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Abstract: For evaluating the probabilities of arbitrary random events with respect to a given
multivariate probability distribution, specific techniques are of great interest. An important
two-dimensional high risk limit law is the Gauss-exponential distribution whose probabilities can be
dealt with based on the Gauss–Laplace law. The latter will be considered here as an element of the
newly-introduced family of (p, q)-spherical distributions. Based on a suitably-defined non-Euclidean
arc-length measure on (p, q)-circles, we prove geometric and stochastic representations of these
distributions and correspondingly distributed random vectors, respectively. These representations
allow dealing with the new probability measures similarly to with elliptically-contoured distributions
and more general homogeneous star-shaped ones. This is demonstrated by the generalization of
the Box–Muller simulation method. In passing, we prove an extension of the sector and circle
number functions.

Keywords: Gauss-exponential distribution; Gauss–Laplace distribution; stochastic vector
representation; geometric measure representation; (p, q)-generalized polar coordinates; (p, q)-arc length;
dynamic intersection proportion function; (p, q)-generalized Box–Muller simulation method;
(p, q)-spherical uniform distribution; dynamic geometric disintegration

1. Introduction

The Gauss-exponential distribution plays an important role as a high risk limit law;
see Sections 8 and 9 of the lectures presented in Balkema and Embrechts (2007) on high risk scenarios
and extremes. Needless to recall here are the numerous different fields where quantitative risk
management applies. The Gauss-exponential distribution can be considered as a particular asymmetric
derivation of the Gauss–Laplace law. In particular, Gauss-exponential probabilities of arbitrary events
can be dealt with by considering the corresponding Gauss–Laplace probabilities. Density level sets
of the standard Gauss–Laplace distribution are topological boundaries of star bodies centered at the
origin. The Minkowski functionals of the corresponding star bodies, however, are not homogeneous
functions of order one, as is often assumed in the literature on star-shaped distributions. Instead,
the bodies corresponding to different density levels reflect different geometric properties and are
typically directed in different directions. The aim of the present paper is to model (p, q)-spherical
generalizations of the two-dimensional Gauss–Laplace distribution. We prove geometric and stochastic
representations, which can be considered as standard tools for dealing with the present distributions
later on in a way similar to how one has already for a long time successfully been dealing with
elliptically-contoured and, since more recently, even with more general homogeneous star-shaped
distributions. This will be shortly indicated here by generalizing the Box–Muller simulation method.

It is well known from two-dimensional spherical distribution theory that a random vector X

following such distribution allows a stochastic representation X d
= R ·U with independent non-negative
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random variable R and singular (with respect to the Lebesgue measure in R2) random vector U being
uniformly distributed on the Euclidean unit circle. Understanding the suitable way of generalizing
the latter distribution requires the most effort in general homogeneous star-shaped distribution theory.
The corresponding singular distribution is dealt with by several authors (even in higher dimensions) by
considering densities of marginal variables (vectors); see (Yue and Ma 1995) and (Song and Gupta 1997)
for the particular case of lp-spherical distributions. Studying a disintegration formula for this case, it is
proven in (Rachev and Rueschendorf 1991) that the geometric surface measure cannot coincide with
their uniform distribution if p /∈ {1, 2, ∞}. Moreover, the authors mention that ‘its treatment seems
to need a completely different proof than the proof for the uniform distribution given in this (their)
paper.’ In (Schechtman and Zinn 1990), the authors exploit properties of the distribution being called the
uniform distribution on lp-spheres in (Rachev and Rueschendorf 1991), by making use of a representation
of it later called a cone measure representation; see (Barte et al. 2005). An insightful Kepler law
interpretation of this measure is discussed in (Wallen 1995). A coordinate-based approach to describing
uniform distributions on lp-spheres is given in (Szablowski 1998) where it is inter alia said that ‘it seems
that the usage of the word uniform’ ... ’ does not refer to the real, geometrical uniformity of the probability
mass on the surface of the unit sphere in n-dimensional Lα’. The differential geometric explanation of the
generalized uniform distribution given for the particular case of ln,p-spheres for arbitrary finite dimension
in Richter (2009) (and for dimension two already in two earlier papers on the circle number function
mentioned there) provided a qualitatively new approach to this long standing measure theoretical
problem. Elliptically contoured and more general homogeneous star-shaped distributions are studied
analogously in (Richter 2011a, 2013, 2014, 2015a, 2015b, 2016a, 2016b) based on the consideration of
suitably-introduced non-Euclidean geometries.

