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Abstract: We extend an existing numerical model (Grasselli (2011)) for valuing a real option to invest
in a capital project in an incomplete market with a finite time horizon. In doing so, we include
two separate effects: the possibility that the project value is partly describable according to a
jump-diffusion process, and incorporation of a time-dependent investor utility function, taking
into account the effect of inflation. We adopt a discrete approximation to the jump process, whose
parameters are restricted in order to preserve the drift and the volatility of the project-value process
that it modifies. By controlling for these low-order effects, the higher-order effects may be considered
in isolation. Our simulated results demonstrate that the inclusion of the jump process tends to
decrease the value of the option, and expand the circumstances under which it should be exercised.
Our results also demonstrate that an appropriate selection of the time-dependent investor utility
function yields more reasonable investor-behaviour predictions regarding the decision to exercise the
option, than would occur otherwise.

Keywords: real option; incomplete market; jump diffusion; time-dependent risk preferences

1. Introduction

We consider the problem of valuing a real option, a derivative providing the right to undertake in
a capital investment project, or in general, to invest in a given real asset within a specified time period.
More details about real options in investment are provided in Dixit and Pindyck (1994). We begin
with the formalism developed in Grasselli (2011); the results in the current manuscript are based on
the numerical model presented in this reference. The distinguishing characteristics of the Grasselli
approach were that it enabled the real option to be valued in an incomplete market, within a finite
time horizon.

In an incomplete market, the time-varying value of the real project under consideration is not
perfectly correlated to a traded financial asset (or a stock market index), so that the option value
cannot be fully hedged. Thus, its value depends to a degree on the investor’s (or the implied market)
risk preferences. The finite time horizon, (or investment period) meant that the option value and the
minimum project value at which its exercised both depend on the time until expiry. In Grasselli (2011),
an exponential utility function is used to model the investor’s risk preferences, following work
by Hugonnier and Morellec (2007) and Henderson (2007) (which utilised an infinite time horizon).
A binomial tree model in the manner of Cox, Ross and Rubenstein Cox et al. (1979) is used for
computational calculations.

For the purposes of the current manuscript, we incorporate two extensions into the numerical
model. In Grasselli’s work, the risk-aversion coefficient γ, the parameter of the investor’s utility
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function, is constant over the lifetime of the project, and applied to the discounted monetary units
at each backward induction step on the binomial tree. It implicitly assumes that the “inflation rate”
applied to the nominal monetary amounts to which the investor assigns a fixed utility level over time,
is equal to the risk-free interest rate. This may not be the case.

Extending this idea further, some recent literature has stated that a constant risk-aversion coefficient
is unrealistic and may introduce substantial decision biases to the optimal strategies. Thaler (1981)
shows that there exists some empirical evidence about dynamic inconsistencies in the discount factors.
Loewenstein and Prelec (1992) studies the time-inconsistency when making decisions and provides
an economic explanation. Yong (2012) derives optimal strategies for time-inconsistent optimal control
problems based on the method of Hamilton-Jacob-Bellmen equations. Zhao et al. (2014) analyzed the
optimal dividend payment strategies under the assumption of time-inconsistent preferences. Some
related work about time-inconsistent preferences includes Ainslie (1992); Grenadier and Wang (2007)
and Chen et al. (2014).

To reflect the time-inconsistency in the decision making process, we suggest that the project
inflation rate, α, may better characterise the investor’s time-dependent risk preferences (than the
risk-free rate). Regardless, our first extension is introduce a new parameter, i, which characterises the
investor’s implicit inflation rate. Then, we replace the coefficient γ with a time-varying substitute,
γt, which decays exponentially (with time t) at a rate determined by the difference between i and the
risk-free rate r.

The second extension is to introduce a jump-diffusion component into the model. It is well
known that the Black-Scholes model fails to capture the volatility smiles and fat tails that have been
observed in financial markets since the late 1980s. Since then, much work has sought to overcome its
drawbacks. Jump-diffusion models are among one of the most popular alternative models because
of their advantage in describing the short-run behaviour of security prices. Kou and Wang (2004)
studied exotic options under a double-exponential jump-diffusion model. A mixed-exponential
jump-diffusion model is proposed in derivative pricing in Cai and Kou (2011). Work related to
jump-diffusion models includes Merton (1976), Pham (1997), Song et al. (2006) and Bonis et al. (2009).
For our purpose, the justification is that the estimated value of the project is likely to not vary in a
continuous manner according to geometric Brownian motion, but instead, to be subject to a number of
intermittent adjustments (jumps), reflecting new information about project profitability or viability.
The jump-diffusion process (or jump process) may be treated as uncorrelated with the performance
of the traded asset (or index). Therefore, we treat it as a component of the non-hedgeable source of
fluctuations in the project-value process.

In this work, we utilise a double-exponential distribution to represent the logarithm of the jump
magnitude, with the number of jumps occurring up to a given time following a Poisson process.
Compared with the double-exponential distribution adopted in Kou and Wang (2004), the parameters
of the jump process were subject to an important restriction: incorporation of this process into the
project-value process should not alter the drift or volatility of the latter. This is for two reasons. First
and most importantly, it permits us to control for these dominant low-order effects (drift, volatility),
which can be modified through the other parameters of the project-value process. (We can isolate
the higher-order effects that are unique to the jump-diffusion model.) The second reason is that it
permits us to represent the process with fewer free parameters. To apply the jump process on the
binomial tree, we represented the double-exponential distribution in discrete form, using an approach
by Luceño (1999) in order to match both the low-order moments and the cumulative distribution
function of the continuous random variable to reasonable accuracy.

In the subsequent sections of this manuscript, we describe our modifications to the Grasselli
algorithm, and present and discuss some numerical results highlighting their effects. Because of its
importance in investor decision making, we follow Grasselli and his predecessors in emphasising the
option’s exercise threshold value, the minimum project value (at any time) for which the option should
be exercised immediately. We also afford significance to the time value of the option, the difference
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between its current value and the maximum of its immediate exercise value or zero. We present colour
maps of this quantity vs. both time and project value. We compare different cases according to the
values they assign to the option when the project value is “at the money”.

