

In matrix notation,

f̂Ek (ξ) = 1 +
∞

∑
n=1

(−1)nξn

n!
IEk µn . (9)

Substituting Equation (9) together with

LEk (ξ; t) =
∞

∑
n=0

(−1)nξn

n!
Vn,Ek (t)

into Equation (7) and equating the coefficients of ξn give Equation (8).

Corollary 1. We have the following results for the moments of S(t) and Sj(t).

(i) Vn(t) satisfies the matrix-form first-order differential equation:

V′n(t) +
(
nδ−D0 −D1

)
Vn(t) =

n

∑
r=1

(
n
r

)
µrD1 Vn−r(t) , n ∈ N+

where Vn(0) = 0 and V0(t) = 1. In particular, V1(t) satisfies

V′1(t) +
(
δ−D0 −D1

)
V1(t) = µ1D11 , t ≥ 0.

(ii) Vn,j(t) satisfies

V′n,j(t) +
(
nδ−D0 −D1

)
Vn,j(t) =

n

∑
r=1

(
n
r

)
IjµrD1 Vn−r,j(t)
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where Ij = I{j} is a diagonal matrix with the j-th entry being 1, and 0 otherwise, Vn,j(0) = 0 and
V0,j(t) = 1. In particular, V1,j(t) satisfies

V′1,j(t) +
(
δ−D0 −D1

)
V1,j(t) = Ijµ1D11 , t ≥ 0.

Solving differential Equation (8) with Vn,Ek (0) = 0, we obtain the following recursive formulas
for Vn,Ek (t).

Theorem 3. For t > 0 and n ∈ N+, we have

Vn,Ek (t) =
n

∑
r=1

(
n
r

) ∫ t

0
e−
(

n δ−(D0+D1)
)

x IEk µrD1Vn−r,Ek (t− x)dx .

In particular,

V1,Ek (t) =
∫ t

0
e−
(

δ−(D0+D1)
)

xdx IEk µ1 D11

= [δ− (D0 + D1)]
−1
[
I− e−[δ−(D0+D1)]t

]
IEk µ1 D11 .

(10)

Clearly, we have V1,Ek (t) + V1,Ec
k
(t) = V1(t), where Ec

k = E \ Ek.

Corollary 2. If we set Ek = E and Ek = {j} in Theorem 3, we have the following recursive formulas for the
moments of S(t) and Sj(t):

Vn(t) =
n

∑
k=1

(
n
k

) ∫ t

0
e−
(

n δ−(D0+D1)
)

xµkD1Vn−k(t− x)dx

Vn,j(t) =
n

∑
k=1

(
n
k

) ∫ t

0
e−
(

n δ−(D0+D1)
)

x IjµkD1Vn−k,j(t− x)dx .

In particular,

V1(t) = [δ− (D0 + D1)]
−1
[
I− e−[δ−(D0+D1)]t

]
µ1D11

V1,j(t) = [δ− (D0 + D1)]
−1
[
I− e−[δ−(D0+D1)]t

]
Ijµ1D11 .

Remark 2. When t→ ∞, we have the following asymptotic results for the moments of the ADC for n ∈ N+:

Vn,Ek (∞) = [nδ− (D0 + D1)]
−1

n

∑
r=1

(
n
r

)
IEk µrD1Vn−r,Ek (∞)

Vn(∞) = [nδ− (D0 + D1)]
−1

n

∑
r=1

(
n
r

)
µr D1Vn−r(∞)

Vn,j(∞) = [nδ− (D0 + D1)]
−1

n

∑
r=1

(
n
r

)
Ij µr D1Vn−r,j(∞)

where V0,Ek (∞) = V0(∞) = V0,j(∞) = 1.