Much effort is expected to be necessary to give a suitable explanation of the geometric nature of
a uniform distribution in the present case that the Minkowski functional of the density contour sets
defining the star body is not homogeneous of order one. In going through all of the necessary steps
to reach such an interpretation, we will be confronted with generalizing the notions of circle and its
radius, as well as its circumference and with an extension of the sector and circle number functions.
In the homogeneous case, that is if the mentioned Minkowski functional is homogeneous of order one,
the analogous steps can be observed in Richter (2007) and in the author’s series of papers mentioned
before. Even more information on the history of the mentioned measure theoretical problem can be
found there.

Among others, a technical key role will be played here by the suitable choice of coordinates
for describing generalized uniform distributions. Moreover, we make a next basic step of extending
the sector and circle number functions to classes of generalized circles having different geometric
properties for different values of their generalized radii.

The density of the standard Gauss–Laplace law Φ∗G,L in R2 is given by:

Φ∗G,L(d(x, y)) =
1

2
√

2π
e−

x2
2 −|y|d(x, y).

Let us consider the (p, q)-spherical generalized normal density:

Φp,q(d(x, y)) = CpCqe−
|x|p

p −
|y|q

q d(x, y)

where p > 0, q > 0 and Cp = p1−1/p/(2Γ(1/p)). We note that Φ2,1 = Φ∗G,L and Φ2,2 and Φ1,1

are two-dimensional standard Gauss and Laplace distribution laws, respectively. Figure 1 shows
(p, q)-spherical densities for different choices of (p, q).
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Figure 1. (p, q)-spherical densities.
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The case p = q has been considered elsewhere, and we emphasize that this case will not be dealt
with in the present paper. Thus, p 6= q is assumed here. Let:

|(x, y)|p,q =
|x|p

p
+
|x|q

q
, (x, y)T ∈ R2

denote the functional generating the density level sets or contour lines:

Sp,q(r) = {(x, y)T ∈ R2 : |(x, y)|p,q = r}, r>0.

Such a level set can be generated from the (p, q)-generalized unit circle Sp,q = Sp,q(1) by
matrix multiplication:

Sp,q(r) = Dp,q(r)Sp,q

and will be called the (p, q)-circle of (p, q)-radius r. Here, Dp,q(r) = diag(r1/p, r1/q) with diag(a, b)
denoting the diagonal matrix with diagonal entries a and b. The star body:

Kp,q(r) = {(x, y)T ∈ R2 : |(x, y)|p,q ≤ r}

having the origin in its interior and Sp,q(r) as its topological boundary will be called the (p, q)-circle
disc of (p, q)-radius r. It satisfies the subset relation:

Kp,q(r1) ⊂ Kp,q(r2) if r1 < r2

and allows the representation:

Kp,q(r) =
r⋃

ρ=0
Sp,q(ρ).

Such a disc is convex if p ≥ 1 and q ≥ 1 and is radially concave if 0 < p ≤ 1 and 0 < q ≤ 1.
For the latter notion, we refer to (Moszyńska and Richter 2012). Figure 2 (drawn with MATLAB, as
Figure 1) shows (2, 1)-circles S2,1(r) according to different values of the (2, 1)-generalized radius r,
starting from a local (central) and turning to more global view. Roughly said, the impression of the
main orientation of density level lines is changing within two steps from ‘west-east’ to ‘south-north’.