The structure of the remainder of this manuscript is as follows. In Section 2, we provide
a general mathematical model for the random processes describing the project and stock price
movements (Section 2.1), and present our representation of the investor’s time-dependent utility
function (Section 2.2). The specific form of the jump process, based on a double-exponential jump
distribution, is given in Section 3. In its three constituent sections, we present, respectively: the jump
distribution itself, including parameter limitations; the backwards induction step on our multinomial
tree; and the method for discretising the jump distribution. Section 4 follows by providing more
detailed specifics of the numerical algorithm we used in our calculation, including the justification
for the selection of numerical parameters. We provide some results of the simulation in Section 5,
highlighting the different issues we raise in the manuscript. Section 5.1 demonstrates the significance
of the time dependence of the investor utility function, and Section 5.2 the effect of varying inflation.
In both preceding cases, jump diffusion is not incorporated into the model, in order to target these
alternative effects. Instead, it is investigated in Section 5.3, which shows the effects of varying all of its
major parameters. Our conclusions are summarised in Section 6.

2. Model Description

2.1. Fundamentals of the Model

We consider a market in which there are two liquidly traded assets, a stock (index) with value
S̃(t) at time t, and a riskless bond, with value B̃(t), for which B̃(0) = 1.

There also exists a project, whose value at time t is represented by Ṽ(t), which is not traded.
However, a real option exists, which, at the option-holder’s choice, may be exercised at any time t
satisfying 0 ≤ t ≤ T, where the upper limit T is the finite stopping time of the project. If exercised at
time t, the option provides an immediate payoff of Ṽ(t)− Ĩ(t), where Ĩ(t) is the time-dependent strike
price, a deterministic function of time defined in the option contract.

We assume that S̃(t) obeys geometric Brownian motion, and that the random process for Ṽ(t) is
Markovian and time-homogeneous. As in Grasselli (2011), it is partially correlated with S̃(t). In our
case, however, it is not restricted to following geometric Brownian motion. The quantities B̃(t) and
Ĩ(t) are assumed to be increasing exponentially with time, with continuous compounding rates r and
α, respectively. The rate r is the risk-free interest rate, and α is an inflation rate that is specified in the
terms of the contract. Quite possibly α = 0.

The effect of the non-zero riskless interest rate can be removed by expressing S̃, Ṽ, B̃, and Ĩ,
in discounted coordinates, to yield S, V, B, and I, respectively. That is, we divide the former quantities
by the common numeraire B̃. Letting νn be the arrival time of the n-th jump, then N(t) = max{n ∈ N :
νn ≤ t} is the number of jumps up to time t, a Poisson counting process. Let X(t) be a jump process
representing the sum of jumps, which are denoted by J (·), with arrival rate λ and jump size density
distribution f (·). That is X(t) = ∑

N(t)
k=1 J (k).

The discounted quantities obey the following rules (Grasselli 2011, Equation (1)):

dS(t) = (µ1 − r)S(t)dt + σ1S(t)dW1
t , (1)

d(log V(t)) =

(
µ2 − r−

σ2
2

2
+

[
σ2

2 ρ2
X

2
− λE(eρXσ2J − 1)

])
dt

+ σ2

(
ρdW1

t +
√

1− ρ2 − ρ2
XdW2

t + ρXdX(t)
)

, (2)

B(t) = 1, (3)

dI(t) = (α− r)I(t)dt. (4)
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We also assume that I(0) = 1 (by appropriately selecting both monetary units and the bond size
at time t = 0), and require that the parameters ρ, ρX satisfy the condition ρ2 + ρ2

X ≤ 1.
The random processes X(t), W1

t and W2
t (the last-mentioned two being Brownian motions) are

assumed to be independent, so that, in particular, the random components of S(t) and V(t) are only
dependent on each other through W1

t , with the correlation term ρ indicating the magnitude of this
dependence. The terms µ1, µ2 represent the drifts of S̃(t), Ṽ(t), respectively, and positive σ1, σ2

represent their volatilities.
In Grasselli (2011), V(t) evolved in time according to geometric Brownian motion, that is, ρX was

equal to zero. The more general form of X(t) permits us to incorporate other models of project-value
movements, such as jump diffusion, into the formulation. Equation (2) is expressed in terms of log V(t),
rather than V(t), to permit the choice of distribution for X(t) to be incorporated into the multinomial
tree we develop in Section 3.2 without modification, since the tree utilises a logarithmic scale for V(t).
The mean and variance of X(t) are selected to be equal to those of W1

t and W2
t . That is, E[X(t)] = 0,

Var[X(t)] = t. This is to ensure that the parameter σ2 is meaningful as a measure of volatility. The
correction terms σ2

2 ρ2
X/2− λE(eρXσ2J − 1) in Equation (2) are necessary to ensure that µ2 represents

the drift of Ṽ(t), regardless of the value of ρX .
The market is incomplete, since it is not possible to replicate the variations of the value of the

project by merely dynamically trading the stock and the bond. Thus, there will not be a unique
arbitrage-free price for the real option. In order to calculate a price, the option holder’s risk preferences
must be taken into account. We represent the risk preferences by a utility function Ut(·); the potential
investor will seek to maximise their expected utility at any given time. The subscript t represents the
possible explicit time-dependence of the utility function, an idea we develop in Section 2.2.

Based on this formulation, the value of the option at any time t can be expressed D(t; V(t), W).
The parameter W represents the investor’s total wealth at time t, which may influence their risk
preferences, given the utility function. Our aim is to calculate the quantity D using backwards
induction on the multinomial tree.

The fact that dS(t)/S(t) is independent of S(t), guarantees that, at a given time t, the option
price D(t) does not depend on the current value of S(t). This is because for any dynamic trading
strategy, the quantity dS(t)/S(t) will be equal to the incremental proportional change in the total
investor wealth invested in the stock, regardless of the price of an individual unit of stock. Thus, as in
Grasselli (2011), a one-dimensional tree is sufficient to calculate D. Also, we may write D ≡ D(t; V(t)),
suppressing the notation indicating the explicit dependence on W.

2.2. Time-Dependence of the Exponential Utility Function

The calculation of the option value is considerably simplified if we adopt an exponential utility
function Ut(x) = − exp (−γtx). This is due to the fact that an investor whose utility can be described
in this way exhibits constant absolute risk aversion, with risk aversion parameter γt. As such, the initial
value of the investor’s total wealth, W0, is irrelevant in determining the option price D.

We have incorporated time-dependence into the utility function for two reasons. Firstly,
the monetary values x we shall use in our calculation will be represented in terms of their present
values at time 0, according to discount rate r. However, at any time t, when an investor is making a
decision about whether to exercise the option, the quantities of money considered will be in terms of
their undiscounted values at time t. Therefore, the factor γt should be appropriately scaled in order to
reverse the discounting effect.

