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Abstract: Credit risk is a critical issue that affects banks and companies on a global scale. Possessing
the ability to accurately predict the level of credit risk has the potential to help the lender and borrower.
This is achieved by alleviating the number of loans provided to borrowers with poor financial
health, thereby reducing the number of failed businesses, and, in effect, preventing economies
from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random
forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The
Australian mining industry has been selected to test our methodology. Mining in Australia generates
around $138 billion annually, making up more than half of the total goods and services. This paper
uses publicly-available financial data from 750 risky and not risky Australian mining companies as
variables in our models. Our results indicate that stochastic gradient boosting was the superior
model at correctly classifying the good and bad credit-rated companies within the mining sector. Our
model showed that ‘Property, Plant, & Equipment (PPE) turnover’, ‘Invested Capital Turnover’,
and ‘Price over Earnings Ratio (PER)’ were the variables with the best explanatory power pertaining
to predicting credit risk in the Australian mining sector.

Keywords: credit risk; prediction; financial distress; insolvency risk; tree-based stochastic models;
mining sector

1. Introduction

It is vital to have an understanding of a company’s credit risks, as they can provide an invaluable
insight into its financial state. If a company’s high credit risk goes on untreated, this will not only
affect its financial health, but may eventually lead to insolvency. There are a number of factors
that can lead to a high credit risk, including, but not limited to: Financial, economic, disaster,
neglect, and fraud/clandestine activities (Anderson 2006). Credit Risk Modelling is interchangeably
used in the literature by many other names, including: Financial Distress Prediction, Bankruptcy
Prediction, Firm Failure Prediction, Insolvency Prediction, Financial Risk Prediction, and Credit
Default (Gepp and Kumar 2012). From this point forward, this paper will use them term Credit Risk
Modelling to refer to the above-mentioned substitute terms and will be frequently denoted by its
acronym CRM.

CRM involves developing statistical models that can predict the level of financial risk of
companies based on information, such as publicly available financial ratios from financial statements
(Gepp and Kumar 2012). The predictive statistical models have wide applications, including for the
company itself, creditors, and other stakeholders. These models can assist financial institutions in
determining whether to provide credit. They can also be used to develop proactive and preventive
financial and managerial decisions in order to avoid business failure (Jaikengit 2004). Due to the
models’ wide applicability and important implications, the literature is quickly becoming filled with
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studies across various disciplines, such as finance, accounting, statistics, and actuary, that attempt
to accurately forecast the financial risk levels of companies (Cybinski 2001; Yu et al. 2014). There is
a lot of variety in the researchers’ choice of statistical models used to achieve the maximum level
of forecasting accuracies, including: Multivariate discriminant analysis, logistic regression, random
forests, and many others.

According to Gepp and Kumar 2012, CRM has many advantages, including: Enabling banks
and other creditors to predict companies’ level of credit risk before establishing the suitability of
providing a loan; existing and potential stockholders can use CRM to make more informed investment
decisions for best Return On Investment (ROI) opportunities; various stakeholders can use these
models to gain information that will allow them to establish whether engaging with the modelled
companies will result in gains or losses; and governments and regulatory bodies can use the models to
determine which companies have high credit risk or are in danger of becoming insolvent, and installing
appropriate corrective measures to get the company back on track financially.

CRM can be applied to any industry; however, in this paper, we have chosen the Australian mining
sector to illustrate the application of CRM. According to the Australian Securities and Investments
Commission, 2960 businesses became insolvent in the September quarter in 2015. This equates to almost
1000 bankrupt businesses per month (ASIC 2015). Such a high statistic is troubling for the Australian
economy in general. This paper will proceed to explain the importance of the mining sector in Australia.

