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Abstract: Modeling the interactions between a reinsurer and several insurers, or between a central
management branch (CB) and several subsidiary business branches, or between a coalition and
its members, are fascinating problems, which suggest many interesting questions. Beyond two
dimensions, one cannot expect exact answers. Occasionally, reductions to one dimension or heuristic
simplifications yield explicit approximations, which may be useful for getting qualitative insights.
In this paper, we study two such problems: the ruin problem for a two-dimensional CB network
under a new mathematical model, and the problem of valuation of two-dimensional CB networks
by optimal dividends. A common thread between these two problems is that the one dimensional
reduction exploits the concept of invariant cones. Perhaps the most important contribution of the
paper is the questions it raises; for that reason, we have found it useful to complement the particular
examples solved by providing one possible formalization of the concept of a multi-dimensional risk
network, which seems to us an appropriate umbrella for the kind of questions raised here.

Keywords: central branch risk networks; capital injections; bailout time; laplace transform; optimal
dividends; scale functions

1. Introduction

Multi-dimensional risk networks is an exciting discipline which emerged recently—see for
example Kriele and Wolf (2014); (Albrecher and Asmussen 2010, chp. XIII.9). In our paper,
a multi dimensional risk network will be modeled by an “upwards skip-free” process X(t) =

(X0(t), X1(t), . . . , XI(t)) ∈ S . This means, generalizing (Albrecher and Asmussen 2010, chp. XIII.9
Equation (9.1)), that the process may evolve upwards only by drift or diffusion components, and
downwards by jumps (modeling catastrophes) or diffusion1. The index set for the network is denoted
by I = {0, 1, . . . , I}, with the index 0 being reserved for a central branch (CB), if such a branch
exists. The process may continue after attempting to overshoot the state space boundary, via various
continuation/regulation mechanisms such as reflection, jumping to the interior, etc. One type of
overshoot corresponds to the event that a component becomes negative. In such cases, the CB may
intervene to reset the negative component to 0. These “bail-out/capital injections” interventions were
studied in Avram and Minca (2015, 2017); Avram et al. (2016). Note that more complex “proportional
bailouts” and “stop loss bailouts”, which bring the process to an interior point of the state space, have
been recently introduced in Salah and Garrido (2017).

1 On a discrete lattice state space, the jumps may be bigger than one only downwards, and the diffusion is of course
not allowed.
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We introduce below a new reinsurance/central branch (CB) network model which combines the
bail-out model of Avram and Minca (2015, 2017); Avram et al. (2016) with an older model studied in
Avram et al. (2006, 2008a, 2008b); Azcue et al. (2016); Badescu et al. (2011); Badila et al. (2014) involving
proportional interventions contributed continuously by the CB to each claim of the subsidiaries. The
motivation is to investigate how a CB should combine “distress bail-outs” with continuous risk-sharing
of the type used in reinsurance, and in particular with the simplest proportional reinsurance, which
leads sometimes to exact solutions. As a bonus, it turned out that a problem which could not be solved
exactly in our first papers on the bail-out model became solvable under the combined model, once
sufficient proportional reinsurance is added—see Section 5.

This paper is organized as follows. Some background on general risk networks is provided in
Section 2. Section 3 introduces a new central branch network model, which unifies the previous
“bail-out” model Avram and Minca (2015, 2017); Avram et al. (2016) and the proportional reinsurance
model of Avram et al. (2006, 2008a, 2008b); Badescu et al. (2011). A similar model has been studied
recently by Boxma et al. (2016) (after the completion of our work)—see also Boxma et al. (2017a, 2017b)
for related ideas.

Section 4 revisit known results of Avram et al. (2006, 2008b); Badescu et al. (2011); Badila et al. (2014),
notably the concept of invariant cone, which is at the basis of all currently known exact results on
proportional reinsurance. The general approach is to obtain an integro-differential equation, and then
an algebraic Riemann-Hilbert equation for the Laplace transform of the density of the time to ruin.
This Laplace transform, already calculated in Badila et al. (2014), is rederived heuristically in Section
4.3 using the famous cancelation of singularity technique. These sections serve to ease the way into the
more difficult situation encountered in Section 5, for our new CB model.

In Section 5, we tackle the first particular case of our new CB model. Here we obtain
the Riemann-Hilbert equation for the Laplace transform for a network where both bailouts and
proportional reinsurance are present. An explicit result is offered, modulo establishing the fact that
the singularity curve is removable, which is left for future work. This section illustrates the utility
of our new combined model, since without adding sufficient proportional reinsurance, the Laplace
transform could not be obtained analytically in the previous papers Avram and Minca (2015, 2017);
Avram et al. (2016).

In Section 6, we turn to the different issue of optimizing dividends. We provide a heuristic
dynamic valuation index for general risk networks, based on recent work of Azcue et al. (2016). This
section is included to illustrate the fact that heuristics may also contribute, together with numerical
methods, to unravel the mysteries of multi-dimensional risk networks, and the potential of applying
the already available one and two-dimensional tools for managing multi-dimensional CB networks.

2. General Background on Risk Networks

Let τi(ui) = inf{t ≥ 0 : Xi(t) < 0|Xi(0) = ui}, i = 0, 1, . . . , I denote the ruin time of Xi when
isolated from the network. There are several ways to define ruin sets S c = RI+1 \ S that are of interest
for the study of risk networks Chan et al. (2003); Hult and Lindskog (2006); Li et al. (2015):

1. The first time when (at least) one insurance company is ruined is given by

τor = τmin := min
i∈I

τi

= inf{t ≥ 0 : X(t) /∈ R++...+}
= inf{t ≥ 0 : X0(t) < 0, or X1(t) < 0, . . . , or XI(t) < 0}. (1)

2. The first time when all the insurance companies experience simultaneous ruin is denoted by

τall = τmax := inf{t ≥ 0 : X(t) ∈ R−−...−} = inf{t ≥ 0 : max Xi(t) < 0}. (2)
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3. The first time when the sum of the insurance companies X+(t) = ∑i∈I Xi(t) is ruined is called

τsum := inf{t ≥ 0 : X+(t) < 0}.

