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Abstract: In the classical bonus-malus system the premium assigned to each policyholder is based
only on the number of claims made without having into account the claims size. Thus, a policyholder
who has declared a claim that results in a relatively small loss is penalised to the same extent as one
who has declared a more expensive claim. Of course, this is seen unfair by many policyholders. In this
paper, we study the factors that affect the number of claims in car insurance by using a trivariate
discrete distribution. This approach allows us to discern between three types of claims depending
wether the claims are above, between or below certain thresholds. Therefore, this model implements
the two fundamental random variables in this scenario, the number of claims as well as the amount
associated with them. In addition, we introduce a trivariate prior distribution conjugated with
this discrete distribution that produce credibility bonus-malus premiums that satisfy appropriate
traditional transition rules. A practical example based on real data is shown to examine the differences
with respect to the premiums obtained under the traditional system of tarification.
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1. Introduction

In an attempt of reducing the economic and casualty losses, the bonus-malus systems (BMS)
have been introduced in the actuarial community. BMS is a pricing system mainly used in Europe in
vehicle insurance. In this systems, the insured may have his/her premium discounted or penalized
based on his/her own experience of claims. Actuarial literature about this topic is extensive see for
example Lemaire; (1985, 1995); Boucher et al. (2007); Mert and Saykan (2005); Sarabia et al. (2004);
Denuit et al. (2009), among other papers. Different methodologies have been used to determine the
fair premium that policyholders must pay for the different classes in which the system is configured.
Among these methods, the most popular ones are Bayesian methods and discrete Markov chains.

In Bonus-Malus systems, the premium is usually computed by using only the random variable number
of claims. However, as not all the events produce the same individual claim amount Then, as different
claims produce different claim sizes, it would be sensible to develop BMS based on both the number of
claims and the corresponding severity (see Gómez-Déniz (2016)). In addition to this, if the severity is not
included in the bounus-malus premium (BMP), the independence between the claims number and
severity is implicitly assumed (see Lemaire (2004)). In this regard, several papers have discussed the
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question of implementing both variables in the BMS. See, for example, Frangos and Vrontos (2001);
Gómez-Déniz et al. (2014) and the recent paper Gómez-Déniz (2016).

In this article we develop a trivariate model that discriminates between three types of claims.
Since this distinction is made with respect to claims that are above, between or below certain thresholds,
the resulting model takes into account the two fundamental random variables in this scenario,
the number of claims as well as the corresponding claim size. Furthermore, we incorporate a trivariate
prior distribution which is conjugated with the latter discrete trivariate model. As a result, we obtain
credibility BMP’s which satisfy desirable transition rules. We present an example consisting of real
data corresponding to an Australian portfolio of automobile insurance claims. Our findings reveal
that the BMP’s computed by using the methodology proposed in this work (unlike those ones derived
under the traditional Poison-Gamma model) does not modify the discounts make in the absence
of claims. However, the methodology used in this paper is different to the recent developments in
multivariate credibility models that can be found in the recent actuarial literature (see for example
Frees (2003); Bühlmann and Gisler (2005)). Multidimensional credibility models was considered by
Englund et al. (1999). In that paper the authors assumed that each dimension of the risk parameter
represented one cover from the business. However, they only used frequency information in the
credibility approach. Similarly, Thuring (2011) investigated the effect of assuming that one out of two
insurance products is inactive when estimating the latent risk profile. Moreover Thuring et al. (2012)
used a multivariate credibility model that allows the practitioner to consider the positive correlation in
customer behaviour between different financial products and estimate the customer specific risk profiles
for a specific product not owned by the customer. Again, this approach uses only two quantities,
the a priori expected number of events and the observed number of events.