3. The Covariance of ADC Occurring in Two Sub-State Spaces

In this section, we first calculate the joint moment of the ADC occurring in two subsets of the
state space and then the covariance between them could be calculated.
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For 1 ≤ l1 < l2 < . . . < lk ≤ m and 1 ≤ n1 < n2 < . . . < nj ≤ m, where 2 ≤ k + j ≤ m,
denote Ek = {l1, l2, . . . , lk} and Ej = {n1, n2, . . . , nj} to be two disjoint subsets of E, i.e., Ek ∩ Ej = ∅.
The aggregate discounted claim amounts occurring in Ek and Ej are

SEk (t) = ∑
i∈Ek

Si(t), SEj(t) = ∑
i∈Ej

Si(t) .

Define

iLEk ,Ej(ξk, ξ j; t) = Ei

[
e
−ξkSEk

(t)−ξ jSEj
(t)]

to be the joint Laplace transform of SEk (t) and SEj(t). Let LEk ,Ej(ξk, ξ j; t) be a column vector with the
i-th entry being iLEk ,Ej(ξk, ξ j; t). Moreover, let

iVEk ,Ej(t) = Ei

[
SEk (t)SEj(t)

]
be the joint moment of SEk (t) and SEj(t). Denote VEk ,Ej(t) as an m× 1 column vector with the i-th
entry being iVEk ,Ej(t). A matrix-form integral expression of VEk ,Ej(t) and its asymptotic formula when
t→ ∞ are presented in the theorem below.

Theorem 4. For two disjoint subsets of E, Ek and Ej, the joint moment of SEk (t) and SEj(t) satisfies

VEk ,Ej(t) =
∫ t

0
e−
(

2δ−(D0+D1)
)

x IEk µ1 D1V1,Ej(t− x)dx

+
∫ t

0
e−
(

2δ−(D0+D1)
)

x IEj µ1 D1V1,Ek (t− x)dx
(11)

where V1,Ek (t) is given by Equation (10) in Theorem 3. When t→ ∞, we have

VEk ,Ej(∞) =
[
2δ− (D0 + D1)

]−1
[
IEk µ1D1V1,Ej(∞) + IEj µ1 D1V1,Ek (∞)

]
. (12)

Proof. Following from Equation (3), we have

∂LEk ,Ej(ξk, ξ j; t)

∂t
+ δξk

∂LEk ,Ej(ξk, ξ j; t)

∂ξk
+ δξ j

∂LEk ,Ej(ξk, ξ j; t)

∂ξ j

= D0LEk ,Ej(ξk, ξ j; t) + f̂Ek ,Ej(ξk, ξ j)D1 LEk ,Ej(ξk, ξ j; t)
(13)

where f̂Ek ,Ej(ξk, ξ j) is a diagonal matrix with the li-th entry being f̂li (ξk), for i = 1, 2, . . . , k, with the

ni-th entry being f̂ni (ξ j), for i = 1, 2, . . . , j, and all other elements being 1.
Taking partial derivatives with respect to ξk and ξ j on both sides of Equation (13), setting ξk = 0

and ξ j = 0, and noting that

iVEk ,Ej(t) =
∂2

iLEk ,Ej(ξk, ξ j; t)

∂ξk∂ξ j

∣∣∣
ξk=ξ j=0

,

we obtain the following matrix-form first-order differential equation for VEk ,Ej(t):

V ′
Ek ,Ej

(t) + [2δ−D0 −D1]VEk ,Ej(t) = IEk µ1D1V1,Ej(t) + IEj µ1 D1V1,Ek (t) .

Solving it gives Equation (11).
Letting t → ∞ in Equation (11), we obtain expression (12) for the joint moment of SEk (∞) and

SEj(∞).
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Remark 3. If Ek = {k} and Ej = {j}, and k 6= j, we have

V{k},{j}(t) =
∫ t

0
e−
(

2δ−(D0+D1)
)

x Ijµ1D1V1,k(t− x)dx

+
∫ t

0
e−
(

2δ−(D0+D1)
)

xIk µ1D1V1,j(t− x)dx .

When t→ ∞, the joint moment of Sk(∞) and Sj(∞) can be expressed as

V{k},{j}(∞) =
[
2δ− (D0 + D1)

]−1 [ Ij µ1D1V1,k(∞) + Ik µ1 D1V1,j(∞)
]

.