The Australian mining sector enjoyed a boom after 2007 which helped cushion the economy
from the 2008 Global Financial Crisis (GFC) (Shah 2014). During 2007–2012, the mining sector set
the highest employment growth nationwide, increasing by a record-breaking 94.3% to reach almost
270,000 workers, a record high according to the Australian Bureau of Statistics (Shah 2014). During
the mining boom, mining investment accounted for approximately 67% of economic growth in
Australia between 2011 and 2012, when it made up about 8% of the Gross Domestic Product (GDP).
Compared to 4.25% presently, this is forecasted to fall to 1.25%, returning to a pre-boom historical
low (Letts 2016). According to the National Australia Bank (NAB), the mining boom has come to an
end; falling commodity prices, coupled with a 70% fall in forecasted investment from the current level
over the next three years in the mining industry will result in a loss of 50,000 more jobs (Letts 2016).
Figure 1 shows the Australian mining sector’s investment and employment rates for the time-period
2002−2016. As is evident from the graph, both the employment and investment in the mining sector
spiked during the boom period but are now starting to plummet. This creates an atmosphere of
uncertainty and ambiguity. This paper aims to tackle this issue by mitigating the adverse effects of
credit risk through CRM.
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2. Literature Review

Numerous statistical models have been developed over the years that deal with CRM. They vary
in the method used to achieve their result. However, their core aim is the same, that is, to get as
accurate models as possible. Refer to Table 1 for a percentage comparison of various CRM models
used in prior studies. The results were calculated by reviewing in excess of 100 papers from the field
of CRM and manually classifying them as per the model(s) used in each paper.

Table 1. Percentage comparison of different credit risk modelling (CRM) methods used in the literature.

Method Percentage in Literature

MDA 27.45%
LR 25.49%
DT 7.84%
RF 5.88%

SGB 5.88%

Fitzpatrick (FitzPatrick 1932) pioneered the modelling of credit risk for financial businesses in
1932, followed by (Winakor and Smith 1935). Their researches were furthered by (Beaver 1966) through
establishing the first modern statistical model—the Univariate Model, which used financial ratios
individually for CRM. He used 30 financial ratios that were commonly used and performed well in
the literature. He tested his model on 158 businesses, half of which were successful and the other half
were failed. His model’s error was approximately 22% for Type I Error and 5% for Type II Error. In the
literature, Type I Error refers to misclassifying a risky business as not risky, whereas Type II Error refers
to misclassifying a not risky business as a risky one (Gepp and Kumar 2012). However, this was not
time-constant, that is, the margin of error increased as the length of prediction increased, which was
problematic for long-term predictions. Another issue faced by Beaver’s model was that various ratios
resulted in conflicting predictions in some circumstances, and therefore ceased to be a feasible model
(Gepp and Kumar 2012).

After Beaver’s univariate analysis, Altman founded the first multivariate approach pertaining to
CRM—Discriminant Analysis (Altman 1968). His model was designed to address the main issue faced
by Beaver’s model, specifically various ratios that resulted in conflicting predictions. Altman devised
a single weighted score (Z) for each business based on five ratios, namely: Working capital divided by
total assets, retained earnings divided by total assets, earnings before interest and tax divided by total
assets, market value of equity divided by book value of total debt, and sales over total assets, which
was calculated in the following equation:

Z = α1x1 + α2x2 + α3x3 + α4x4 + α5x5 + c

# Z = Discriminant Score of Company;
# αi & c = Estimated Parameters;
# xi = Independent Variables (the five ratios previously mentioned).

Altman 1968 used financial ratios as the independent variables because cash flow ratios were
found to be insignificant, which contrasted Beaver’s Univariate Model. Based on the results, cut-off
scores were then generated to classify the business. A Z-Score of less than 1.8, predicts a failed
business; more than 2.7 predicts a successful business; and between 1.8 and 2.7 results in an
inconclusive prediction. Altman’s Multivariate Discriminant Analysis (MDA) model outperformed
that of Beaver’s. The chief benefit of the MDA model for predicting credit risk is its ability to alleviate
a multidimensionality problem to a sole score with high accuracy level. However, the time correlation
issues persisted, that is, it was better for short-term predictions (Gepp and Kumar 2012). The short-term
accuracy of the model was 95%, however, this drops down to 72% when it is for two or more years
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prior to bankruptcy (Altman 1968). MDA has been used in innumerable CRM studies, for example:
(Chung et al. 2008; Lee and Choi 2013; Mensah 1984; Altman et al. 2014; Perez 2006).