The second reason why time-dependence should be incorporated into the utility function is that
the investor’s risk preferences may change over time. We denote by i the inflation rate that applies to
monetary values over time to which the investor assigns a fixed utility level. Its effect on γt is to impart
an exponential decay factor at rate i. This corrects the product γtx for the fact that x is expressed in
nominal, not real monetary units.
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Thus, in order that the utility function captures both of these time-dependent effects, correction
for discounting, and the investor’s implicit inflation considerations, then:

γt = γ0 exp [−(i− r)t] , (5)

where γ0 is the risk-aversion parameter at time 0.
Note that in Grasselli (2011), a constant value γt = γ is used at all times. In terms of Equation (5),

this would imply that r = i, that is, an investor’s relative risk treatment of different monetary amounts
would vary in accordance with the risk-free rate r. In practice, it may be more likely that i = α better
describes the investor’s behaviour: their risk-attitude towards the real value of a project remains stable
over time. We shall compare the two cases in our subsequent calculations.

3. Jump-Diffusion Model

3.1. Distribution of the Jump Process

We specify a form for the jump process {X(t)}|t∈[0,T]. The jumps occur according to a Poisson
process with rate λ, and with the following properties. In a short interval ∆T,

∆X ≡ X(t + ∆T)− X(t) =


0, with probability 1− λ∆T + o(∆T),

J , with probability λ∆T + o(∆T),

Multiple jumps, with probability o(∆T).

(6)

We assume that J is distributed according to a double-exponential distribution demonstrated
in Kou and Wang (2004), with parameters 0 ≤ pX ≤ 1, η1 > 0, η2 > 0, so that its probability
density function:

f (x) =

{
(1− pX)η2 exp(η2x), if x < 0,

pXη1 exp(−η1x), if x ≥ 0.
(7)

Thus, the random process {X(t)} is characterised by the four parameters pX, η1, η2 and λ.
However, if these parameters are allowed to vary freely, their selection may introduce additional
volatility into the project value, a parameter that we wish to control for as noted in the Introduction.
Instead, volatility (and drift) can be modified through the parameters σ2, µ2 in Equation (2). Thus,
we restrict the parameters of X(t), matching the first and second moments of the random variables X(t)
and W2

t , for all t. As a result, the volatility of V(t) will not depend on ρX . The drift of V(t) was already
controlled by the correction terms (in Equation (2)), described in Section 2.1. However, matching the
first moments of the random variables provides first-order correction. Given these restrictions, we may
characterise {X(t)} in terms of two free parameters instead of four. They are λ and χ ≡ η2/η1. The
other original parameters can be expressed in terms of λ and χ as follows:

pX =
1

1 + χ
; η1 =

√
2λ

χ
; η2 =

√
2λχ. (8)

Finally, the parameter χ is related to the skewness SkX , the scaled third moment of ∆X, according
to the equation:

SkX =
3√
2

(√
χ−

√
1/χ

)
. (9)

3.2. Setup of the Multinomial Tree

The multinomial tree is set up in a similar manner to that of Grasselli (2011). We define the time
step to be ∆T. Then consider a single step, from time t to time t + ∆T. We wish to calculate the value
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of the option D(t), given a particular current value for the project, V(t), and the values of the option
for all project values at time t + ∆T.

Following (Grasselli 2011, Equation (29)), we let the ordered pair (St, Vt) evolve over a time step
as follows:

(St+∆T , Vt+∆T) =



(uSt, hVt), with probability p1(1− λ∆T),

(uSt, `Vt), with probability p2(1− λ∆T),

(dSt, hVt), with probability p3(1− λ∆T),

(dSt, `Vt), with probability p4(1− λ∆T),

(uSt, Vt exp(∆Xd)), with probability (p1 + p2)λ∆T,

(dSt, Vt exp(∆Xd)), with probability (p3 + p4)λ∆T,

(10)

where the random variable ∆Xd is a discrete approximation of the random variable σ2ρX∆X. This will
approximate the evolution of the random process to order ∆T.

The values u, d, h, ` apply the binary “up-down”, “high-low” factors to S and V, and the
probabilities p1, p2, p3, p4 associated with the four options (two binary choices) are similar to their
respective values derived in (Grasselli 2011, Equations (46)–(51)). However, they must be corrected
to take into account the fact that the volatility σ2 is partially allocated to the jump-diffusion term
in Equation (2).

Based on the actual stock price S(t) and project value V(t), up to the order ∆T, we work with the
increments relating up to down and high to low,

u = 1/d = exp
(

σ1
√

∆T
)

,

h = 1/` = exp
(

σ2

√
∆T
(
1− ρ2

X
))

,

where u and h are multipliers on the stock price for an up move and a down move, respectively.
Following the procedure in Grasselli (2011), we work with the logarithms of the geometric

Brownian motions of S(t) and V(t), i.e., Y1
t = log S(t) and Y2

t = log V(t) respectively, to simplify
the calculation. Under the condition that there is no jump in the project value during the time step,
we match the mean and covariance matrix for the discrete-time process on the binomial tree with
increments (∆y1, ∆y2) with those of the continuous-time process (Y1

t , Y2
t ) up the order ∆T. Denoting

νi = µi − r− σ2
i /2, i = 1, 2, we have (Grasselli 2011, Equations (38)–(42)):

E[∆Y1
t | ∆X = 0] = (p1 + p2 − p3 − p4)∆y1 = ν1∆T,

E[∆Y2
t | ∆X = 0] = (p1 − p2 + p3 − p4)∆y2 =

[
ν2 +

σ2
2 ρ2

X
2
− λE(eρXσ2J − 1)

]
∆T,

E[(∆Y1
t )

2 | ∆X = 0] = (p1 + p2 + p3 + p4)(∆y1)
2 = σ2

1 ∆T,

E[(∆Y2
t )

2 | ∆X = 0] = (p1 + p2 + p3 + p4)(∆y2)
2 = σ2

2 (1− ρ2
X)∆T,

E[∆Y1
t ∆Y2

t | ∆X = 0] = (p1 − p2 − p3 + p4)∆y1∆y2 = ρσ1σ2∆T,

where:

∆y1 = σ1
√

∆T,

∆y2 = σ2

√
∆T(1− ρ2

X).
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Solving this linear system, we obtain the unique solution:

p1 =
1
4

1 +
ρ√

1− ρ2
X

+
√

∆T

 ν1

σ1
+

ν2 + σ2
2 ρ2

X/2− λE[eρXσ2J − 1]

σ2

√
1− ρ2

X

 ,

p2 =
1
4

1− ρ√
1− ρ2

X

+
√

∆T

 ν1

σ1
−

ν2 + σ2
2 ρ2

X/2− λE[eρXσ2J − 1]

σ2

√
1− ρ2

X

 ,

p3 =
1
4

1− ρ√
1− ρ2

X

+
√

∆T

− ν1

σ1
+

ν2 + σ2
2 ρ2

X/2− λE[eρXσ2J − 1]

σ2

√
1− ρ2

X

 ,

p4 =
1
4

1 +
ρ√

1− ρ2
X

+
√

∆T

− ν1

σ1
−

ν2 + σ2
2 ρ2

X/2− λE[eρXσ2J − 1]

σ2

√
1− ρ2

X

 ,

where

E
[
eρXσ2J − 1

]
=

(1− pX)η2

η2 + ρXσ2
+

pXη1

η1 − ρXσ2
− 1.