Remark 4. If two subsets Ek and Ej are not disjoint, i.e., Ek ∩ Ej = Ekj 6= ∅, then

Covi
(
SEk (t), SEj(t)

)
= Covi

(
SEk\Ekj

(t) + SEkj(t), SEj\Ekj
(t) + SEkj(t)

)
= Covi

(
SEk\Ekj

(t), SEkj(t)
)
+ Covi

(
SEj\Ekj

(t), SEkj(t)
)

+ Covi

(
SEk\Ekj

(t), SEj\Ekj
(t)
)
+ Vari

(
SEkj(t)

)
.

All the covariance terms in the expression above are for ADCs occurring in two disjoint sets.

4. The Covariance of the ADC with Two Different Time Lengths

In this section, we investigate the covariance of the ADCs occurring in two (overlapped) time
periods, i.e., we want to evaluate

Covi(SEk (t), SEk (t + h)) , Cov(SEk (t), SEk (t + h)
∣∣J(0) = i)

= Ei
[
SEk (t)SEk (t + h)

]
−Ei[SEk (t)]Ei[SEk (t + h)]

for t, h > 0 and Ek = {l1, l2, . . . , lk} with k ≤ m. Denote REk (t, t + h) as a column vector with the i-th
entry being Ei

[
SEk (t)SEk (t + h)

]
. In the following, we first show in a lemma a result that is needed

for deriving the expression for REk (t, t + h). We then present an explicit formula of REk (t, t + h) in a
theorem below.

As SEk (t + h) = SEk (t + h)− SEk (t) + SEk (t), we have

Ei
[
SEk (t)SEk (t + h)

]
= Ei

[
S2

Ek
(t)
]
+Ei

[
SEk (t)

(
SEk (t + h)− SEk (t)

)]
. (14)

Define Ft = σ(S(v); 0 ≤ v ≤ t) to be σ-algebra generated by the ADC process by time t. Using the law
of iterated expectation, we have

Ei
[
SEk (t)

(
SEk (t + h)− SEk (t)

)]
= Ei

{
E
[
SEk (t)

(
SEk (t + h)− SEk (t)

)∣∣Ft
]}

= Ei
{

SEk (t)E
[(

SEk (t + h)− SEk (t)
)∣∣Ft

]}
= Ei

{
SEk (t)e

−
∫ t

0 δ(s)dsE
[(

SEk (t, t + h)
)∣∣Ft

]}
= Ei

{
SEk (t)e

−
∫ t

0 δ(s)dsE
[(

SEk (t, t + h)
)∣∣J(t)]}

=
m

∑
j=1

Ei

{
SEk (t)e

−
∫ t

0 δ(s)dsE
[(

SEk (t, t + h)
)∣∣J(t) = j

]}
P(J(t) = j|J(0) = i)

=
m

∑
j=1

Ei

[
SEk (t)e

−
∫ t

0 δ(s)ds I(J(t) = j)
]
Ej[SEk (h)]P(J(t) = j|J(0) = i)

(15)

where SEk (t, t + h) is the present value, at time t, of the claims occurring in states within Ek over
(t, t + h].
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Denote MEk (t) =
(

Mi,j,Ek (t)
)

m×m, where

Mi,j,Ek (t) = Ei
[
SEk (t)e

−
∫ t

0 δ(s)ds I(J(t) = j)
]

.

The following lemma gives a matrix-form integral expression for MEk (t).

Lemma 1. MEk (t) is of the form

MEk (t) =
∫ t

0
e−
(

2δ−(D0+D1)
)

x IEk µ1 D1v(t− x)dx (16)

where v(t) is a matrix with (i, j)-th element being

vi,j(t) = Ei

[
e−
∫ t

0 δ(s)ds I(J(t) = j)
]

, i, j ∈ E.