Logit Regression (LR) devises a score for each company analogous with MDA, but unlike MDA,
there are no assumptions of normality and equal covariance (Kumar and Tan 2005). Ohlson (1980)
pioneered applying LR to CRM. He devised a study that looks into the probabilistic prediction
of businesses’ financial risk using LR. Comparable to Altman’s Z-score, Ohlson’s O-score can be
regarded as a financial risk pointer fashioned from a predefined set of variables. Ohlson used 14
independent variables, comprising financial ratios and balance sheet dummy variables. LR has been
used in numerous papers that deal with CRM, for example: (Chen 2011; Daniel and Golet 2013;
Hua et al. 2007; Laitinen and Laitinen 2001). LR’s main advantage over MDA is that it is not as
affected when elementary statistical assumptions are infringed, like the multivariate normality of
the variables. However, as in the case of MDA, its predictive power remains better for short-term
predictions (Altman 1993). LR computes log-odds, where log

(
P

2−P

)
= α1x1 + α2x2 + . . . α5x5 + c. This

results in a model that can be easily interpreted in terms of the changing odds of financial credit risk,
as will be demonstrated later in the paper.

Recursive partitioning models are often a superior substitute to parametric regression models
(Zhang and Singer 2010). Recursive partitioning refers to a group of statistical models for multivariate
analysis. They are nonparametric models that are designed to eliminate the distribution assumptions
related to parametric models, like LR and MDA (Breiman 1984). These models are more versatile and
have a wider scope than traditional models since they can handle nominal variables, outliers, nonlinear
variables, interactions, missing values, and qualitative variables. However, recursive partitioning
does not provide precise probabilities of group membership, that is, credit risk—except for a whole
node (group of businesses), nor is there a formal test for assessing the statistical significance of
variables (Altman 1993). Examples of recursive partitioning models include: Decision Trees (DT),
Stochastic Gradient Boosting (SGB), and Random Forests (RF). Due to their recent invention—relative
to parametric models—they are naturally less occurrent in the literature, however, they are slowly
gaining traction due to their superior predictive capabilities (Gepp 2015).

DTs assign input objects to a group from a pre-established set of classification groups. When
applied to CRM, DTs assign companies to either the risky or not risky group. Therefore, the tree is
generated in a recursive process that splits the data from a higher level to a lower level of the tree,
ending with leaf nodes that characterise classification groups (risky or not risky). The splitting at each
node is determined by comparing an expression that is assessed for each company with a cut-off
point. There are two main tasks for the algorithms that generate DTs. First, to choose the optimal
splitting rule at each non-leaf node to differentiate between risky and not risky companies, and secondly,
to determine the number of nodes in the DT (Gepp and Kumar 2012).

DTs are beneficial for many reasons, including invariance to monotonic alterations of input
variables, handling outliers in the data effectively as well as mixed variables, and being able to deal
with a data set that contains missing data. There are different algorithms that can be used to generate
DTs. These algorithms all create similar tree structures, but selecting the correct algorithm for a
particular circumstance can have a huge impact on the predictive power of the generated model.
Popular implementations of decision trees include Classification and Regression Trees (CART) and
See5 (Gepp et al. 2010). In a 2005 study, a pioneering study compared the accuracy of CART and See5
pertaining to CRM. The results showed CART to be empirically superior to See5 (Huarng et al. 2005).
This claim was further solidified by another study in 2010 (Gepp et al. 2010). DTs have not been
used extensively in the literature, relative to parametric models. Some of the other studies that apply
DTs to CRM include: (Chen 2011; Gepp et al. 2010; Hung and Chen 2009). In the CRM literature,
DTs generally acquire a more accurate predicting power compared to parametric models (Chen 2011;
Gepp et al. 2010; Huarng et al. 2005; Geng et al. 2015; Sun and Li 2008).