In Equation (10), we disregard the effect of the factors h and ` in cases when a jump occurs,
because they have negligible relative impact when ∆T is small. Also, we have not absorbed the
correction terms (from Equation (2)) into the definition of ν2, so as to show their explicit impact on the
preceding equations.

One important note is that when we generate the tree on a logarithmic scale, the increment size

for the discretisation is set by the value log h = − log ` = σ2

√
∆T
(
1− ρ2

X
)
. If ρX approaches 1, this

quantity will tend to zero, making the computation numerically intractable. It means that the random
fluctuations in project value are almost entirely determined by the jump process, which is independent
of the stock price. Thus, we choose an arbitrary upper bound of ρX = 0.9 when performing our
calculations.

The parameter δ, the “below-equilibrium rate-of-return shortfall”, is defined in Grasselli (2011) as
the difference between the value of µ2 related to the capital asset pricing model (CAPM) equilibrium
and the actual value of µ2. It satisfies the equation:

δ = ρ
µ1 − r

σ1
σ2 + r− µ2, (11)

which we maintain even though σ2 encompasses the volatility associated with the jump-diffusion
component of the project-value process.

We permit the discrete random variable ∆Xd to take on the values:

x1, x2, . . . , xn,

with probabilities:
π1, π2, . . . , πn,

respectively. The increment size for the discretisation ∆Xd is set by the value log h. That is, each of the
xi values (i = 1 to n) must be a multiple of log h, so that the tree recombines. The procedure we use for
selecting the xi and πi parameters is provided in the following section.
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We calculate the discounted option continuation value Dc. That is, the value of the option to the
investor at time t, if they do not choose to exercise it then, following the derivation in (Grasselli 2011,
Equation (35)), is equal to:

Dc(t, V) =

q
γt0

log

(
p1 + p2

(1− λ∆T) [p1Ut(D+) + p2Ut(D−)] + λ∆T(p1 + p2)∑n
i=1 πiUt(D+

i )

)

+
1− q
γt0

log

(
p3 + p4

(1− λ∆T) [p3Ut(D+) + p4Ut(D−)] + λ∆T(p3 + p4)∑n
i=1 πiUt(D+

i )

)
.

(12)

In this equation,

q = (1− d)/(u− d),

D+ ≡ D(t + ∆T, log(V(t)) + log h),

D− ≡ D(t + ∆T, log(V(t))− log h),

D+
i ≡ D(t + ∆T, log(V(t)) + xi),

where D(·, ·) represents the discounted value of the option.
Finally, we calculated the discounted option value D, at time t, project value V(t). It is equal to

the maximum of the continuation value and the immediate exercise value, De. That is,

D(t, log V(t)) = max (Dc, De) , (13)

where
De = V(t)− I(t). (14)

The preceding equations permit backwards induction to be performed on the tree.

3.3. Discretisation of the Random Variables

We now consider the selection of the parameters xi and πi, that is, the probability distribution of
the discretisation of ∆Xd. In order to achieve this, we utilise an approach explained in Luceño (1999).
Given two integer parameters—M, N— the method provides a recursive algorithm for generating a
discrete approximation to a given continuous distribution, with the following three properties. Firstly,
the two distributions share the same low-order moments up to moment 2N − 1. Secondly, their
distribution functions (CDFs) coincide at at least M + 1 points. Thirdly, the discrete distribution takes
on M · N different values, that is, n = M · N. For computational efficiency, it is preferable to keep the
product M · N as small as possible, without sacrificing the accuracy of the approximation.

In implementing the approach, we selected M bands containing equal probability weight.
That is, the M + 1 points where the two distributions coincided corresponded to their 0, 100/M,
200/M, . . . , 100-th percentiles. In fact, the approach guarantees that exactly N = 2 discrete values
occur between any pair of these successive percentiles.

In selecting values for M, N, note that the choice N = 2 guarantees that the three moment
parameters—mean, variance, skewness—necessary to define a double-exponential distribution are
preserved in the discretised form. We believe that, given an upper restriction for n, there is greater
utility in increasing the parameter M, rather than selecting a value of N greater than 2. The discrete
CDF will converge uniformly to the continuous CDF through the increasing number of coincident
points, at equally spaced probability weights.

Finally, given N = 2, we have chosen M by acknowledging the trade-off between computational
speed and the accuracy of the approximation. There is another consideration: following implicitly from
the allocation of two discrete points for each of M bands, the maximum value of |xi| selected by the
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algorithm will increase as M does. For the simplest case pX = 1/2, η1 = η2 = σ2ρX , if M = 3, 4, 5, 6, 7,
then max{|xi|} = 3.8, 4.1, 4.3, 4.5, 4.7, respectively. By choosing a smaller value of M, we can reduce
the size of the arrays we need to store in order to perform the backwards induction step of the process.
This consideration is of greater significance when we have skewed distributions, with long tails in
one direction. For example, if pX = 1/3, η1 = σ2ρX/

√
2, η2 =

√
2σ2ρX, and M = 3, 4, 5, 6, 7, then

max{|xi|} = 4.8, 5.2, 5.6, 5.8, 6.0, respectively.
Comparison between the continuous and discrete-approximation density functions, for these two

cases (pX = 1/2, 1/3), for M = 3, 5, are illustrated in Figure 1. In Figure 1a,b, two discrete values occur
below the 33.3rd percentile and above the 66.7th percentile of the respective continuous distributions.
For Figure 1c,d, the percentiles are the 20th, 80th respectively. Thus, the most extreme values for the
M = 5 case are more extreme than those for the M = 3 case (consistent with the earlier statements
about max{|xi|}), but they have lower weight.

Figure 1. Comparison between the double-exponential density function and its discrete approximations
for the cases: (a) pX = 1/2, M = 3, N = 2; (b) pX = 1/3, M = 3, N = 2; (c) pX = 1/2, M = 5, N = 2;
(d) pX = 1/3, M = 5, N = 2.