Proof. Conditioning on the events that may occur over an infinitesimal interval (0, ∆t), we have

Mi,j,Ek (t) = (1 + d0,ii∆t)e−2δi∆t Mi,j,Ek (t− ∆t) + ∑
l 6=i

d0,il∆t e−2δi∆t Ml,j,Ek
(t− ∆t)

+
m

∑
l=1

d1,il ∆t e−2δi∆t
[

I(i ∈ Ek)µ
(1)
i El

(
e−
∫ t

∆t δ(s)ds I(J(t) = j)
)
+ Ml,j,Ek

(t− ∆t)
]

.
(17)

We can then obtain a matrix-form differential equation for MEk (t) from Equation (17) as follows:

M′Ek
(t) = (D0 + D1 − 2δ)MEk (t) + IEk µ1 D1v(t) , (18)

with MEk (0) = 0. In fact, it is easy to show that v(t) = e(D0+D1−δ)t, with v(0) = I and v(∞) = 0.
Solving Equation (18) gives Equation (16).

Let qi,j(t) = Pi(J(t) = j). Then Q(t) =
(
qi,j(t)

)
m×m is the transition matrix of the underlying

Markov process {J(t)}t≥0 at time t. It follows from Ren (2008) that Q(t) = e(D0+D1)t.

Theorem 5. REk (t, t + h) can be expressed as

REk (t, t + h) = V2,Ek (t) + (MEk ◦Q)(t)V1,Ek (h) (19)

where (MEk ◦Q)(t) is the Hadamard product of MEk (t) and Q(t), i.e., the (i, j)-th element of (MEk ◦Q)(t) is
Mi,j,Ek (t)× qi,j(t), and MEk (t) is given by Equation (16) in Lemma 1.

Proof. Equation (19) follows immediately from Equations (14) and (15).

Remark 5. If Ek = E or Ek = {k}, Equation (19) simplifies to the joint moment of S(t) and S(t + h), or the
joint moment of Sk(t) and Sk(t + h).

5. The Distributions of the ADC

In this section, we investigate the distributions of SEk (t) and its two special cases, S(t) and Sk(t),
for Ek = {l1, l2, . . . , lk} ⊆ E. To precede, we define for x ≥ 0 and i ∈ E,

Gi(x, t) = Pi(S(t) ≤ x)

Gi,k(x, t) = Pi(Sk(t) ≤ x)

Gi,Ek (x, t) = Pi
(
SEk (t) ≤ x

)
,



Risks 2018, 6, 59 11 of 16

with the following conditions:

Gi(x, 0) = Gi,k(x, 0) = Gi,Ek (x, 0) = 1, x ≥ 0

Gi(0, t) = Pi(N(t) = 0)

Gi,k(0, t) = Pi(Nk(t) = 0)

Gi,Ek (0, t) = Pi
(

NEk (t) = 0
)

where Nk(t) = ∑
N(t)
l=1 I(J(Tl) = k) is the number of claims occurring in state k and NEk (t) = ∑j∈Ek

Nj(t)
is the number of claims occurring in the subset Ek. Denote

G(x, t) =
(
G1(x, t), G2(x, t), . . . , Gm(x, t)

)>
Gk(x, t) =

(
G1,k(x, t), G2,k(x, t), . . . , Gm,k(x, t)

)>
GEk (x, t) =

(
G1,Ek (x, t), G2,Ek (x, t), . . . , Gm,Ek (x, t)

)> .

We present in the theorem below that GEk (x, t) satisfies a first-order partial integro-differential equation
in matrix form.

Theorem 6. GEk (x, t) satisfies

∂GEk (x, t)
∂t

− xδ
∂GEk (x, t)

∂x

= (D0 + D1 − IEk D1)GEk (x, t) +
∫ x

0
IEk f(y)D1 GEk (x− y, t)dy ,

(20)

with initial conditions
GEk (x, 0) = 1, GEk (0, t) = e(D0+D1−IEk

D1)t1 (21)

where GEk (0, t) is the solution of the differential equation obtained from Equation (20) by setting x = 0.

Proof. Using the same arguments as in Section 2, we have, by conditioning on events that may occur
over (0, h],

Gi,Ek (x, t) = [1 + d0,iih]Gi,Ek

(
xeδih, t− h

)
+

m

∑
j=1,j 6=i

d0,ijhGj,Ek

(
xeδih, t− h

)
+

m

∑
j=1

d1,ijh Gj,Ek

(
xeδih, t− h

)
, i 6∈ Ek .