Random Forests (RF) are an ensemble learning method for classification and regression that
generate numerous decision trees. In classification, the output is the mode of the classifications of the
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individual trees. In regression, the output is the mean from every individual tree. As part of their
intrinsic nature, RF models bring about a dissimilarity measure amongst the observations. One can
also define an RF dissimilarity measure between unlabelled data. The idea is to build an RF predictor
that distinguishes the observed data from suitably created synthetic data (Chandra et al. 2009). RF
has similar advantages to single trees but is also shown to be more accurate in many cases, because of
multiple models being used. RF is also easily capable of handling many variables due to its inherent
variable selection (Chandra et al. 2009). Relative to studies that use parametric models, there are only
a few studies that apply RF to CRM. Some of these papers are: (Chandra et al. 2009; Fantazzini and
Figini 2009; Nanni and Lumini 2009).

Stochastic Gradient Boosting (SGB) is a dynamic and adaptable data mining tool that creates
numerous small decision trees in an incremental error–correcting process. SGB’s versatility enables it to
deal with data contaminated with erroneous target labels. Such data are usually extremely problematic
for conventional boosting and are a challenge to handle using conventional data-mining tools; au
contraire, SGB is less affected by such errors (Mukkamala et al. 2006). As with RF, only a few studies
applied SGB to CRM. These papers empirically showcase the superior predictive power of SGB over
other parametric and nonparametric models—some of these papers are: (Mukkamala et al. 2006;
Kumar and Ravi 2007; Ravi et al. 2007).

3. Data

Archival data was extracted from the MorningStar database pertaining to the Australian mining
companies used in the research. Archival data is readily-available and therefore easily reproducible,
and provides a quick way to extract financial data that would otherwise be onerous to collect and
collate (Shultz et al. 2005). The MorningStar database contains raw data of approximately half-a-million
investment offerings, in addition to real-time international market data on millions of commodities,
foreign exchange, indices, and numerous others (MorningStar 2015). The MorningStar database has
been used widely in the literature across many disciplines (Halteh 2015; Shah 2014; Smith et al. 2011).

This research used all available data from the database for listed and delisted mining companies.
The company status variable in MorningStar was used to determine the listed or delisted status.
According to the Australian Securities Exchange (ASX), the source of much of the data from
MorningStar, an Australian company is ‘listed’ if it is currently operational, whereas a company
is ‘delisted’ for a number of reasons, including insolvency, merger, or take-over. All of these collectively
imply an element of credit risk leading to the delisting of the company (MorningStar 2016). This study
will refer to listed companies as not risky, and delisted companies as risky.

Financial data was collected for both not risky and risky Australian mining companies for the
years 2011–2015. Twenty-nine explanatory variables were chosen for the study—refer to Table 2 for a
complete list of the variables used. The variables were chosen based upon several factors, including
standard accounting and financial variables, use in prior empirical research and literature, endorsement
by theorists, and as per availability of data.

Table 2. Complete list of variables—variables highlighted in red were later omitted due to
missing values.

Variable Description
Net Profit Margin Net Profit/Revenue
EBIT Margin Earnings Before Interest and Tax/Net Revenue

Return on Equity (ROE) Net Profit After Tax/(Shareholders Equity − Outside Equity
Interests)

Return on Assets (ROA) Earnings before interest/(Total Assets Less Outside Equity Interests)
Return on Invested Capital (ROIC) Net Operating Profit Less Adjusted Tax/Operating Invested Capital
NOPLAT Margin Net Operating Profit Less Adjusted Tax/Revenue
Inventory Turnover Net Sales/Inventory
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Table 2. Cont.