The Bayesian methodology has been used in actuarial science since the mid-twentieth century
and it has proved to be a useful tool for the calculation of insurance premiums. It generally consists
of accepting that each policy or insured is represented by a risk parameter that is unknown but
random with a certain probability distribution (in the insurance portfolio), called a priori distribution
or structure function. This way of proceeding is even more useful in the BMS scenario since
the premium obeys certain transition rules that classify the policyholders as a bonus or malus.
In other words, it lower the premiums to be paid for the bonuses and it increase the premiumt
for the malus. The fundamental Bayesian tool here is simply the Bayes’s Theorem, so by dividing
the a posteriori mean of the parameter by the a priori mean, when the net premium principle
or the quadratic loss function are used, see Denuit et al. (2009); Lemaire (1985, 1995, 2004);
Sarabia et al. (2004), among others, we obtain an estimator of the risk/s parameter/s that will indirectly
divide the insured into good risks and bad risks. In addition, the empirical results illustrated in
Frangos and Vrontos (2001); Mert and Saykan (2005); Gómez-Déniz et al. (2014) show that many
auto insurance portfolios present a positive correlation between these two random variables,
and therefore, the assumption of some kind of dependence between them should be considered
in the calculation of BMP’s. The pioneering research in this field was that of Picard (1976) (see also
Lemaire (1995), chp. 13), who divided the claims into two types: small, those ones that are below a limit
value, say ψ , and large, above ψ. Then, as this assumption did not produce a good fit, the author
proposed to distinguish between accidents that caused property damage and those ones that caused
personal injury.

The rest of this paper is organised as follows. Section 2 describes the basic distributional
assumptions formulated for the numbers of either type of claims. Section 3 discusses a trivariate
conjugate, with respect to the discrete model, prior distribution. Next, Bayesian BMP’s are derived
and written as credibility formula. Numerical applications are displayed in Section 4. Finally, Section 5
concludes the article.
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2. Basic Model

There is a lot of criticism about assuming that the number of claims in an auto insurance portfolio
can follow a Poisson distribution due to the fact that for this distribution the dispersion index
(ratio between the variance and the mean) is one, when in the auto insurance portfolios have been
empirically proven to be a value slightly higher than the unit. However, as an initial starting point and
facilitating the methodology that we will develop, we will assume that, in effect, the number of claims
has a Poisson distribution with parameter θ > 0 and probability function given by

f (x|θ) = 1
x!

θx exp(−θ), x = 0, 1, . . . (1)

When the ith policyholder makes a claim xi, it has associated a certain size, say yi ≥ 0. It is
our interest now to distinguish between different types of claims (three in our case). For that reason,
we include two new random variables that give rise to the consideration of three separate sub-events
as follows. Let us to consider Z0

i , Z1
i and Z2

i , the following random variables

Z0
i =

{
1, yi ≤ φ1,
0, otherwise,

Z1
i =

{
1, φ1 < yi ≤ φ2,
0, otherwise,

Z2
i =

{
1, φ2 < yi,
0, otherwise,

where φ1 and φ2, ∈ R+ with φ2 > φ1.
The Zj

i ’s, j = 0, 1, 2 are modelled as independent and identically distributed random variables
with the following Bernoulli distributions:

f (zj
i |pi) =

{
pi, if zj

i = 1,
1− pi, if zj

i = 0,

where 0 < pi < 1. Observe that these assumptions imply that E(Zi) = pi, (i = 0, 1, 2). Since in practise
majority of policyholders in the portfolio does not make a claim and those ones that declare claims
with large claim size are sparse, we will also assume also p0 ≥ p1 ≥ p2 with ∑2

j=0 pj = 1.1

We now assume that Z1 = ∑x
i=1 Z1

i is the total number of claims with a claim size between
φ1 > 0 and φ2 > 0 and Z2 = ∑x−z1

i=1 Z2
i is the total number of claims with a claims size larger than φ2.