4. A general class of insolvency sets was introduced in Hult and Lindskog (2006); Li et al. (2015)
(inspired by the “bid-ask matrices” of Kabanov and Safarian (2009); Kabanov (1999)).
The insolvency set Rω = Rω0,ω1,...,ωI is the set where it is impossible to cover the total negative
position using fractions bounded by ωi ∈ [0, 1], out of the positive positions2

Rω = {u : ∑
i∈I

ωi(ui)+ < ∑
i∈I

(−ui)+}. (3)

Correspondingly, we introduce

τω = inf{t ≥ 0 : X(t) ∈ Rω}.

When ω = ω1 we use the notation Rω.

Example 1. For ω = 1 = (1, 1, . . . , 1), all transfers are allowed without restrictions and τ1 = τsum, while for
ω = 0 = (0, 0, . . . , 0), no transfer is allowed and τ0 = τor.

Depending on the type or ruin set chosen, the ultimate/perpetual ruin probabilities will be
denoted by

Ψor(u) = Pu [τor < ∞] , Ψall(u) . . . , Ψsum . . . , Ψω(u) . . . . (4)

Remark 1. For dependent models, exact computation of these ruin probabilities, with the exception of Ψsum,
is impossible or quite challenging—see Avram et al. (2007); Cai and Li (2005); Chan et al. (2003); Li et al. (2007);
Hu and Jiang (2013). However, in the case of processes with independent components,

Ψand(u1, u2) := P[τ1(u1) < ∞, τ2(u2) < ∞] = Ψ1(u1)Ψ2(u2),

Ψor = Ψ1(u1) + Ψ2(u2)−Ψ1(u1)Ψ2(u2).

In terms of bounds of the ruin probabilities (4), one may easily verify that:

Ψall(u1, u2) ≤ Ψand(u1, u2) = Ψ1(u1) + Ψ2(u2)−Ψor(u1, u2)

≤ Ψsum(u1, u2) ≤ Ψor(u1, u2).

Furthermore, under positive association (present in common shocks models), it holds that (Cai and Li 2005,
Equation (4.1))

Ψor(u1, u2) ≤ Ψ1(u1) + Ψ2(u2)−Ψ1(u1)Ψ2(u2).

Two more sophisticated characteristics of a risk network are:

1. The Gerber-Shiu/severity of ruin function induced by a ruin time τ:

Sq(u, θ) := Eu
[
e−qτ+<θ,X(τ)>; τ < ∞

]
. (5)

2 This concept does not involve actual transfers being carried out; ωi must be viewed just as static limits of mutual solidarity.
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2. The combined optimal discounted dividends until ruin:

VF(u) := sup
π=(R0,R1,...,RI)

Eu
∫ τ

0
e−qt

(
I

∑
i=0

dRi(t)

)
, (6)

induced by a ruin time τ, where Ri denote the nonnegative cumulative dividends/consumption/
benefits processes of the i-th branch.
This functional may be used, following the ideas of De Finetti (1957) and
Miller and Modigliani (1961), to evaluate a network of collaborating companies, i.e., assign a
numeric value to its performance, by using an approximation inspired by recent (yet unproved)
results of Azcue et al. (2016)—see Section 6. Once this heuristic approximation for the value of
the collaborating network is computed, one may compare it with the sums of the values of its
components (defined analogously, using individual ruin times in the absence of interactions),
and decide whether the existence of the collaboration is justified, as opposed to severing the
connections between the subsidiaries.

Some major results for multi-dimensional risk network are:

1. The Pollaczek-Khinchine type formula for Ψor(u) provided in the foundational paper
Chan et al. (2003).

2. The asymptotic treatment of ruin probabilities for conic insolvency sets, assuming regularly
varying tails—see Hult and Lindskog (2006).

3. Optimizing “decoupled” objectives like total time “in the red”—see Loisel (2005) and asymptotic
objectives like “orange time”—see Liu and Woo (2014).

Naturally, since multi-dimensional first passage problems are considerably harder than one
dimensional ones, exact formulas for (5) and (6) will only be available occasionally in two-dimensional
cases, where complex analysis may come to rescue. Nevertheless, we believe that the few
low-dimensional exact results that are already available may provide interesting tools for managing
multi-dimensional risk networks.

3. A Bail-Out + Reinsurance Central Branch Risk Network Model

Definition 1. A central branch (CB) risk network X(t) = (X0(t), X1(t), . . . , XI(t)) is formed from:

1. Several subsidiaries Xi(t), i = 1, . . . , I, with downward jumps, which must be kept in certain “solvability
regions” by bail-outs from a central branch X0(t), or be liquidated otherwise. For example, they might need
to be maintained above certain prescribed levels oi. For other possible solvability regions, see Section 1.
We will denote by τi,j, i ∈ {1, . . . , I}, j ∈ {1, 2, . . .} the j-th intervention time on the i-th subsidiary, to be
referred from now on as bailout time.

2. The reserve of the CB is a process with downward jumps denoted by X0(t) in the absence of subsidiaries,
and by X(t) after subtracting the bailouts. The ruin time

τ = τ−0 = inf{t ≥ 0 : X(t) < 0}

causes the ruin of the whole network and leads to a severe penalty.
3. The CB must also cover a certain proportion αi = 1− αi of each claim Ci,j of subsidiary i, leaving the

subsidiary to pay only αiCi,j, where αi ∈ [0, 1] are called proportional reinsurance retention levels.