Based on these considerations, we believe that M = 5 is a suitable compromise for providing both
accuracy and computational efficiency. Some additional numerical analysis is provided in Section 5.3.1.

We also were required to round the M · N values for which the discrete distribution is defined to

the nearest multiple of log h = σ2

√
∆T
(
1− ρ2

X
)
. For small ∆T, the error introduced at this step will

often be negligible, but we address the issue in more detail in Section 5.1.

4. Numerical Calculation

We proceed by listing the input parameters of the calculation. The fundamental parameters are T,
µ1, σ1, σ2, δ, ρ, ρX , α, i, r, λ, χ (or SkX), γ0 and the numerical parameters are ∆T, M, N. The parameter
µ2 can be calculated using Equation (11).

Next, we must decide upon the sizes of the arrays (multinomial trees). The number of columns is
set by T, ∆T, and is equal to nc = (T/∆T) + 1. The set of times is {0, ∆T, 2∆T, . . . , T}. The number
of rows is set by considering the maximum and minimum values of V for which the option price is
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calculated, say Vmax, Vmin, respectively. We recall that V represents the value of the project at any given
time, discounted at the risk-free rate to its present value at time t = 0.

The range of values of V, from Vmax to Vmin, must be sufficiently broad so as not to affect the result
of the simulation. Their influence on the calculation is through Equation (12), in which a weighted sum
of the option values at time t + ∆T is required in the calculation of the continuation value of the option
at time t. Suppose V∗ is the maximum discounted exercise threshold over the interval [0, T]. That is,
for any time t ∈ [0, T], if the discounted project values exceeds V∗, we are guaranteed to exercise the
option immediately, and we do not need to calculate the continuation value (or apply Equation (12)).
Then Vmax need be no greater than V∗ exp(maxi {xi}), according to the definition of D+

i . Of course,
V∗ is not necessarily known precisely in advance of performing the calculation, however, a reasonable
upper bound can be specified by adding a small margin to its value in known cases (for example,
the ρX = 0 case).

The value of Vmin need only be chosen so that the option value is near-zero, with reasonable
tolerance, when the discounted project value lower than this value, at all times t. Such a value can
be determined by trial and error, using the case ρX = 0, and then applied to more general cases
as required.

Once Vmax, Vmin are specified, the discrete values of V are evenly spaced on a logarithmic scale,
with increment log h. Thus, the number of rows is:

nr =

⌊
log(Vmax)− log(Vmin)

log h

⌋
+ 1, (15)

where the “floor” notation indicates rounding down to the nearest integer.
We next generate the arrays. Firstly, we define the column vector V of values of V, as follows:

V = exp

log h

[ ⌊
log(Vmin)

log h

⌋
+ (nr − 1),

⌊
log(Vmin)

log h

⌋
+ (nr − 2), . . . ,

⌊
log(Vmin)

log h

⌋ ]T
 , (16)

where the superscript T represents matrix transpose, and the exponentiation operator is applied to
each element individually.

Next, we consider the matrix of option values, D, which has dimensions nr × nc. Each row
corresponds to a different value of the project value; each column to a different time step.

The rightmost column, column nc, corresponds to time T. At this time, the option has no
continuation value, and its value is equal to its exercise value (both discounted to time t = 0), so that
(Grasselli 2011, Equation (53)):

D[·, nc] = (V− exp [(α− r)T] I0)+ , (17)

where I0 is an nr × 1 vector with all entries equal to I(0), and the notation on the left-hand side
represents the nc-th column of D.

Next, backward induction is applied to columns j = nc − 1, nc − 2, . . . , 2, 1 in this order. To do
so, Equation (12) is applied point by point to the values in the vector V. For calculation efficiency,
in calculating the entry Dc(t(j), log V(t)), corresponding to column j of the array, we only need to be
concerned with values of V(t) that are below the exercise threshold for the column, noting that this is
not known precisely in advance for each value of j. For higher values of V(t), the discounted option
value is equal to the immediate exercise value.

However, the calculation for Dc(t(j), log V(t)) may make reference to out-of-bound entries of
the vector D[·, j + 1], if V is particularly low (near Vmin). Note that appropriate selection of Vmax

should avoid this problem in the high-V case. This is due to the limited range of project values for
which the option continuation value is calculated, as explained in the previous paragraph. In the low
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case, we may substitute zero for out-of-bound values, which should be appropriate according to the
selection of Vmin.

The discounted immediate exercise value of the option at the j-th column is given by the vector:

De = V− exp [(α− r)(j− 1)∆T] I0, (18)

and is permitted to be negative.
The discounted option value vector D = max(Dc, De), where the maximum operation is

performed element by element. The exercise threshold is the V(t) value for which Dc = De.
This threshold may be calculated using linear interpolation, given the two vectors. Then D[·, j] = D.

The backward-induction operations can be performed on a column-by-column basis (instead of
an element by element basis), using a convolution operation to implement Equation (12) step, applied
to the denominators of the arguments of the log functions. This is useful from the perspective of
calculation efficiency, especially given the few values for xi required in our discretisation approach.

Finally, for display purposes, we have chosen to re-scale the array so that each row corresponds
to a constant undiscounted project value, rather than a constant discounted value. (The discounting
step is a mathematical convenience introduced at the start of the calculation, to the somewhat arbitrary
choice of time t = 0.) Noting that the (vertical) project-value scale is expressed in logarithmic units,
this is achieved by translating each column in the array by the appropriate amount to reverse the effect
of discounting. Interpolation is used to deal with translations of fractional units of log h. The figures
presented in the next section are adjusted in this way. Similarly, the option values displayed in
the figures are in undiscounted values, calculated by multiplying the discounted option values D,
by exp(rt).

The process allows us to calculate option exercise threshold at each point in time, the option value
for every combination of project value and time. The option value can be split into time value and
money value, and it is convenient to display the former in the figures. The value of the option when “at
the money” is also plot against time. It may be calculated by interpolation from the derived array D,
and considered along with the exercise threshold (at time t = 0) as a means of comparing the results
when the input parameters are modified.

5. Simulation Results

We performed numerical calculations using Matlab 2016a on a PC with an Intel (R) Core (TM)
i7-6700HQ CPU @ 2.60 GHz, and 16 GB RAM, on Windows 10 (64-bit).

We utilised the following parameters, unless stated otherwise, following Grasselli (2011).
Fundamental parameters: µ1 = 0.115; σ1 = 0.25; σ2 = 0.2; δ = 0.04; ρ = 0.5; α = 0; r = 0.04;
γ0 = 2. The selected numerical parameter ∆T was usually chosen to be 0.0005, with exceptions noted
in the text where applicable.