Thus, if the Zj
i , i = 1, . . . , x, j = 1, 2, are assumed to be mutually independent, then the conditional

probability function of Z1, given that X = x, is binomial with parameters x and p1 and the conditional
probability function of Z2, given that X = x and Z1 = z1 is also binomial with parameters x− z1 and
p2. That is,

f (z1|x, p1) =

(
x
z1

)
pz1

1 (1− p1)
x−z1 , z1 = 0, 1, . . . , x, (2)

f (z2|x, z1, p2) =

(
x− z1

z2

)
pz2

2 (1− p2)
x−z1−z2 , z2 = 0, 1, . . . , x− z1. (3)

Thus, the conditional mean and variance are linear. They are given by E(Zi|x, (i− 1)zi−1, pi) =

(x− (i− 1)zi−1)pi and var(Zi|x, (i− 1)zi−1, pi) = (x− (i− 1)zi−1)pi(1− pi), i = 1, 2.
Now, by conditioning it is easy to get the joint probability function of the random variable

(X, Z1, Z2) which results,

f (x, z1, z2|θ, p1, p2) =
(θq1q2)

x exp(−θ)

z1!z2!(x− z1 − z2)!

(
p1

q1q2

)z1
(

p2

q2

)z2

, (4)

1 As a reviewer has pointed out if this inequality is not sustained, then the likelihood function and posterior distribution that
will be defined later are not correct.
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for x = 0, 1, . . . , z1 = 0, 1, . . . , x, z2 = 0, 1, . . . , x − z1, being qi = 1− pi, i = 1, 2. Observe that the
distribution depends on three parameters every one related with the three types of claims.

Straightforward algebra provides moments and the cross moment,

E(X|θ) = θ, (5)

E(Z1|θ, p1) = θp1, (6)

E(Z2|θ, p1, p2) = θp2q1, (7)

E(XZ1Z2|θ, p1, p2) = (2 + θ)θ2 p1 p2q1. (8)

Estimation

Given a sample (x̃, z̃1, z̃2), where t is the sample size, estimation of the parameters θ, p1 and p2 via
maximum likelihood method are easily obtained. They result θ̂ = x̄, p̂1 = z̄1/x̄ and p̂2 = z̄2/(x̄− z̄1),
where x̄, z̄1 and z̄2 are the sample mean of the three random variables, respectively. These estimators
coincide with the moment estimators obtained by using (5)–(7). The Fisher information matrix is given by

J (θ̂, p̂1, p̂2) = diag

[
t
θ̂

,
tθ̂

p̂1(1− p̂1)
,

tθ̂(1− p̂1)

p̂2(1− p̂2)

]
,

from which the asymptotic variance-covariance matrix of (θ̂, p̂1, p̂2) is obtained by inverting this
information matrix. The score equations used to estimate the parameters and the Fisher’s information
matrix are provided in the Appendix A.

3. Contemplating Heterogeneity

Let us assume now that the model includes a certain level of heterogeneity and it allows
parameters θ, p1 and p2 to vary among insureds in the portfolio. In this regard, we suppose that the
parameter θ follows a gamma prior distribution (structure function) with a shape parameter α > 0,
a scale parameter β > 0 and a probability density function given by

π1(θ) =
βα

Γ(α)
θα−1 exp(−βθ), θ > 0,

with mean and variance are given by E(θ) = α/β and var(θ) = α/β2, respectively.
The pi parameters are assumed to follow a beta prior distribution with parameters αi > 0 and

βi > 0, i = 1, 2. That is, the probability density function of pi are given by

πi(pi) =
1

B(αi, βi)
pαi−1

i qβi−1
i , 0 < pi < 1, (9)

respectively where B(a, b) represents the beta function given by B(a, b) = Γ(a)Γ(b)/Γ(a + b) and Γ(·) is
the Euler gamma function. The mean and variance of these prior distributions, given by (9) for i = 1, 2,
are provided by E(pi) = αi/(αi + βi) and var(pi) = αiβi/((αi + βi)

2(αi + βi + 1)), i = 1, 2, respectively.
The flexibility of the beta distribution allows it to take up different shapes depending on the values

of its two parameters. The choice of these prior distributions obeys to the fact that they are conjugate
with the likelihoods (see Heilmann (1989); Denuit et al. (2009); Klugman et al. (2008); among others).
For that reason, we will assume independence between the random variables θ, p1 and p2 by taking
π(θ, p1, p2) = π1(θ)π2(p1)π3(p2).