(22)

As Gi,Ek (x, t) is differentiable with respect to x and t, we have

Gi,Ek

(
xeδih, t− h

)
= Gi,Ek (x, t) + δixh

∂Gi,Ek (x, t)
∂x

− h
∂Gi,Ek (x, t)

∂t
+ o(h) . (23)

The justification of Equation (23) can be done similarly as that for Equation (5) (see Appendix A).
Substituting Equation (23) into Equation (22), rearranging terms, dividing both sides by h, and taking
limit as h→ 0, give

∂Gi,Ek (x, t)
∂t

− δix
∂Gi,Ek (x, t)

∂x
=

m

∑
j=1

d0,ijGj,Ek (x, t) +
m

∑
j=1

d1,ijGj,Ek (x, t) , i 6∈ Ek .
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For i ∈ Ek = {l1, l2, . . . , lk}, we have

Gi,Ek (x, t) = [1 + d0,iih]Gi,Ek

(
xeδih, t− h

)
+

m

∑
j=1,j 6=i

d0,ikhGj,Ek

(
xeδih, t− h

)
+

m

∑
j=1

d1,ijh
∫ xeδi h

0
fi(y)Gj,Ek

(
xeδih − y, t− h

)
dy .

Taylor’s expansion gives

∂Gi,Ek (x, t)
∂t

− δix
∂Gi,Ek (x, t)

∂x

=
m

∑
j=1

d0,ijGj,Ek (x, t) +
m

∑
j=1

d1,ij

∫ x

0
fi(y)Gj,Ek (x− y, t)dy , i ∈ Ek .

Equations for i ∈ Ek and i 6∈ Ek can then be expressed in matrix form (20).

Remark 6. If we set Ek = E and Ek = {k}, respectively, we have the following results:

∂G(x, t)
∂t

− xδ
∂G(x, t)

∂x
= D0G(x, t) +

∫ x

0
f(y)D1G(x− y, t)dy

∂Gk(x, t)
∂t

− xδ
∂Gk(x, t)

∂x
= (D0 + D1 − Ik D1)Gk(x, t) +

∫ x

0
Ikf(y)D1Gk(x− y, t)dy ,

(24)

with initial conditions

G(x, 0) = 1, G(0, t) = eD0t1

Gk(x, 0) = 1, Gk(0, t) = e(D0+D1−IkD1)t1 .

Here, Gk(0, t) is the solution of the differential equation obtained from Equation (24) by setting x = 0.

Remark 7. The matrix-form partial integro-differential Equation (20) with the corresponding initial conditions
given by Equation (21) may be solved numerically as follows.

(a) For two infinitesimal h1 and h2, we set GEk (lh1, 0) = 1, for l = 1, 2, . . . , and we calculate GEk (0, nh2)

using Equation (21) for n = 1, 2, . . . .
(b) With Equation (20), GEk (lh1, nh2) can be calculated recursively, for n, l = 1, 2, . . . , by

GEk (lh1, nh2) =
[
I− lh2 δ− h2(D0 + D1 − IEk D1)

]−1

×
[
GEk (lh1, (n− 1)h2)− lh2 δGEk

(
(l − 1)h1, nh2

)
+ h2 h1

l−1

∑
j=0

IEk f(jh1)D1GEk

(
(l − 1− j)h1, nh2

)]
.

Remark 8. If fi(x) = βie−βix, βi > 0, then f(x) = βe−βx, with f′(x) = −βf(x), where
β = diag(β1, β2, . . . , βm). Taking partial derivative with respect to x on both sides of Equation (20) and
performing some manipulations, we obtain the following matrix-form second-order partial differential equation
for GEk (x, t) :

∂2GEk (x, t)
∂t∂x

− xδ
∂2GEk (x, t)

∂x2 + IEk β
∂GEk (x, t)

∂t

+
(
δ−D0 −D1 + IEk (xδβ + D1)

)∂GEk (x, t)
∂x

− IEk (βD0 + D1)GEk (x, t) = 0 .