Variable Description

Asset Turnover Operating Revenue/Total Assets

PPE Turnover Revenue/(Property, Plant & Equipment − Accumulated
Depreciation)

Depreciation/PP&E Depreciation/Gross PPE
Depreciation/Revenue Depreciation/Revenue
Working Cap/Revenue Working Capital/Revenue
Working Cap Turnover Operating Revenue/Operating Working Capital
Gross Gearing (D/E) (Short-Term Debt + Long-Term Debt)/Shareholders Equity
Financial Leverage Total Debt/Total Equity
Current Ratio Current Assets/Current Liabilities
Quick Ratio (Current Assets − Current Inventory)/Current Liabilities
Gross Debt/CF (Short-Term Debt + Long-Term Debt)/Gross Cash Flow
Cash per Share ($) Cash Flow/Shares Outstanding
Invested Capital Turnover Operating Revenue/Operating Invested Capital Before Goodwill
Net Gearing (Short-Term Debt + Long-Term Debt − Cash)/Shareholders Equity
NTA per Share ($) Net Tangible Assets (NTA)/Number of Shares on Issue

BV per Share ($) (Total Shareholder Equity − Preferred Equity)/Total Outstanding
Shares

Receivables/Op. Rev. Debtors/Operating Revenue
Inventory/Trading Rev. Inventory/Trading Revenue
Creditors/Op. Rev. Creditors/Operating Revenue
Sales per Share ($) Total Revenue/Weighted Average of Shares Outstanding

EV/EBITDA Enterprise Value/Earnings Before Interest, Tax, Depreciation &
Amortisation

PER Price/Earnings Ratio = {(Market Value of Share)/(Earnings per
Share)}

Note: Cells with red background indicate that they were the omitted variables in the model.

4. Methodology

The data collected for the companies within the Australian mining sector were extracted from the
official portal of MorningStar by selecting ‘listed’ and ‘delisted’ companies from the ‘Search Scope’
list. Time-series data was then chosen for the years 2011–2015. Following that, the Australian mining
sector was selected from the ‘Global Industry Classification Standard’ (GICS) field. The results yielded
632 listed companies and 118 delisted companies. The data were then downloaded to a spreadsheet
for cleaning. The initial count was 590 rows (118 companies multiplied by 5 years) for delisted
companies and 3160 rows (632 companies multiplied by 5 years) for listed companies, a total of 3750
rows incorporating data for 29 explanatory variables. After examining the data, some company rows
needed to be deleted due to insufficient data. Company rows that had 50% or more missing data
were deleted, along with omitting 10 variables due to 50% or more missing data. The final sample
contained 19 variables with 3375 rows; 339 rows for delisted companies and 3036 for listed companies.
All 29 variables are shown in Table 2, with the ones omitted highlighted in red.

Following this, a dichotomous binary variable was used to refer to the status of each
company—coded ‘1’ if the company is listed (not risky) and ‘0’ if the company is delisted (risky).
The data was then partitioned by randomly selecting 80% not risky and 80% risky companies for a
training set used to develop statistical models, with the remaining 20% of the not risky and risky
companies being used for testing and evaluating models. Having a separate data set is necessary to
obtain representative estimates of real-world performance for fair comparisons between models. This
process and the resulting data sets are summarised in Table 3.

As is evident in Table 3, we have class-imbalance in our data set, meaning that there are a
lot more not risky companies than risky. When splitting the data for the training and testing sets,
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the class imbalance percentage has been kept very similar to enable a representative test sample for
model evaluation.

The class-imbalance is particularly problematic when the difference is extreme, as the models
will tend to automatically overlook the minority class and predict everything as the majority class. In
this case, the overall results will appear good overall, but they will be unusable as all predictions are
the same.

The model building methods that are used in the study are logistic regression (as a well-established
benchmark), decision trees, random forests, and stochastic gradient boosting. We hypothesize that
the results of the state-of-the-art recursive partitioning models will outperform the parametric logistic
regression model. This would provide confirmatory evidence from a larger data set of similar results
in the limited existing literature.

Table 3. Data overview.