Given a sample (x̃, z̃1, z̃2), where t is the sample size, the posterior distribution of ϑ = (θ, p1, p2)

given the sample information is computed according to Bayes’s theorem and is proportional to the
product of the likelihood and the prior distribution. Thus we find that the likelihood function is
proportional to
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L((x̃, z̃1, z̃2)|ϑ) ∝ (θq1q2)
tx̄
(

p1

q1q2

)tz̄1
(

p2

q2

)tz̄2

exp(−tθ) (10)

and the prior distribution is proportional to

π(ϑ) ∝ θα−1 exp(−βθ)
2

∏
i=1

pαi−1
i qβi−1

i .

Thus, the posterior distribution is conjugated with respect to the likelihood (10) and it is described by

π∗(ϑ|(x̃, z̃1, z̃2)) ∝ θα+tx̄−1 exp (−(β + t)θ)
2

∏
i=1

pαi+tz̄i−1
i qβi+t(x̄−z̄1−(i−1)z̄2)−1

i ,

where the constant of proportionality does not depend on θ, p1 and p2. Here, x̄ = (1/t)∑t
i=1 x̃i,

z̄i = (1/t)∑t
i=1 z̃i, i = 1, 2, are the sample means of X, Z1 and Z2, respectively.

Therefore, the posterior distribution is the product of a gamma and two beta distributions, with the
updated parameters given in Table 1.

Table 1. Updated parameters of the posterior distribution.

Parameter Updated Parameter

α α∗ = α + tx̄
β β∗ = β + t
α1 α∗1 = α1 + tz̄1
β1 β∗1 = β1 + t(x̄− z̄1)
α2 α∗2 = α2 + tz̄2
β2 β∗2 = β2 + t(x̄− z̄1 − z̄2)

In the numerical applications Section later we will adopt an empirical Bayes approach where
the parameters of the prior distributions can be estimated from the data (see Robbins (1964);
Casella (1985)). In order to do this, we need the marginal (unconditional) distribution of (X, Z1, Z2),
that can be easily obtained by compounding. Due that the variables are separated the integration
process is simple. Thus, the unconditional distribution results,

f (x, z1, z2) =
∫ ∞

0

∫ 1

0

∫ 1

0
f (x, z1, z2|ϑ)π(ϑ) dϑ

=
1

z1!z2!(x− z1 − z2)!
NB

(
α,

β

1 + β

)
BB (α1 + z1, β1 + x− z1) (11)

× BB (α2 + z2, β2 + x− z1 − z2) ,

where NB represents the negative binomial distribution and BB the compound binomial-beta
distribution. Some algebra provides that the probability function (12) of this trivariate unconditional
model can be rewritten in a compact form as,

f (x, z1, z2) =
βα(x+α−1

x )(z1+α1−1
z1

)(z2+α2−1
z2

)(x−z1+β1−1
x−z1

)(x−z1−z2+β2−1
x−z1−z2

)

(1 + β)α+x(x+α1+β1−1
x )(x−z1+α2+β2−1

x−z1
)

. (12)
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The unconditional means are obtained using (5)–(8) by compounding and given by

E(X) =
α

β
,

E(Z1) =
α

β

α1

α1 + β1
,

E(Z2) =
α

β

α2

α2 + β2

β1

α1 + β1
,

E(XZ1Z2) =
αα1α2β1(α + 1)(α + 2β + 2)

β3 (α1 + β1) (α2 + β2) (α1 + β1 + 1)
.

3.1. The Premiums

Premiums can be derived by following the ideas displayed in Gómez-Déniz (2016). Let

g(x, z1, z2) = pz2 z2 + pz1 z1 + px(x− z1 − z2), (13)

be an appropriate function of the number of claims with claim size below φ1 > 0, between φ1 and
φ2 > 0 and above φ2, where px, pz1 and pz2 are appropriate weights assigned to the number of claims
with different types of size. It is also reasonable to assume that pz2 > pz1 > px.