5.1. Time-Dependent Utility Function

In the first instance, we set ρX = 0, so that there is no jump-diffusion component to the project
price movements. Figure 2 shows the difference between the cases where α = i and r = i. The vertical
axis represents the undiscounted project value, Ṽ, plotted on a logarithmic scale. The horizontal axis is
shown on a reverse scale indicating time to expiry. Thus, actual time t runs from left to right, beginning
at t = 0. This is explicitly indicated in Figure 2d.

The colour scale in the two-dimensional array represents the undiscounted time value of the option,
which is greatest when the option is approximately at the money. For each panel of the figure, the blue
dotted line indicates time/project-value combinations for which the option is at the money. Since the
inflation rate α = 0, this is a horizontal line at project value 1. The green dotted line, drawn parallel
to the blue line, represents (at time t = 0) the exercise threshold in the limit T → ∞. Finally, the red
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dotted line represents the exercise threshold throughout the lifetime of the option, above which the
time value of the option is zero.

Figure 2. (a) Case T = 10, α = i. Colour scale represents the undiscounted time value of the real option.
The vertical axis (undiscounted project value) is plotted with a logarithmic scale. Time is plotted on
the horizontal axis. Blue line: at the money; Red line: exercise threshold; Green line: Infinite-maturity
exercise threshold; (b) Case T = 30, α = i; (c) Case T = 10, r = i; (d) Case T = 30, r = i. Exercise
threshold at t = 0: (a) 1.4731; (b) 1.5226; (c) 1.4816; (d) 1.5425. Option value at the money (t = 0):
(a) 0.1531; (b) 0.1797; (c) 0.1564; (d) 0.1881. Calculation time (backwards induction step): (a) 1.37 s;
(b) 5.37 s; (c) 1.38 s; (d) 5.31 s.

In the top row, for which α = i, Figure 2a, for which T = 10, is identical to the rightmost region of
the Figure 2b (T = 30). This is because, in the absence of inflation (in either the option contract or the
option-holder’s preferences), the situation faced by the option-holder 10 time units prior to expiry does
not depend on the value of T. The red curves are strictly increasing as time to expiry increases, that is,
looking from right to left, representing the corresponding increasing benefit of holding the option.

In the case r = i (lower row of Figure 2), once again, the red curve lies strictly below the green line
at time t = 0, representing the greater value of an option with a longer time to expiry. However, in this
case, specifically in Figure 2d, the decision threshold (red curve) is not necessarily decreasing over the
lifetime of the option. This surprising effect is due to the fact that the option-contract-specific inflation
rate, α, is lower than the investor’s implied inflation rate, i. Thus, for large values of t, the option-holder
is less risk-averse with respect to monetary values equal to the strike price, so is more likely to delay
exercising the option. Just as the exercise threshold increases over the life of the option, similarly,
the option value at the money increases prior to decreasing to zero at expiry.

To avoid this counterintuitive result, we believe it is more sensible and realistic to adopt the
approach that α = i, so that both at-the-money option value and the exercise threshold are decreasing
functions of time. If a known alternative effective inflation rate can be assigned to the investor,
this value should be used instead.
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The calculation times (in seconds) for the backwards induction step (i.e., generating the
two-dimensional arrays) are provided in the figure caption. They are the averaged results of three
trials in each case. These times are clearly dependent on the sizes of the arrays. The T = 30 values
are almost four times as large as the T = 10 values, due to the additional computational resources
required to progressively update the larger arrays.

5.2. Inflation Effects

Given α = i, we consider the effect as this parameter is varied. Figure 3 presents plots in the
manner of Figure 2, for the cases (a) α = i = 0.01, (b) α = i = 0, and (c) α = i = −0.01. The parameter
T = 20, and all other parameters are as given at the beginning of this section. In each case, the (red)
exercise threshold curve approaches the (blue) at-the-money line as time t increases, a consequence of
the two inflation parameters being equal.

Figure 3. (a) Case T = 20, α = i = 0.01. Colour scale represents the undiscounted time value of the
real option. The vertical axis (undiscounted project value) is plotted with a logarithmic scale, and
the horizontal axis represents time. Blue line: at the money; Red line: exercise threshold; Green line:
Infinite-maturity exercise threshold. (b) Case T = 20, α = i = 0. (c) Case T = 20, α = i = −0.01.;
(d) Plot of undiscounted option value at the money, versus time to expiry, for the three cases represented
in (a–c). Exercise threshold at t = 0: (a) 1.4593; (b) 1.5102; (c) 1.5652. Option value at the money (t = 0):
(a) 0.1570; (b) 0.1727; (c) 0.1892. Calculation times (backwards induction step): (a) 3.26 s; (b) 3.19 s;
(c) 3.61 s.

The at-the-money option value at time t = 0 is greatest when α = i = −0.01, and least when
α = i = 0.01. This is because the option is more likely to be “in the money” at any point in the future,
if inflation (as specified in the option contract) is lower (or negative). Similarly, the exercise threshold
increases for decreasing α, i.

However, the at-the-money option value decreases much more sharply with time t as inflation
decreases, as shown in Figure 3d, so that eventually (towards the right of the panel), the order of the
three curves is reversed. This effect can be ascribed to the fact that the actual monetary values on the
at-the-money line increase/decrease according to inflation/deflation, which will contribute a scaling
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effect to the option value. In fact, the curve for the positive-inflation case is actually increasing with t
for a subset of its domain (low values of t).

The reported calculation times, provided in Figure 3 caption, are consistent with the values
provided in Figure 2, given T. The slight differences between them are due to the different maximum
and minimum values of V (and hence the sizes of the arrays) for the different cases (and random
variation).

5.3. Incorporation of Jump Diffusion into the Project Value

We now restrict ourselves to the case α = i = 0 in order to compare the results as the
jump-diffusion parameters are varied. This permits us to avoid the issues described in the previous
sections, including the scaling issue that occurred when the project value at the money varied over the
lifetime of the option. The results are presented in successive figures. As noted in Section 3.3, we used
the values M = 5, N = 2 to perform the calculations.

5.3.1. Effect of Varying the Parameter ρX

In Figure 4, a jump-diffusion model is presented with the parameters λ = 0.1, χ = 1. The latter
parameter choice means that upwards and downwards jumps are equally likely. Results are
displayed for different values of ρX. [The ratio ρ2

X/(1− ρ2) is the relative contribution by variance
of the jump-diffusion component to the project-value fluctuations that are independent of the stock
index movements.]