Sample
Partition

Number of
Rows Percentage Not Risky

Companies
Risky

Companies Class Imbalance %

Train 2700 80.00% 2419 281 89.59% Not Risky − 10.41% Risky
Test 675 20.00% 617 58 91.41% Not Risky − 8.59% Risky
Total 3375 100.00% 3036 339 89.96% − 10.04% Risky

4.1. Logistic Regression (LR)

The logistic regression model was estimated using only the train dataset with all 19 variables
used as covariates to explain the status (not risky or risky). SPSS statistical software was used to
develop the model, but as the model is deterministic, the same results would be obtained using other
software packages

4.2. Decision Trees (DT)

Classification and Regression Trees (CART) using Salford Predictive Modeller (SPM) have been
used to generate the CRM tree. All 19 variables were selected as predictors in the model. The Gini
splitting rule was used because of its popularity and widespread use. The minimum data points in
a non-leaf node was set to 10 to avoid the tree becoming too large. This setting assists in avoiding
over-fitting, that is, looking for patterns in very small subsamples that are likely not to generalise.

4.3. Random Forests (RF)

SPM has again been used and all 19 variables were used as predictors. There are two main
parameters to set for a RF model: The number of trees to be generated, and the number of variables to
be considered at each node. A model was developed for each of 200, 500, and 1000 trees to empirically
determine the best choice for this parameter. The number of variables considered at each node was
set to the square root of the total number of predictors:

√
19 ≈ 4.36 ≈ 4. The square root heuristic

was chosen as it has been recommended by and used in prior literature (Bhattacharyya et al. 2011;
Whiting et al. 2012).

4.4. Stochastic Gradient Boosting (SGB)

Once again, SPM has been used and all 19 variables were used as predictors. Models were
developed based on 200, 500, and 1000 trees, to empirically determine the best choice for this parameter.
As mentioned in the literature review, SGB relies on incremental improvements and therefore, it is
important that no individual tree is too complex (large). Consequently, individual trees are kept small
by setting the maximum nodes per tree to 6 (a standard setting) with a minimum number of data
points of 10 in each node. The criterion to determine the optimal number of trees, that is, how much
incremental improvement to perform, was chosen based on the default of cross entropy.
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4.5. Cut-Off Values for Classification

All four models can estimate the probability of being not risky (1). Often, a default value of 0.5
is used such that if a company has a value greater than 0.5 it will be classified as not risky, else as
risky. However, this is commonly unsuitable when there is a substantial class imbalance, as will be
demonstrated, in this case, in the Results section. Consequently, the cut-off values will be empirically
optimised using the training sample—this approach has been used successfully in the literature
(Beneish 1997; Bayley and Taylor 2007; Perols 2011). Because this optimisation will be completed
for each model, it is possible that the cut-off values will vary between the models. The cut-off value
must be between zero and one, as they are the limits of any probability figure. The optimised cut-off
value is chosen as the value that produces the most balanced accuracy on the train sample. The most
balanced is defined by minimising the difference between prediction accuracy for not risky companies
and prediction accuracy for risky companies. It is important to highlight that the cut-off values were
optimised exclusively on the train sample, so that model evaluation on the test sample still represents
performance on data that is completely new to the model.

5. Results

The following subsections explore and analyse, in detail, the results achieved and performances
of the various models used in the study. Specificity represents the accuracy at classifying not risky
companies, while sensitivity represents the accuracy at classifying risky companies.

5.1. LR Model

As shown in Table 4, the default logistic regression model yielded an average accuracy of 91.41%
on the test sample. However, as mentioned in the Methodology section above, this model is not
practically useful because of class-imbalance. When using the default 0.5 cut-off value, the model
predicts almost all the companies as not risky (1), which results in a mirage of high predictive accuracy.
Even though their overall accuracy is high, the model is useless because it cannot successfully predict
risky companies: 0.7% on the training data and 0% on the testing data.

Table 4. Logistic regression classification table for default 0.5 cut-off value.