Now, by using the net premium principle, i.e., the squared-error loss function, and simple algebra,
we obtain the risk premium,

P(ϑ) = (q1 pz2 p2 + p1 pz1 + q1q2 px) θ. (14)

Observe that if pz1 = pz2 = px = 1, then the risk premium in (14) is simply P(θ) = θ, that is,
the risk premium obtained under the traditional model (net premium principle). The premium
depends only on the number of claims, irrespective of their size.

This is the fair premium to be charged to a policyholder if θ, p1 and p2 were known.
However, these quantities are unobservable in practice and then, the risk premium is a theoretical
one which cannot be determined exactly and it must be estimated from the data. On the other hand,
the a priori premium is obtained for a policyholder about whom nothing is known, i.e., the average
premium for all possible risk premiums.

We now obtain the a priori (collective) premium, as follows:

P =
∫ ∞

0

∫ 1

0

∫ 1

0
P(ϑ)π(ϑ) dϑ =

α

β

pz1 α1(α2 + β2) + β1(pz2 α2 + pxβ2)

(α1 + β1)(α2 + β2)
. (15)

Again, by inserting pz1 = pz2 = px = 1 in (15) we obtain the collective premium computed under
the traditional model. That is, P = α/β.

The Bayesian premium P∗(t, x, z1, z2), which is no reproduced here, is derived from (15) by
interchanging the parameters α, β, αi and βi (i = 1, 2) with the updated parameters by using the
expressions displayed in Table 1.

Note that P∗(0, 0, 0, 0) = P. That is, the Bayesian premium coincides with the a priori premium
when no information is available. Furthermore, the expression of the Bayesian premium can be written as

P∗(x, z1, z2, t) = γ(x, z1, t)P + [1− γ(x, z1, t)]h(x, z1, z2, t),

where

γ(x, z1, t) =
α∗(α1 + β1)(α2 + β2)

β∗(α∗1 + β∗1)(α
∗
2 + β∗2)

, (16)

h(x, z1, z2, t) =
α∗ [H1 +H2 + (x− z1)(pz2 α2 + pxβ2)]

β∗(α∗1 + β∗1)(α
∗
2 + β∗2)− α∗(α1 + β1)(α2 + β2)

,



Risks 2018, 6, 34 7 of 11

where

H1 = pz1 α∗1(x− z1) + pz1 z1(α2 + β2),

H2 = β∗1 [pz2 z2 + px(x− z1 − z2)] .

Additionally, γ(x, z1, z2, t) can also be written as

γ(x, z1, z2, t) = Z(t)
α

β

(α1 + β1)(α2 + β2)

(α∗1 + β∗1)(α
∗
2 + β∗2)

+ [1− Z(t)]
(α1 + β1)(α2 + β2)x̄
(α∗1 + β∗1)(α

∗
2 + β∗2)

,

where

Z(t) =
β

β + t
=

κ

t + κ
∈ [0, 1],

with κ = E[var(X|θ)]/var[E(X|θ)], coincides with the classical credibility factor usually appearing in
this setting in actuarial science (see Bühlmann (1967); Jewell (1974); Gómez-Déniz (2008), among others
for details). Now it is simple to see that:

• When t→ 0, Z(0)→ 1, γ(x, z1, z2, 0)→ α
β and therefore P∗(x, z1, z2, 0)→ α

β P. Then, the premium is
based only in the prior information about the risk. Therefore, the case is the one in which experience
is ignored and external information is used as the sole basis for the process of ratemaking.

• When t → ∞, Z(∞) → 0, γ(x, z1, z2, ∞) → 0 and therefore P∗(x, z1, z2, ∞) → h(x, z1, z2, ∞).
Then, the premium is based only in the sample information.