Remark 2. For a CB network, the bail-out boundaries (for example ui = oi, i = 1, . . . , I) are reflecting and
u0 ≤ 0 is absorbing.
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Remark 3. Both the bail-out times τi,j, i, j ≥ 1 and the ruin time τ could be replaced by other stopping times
such as the Parisian (“soft”) stopping time Albrecher et al. (2016); Avram and Zhou (2016); Avram et al. (2018)
or the draw-down (Azema-Yor) stopping time

τξ := inf{t ≥ 0 : X(t) ≤ ξ sup
0≤s≤t

X(s)},

where ξ ∈ (0, 1) is a fixed constant.

Here is one example of process falling under the CB umbrella:

Example 2. Consider a Cramér-Lundberg subsidiary process X1 = u1 + c1t− α1C(t), which shares with the
CB, in some proportions to be optimized, the common liability process C. It is also assumed that the central
branch X0 has an additional independent dedicated liability C0. In addition, the CB must bail out the
subsidiary whenever it becomes negative. The cumulative bailouts will be denoted by Z(t). Assuming the CB
pays a total of k > 1 Euros for each bailout Euro (k is sometimes called the proportional transaction cost), the two
companies will satisfy:

{
X1(t) = u1 + c1t− α1C(t) + Z(t)

X(t) = u0 + c0t− (1− α1)C(t)− C0(t)− kZ(t)
(7)

C(t) =
Nλ(t)

∑
i=1

Ci, C0(t) =
Nλ0

(t)

∑
i=1

Ci,0.

If bailouts occur only when X1(t) 6= 0, and this company is always reset to 0, then Z(t) is the so-called
“minimal Skorohod reflection process necessary to keep X1(t) nonnegative”, a nondecreasing process satisfying
X1(t) ≥ 0,

∫ t
0 X1(t)dZ(t) = 0 (i.e., Z(t) only “pushes up" when X1(t) = 0). The common liability process

C(t), as well as the dedicated liability process C0(t) are assumed here to be compound Poisson, with Poisson
intensities denoted by λ, λ0.

Remark 4. The compound Poisson models and independence assumption make sense when the CB is itself an
insurance company. Mathematically, this example illustrates one of the main difficulties of dealing with general
CB risk networks: the fact that the bailout and the common liability are typically not independent. This makes
X(t) a non-standard Sparre-Andersen risk process.

Remark 5. This example can be generalized by adding a Brownian motion to X(t), as an approximation
of the aggregate net flow due to several other subsidiaries. In that case, X(t) is a perturbed non-standard
Sparre-Andersen risk process Frostig (2008); Li et al. (2009); Zhang et al. (2013).

Example 3. A notable exception to the issue of dependence is the case of exponential claims. Taking α1 = 1,
λ0 = 0 and L(Ci) = Exp(µ) in (7) makes X(t) a Sparre-Andersen process with exponential claims,
independent of the inter-arrival times τj, j = 1, . . . , n, . . ., which are descending ladder times of X1. The
Laplace transform of the density of τj satisfies a Kendall-Takacs functional equation, which may even be inverted
explicitly, by Lagrange-Burmann inversion, resulting in the so-called Takacs series. Even more efficient are Padé
approximations of the bail-out time—see Avram and Minca (2015, 2017).

The case of phase-type claims is not straightforward—see Avram et al. (2016), and computing other risk
measures for X(t), like expected dividends before ruin, is even more challenging. One possibility is using an
approximation approach, based on replacing the exact joint law of (τ1, X(τ1)) by a phase-type approximation—see
Avram (2017).
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Example 4. Suppose now that λ0 > 0, α1 = 1, and L(Cj) = Exp(µ) in (7). Then X(t) is a Sparre-Andersen
process with exponential claims, with a spectrally negative perturbation Frostig (2008); Li et al. (2009);
Zhang et al. (2013). In this case, quantities of interest such as ruin probabilities and expected dividends may be
expressed in terms of the roots of a generalized Lundberg equation, and this continues to be the case when
X0(t) includes a Brownian perturbation, which may approximate an aggregate net flow of several subsidiaries.

4. Laplace Transform for the “or”-Ruin Probability of a Proportional Reinsurer with a Dedicated
Spectrally Negative Liability

We consider (7) in the absence of crisis bailouts, when the model reduces to:

X1(t) := u1 + c1t− α1C(t),

X0(t) := u0 + c0t− α0C(t)− C0(t),

where α0 + α1 = 1.
Recall that we restrict to the case when the liabilities C(t) and C0(t) are both compound Poisson,

with respective intensities denoted by λc, λ0, respective jump densities denoted by fc, f0, and Lévy
densities denoted by νc(x)dx and ν0(x)dx, respectively. For j = 0, 1, let

τj = τj(u) = inf{t ≥ 0 : Xj(t) < 0}, Ψj(u) = P(τj < ∞|Xj(0) = u), Ψj(u) = P(τj = ∞|Xj(0) = u).

We will denote the “or” time to ruin by

τ = τ1 ∧ τ0,

and write τ(u1, u2) for τ with fixed initial conditions.
In this section, we will obtain the Laplace transform of the density of τ

φδ(u1, u0) := E[e−δτ1(τ<∞)|X1(0) = u1, X0(0) = u0] = P[τ < Eδ|X1(0) = u1, X0(0) = u0], (8)

where Eδ is an independent exponential r.v. with rate δ. This includes as a particular case the eventual
“or” ruin probability φ0(u1, u0) = E[1(τ<∞)|X1(0) = u1, X0(0) = u0] := Ψ(u1, u0).