Classification Table

Observed

Predicted

Training Testing

Status Percentage
Correct

Status Percentage
CorrectRisky Not Risky Risky Not Risky

Step 1 Status
Risky (0) 2 279 0.7 0 58 0.0

Not Risky (1) 2 2417 99.9 2 615 99.7
Overall Percentage 89.6 91.1

To remedy this class-imbalance problem, we empirically optimise the cut-off values in the training
sample to give the most accurate balanced rates, as explained in the Methodology section. Results
for both the training and testing samples are shown in Table 5a,b. As shown in Table 5c, the overall
model’s accuracy dropped to an average of 56.71%. However, the accuracy is now more balanced
between risky (0) and not risky (1) companies. Therefore, this model is of more practical use and its
assessment is more indicative of a logistic regression model. As for the variable importance, ‘PER’,
‘sales per share’, and ‘gross debt/CF’ were found to be the most statistically significant variables, all
having p-values less than 10%.
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Table 5. (a) Optimised LR-train sample; (b) optimised LR-test sample; (c) LR model accuracy (test
sample) with optimised cut-off values.

(a) (b)

Train Sample Test Sample

Class Cases Misclassified % Error Class Cases Misclassified % Error

Risky (0) 281 111 39.50% Risky (0) 58 16 27.59%
Not Risky (1) 2419 1422 58.78% Not Risky (1) 617 364 59.00%

(c)

Accuracy at Predicting Not Risky Companies (Specificity) 41.00%
Accuracy at Predicting Risky Companies (Sensitivity) 72.41%

Simple Average 56.71%

5.2. Decision Tree Model

The empirical optimisation of the cut-off value on the training sample resulted in a cut-off value
of 0.9. As shown in Table 6c, the decision tree yielded an average accuracy of 71.72% on the test sample.
This is already a better outcome vis-à-vis LR, both for the specificity and sensitivity measures. This is
consistent with existing literature that recursive partitioning models outperform traditional models.
More detailed results for the train and test samples are shown in Table 6a,b, respectively. As for the
variable importance, ‘invested capital turnover’, ‘BV per share’, and ‘NTA per share’ were found to be
the most important variables for predicting credit risk in this model.

Table 6. (a) DT-train sample; (b) DT-test sample; (c) DT model accuracy (test sample).

(a) (b)

Train Sample Test Sample

Class Cases Misclassified % Error Class Cases Misclassified % Error

0 281 66 23.49% 0 58 14 24.14%
1 2419 788 32.58% 1 617 200 32.41%

(c)

Accuracy at Predicting Not Risky Companies (Specificity) 67.59%
Accuracy at Predicting Risky Companies (Sensitivity) 75.86%

Simple Average 71.72%

5.3. Random Forests Model

Experimentation was conducted on generating 200, 500, and 1000 trees. Using 1000 trees yielded
the most accurate results, which have been reported. The empirical optimisation of the cut-off value
on the training sample resulted in a value of 0.47, which was close to the default 0.5 that was chosen.

Results for both the training and testing samples are shown in Table 7a,b. As shown in Table 7c,
the RF model yielded an average accuracy of 72.26% on the test data. However, compared to a single
decision tree, this model is better at predicting risky companies, but slightly worse at predicting not
risky companies. As for variable importance, ‘invested capital turnover, ‘BV per share’, and ‘NTA per
share’ were found to be the most important variables for predicting credit risk in this model.



Risks 2018, 6, 55 10 of 13

Table 7. (a) RF-train sample; (b) RF-test sample; (c) RF model accuracy (test sample).

(a) (b)

Train Sample Test Sample

Class Cases Misclassified % Error Class Cases Misclassified % Error

0 281 81 28.83% 0 58 13 22.41%
1 2419 806 33.32% 1 617 204 33.06%

(c)

Accuracy at Predicting Not Risky Companies (Specificity) 66.94%
Accuracy at Predicting Risky Companies (Sensitivity) 77.59%

Simple Average 72.26%

5.4. Stochastic Gradient Boosting Model

The empirical optimisation of the cut-off value on the training sample resulted in a value of 0.91,
which was close to the 0.9 mark, hence 0.9 was chosen. Experimentation was conducted across 200,
500, and 1000 trees. The model with 1000 trees yielded the most accurate results.