The Bayesian BMP can now be obtained by considering the rate (see Lemaire (1995);
Gómez-Déniz et al. (2002); among others).

P∗∗(x, z1, z2, t) =
P∗(x, z1, z2, t)
P∗(0, 0, 0, 0)

=
P∗(x, z1, z2, t)

P
, (17)

which ensures that the initial premium, i.e., when (x, z1, z2, t) = (0, 0, 0, 0), the rate in (17) is precisely P
and the rates achieved for the first year is given by P∗(x, z1, z2, 1), for the second year P∗(x, z1, z2, 2), etc.

4. Numerical Applications

Now, in order to compute the premiums based on the models introduced in this paper, we will
examine a dataset that include information based on one-year vehicle insurance policies taken out
in 2004 or 2005. This dataset is available on the website of the Faculty of Business and Economics,
Macquarie University (Sydney, Australia) (see also De Jong and Heller (2008)). The total portfolio
contains 67,856 policies of which 4624 have at least one claim. With respect to the number of claims,
the minimum and maximum are 0 and 4 respectively. The mean is 0.072 and standard deviation is
0.278. On the other hand, regarding the claim size, the minimum and maximum are 0 and 55,922.10
respectively. The mean is 137.27 and the standard deviation is 1056.30. This latter measure is very large
for the size of the claims, therefore it means that a premium based only on the mean claim size is not
adequate for calculating the bonus-malus premiums. Due to this portfolio only includes the aggregate
value of the claims severity, a simulation analysis was completed to randomly determine the exact
value that corresponds to all claims. Then, we proceed to allocate the claims that correspond to each
interval, i.e., $0–$500, $500–$1000 and >$1000. Thus, we are assuming that φ1 = 500 and φ2 = 1000.
This simulation analysis was carried by using Mathematica software package. We have taken the
integer part of the individual claim amount, this does not seem very relevant in our analysis. It is
important to mention that due to RandomChoice function, the partition of the aggregate claim amount
is different every time the program is run.

Empirical values and fitted values by using the discrete trivariate distribution, Fitted (1), and the
mixing model (12), Fitted (2), are illustrated in Table 2. These sample values were taken from the results
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obtained after dividing the claims by using the simulation scheme mentioned above. The estimated
parameter values (the standard errors appear in brackets) are shown in Table 3. We also show the value
obtained for two measures of model selection: Akaike’s information criterion (AIC) and the consistent
Akaike information criterion (CAIC). See Akaike (1974); Bozdogan (1987) for details. The goodness
of fit was determined by standard Pearson’s chi squared test statistics with the following grouping
procedure: the outermost classes were consolidated to produce theoretical class sizes of 5 or larger. It is
observable that the fit to data is reasonably good for the mixture model and not very promising for
the basic model. For the mixture model, the maximum likelihood estimates were obtained by directly
maximizing the log-likelihood surface.

Table 2. Empirical and fitted data for the basic model (1) and mixture model (2).

(x, z1, z2) Empirical Fitted (1) Fitted (2) (x, z1, z2) Empirical Fitted (1) Fitted (2)

(0, 0, 0) 63,232 63,094.30 63,233.20 (3, 0, 0) 0 0.29 1.49
(1, 0, 0) 1840 1921.02 1812.24 (3, 1, 0) 5 1.05 4.75
(1, 1, 0) 2084 2257.62 2128.08 (3, 0, 1) 0 0.19 0.44
(1, 0, 1) 409 411.91 387.96 (3, 0, 2) 0 0.04 0.22
(2, 0, 0) 31 29.24 51.83 (3, 1, 1) 3 0.45 1.28
(2, 1, 0) 134 68.73 113.61 (3, 2, 1) 0 0.26 1.11
(2, 0, 1) 7 12.54 13.98 (3, 1, 2) 0 0.05 0.51
(2, 1, 1) 16 14.74 24.32 (3, 3, 0) 3 0.48 2.04
(2, 2, 0) 79 40.40 66.82 (3, 0, 3) 0 0.00 0.10
(2, 0, 2) 4 1.34 5.60 (4, ·, ·) 4 0.35 0.89

Table 3. Parameters estimated and standard errors (SE) for the basic and mixture model without
including covariates.