4.1. Integro-Differential Equation

Theorem 1. The Laplace transform (8) satisfies

(λc + λ0 + δ)φδ(u1, u0) = c1
∂

∂u1
φδ(u1, u0) + c0

∂

∂u0
φδ(u1, u0)

+λ0

∫ u0

0
φδ(u1, u0 − x) f0(x)dx + λ0F0(u0) (9)

+λc

∫ u1
α1
∧ u0

α0

0
φδ(u1 − α1x, u0 − α0x) fc(x)dx + λcFc

(
u1

α1
∧ u0

α0

)
,

where Fc(x) =
∫ ∞

x fc(y)dy and F0(x) =
∫ ∞

x f0(y)dy are the survival functions associated with the densities
fc and f0.
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Proof. Conditioning on all the possible outcomes during the time interval (0, h) as in Avram et al. (2008b),
we obtain

φδ(u1, u0) = e−λch−λ0h−δhφδ(u1 + c1h, u0 + c0h)
+e−λch ∫ h

0 λ0e−λ0t−δt ∫ u0+c0t
0 φδ(u1 + c1t, u0 + c0t− x) f0(x)dxdt

+e−λch ∫ h
0 λ0e−λ0t−δt ∫ ∞

u0+c0t f0(x)dxdt

+e−λ0h ∫ h
0 λce−λct−δt ∫ (u1+c1t)

α1
∧ (u0+c0t)

α0
0 φδ(u1 + c1t− α1x, u0 + c0t− α0x) fc(x)dxdt

+e−λ0h ∫ h
0 λce−λct−δt ∫ ∞

(u1+c1t)
α1

∧ (u0+c0t)
α0

fc(x)dxdt.

(10)

Differentiating both sides of (10) w.r.t. h and then letting h→ 0, we obtain the desired result.

4.2. A Riemann-Hilbert Equation for the Laplace Transform

From (9), we will obtain an equation for the two-dimensional Laplace transform

Lφδ(s1, s0) :=
∫ ∞

0

∫ ∞

0
e−s1u1−s0 u0 φδ(u1, u0)du1du0.

Taking transform of the first four terms in (9) is straightforward:

L ∂

∂u1
φδ(u1, u0) = s1Lφδ(s1, s0)−

∫ ∞

0
e−s0 u0 φδ(0, u0)du0,

L ∂

∂u0
φδ(u1, u0) = s0Lφδ(s1, s0)−

∫ ∞

0
e−s1u1 φδ(u1, 0)du1,

L
∫ u0

0
φδ(u1, u0 − x) f0(x)dx = Lφδ(s1, s0) f̂0(s0),

LF0(u0) =
1− f̂0(s0)

s0s1
,

where for any function g, we denote its one-dimensional Laplace transform by ĝ(s) =
∫ ∞

0 e−sxg(x)dx.
For the fifth term we change the order of integration:

∫ ∞

0

∫ ∞

0
e−s1u1−s0 u0

∫ u1
α1
∧ u0

α0

0
φδ(u1 − α1x, u0 − α0x) fc(x)dxdu1du0

=
∫ ∞

0
e−(α1s1+α0s0)x

∫ ∞

α0x

∫ ∞

α1x
e−s1(u1−α1x)−s0(u0−α0x)φδ(u1 − α1x, u0 − α0x)du1du0 fc(x)dx

= Lφδ(s1, s0) f̂c(α1s1 + α0s0).

Finally, for the sixth term in (9) we split the domain

∫ ∞

0

∫ ∞

0
e−s1u1−s0 u0 Fc

(
u1

α1
∧ u0

α0

)
du1du0

=
∫ ∞

0

∫ u0α1
α0

0
e−s1u1−s0 u0 Fc(u1/α1)du1du0 +

∫ ∞

0

∫ ∞

u0α1
α0

e−s1u1−s0 u0 Fc(u0/α0)du1du0

=
1
s0

∫ ∞

0
e−s1u1−s0α0u1/α1 Fc(u1/α1)du1 +

1
s1

∫ ∞

0
e−s0u0−s1α1u0/α0 Fc(u0/α0)du0

=
1− f̂c(α1s1 + α0s0)

α1s1 + α0s0

(
α1

s0
+

α0

s1

)
=

1− f̂c(α1s1 + α0s0)

s1s0
.
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Putting this together we obtain

(λc + λ0 + δ)Lφδ(s1, s0) = c1s1Lφδ(s1, s0)− c1

∫ ∞

0
e−s0 u0 φδ(0, u0)du0

+c0s0Lφδ(s1, s0)− c0

∫ ∞

0
e−s1u1 φδ(u1, 0)du1

+λ0
1− f̂0(s0)

s1s0
+ λ0Lφδ(s1, s0) f̂0(s0)

+λcLφδ(s1, s0) f̂c(α1s1 + α0s0) + λc
1− f̂c(α1s1 + α0s0)

s1s0
,

which is restated as the following theorem.

Theorem 2. The two-dimensional Laplace transform of φδ satisfies the Riemann-Hilbert equation with
three unknowns

Lφδ(s1, s0)

=
c1
∫ ∞

0 e−s0 u0 φδ(0,u0)du0+c0
∫ ∞

0 e−s1u1 φδ(u1,0)du1−λ0
1− f̂0(s0)

s1s0
−λc

1− f̂c(α1s1+α0s0)
s1s0

c1s1+c0s0−(λc+λ0+δ)+λc f̂c(α1s1+α0s0)+λ0 f̂0(s0)

=
c1φ̂δ(0,s0)+c0φ̂δ(s1,0)+ κ(s1,s0)−c0s0−c1s1

s1s0
κ(s1,s0)−δ

= 1
s0s1
−

c1(
1
s0
−φ̂δ(0,s0))+c0(

1
s1
−φ̂δ(s1,0))− δ

s1s0
κ(s1,s0)−δ

,

(11)

where we let

κ(s1, s0) = c1s1 + c0s0 + λc( f̂c(α1s1 + α0s0)− 1) + λ0( f̂0(s0)− 1) (12)

denote the Laplace exponent of our two-dimensional process.