Both the training and testing samples results are shown in Table 8a,b. As shown in Table 8c,
stochastic gradient boosting yielded an average accuracy of 73.70% on the test data. On average,
and as per the specificity score, this model outperforms all other models in the study. However,
DT and RF yielded slightly better sensitivity accuracy. As for the variable importance, ‘Property,
Plant, & Equipment (PPE) turnover’, ‘invested capital turnover’, and ‘PER’ were found to be the
most important variables for predicting credit risk in this model. ‘Invested capital turnover’ is of
utmost importance when trying to work out the riskiness, because it constantly appeared in all three
non-parametric recursive partitioning models.

Table 8. (a) SGB-train sample; (b) SGB-test sample; (c) SGB model accuracy (test sample).

(a) (b)

Train Sample Test Sample

Class Cases Misclassified % Error Class Cases Misclassified % Error

0 281 49 17.44% 0 58 15 25.86%
1 2419 596 24.64% 1 617 165 26.74%

(c)

Accuracy at Predicting Not Risky Companies (Specificity) 73.26%
Accuracy at Predicting Risky Companies (Sensitivity) 74.14%

Simple Average 73.70%

Table 9 summarises the performance of all four models. The rightmost column of the table
represents the Area under the Receiver Operating Characteristic Curve (AUC)—a measure that is
widely used in the literature. The AUC measure was added in order to solidify our findings as to which
model has the highest predictive accuracy. The closer the percentage is to 100%, the more accurate
the model is in classifying the risky and not risky companies. The presented percentages represent the
AUC for the test samples. As can be seen, the Stochastic Gradient Boosting (SGB) model outperforms
all others as per the “Overall Model Accuracy averages criterion” and the “AUC” measures.
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Table 9. Model comparison table using test data.

Model Overall Model
Accuracy

Most Important
Variables AUC %

Logistic Regression
Specificity: 41.00%
Sensitivity: 72.41%
Average: 56.71%

PER, Sales per Share,
Gross Debt/CF 59.00%

Decision Tree
Specificity: 67.59%
Sensitivity: 75.86%
Average: 71.72%

Invested Capital
Turnover, BV per Share,

NTA per Share
74.00%

Random Forest
Specificity: 66.94%
Sensitivity: 77.59%
Average: 72.26%

Invested Capital
Turnover, BV per Share,

NTA per Share
78.99%

Stochastic Gradient
Boosting

Specificity: 73.26%
Sensitivity: 74.14%
Average: 73.70%

PPE Turnover, Invested
Capital Turnover, PER 88.98%

6. Conclusions

To conclude, this paper has showcased a real-world problem that needs to be addressed, that is,
a high number of business failures in Australia in general, and an impending financial risk of mining
companies, in particular. Credit Risk Modelling (CRM) can be utilized to forecast impending risks
to enable the decision makers to take the preventive measures to hold-off such risks or mitigate their
effect. Recursive partitioning models were employed to test for the most accurate model at predicting
credit risk. These models are not exclusive to the mining industry; they can be used in any industry
worldwide. Our results indicated that ‘Invested Capital Turnover’ was the variable most occurring
amongst the recursive partitioning models. In terms of the best model overall, Stochastic Gradient
Boosting (SGB) yielded the most accurate results in predicting credit risk in the Australian mining
industry, as per the AUC and averages of the sensitivity and specificity criteria. However, the random
forests model yielded the best results at predicting the risky companies (sensitivity). All in all, our
analysis has shown that tree-based models are more accurate, versatile and have a wider scope than
traditional models, such as logistic regression. The main takeaway from this study is that modern
models, such as the recursive partitioning models, can offer substantial accuracy improvements and
should be considered in future research and in practice, especially in conjunction with qualitative
measures and managerial decision-making. The models analysed in this paper can be algorithmically
automated to input new data as soon as they become available, for example through interim or annual
reports, thus saving time to reconstruct the models manually and ensuring up-to-date models. It is
imperative to address the class-imbalance problem; in this paper, we used ‘empirically optimised
cut-off scores’. There are other approaches in the literature to handle class-imbalance that can change
the overall data set, such as the Synthetic Minority Oversampling Technique (SMOTE), which could be
investigated in future studies.
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