Basic Model Mixture Model

Parameter Estimate SE Parameter Estimate SE

θ̂ 0.072 0.001 α̂ 1.157 0.121
p̂1 0.492 0.007 β̂ 15.903 1.681
p̂2 0.176 0.007 α̂1 575.261 2.779

β̂1 594.757 2.961
α̂2 0.365 0.268
β̂2 1.705 1.257

χ2 137.06 7.18
p-value 0.00 0.007

df 4 1
AIC 45,129.80 45,027.70

CAIC 45,160.20 45,088.50

4.1. The Proposed Premiums

Table 4 illustrates the relativities (Bayesian BMP’s) obtained by applying (17) and the parameter
estimates displayed in Table 3. It is noticeable that the structure of this table is built in a similar way
the one derived in traditional BMS. Namely, at the beginning of the system the relativity is set equal
to 1.000; then this relativity decreases within the year in the absence of claims, and it increases when
claims are declared. Nevertheless, for x > 1 the system now discerns whether the number of claims
corresponds to those below the size φ1, between φ1 and φ2 and above φ2. For the sake of comparison,
the reader is referred to Gómez-Déniz (2016) where the Bayesian bonus-malus premiums calculated for the
Poisson-Gamma model under the net premium principle (see also Dionne and Vanasse (1989)) and those
ones computed by using expression (20) in Gómez-Déniz (2016). It is observable that the bonus-malus
premiums are the same for the bonus class (x = 0) and different for the rest of the malus (x ≥ 1)
classes with respect to the first of the models mentioned above. In this regard, it can be distinguished
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now between claims with a severity below φ1, between φ1 and φ2 and above φ2. In this sense if we
consider Table 3 in Gómez-Déniz (2016), for example for the case (t, x, z) = (1, 0, 1) (i.e., at the end
of the first year the policyholder has declared one claim with size higher than $500) the Bayesian
bonus-malus premium is 1.800. However, under the scheme introduced in Table 4, the Bayesian BMP
to be paid is 1.754 if the claim size belong to the interval $500–$1000, i.e., (t, x, z1, z2) = (1, 1, 1, 0).
On the other hand, when the claim amount is >$1000, i.e., (t, x, z1, z2) = (1, 1, 0, 1) the Bayesian BMP is
2.040. Therefore, the premiums as shown in Table 4, may be larger or smaller than those ones shown in
Table 3 in Gómez-Déniz (2016). This methodology would ensure the financial viability of the company.

Table 4. BMP’s for claims when there are x claims, z1 with a claim size between ψ1 and ψ2, z2 claims
with a size larger than ψ2 and x − z1 − z2 claims with a claim size smaller than ψ1 with px = 0.25,
py = 0.50 and pz = 0.75.

t

(x, z1, z2) 0 1 2 3 4 5

(0, 0, 0) 1.000 0.940 0.888 0.841 0.799 0.760
(1, 0, 0) 1.798 1.692 1.597 1.513 1.437 1.368
(1, 1, 0) 1.864 1.754 1.656 1.568 1.489 1.418
(1, 0, 1) 2.168 2.040 1.926 1.824 1.732 1.649
(2, 0, 0) 2.583 2.430 2.295 2.173 2.064 1.965
(2, 1, 0) 2.633 2.477 2.339 2.215 2.104 2.003
(2, 1, 1) 3.174 2.986 2.819 2.670 2.536 2.414
(2, 2, 0) 2.729 2.568 2.424 2.296 2.180 2.076
(2, 2, 1) 3.530 3.321 3.135 2.969 2.820 2.685