Remark 6. Denote the ultimate “or”-survival probability by Ψ(u1, u0) := 1−Ψ(u1, u0). Letting δ→ 0 and
rearranging terms, (11) reduces to

LΨ(s1, s0) =
c1
∫ ∞

0 e−s0 u0 Ψ(0, u0)du0 + c0
∫ ∞

0 e−s1u1 Ψ(u1, 0)du1

κ(s1, s0)
, (13)

which is a special case of (Chan et al. 2003, Equation (4.9)).

4.3. Explicit Formula for the Laplace Transform in the Presence of an Invariant Cone

Both (11) and (13) are Wiener-Hopf type equations with two unknowns in the numerator, and this
type of problems admit explicit solutions quite rarely (for an exception involving risk networks, see
Boxma and Ivanovs (2013)).

We recall now from Avram et al. (2008a, 2008b) that when I = 1, further explicit computations
seem possible only in the case

c0α1 ≤ c1α0, (14)

which we will call “cheap reinsurance” case. Moreover, computations are easy due to the following
geometric fact:

Lemma 1. Under the cheap reinsurance condition (14), the lower cone

C := {0 ≤ u0 ≤ u1
α0

α1
}
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contains c = (c1, c0), and is thus invariant with respect to the flow, i.e., that starting with initial capital
(u1, u0) ∈ C, the process (X1, X0) will stay there.

Remark 7. The boundary u0 = u1
α0
α1

will be called “claims line". The invariance of the lower cone follows from
the fact that when claims arrive, the flow is parallel to the claims line and hence cannot cross it. Also, the drift
vector points away from the claims line since the angle of the vector α = (α1, α0) with the u1 axis is bigger than
that of c = (c1, c0), and so in the absence of claims the distance to the claims line is increased.

Finally, the only exit possible from the lower cone C is when ruin happens for the CB/reinsurer X0, see
Figure 1, and the ruin probability in this cone is a classic one-dimensional ultimate ruin probability

Ψ(u1, u0) = Ψ(α1
u0

α0
, u0) := Ψ0(u0), ∀u0

(see, for example, Albrecher and Asmussen (2010); Rolski et al. (2009)).
For a different application of invariant cones in a multi-dimensional setting, see Section 6.
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Figure 1. Geometrical considerations.

Since exit from the cone C is possible only through the boundary u0 = 0, the Laplace transform
corresponding to this boundary may be computed from the one dimensional ruin problem for X0.
Determining the last remaining unknown in the Wiener-Hopf type equation is then possible in
principle, by the same “cancelation of singularity by annihilating the numerator” technique used to
prove the Pollaczek-Khinchine formula.

Showing that a singularity (curve) is indeed removable is naturally more difficult in two
dimensions. We have been unable to establish this for our setup, and so we proceed by conjecturing it,
leaving this as future work. Note that in a queueing paper with similar setup Badila et al. (2014), an
essentially equivalent statement has been established rigorously.

We now obtain the transforms of the survival and ruin probabilities, assuming that the singularity
cancelation could be justified. Observe that the survival and ruin probabilities coincide with those of
the scaled process (X1/α1, X0/α0). Therefore, we may assume w.l.o.g. for this result that α0 = α1 = 1.
Assume the invariance condition (14) and the positive loading condition r0 := λcmc+λ0m0

c0
< 1, where
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mc =
∫ ∞

0 y fc(y)dy and m0 =
∫ ∞

0 y f0(y)dy. Then, by invariance and the Pollaczek-Khinchine formula
(see (Albrecher and Asmussen 2010, p. 77))

Ψ(u1, 0) = Ψ0(0) = 1− r0,

and (13) reduces to a Riemann-Hilbert equation with two unknowns

(LΨ)(s1, s0) =
c1
∫ ∞

0 Ψ(0, u0)e−s0u0 du0 + c0
1−r0

s1

κ(s1, s0)
, (15)

where κ(s1, s0) = c1s1 + c0s0 + λc( f̂c(s1 + s0)− 1) + λ0( f̂0(s0)− 1).

Proposition 1. Let α1 = α0= 1. If the invariance condition (14) and the positive loading condition hold, then
the Laplace transform of the ultimate survival probability (15) is given explicitly by:

(LΨ)(s1, s0) = c0(1− r0)

1
s1
− 1

s̃1

κ(s1, s0)
, (16)

where s̃1 = s̃1(s0) is defined in (19).

Proof. The denominator of (15) may be written as

κ(s1, s0) = κ1(s1 + s0)− η(s0),

where for ease of notation we put

κ1(s) := c1s + λc( f̂c(s)− 1), (17)

η(s) := (c1 − c0)s + λ0(1− f̂0(s)). (18)

Let us look for the nonnegative root of κ1(s1 + s0) = η(s0), i.e., select the root

s1 = Φ1(η(s0))− s0 := s̃1(s0), (19)

where we denoted by Φ1(δ) the unique non-negative root of the equation κ1(s) = δ, and define
the curve

Γ = {(s1, s0)
∣∣∣s0 > 0, s1 + s0 = Φ1(η(s0))}.

Now if Γ is a curve of removable singularities, it must also annihilate the numerator, and we
conclude that along this curve it holds that

c1

∫ ∞

0
Ψ(0, u0)e−s0u0 du0 =

c0(1− r0)

−s̃1
, (20)

and (16) holds.