Despite the fact that we have controlled for the drift and volatility of the project-value process,
the net effect of introducing jump diffusion into the model is to reduce the option value and exercise
threshold, as indicated in the figure. The risk-averse investor responds negatively to the possibility
of extreme changes in project value, valuing the option less and being more likely to exercise it early,
if the other parameters are held stable.

Figure 4e shows that the relative option values for different ρX cases remain stable over the
option’s lifetime, and Figure 4f presents a comparison between the continuous double-exponential
probability density function and its discrete approximation. Up to rounding of the xi values, the discrete
and continuous cumulative distribution functions match at the quintiles of the latter, and the first three
moments agree. Due to the symmetry about the origin for the case χ = 1, the distributions also have
equal medians.

The calculation times provided in Figure 4 are also provided as multiples of the ρX = 0 case,
so that the computational cost of incorporating jump diffusion into the model is quantified. This cost
comes about from two sources: firstly, the incorporation of the n-term sums into Equation (12),
recalling that n = M · N; and secondly, the increased sizes of the arrays required when ρX is large
(to accommodate larger jumps). The effect of the first source in isolation can be approximated by
considering the low-ρX = 0.5 case. The additional computational burden is quite modest (relative
computation time 1.3×). The value increases to 1.9× for the ρX = 0.8 case, for which the jumps are the
dominant source of stochastic variation in the project value. This may be accounted for by the second
source identified above; it reflects the concomitant increase in the array size.

We also use this scenario to compare the effects on the results and calculation time when the
computation parameters M and N are modified. Firstly, we consider three cases for the pair (M, N),
as presented in Table 1. Our choice of selected parameters provides similar exercise thresholds and
option values at the money to those of the higher values (M, N) = (6, 3). However, the calculation
times are only modestly greater than those of the (M, N) = (3, 2) case, to within ≈ 0.1× the respective
ρX = 0 calculation times. These observations suggest that our choice is a reasonable compromise
between accuracy and computation speed.
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Figure 4. Process as in Figure 3b, but incorporating jump diffusion with parameters λ = 0.1, χ = 1.
The parameter ρX is, sequentially: (a) 0.5; (b) 0.6; (c) 0.7; (d) 0.8. Sub-figure (e) Plot of undiscounted
option value at the money, versus time to expiry, for the four cases represented in (a–d). Sub-figure
(f) Continuous and discrete (incorporating rounding of the xi values) approximations of the random
variable σ2ρX∆X, for the case ρX = 0.6. Exercise threshold at t = 0: (a) 1.4736; (b) 1.4483; (c) 1.4105; (d)
1.3563. Option value at the money (t = 0): (a) 0.1653; (b) 0.1588 (c) 0.1490; (d) 0.1348. Calculation times
(backwards induction step): (a) 4.07 s (1.3×); (b) 4.48 s (1.4×) ; (c) 4.98 s (1.6×); (d) 6.14 s (1.9×), where
the figures in parentheses represent a multiple of the ρX = 0 case of Figure 3b.

Table 1. Exercise thresholds (ET), option values at the money (OVATM), calculation times (backwards
induction step) (CT), for multiple simulations of the process. The centre columns correspond to
Figure 3b (ρX = 0), and Figure 4a–d (ρX = 0.5, 0.6, 0.7, 0.8, respectively). The other columns were
generated through changing only the values of M, N as indicated. Figures in parentheses represent
calculation times as a multiple of the ρX = 0 case.

M = 6, N = 3 M = 5, N = 2 M = 3, N = 2
ρX

ET OVATM CT (s) ET OVATM CT (s) ET OVATM CT (s)

0 1.510 0.173 3.19 1.510 0.173 3.19 1.510 0.173 3.19
0.5 1.474 0.166 4.53 (1.4×) 1.474 0.165 4.07 (1.3×) 1.473 0.165 3.98 (1.2×)
0.6 1.449 0.159 5.21 (1.6×) 1.448 0.159 4.48 (1.4×) 1.447 0.158 4.46 (1.4×)
0.7 1.411 0.150 5.94 (1.9×) 1.411 0.149 4.98 (1.6×) 1.409 0.148 4.83 (1.5×)
0.8 1.357 0.136 7.34 (2.3×) 1.356 0.135 6.1 (1.9×) 1.354 0.133 5.88 (1.8×)
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5.3.2. Effect of Varying Jump Rate λ

Figure 5 illustrates the effect of modifying the parameter λ, when other parameters are held
constant. Note that if the jump rate is increased, but the drift and volatility remain constant, then
the jump size must necessarily decrease. Also, according to the central limit theorem, as λ increases
indefinitely, the jump process should tend towards the Brownian motion process W2

t . That is, the model
should approach the case for which ρX = 0. This observation is borne out in Figure 5f. Beginning at
the case λ = 0.1, from Figure 4d, the option value curve rises steadily as λ is increased to (a) 0.2, (b) 0.3,
(c) 0.5, (d) 1, then (e) 2, ultimately approximating the case ρX = 0 from Figure 3b. Again, the relative
option value remains consistent over the entire time to expiry.

The differences in calculation times listed reflect the second source of costs mentioned in
Section 5.3.1, that is, different array sizes. The calculation times also reflect the first source (additional
calculations per induction step), even for high values of λ, when the result is similar to the case ρX = 0.
Given these considerations, the times listed are consistent with those of Section 5.3.1.

Figure 5. As in Figure 4d, but with jump rates λ equal to: (a) 2; (b) 1; (c) 0.5; (d) 0.3; (e) 0.2. (f) Plot of
undiscounted option valuen at the money, versus time to expiry, for the five cases represented in (a–e).
Exercise threshold at t = 0: (a) 1.4664; (b) 1.4481; (c) 1.4272; (d) 1.4075; (e) 1.3902. Option value at the
money (t = 0): (a) 0.1700; (b) 0.1668 (c) 0.1613; (d) 0.1548; (e) 0.1484. Calculation times (backwards
induction step): (a) 4.37 s (1.4×); (b) 4.52 s (1.4×) ; (c) 4.84 s (1.5×); (d) 5.06 s (1.6×); (e) 5.46 s (1.7×),
where the figures in parentheses represent a multiple of the ρX = 0 case of Figure 3b.
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5.3.3. Effect of Varying Skewness SkX

In Figure 6, starting with the parameters used to generate Figure 4b, we investigate the effect of
modifying the skewness parameter SkX from the value 0 which has been utilised thus far.