5. Final Comments and Future Research

In this paper, a simple model that distinguishes, among three types of claims in bonus-malus
settings has been introduced. This distinction is based on discriminating between those claims with
associated amount below a threshold, between two values of thresholds or greater than a certain
threshold. This methodology presented is based on the use of a trivariate distribution (not common
in any statistical scenario) that depends on parameters that in turn are considered as random
variables that follow certain a priori probability distributions. As a consequence, it is possible to
express the bonus-malus premium based on the net premium principle (quadratic error loss function)
as a credibility formula that writes the premium as a convex combination of sample information
and a priori information. The bonuses of the premium obtained are undoubtedly fairer than those
ones computed by using the classical methodology that does not discern between different types of
claims. We shall conclude with an interesting comment made by a referee with respect to the range
of values that parameter p2 can take on. In this work we have assumed that p2 ∈ (0, 1), however,
in the third section when the probabilities are randomized it could be sensible to suppose that p2

is dependent on the value of p1. In this sense, we believe it should be more realistic to consider
π(ϑ) = π(θ)π(p1, p2), where the latter factor is a bivariate distribution that assumes dependency
between p1 and p2. This could be subject of future research. In addition, it would be interesting to
examine how the premiums behave when both the distribution based on the classical model and the
marginal model derived after including heterogeneity are normalized to implement a generalized
linear model. This is likely to refine the premiums according to the individual factors of each insured.

Appendix A

In this Appendix we provide the score equations which provide the maximum likelihood
estimators of the parameters and the elements of the Fisher’s information matrix.

For that, let us now consider a sample (x̃, z̃1, z̃2) of size t. The likelihood function is given by

L(ϑ; x̃, z̃1, z̃2) ∝ θtx̄qtx̄
1 qtx̄

2 exp(−tθ) ptz̄1
1 q−tz̄1

1 q−tz̄1
2 ptz̄2

2 q−tz̄2
2 ,
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from which the log-likelihood results

`(ϑ; x̃, z̃1, z̃2) ∝ tx̄ log θ + tx̄ log q1 + tx̄ log q2 − tθ

+ tz̄1 log p1 − tz̄1 log q1 − tz̄1 log q2

+ tz̄2 log p2 − tz̄2 log q2.

The score equations are given by

∂`(ϑ; x̃, z̃1, z̃2)

∂θ
=

tx̄
θ
− t = 0,

∂`(ϑ; x̃, z̃1, z̃2)

∂p1
= − tx̄

q1
+

tz̄1

p1
+

tz̄1

q1
= 0,

∂`(ϑ; x̃, z̃1, z̃2)

∂p2
= − tx̄

q2
+

tz̄1

q2
+

tz̄2

p2
+

tz̄2

q2
= 0.

The second partial derivatives of the log-likelihood function with respect to the parameters are
given by

∂2`(ϑ)

∂θ2 = − tx̄
θ2 ,

∂2`(θ, p1, p2)

∂θ∂p1
= 0,

∂2`(θ, p1, p2)

∂θ∂p2
= 0,

∂2`(ϑ)

∂p2
1

=
t(z̄1 − x̄)

q2
1

− tz̄1

p2
1

,
∂2`(ϑ)

∂p1∂p2
= 0,

∂`(ϑ)

∂p2
2

=
t(z̄2 + z̄1 − x̄)

q2
2

− tz̄2

p2
2

.

Now by taking expectations, we have

E
(
−∂2`(ϑ)

∂θ2

)
= E

(
tx̄
θ2

)
=

t
θ

,

E

(
−∂2`(ϑ)

∂p2
1

)
= E

(
− t(z̄1 − x̄)

q2
1

+
tz̄1

p2
1

)
=

tθq1

q2
1

+
tθ
p1

=
tθ

p1q1
,

E

(
−∂2`(ϑ)

∂p2
2

)
= E

(
− t(z̄2 + z̄1 − x̄)

q2
2

+
tz̄2

p2
2

)
=

tθ
q2

2
− p1tθ

q2
2

− p2q1tθ
q2

2
+

q1tθ
p2

=
q1tθ
p2q2

,

from which the Fisher’s information matrix are obtained in the conventional way.
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