(25)
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This partial differential equation can also be solved numerically by using forward finite difference methods.

Remark 9. Li et al. (2015) show that, when δ(s) = 0, Gi(x, t) can be used to find an expression for the density
of the time of ruin in a MAP risk model.

6. Numerical Illustrations

In this section, we consider a two-state Markov-modulated with intensity matrix

A =

 −1/4 1/4

3/4 −3/4

 .

We also assume that f1(x) = e−x, f2(x) = 0.5e−0.5x, x > 0, λ1 = 1, λ2 = 2/3, δ1 = 0.03, and
δ2 = 0.05. Table 1 gives the first moments of S1(t) and S2(t) and their covariance for t = 1, 2, 5, 10, 20, 30,
and ∞, given J(0) = 1 and J(0) = 2, respectively, in which the covariances, for i = 1, 2, are calculated by

Covi(t) , Cov
(
S1(t), S2(t)

∣∣J(0) = i
)
= Ei

[
S1(t)S2(t)

]
−Ei[S1(t)]Ei[S2(t)].

It shows that, as expected, the expected values of S1(t) and S2(t) (and hence S(t)) are increasing in t
given J(0) = i for i = 1, 2. It is not surprised to see that S1(t) and S2(t) are negatively correlated for
any t, as claims occurring in the two states compete with each other. Moreover, the larger the time t,
the more the negative correlation between S1(t) and S2(t).

Figure 1 plots the variances of S(t), S1(t), and S2(t), given J(0) = 1, for 0 ≤ t ≤ 150. The variances
all increase with time t. The variance of S(t) is bigger than those of S1(t) and S2(t) for a fixed t. When
time t goes to ∞, the three variances converge.

Tables 2 and 3 display the covariances of the ADC at time t and t + h, given J(0) = 1, for some
selected t values and for h = 1 and h = 5. It is shown that S(t) and S(t + h), S1(t) and S1(t + h),
and S2(t) and S2(t + h) are all positively correlated. Moreover, when t increases, the covariances
increase; moreover, when h increases, the covariances decrease. When t→ ∞, the covariances of the
pairs S(t) and S(t + h), Si(t), and Si(t + h) converge to the variances of S(∞) and Si(∞), respectively.
Similar patterns should be expected for J(0) = 2.

Finally, we display in Figure 2 the numerical values of the distribution function of S(t) with
initial state i, Gi(x, t) = Pi(S(t) ≤ x), for t = 1 and 4, 0 ≤ x ≤ 25, and i = 1, 2. Note that
G(x, t) = (G1(x, t), G2(x, t))> satisfies the partial differential Equation (25); its solution can be obtained
numerically. From the graph, it shows clearly that the probability of S(t) being bigger than a fixed x
is smaller for small values of t as expected. For most x values, G1(x, t) is bigger than G2(x, t) due to
the fact that the underlying Markov process in our example tends to stay in state 1 more often than
staying at state 2.

Table 1. Expected values and covariances of S1(t) and S2(t).

t J(0) = 1 J(0) = 2

E1[S1(t)] E1[S2(t)] Cov1(t) E2[S1(t)] E2[S2(t)] Cov2(t)

1 0.8948 0.1196 −0.0599 0.2690 0.9444 −0.1412
2 1.6665 0.3607 −0.2832 0.8117 1.4717 −0.5475
5 3.7056 1.1998 −1.3303 2.6996 2.4452 −1.8361

10 6.6248 2.4695 −2.9252 5.5563 3.6966 −3.4208
20 11.1330 4.4336 −5.0170 9.9757 5.6221 −5.4630
30 14.3123 5.8188 −6.1938 13.0922 6.9800 −6.6142
∞ 21.9178 9.1324 −7.9012 20.5479 10.2283 −8.2962
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Figure 1. Variances of S(t), S1(t) and S2(t) with initial state J(0) = 1.