We used the values SkX = −3, 0 and 3, corresponding to χ = 0.268, 1 and 3.73 respectively.
In Figure 6c, we see that the largest at-the-money option value occurs when SkX = −3 (that is, 0.1614),
with value falling to 0.1588 for zero skewness, and much further to 0.1359 for skewness +3. The
asymmetry of this effect (about zero skewness) is due to the different characteristics of the upside and
downside risks associated with jumps in the positive- and negative-skewness cases, noting that the
value of an option lies in its ability to eliminate downside risk. Specifically, in the positive-skewness
case, most jumps are downwards and small in magnitude, with a few being upwards and large in
magnitude. However, these directions are reversed in the negative-skewness case. (We emphasise
again that all effects must be understood in the context that drift and volatility are held constant in the
project-value process.) In Section 5.3.4, we will see that the effect of increasing λ rapidly mitigates the
limited-downside-risk issue associated with the positive-skewness case.

Figure 6. As in Figure 4b, but with skewness SkX equal to: (a) −3; (b) 3; (c) Plot of undiscounted option
value at the money, versus time to expiry, for the three cases in SkX = −3, 0, 3. Exercise threshold at
t = 0: (a) 1.4767; (b) 1.3762. Option value at the money (t = 0): (a) 0.1614; (b) 0.1359. Calculation times
(backwards induction step): (a) 4.12 s; (b) 5.04 s.

The optimal exercise threshold exhibits a similar dependence on skewness, being also asymmetric
about the origin. The listed calculation times, comparable with the 4.48 s from Figure 4b, tend to
increase for greater values of skewness. This is due to different sizes of the required arrays (the second
“source” of computational cost from Section 5.3.1), due to the fact that a lower value of Vmin must be
selected if larger positive jumps are possible.

5.3.4. Further Investigation of ρX , λ, SkX

In Figures 7 and 8, we plot exercise threshold and option value at time t = 0 for a range of
input parameters. For Figure 7, we plot the variation of these quantities with jump rate λ, for three
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different values of skewness SkX. We selected ρX = 0.6, T = 10, with all other parameters being equal
to their values stated earlier.

The three coloured curves in the figure represent the different skewness levels. Their orderings
for low values of λ are consistent with the discussion of Figure 6. Moreover, as observed with respect
to Figure 5, the curves should converge to the black dotted line (representing the case ρX = 0) when λ

increases indefinitely. This is apparent in the plots, although there are still discernible discrepancies
between the curves even when λ = 12, representing 120 expected jumps over the option lifetime.

Another significant observation in the option-value plot is that when λ increases, the
positive-skewness curve exceeds the zero- and negative-skewness curves and even apparently
overshoots the large-λ limit. (This observation does not hold for the exercise-threshold plot.) This can
be explained in terms of the rapid mitigation of the issue implied in the discussion of Figure 6, that the
project-value jumps had limited downside risk, diminishing the option value. When a large number of
jumps occur, then the potential cumulative effect of multiple downward jumps does constitute more
significant downside risk when considering the project value. So the option will gain value as a result.

Figure 7. Plots of exercise threshold (a) and option value (b) at time t = 0, vs. jump rate λ, for
different values of skewness (−3, 0, 3). Other parameters are given in the text. In particular, ρX = 0.6.
The comparison level when ρX = 0 is indicated using a black dotted line.

The small-scale fluctuations in the plotted curves are due to calculation noise, in particular,
the rounding error associated with forcing the values of xi to be multiples of log h. This effect has
been mitigated by selecting ∆T = 0.00005 for Figure 7, as opposed to the value ∆T = 0.0005 used
earlier. Also, the effect is only significant for large values of λ (for which the jump size, compared
to log h, is relatively small). The curves have been smoothed, partly through the judicious choices of
the discrete jump rates λ for which they were calculated. For these reasons, particularly in Figure 7b,
the plotted values have limited reliability for large values of λ. Finally, we note that the error is least
when SkX = 0, since in this case the first and third moments of the discrete distribution are guaranteed
to be matched to those of the continuous distribution it is approximating (i.e., to zero).

For Figure 8, we fix the value of λ at 0.1 (and set ∆T to 0.00025), and now plot the variation in
exercise threshold and option value with skewness SkX. The trend observed in Figure 4 is apparent:
the plotted quantities decline with increasing ρX, and this is preserved over all values of skewness.
Additionally, as discussed in relation to Figure 6, the plotted quantities are asymmetric with respect to
the sign (positive or negative) of the skewness. In particular, the low option value for large positive
values of skewness is due to the fact that jumps are rare. (The expected number of jumps over the
option’s lifetime is 1.) The optimum level of skewness, in terms of maximising option value, is negative,
and becomes more so as ρX is increased.
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Figure 8. Plots of exercise threshold (a) and option value (b) at time t = 0, vs. skewness SkX,
for different values of ρX (0, 0.5, 0.6, 0.7, 0.8). Other parameters are given in the text. In particular,
λ = 0.1.

6. Conclusions

In this manuscript, we have incorporated two extensions to the real-options approach of
Grasselli (2011). In doing so, we have maintained its key characteristics: the finite time horizon;
the partial correlation between the project value and tradable instruments; and the utilisation of the
investor’s utility function.

In addition, we have incorporated the ability to model the investor’s implied inflation rate, which
determines the time dependence of their utility function. This permits us to perform a more realistic
model of the investor behaviour over time, specifically, that an investor’s risk preferences will tend to
vary with inflation rather than the rate of interest.

Also, we have incorporated a jump-diffusion component into the value of the underlying project
for which the option is written. In the most general case, the dominant effects of such a jump component
would be the additional drift and volatility it imparted to the project value. Accordingly, we have
limited the number of free parameters when defining our jump process, so as to control for these
effects. The correction terms in Equation (2) also assist in this aim. As a result, we are able to examine
the impact of the particular form of the double-exponential jump distribution, and the dependence of
the option value and investor behaviour on the skewness of the jump process.

In the results we presented, the incorporation of a jump-diffusion component into the option
price model tended to reduce both the exercise threshold and the option value. An apparent exception
to this rule was shown in Figure 7b, in which it was possible for the plotted option value under the
jump process to exceed that in its absence. However, this applied only for extremely high jump rates,
and was subject to numerical error.

We have been able to utilise a parsimonious approach for approximating the continuous
double-exponential distribution using a discrete distribution, taking only a limited number of values
over the binomial tree whose increments are determined by the non-jump components of the process.
As such, the additional computational burden of incorporating the jump-diffusion extension is small.
Indeed, we found calculation times were generally less than twice those required in the absence of
jump diffusion, except for cases of extreme values of the parameters.
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