Remark 8. If λ0 = 0, c1 = c0, then η(s) = 0, s̃1 = −s0, τ(u0, u1) = τ0(u0 ∧ u1), and (16) reduces to
(LΨ)(s1, s0) = Ψ̂0(s0 + s1)(

1
s1
+ 1

s0
), a result which can be easily checked.

We consider now the Laplace transform (8) with δ > 0, assuming for simplicity that α1 = α0 = 1.
The corresponding result is:
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Proposition 2. When α1 = α0 = 1, c0 < c1, and the positive loading condition holds, it follows that

Lφδ(s1, s0) =
1

s1s0
−
( δ

s0
− δ

Φ0(δ)

) (
1
s̃1
− 1

s1

)
κ(s1, s0)− δ

. (21)

Proof. First, define κ0(s) := c0s + λc( f̂c(s)− 1) + λ0( f̂0(s)− 1) and Φ0(δ), which is the right inverse
of κ0 at δ. The invariance of the lower cone {u0 ≤ u1} implies

∀u1, φδ(u1, 0) = φδ(0, 0) = 1− δ/Φ0(δ)

c0
.

Also, (11) becomes

Lφδ(s1, s0) =
c1
∫ ∞

0 e−s0 u0 φδ(0, u0)du0 +
c0
s1

φδ(0, 0)− c0s0+c1s1−δ
s1s0

κ(s1, s0)− δ
+

1
s1s0

. (22)

Next, the denominator singularity κ(s1, s0)− δ = κ1(s1 + s0)− (η(s0) + δ) becomes

κ(s1, s0)− δ = 0⇔ s1 = Φ1(η(s0) + δ)− s0 := s̃1(s0),

and the curve of presumed removable singularities is

Γδ = {(s1, s0)
∣∣∣s0 > 0, s1 + s0 = Φ1(η(s0) + δ)}.

If s̃1(s0) annihilates the numerator as well, we must have

c1

∫ ∞

0
e−s0 u0 φδ(0, u0)du0 =

c1

s0
+

c0(1− φδ(0, 0))
s̃1

− δ

s̃1s0
=

c1

s0
+

δ/Φ0(δ)

s̃1
− δ

s̃1s0
.

Plugging the above formula back into the numerator in (22) we get

Lφδ(s1, s0) =
1

s1s0
− H(s1, s0, δ)

κ(s1, s0)− δ
, (23)

where

H(s1, s0, δ) =
( δ

s0
− δ

Φ0(δ)

)( 1
s̃1
− 1

s1

)
. (24)

Remark 9. As δ→ 0, δ
Φ0(δ)

→ c0(1− r0) and so (21) becomes

LΨ(s1, s0) =
1

s0s1
−

c0(1− r0)
(

1
s1
− 1

s̃1

)
κ(s1, s0)

, (25)

which agrees with (16).

Remark 10. In the particular case λ0 = 0, the result may also be obtained by a probabilistic approach
(Avram et al. 2008b, p. 23) and use of Suprun’s resolvent formula Suprun (1976); even in this case, the
connection between the Formula (16) and the probabilistic interpretation is not straightforward.
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5. A Two-Dimensional CB with Proportional Reinsurance and Crisis Bailouts

In this section we introduce bailouts which were not considered in the previous section. We will
assume for simplicity that α1 = α0 = 1, w.l.o.g. (by considering the processes Xi/αi, i = 1, 0, which
have the same ruin time as Xi, i = 1, 0). Thus, the model reduces to

X1(t) := u1 + c1t− C(t) + Z(t),

X0(t) := u0 + c0t− C(t)− C0(t)− kZ(t), k ≥ 0.

Note that due to the different scalings for Xi, we may not assume anymore that k > 1.
The IDE Equation (9) becomes now

(λc + λ0 + δ)φδ(u1, u0) = c1
∂

∂u1
φδ(u1, u0) + c0

∂

∂u0
φδ(u1, u0)

+λ0

∫ u0

0
φδ(u1, u0 − x) f0(x)dx + λ0F0(u0) (26)

+λc

∫ u1∧u0

0
φδ(u1 − x, u0 − x) fc(x)dx + λcFc(u0)1u0≤u1

+λc1u0>u1

(∫ ku1+u0
k+1

u1

φδ(0, u0 + ku1 − (k + 1)x) fc(x)dx + Fc

(
ku1 + u0

k + 1

))
.

Remark 11. The first five terms coincide with those in (9), but the sixth term there splits now into three new
terms. The new sixth term corresponds to common ruin of both companies, starting from the cone u1 > u0.
The last two terms correspond to a possible jump crossing the boundary u1 = 0 from the cone u1 ≤ u0, which
is possible if the ruinous claim Ci ∈ [x, x + dx], x > u1. If furthermore x > ku1+u0

k+1 , we have final ruin,
yielding the last term. In the opposite case, X0 can cover the bailout, resulting in reflection from the new starting
point

(
0, ku1+u0

k+1

)
.

Thus, the Laplace transform of (26) is

(κ(s1, s0)− δ)Lφδ(s1, s0) = c1φ̂δ(0, s0) + c0φ̂δ(s1, 0)− λ0
1− f̂0(s0)

s1s0
− λc(A0 + A1 + A2),

where Ai, i ∈ {0, 1, 2} are the Laplace transforms of the last three terms.
The sixth transform is straightforward, being:

A0 =
1− f̂c(s1 + s0)

s1(s1 + s0)
.
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We turn now to the last two terms

A1 =
∫ ∫

u0>u1

e−s1u1−s0u0

∫ ku1+u0
k+1

u1

φδ(0, u0 + ku1 − (k + 1)x) fc(x)dx du0 du1

=
∫ ∞

0
fc(x)

∫ x

0
e−s1u1

∫ ∞

(k+1)x−ku1

e−s0u0 φδ(0, u0 + ku1 − (k + 1)x)du0 du1 dx

=
∫ ∞

0
fc(x)