Table 2. Covariances of discounted claims at t and t + 1.

t J(0) = 1

Cov1
(
S(t), S(t + 1)

)
Cov1(S1(t), S1(t + 1)) Cov1(S2(t), S2(t + 1))

1 1.9327 1.7143 0.5328
2 3.9024 3.2169 1.7021
5 9.5545 7.3372 5.8448
10 17.0771 12.8965 11.4471
20 26.6637 20.2686 18.0782
30 31.9796 24.5961 21.2571
∞ 40.3073 32.2449 23.8648

Table 3. Covariances of discounted claims at t and t + 5.

t J(0) = 1

Cov1
(
S(t), S(t + 5)

)
Cov1(S1(t), S1(t + 5)) Cov1(S2(t), S2(t + 5))

1 0.8651 1.2213 0.4437
2 1.3181 2.0228 1.4775
5 3.4481 4.5219 5.2676
10 7.5945 8.5121 10.5187
20 15.2651 14.9882 16.9435
30 21.6039 19.7868 20.2186
∞ 40.3073 32.2449 23.8648

(a) (b)

Figure 2. Distribution functions of S(1) in (a) and S(4) in (b) for J(0) = 1, 2.
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Appendix A. Justification of Equation (5)

It is easy to see that the partial derivation of iL(ξ1, ξ2, . . . , ξm; t) in Equation (2) with respect to ξi
exists for i ∈ E. For its partial derivation with respect to t, we have

∂ iL(ξ1, ξ2, . . . , ξm; t)
∂t

= − lim
h→0

iL(ξ1, ξ2, . . . , ξm; t)− iL(ξ1, ξ2, . . . , ξm; t + h)
h

= − lim
h→0

1
h
Ei

[
e−∑m

j=1 ξ jSj(t)
(

1− e−∑m
j=1 ξ j(Sj(t+h)−Sj(t))

)]
.

Now, under certain regularity conditions, we obtain

lim
h→0

Ei

[
e−∑m

j=1 ξ jSj(t) 1− e−∑m
j=1 ξ j(Sj(t+h)−Sj(t))

h

]
≤ lim

h→0
Ei

[
1− e−∑m

j=1 ξ j(Sj(t+h)−Sj(t))

h

]

= lim
h→0

1−Ei

[
e−∑m

j=1 ξ j(Sj(t+h)−Sj(t))
]

h
.

Let ξ = max(ξ1, ξ2, . . . , ξm). Then

limh→0

1−Ei

[
e
−∑m

j=1 ξ j(Sj(t+h)−Sj(t))
]

h ≤ limh→0

1−Ei

[
e
−ξ ∑m

j=1(Sj(t+h)−Sj(t))
]

h

= limh→0
1−Ei[e−ξ(S(t+h)−S(t))]

h

= limh→0
1−Ei[e−ξS(h)]

h .

(A1)

Since

Ei

[
e−ξS(h)

]
= [1 + d0,iih] +

m

∑
k=1,k 6=i

d0,ikh +
m

∑
k=1

d1,ikh f̂i
(
ξe−δih

)
+ o(h)

= 1 +
m

∑
k=1

d0,ikh +
m

∑
k=1

d1,ikh f̂i
(
ξe−δih

)
+ o(h)

= 1 +
m

∑
k=1

(d0,ik + d1,ik)h +
m

∑
k=1

d1,ikh
[

f̂i
(
ξe−δih

)
− 1
]
+ o(h)

= 1 +
m

∑
k=1

d1,ikh
[

f̂i
(
ξe−δih

)
− 1
]
+ o(h) ,

it follows from Equation (A1) that

lim
h→0

1−Ei

[
e−∑m

j=1 ξ j(Sj(t+h)−Sj(t))
]

h
≤ lim

h→0

1−Ei

[
e−ξS(h)

]
h

=

(
m

∑
k=1

d1,ik

) [
1− f̂i

(
ξ
)]

,

which justifies the existence of the partial derivation of iL(ξ1, ξ2, . . . , ξm; t) with respect to t.
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