∫ x

0
e−s1u1

∫ ∞

0
e−s0(y−ku1+(k+1)x)φδ(0, y)dy du1 dx

=
∫ ∞

0
fc(x)

∫ x

0
e−s1u1+ks0u1−(k+1)s0x φ̂δ(0, s0) du1 dx

= φ̂δ(0, s0)
∫ ∞

0
fc(x)e−(k+1)xs0

(
ex(ks0−s1) − 1

ks0 − s1

)
dx

=
φ̂δ(0, s0)

ks0 − s1

(
f̂c(s0 + s1)− f̂c((k + 1)s0)

)
and

A2 =
∫ ∫

u0>u1

e−s1u1−s0u0 Fc

(
ku1 + u0

k + 1

)
du0 du1

=
∫ ∞

0

∫ ∞

u1

e−s1u1−s0u0

∫ ∞

ku1+u0
k+1

fc(x) dx du0 du1

=
∫ ∞

0

∫ ∞

u1

∫ (k+1)x−ku1

u1

e−s0u0 du0 fc(x)e−s1u1 dx du1

=
1
s0

∫ ∞

0

∫ ∞

u1

(e−s0u1 − e−s0((k+1)x−ku1)) fc(x)e−s1u1 dx du1

=
1
s0

∫ ∞

0

∫ x

0
(e−(s0+s1)u1 − e−(k+1)xs0+(ks0−s1)u1) du1 fc(x) dx

=
1
s0

∫ ∞

0

(
1− e−(s0+s1)x

s0 + s1
− e−(k+1)xs0

e(ks0−s1)x − 1
ks0 − s1

)
fc(x) dx

=
1
s0

(
1− f̂c(s0 + s1)

s0 + s1
+

f̂c((k + 1)s0)− f̂c(s0 + s1)

ks0 − s1

)
.

Therefore we obtain the following theorem:

Theorem 3. When α0 = α1= 1, the Laplace transform of φδ(u1, u0) satisfies the Riemann-Hilbert equation
with three unknowns

(κ(s1, s0)− δ)Lφδ(s1, s0) = c1φ̂δ(0, s0) + c0
φδ(0, 0)

s1
+ λ0

f̂0(s0)− 1
s1s0

+ λc

[
f̂c(s0 + s1)− 1

s1s0
− ( f̂c(s0 + s1)− f̂c((k + 1)s0))(φ̂δ(0, s0)− 1/s0)

ks0 − s1

]

= c1φ̂δ(0, s0) + c0
φδ(0, 0)

s1
+

κ(s1, s0)− c0s0 − c1s1

s1s0

− λc
( f̂c(s0 + s1)− f̂c((k + 1)s0))(φ̂δ(0, s0)− 1/s0)

ks0 − s1
.

Remark 12. When c0 ≤ c1, an explicit expression for the Laplace transform may be obtained, just as in the
previous section (modulo establishing the fact that the singularity from the previous section is removable).
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6. Valuation of Risk Networks by Optimal Dividends

6.1. Individual Valuation of Financial Companies

Evaluating financial companies is a very important problem, and a natural approach, going back to
De Finetti (1957) and Miller and Modigliani (1961) is to use the optimal expected discounted cumulative
dividends/optimal consumption until ruin—see Leobacher et al. (2014) for further references on this
venerable approach.

Definition 2. Let
X̃(t) = X(t)− R(t)

denote a process modified by “consumption/dividends”. For b > 0, a dividend policy πb with barrier b consists
in taking dividends dR(t) = (X̃(t)− b)+ up to ruin. We will write the expectation operator Eb]

x to indicate
this policy and the initial capital x. One says that under Eb]

x , X̃ follows the dynamics of the process X reflected
at b. The ruin time will be denoted by τ = τ−0 .

For spectrally negative Lévy models, all first passage results may be expressed in terms of the
W scale function Bertoin (1998); Kyprianou (2014); Suprun (1976). In particular, the formula for the
expected discounted cumulative dividends until ruin, when restricting to barrier strategies πb has a
simple expression:

Vδ(x, b) = E|0,b]
x

[∫
[0,τ−0 ]

e−δsdR(s)
]
=


Wδ(x)
W ′δ(b)

, x ≤ b,

x− b + Wδ(b)
W ′δ(b)

, x > b,
(27)

where E|0,b] denotes the law of the process reflected from above at b, and absorbed at 0 and below.

6.2. Evaluating a Conglomerate of Companies by Claims Line Dividend Policies

Turning now to several dimensions, the de Finetti objective becomes

IF(u) := sup
π=(R0,R1,...,RI)

Eu
∫ τ

0
e−qt

(
I

∑
i=0

dRi(t)

)
, (28)

where Ri are the cumulative dividends of the i-th company, and τ = τor is the ruin/liquidation
time. In this section, we propose a certain collaborative, multi-dimensional dividends policy, which,
remarkably, was found to be optimal in Azcue et al. (2016), if the retention levels are small enough,
and which tries to guide the conglomerate along a certain line through the origin. In particular, under
this policy τor = τall, and the time to ruin is maximized, intuitively. Note that since all companies
become bankrupt simultaneously, there is no possibility of bailouts. Generalizing Lemma 1 to several
dimensions, we find:

Lemma 2. If the “cheap reinsurance” condition

c0 ≤ ci
αi
αi

, i = 1, . . . , I (29)

is satisfied, then the stochastic flow leaves invariant the cone

C := {0 ≤ u0 ≤ ui
αi
αi

, αi = 1− αi, i = 1, . . . , I}.
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The hero of the story is again the boundary edge

u1
1− α1

α1
= ... = ui

1− αi
αi

= u0, i = 1, . . . , I, (30)

which is also called the “claims line”. Just as in Lemma 1, it is easy to check that exit from the cone C
cannot happen in the absence of claims, since the process gets further from the claims line and cannot
reach the planes which define it. In conclusion, the only possible exit is through the boundary u0 = 0.

Remark 13. The claims line plays a prominent role in two recent papers, Bäuerle and Blatter (2011)3 and
Azcue et al. (2016), who studied the optimal dividends problem. In the cheap reinsurance two-dimensional case
c1

1−α1
α1
≥ c0, Azcue et al. (2016) showed that:

1. Starting from the claims line, the optimal policy is to stay on this line by cashing the excess income of the
subsidiary as dividends.

2. Starting from points away from the claims line, in the cheap reinsurance case, the optimal policy is to reach
the claims line by one lump sum payment4.

These findings prompt us to introduce a heuristic “claims line” dividend policy for cheap
reinsurance networks, under which the network follows this line in the absence of claims, by
subsidiaries cashing part of their premia as dividends. Thus, dividends of rate ci − c0

αi
αi
≥ 0, i =

1, ..., I are continuously paid. Subsequently, whenever a subsidiary i drops by αiC due to a claim
C, all the other subsidiaries j must also reduce their reserves by a lump sum dividend of Cαi

αj
αj

,
bringing back the process on the claims line. Note that no adjustment is required from the CB, since
the proportional reinsurance preserves the constraint ui

1−αi
αi

= u0. Finally, when a dedicated claim C

of the CB arrives, all the subsidiaries j must reduce their reserves by a lump sum dividend of C
αj
αj

5.

Remark 14. By restricting to claim line strategies, the problem of evaluating a network is greatly simplified.
The subsidiary processes reduce to linear functions X̃i(t) = αi

1−αi
X0(t) of the CB process, and the expected

dividends decompose as a sum of one-dimensional quantities, as seen in the example below and in Lemma 3.

Example 5. With one subsidiary, under the claims line policy π = (R0, τ) associated to an admissible CB
dividends process R0(t), and a stopping time τ, the de Finetti value function is:

VF
π (x) = Ex

[ ∫ τ

0
e−qt

(
dR0(t) + (c1 − c0

α1
α1

)dt
)
+

α1
α1

Nλ0 (τ)

∑
k=1

e−qTk,0 Ck,0

]
= Ex

[ ∫ τ

0
e−qt

(
dR0(t)−

α1
α1

dX0(t) + dX1(t)
)]

,

where Ck,0 and Tk,0 denote the CB dedicated claims and their arrival times, respectively.

3 Who computed an explicit value function maximizing an expected exponential utility at a fixed terminal time for
multi-dimensional reinsurance model under the cheap reinsurance assumption that the drifts point along the line
c1

1−α1
α1

= · · · = cI
1−αI

αI
.

4 In the non-cheap reinsurance case, the optimal policy is more complicated, when starting in a certain egg-shaped subset of
the non-invariant cone. There, parts of the premia must cashed, following a “shortest path”, in some sense. Later however,
an error was discovered in this case and the paper Azcue et al. (2016) was withdrawn.

5 We may also describe the claims line policy informally as “follow the lead”, since the subsidiaries are always reducing their
extra premiums and reserves to those of the CB.
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Lemma 3. For a general CB network, and a fixed admissible dividends process R0(t), the de Finetti value
function for the equilibrium policy associated to π = (R0, τ) is:

VF
π (x) = Ex

[ ∫ τ

0
e−qt

[
dR0(t) +

I

∑
i=1

dXi(t)− γdX0(t)
]]

,

where

γ =
I

∑
i=1

αi
αi

.

Proof. With I subsidiaries, the de Finetti value function is:

VF
π (x) = Ex

[ ∫ τ

0
e−qt

(
dR0(t) +

I

∑
i=1

(ci − c0
αi
αi
)dt
)
+ γ

Nλ0
(τ)

∑
k=1

e−qTk,0 Ck,0 +
I

∑
i=1

(γαi − αi)

Nλi
(τ)

∑
k=1

e−qTk,i Ck,i

]
= Ex

[ ∫ τ

0
e−qt

[
dR0(t) +

I

∑
i=1

dXi(t)− γdX0(t)
]]

,

where Ck,i and Tk,i denote the claims of the i-th subsidiary and their arrival times, respectively.

Optimizing dividends using our heuristic policy may thus be achieved by solving three
one-dimensional problems. The first term is already known (see Equation (27)), whereas the second and
third terms Ex

∫ τ
0 e−qtdXi(t) and Ex

∫ τ
0 e−qtdX0(t) can be handled integrating by parts and applying

classic one-dimensional methods (see for example Avram et al. (2017); Kyprianou (2014), for a textbook
and review, respectively). This will be pursued in a future paper.

7. Conclusions

In this paper, we have introduced a risk network model involving a new type of cooperation
between a central branch and its subsidiaries, which involves both bail-out interventions during
“critical moments”, and continuous reinsurance of each claim. In the particular case of large enough
proportional reinsurance, explicit solutions via Laplace transforms are possible, whereas they would
be impossible without.

We believe that more important than the rather particular mathematical results obtained are the
questions implicitly raised.

1. Can the performance of a risk network be improved by using stop-loss reinsurance, or
proportional reinsurance, or a combination of the two, or reinsurance strategies recently studied
by Tan et al. (2018)?

2. Our model considers intervention of the central branch at ruin times; however, other
intervention times such as draw-down/regret times and Parisian ruin times may result in better
network performance.

These questions are left for future work and will require intensive numerical investigation. Finally,
note that while we focused on a model with one reinsurer, realistic applications will require treating
multiple reinsurers—see for example Boonen et al. (2016, 2018); Chi and Meng (2014).
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