The paper is organized as follows. Section 2 presents preliminary material on (p, q)-generalizations
of the common polar coordinates, the notions of arc-length and geometric disintegration, the sector and
circle number functions and the generalized uniform distribution on a generalized circle. After further
developing the general methodology from the theory of homogeneous star-shaped distributions,
we are in a position to formally introduce the family of (p, q)-spherical distributions in Section 3
including the (p, q)-generalized normal distributions as particular cases of such distributions having
a density. Section 4 deals with a geometric generalization of the asymmetric Gauss-exponential law,
and Section 5 is devoted to some aspects of simulation. The discussion in Section 6 delivers a look back
to and ahead toward the present distribution theory. Finally, we give some conclusions in Section 7.
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Figure 2. Gauss–Laplace density level sets: from local (central) to global view.
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2. Preliminaries

2.1. A Class of (p, q)-Generalized Polar Coordinates

Let Np(φ) = (| cos φ|p + | sin φ|p)1/p. The p-generalized cosine and sine functions are defined
according to Richter (2007) by:

cosp(φ) =
cos φ

Np(φ)
and sinp(φ) =

sin φ

Np(φ)
.

Definition 1. The (p, q)-generalized polar, or (p, q)-spherical, coordinate transformation:

Polp,q : (0, ∞)× [0, 2π)→ R2 \ {(0, 0)T}

is defined by (x, y)T = Polp,q(r, φ) where:

x = (pr)1/p(cospq(φ))
q, 0 ≤ φ < π/2, 3π/2 ≤ φ < 2π

x = −(pr)1/p(− cospq(φ))
q, π/2 ≤ φ < 3π/2

y = (qr)1/q(sinpq(φ))
p, 0 ≤ φ < π

y = −(qr)1/q(− sinpq(φ))
p, π ≤ φ < 2π.

Lemma 1. The absolute value of the Jacobian of this transformation is:

J(Polp,q)(r, φ) = r1/p+1/q−1 J∗(φ)

where:
J∗(φ) = p1/pq1/q| cospq(φ)|q−1| sinpq(φ)|p−1Npq(φ)

−2. (1)

The proof of this lemma makes use of the results in Richter (2007). Moreover, the inverse of the
coordinate transformation Polp,q is given by:

r = |(x, y)|p,q,

φ =


π

2
if y > 0, x = 0

arctan

(
(p/q)1/(pq) y1/p

x1/q

)
if y > 0, x 6= 0

and:

φ =


3
2

π if y < 0, x = 0

arctan

(
−(p/q)1/(pq) (−y)1/p

x1/q

)
if y < 0, x 6= 0.

2.2. The (p, q)-arc Length Measure and Dynamic Geometric Disintegration of the Lebesgue Measure

In this section, first, the (p, q)-generalized arc length and the area content of (p, q)-circles and
-circle discs are introduced, respectively. Then, a new type of geometric disintegration of the Lebesgue
measure will be established. In the next section, extensions of the sector and circle number functions are
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considered. To start with, we recall that the area content of the (p, q)-circle disc with (p, q)-generalized
radius ρ is:

µ(Kp,q(ρ)) =
∫

Kp,q(ρ)

d(x, y) =

ρ∫
0

2π∫
0

|J(Polp,q)(r, φ)|dφdr.

Successively changing variables x = cospq(φ) and y = xpq shows that:

µ(Kp,q(ρ)) = 4B(
1
p

,
1
q
)

p
1
p q

1
q

p + q
ρ

1
p +

1
q . (2)

We note that the power exponent of ρ reflects a certain aspect of the change of shape
of Kp,q(ρ) when ρ varies. Moreover, we emphasize the remarkable differences between
convex and radially-concave cases. In the sequel, in a certain analogy to what was done in
(Richter 2007, 2009, 2011b, 2013)for various situations, we define the (p, q)-generalized arc length
measure ALp,q on the Borel σ-field B(Sp,q) of Sp,q. To this end, for an arbitrary set A ∈ B(Sp,q),
let us call:

CPCp,q(A) = {Dp,q(r)(x, y)T : (x, y)T ∈ A, r > 0}

a nonlinear matrix transformed central projection cone. Note that |x|p/p + |y|q/q = 1 if (x, y)T ∈ A
and that Dp,q(r1)(x, y)T 6= Dp,q(r2)(x, y)T if r1 6= r2. The set CPCp,q(A) can be considered as a union
of pairwise disjoint sets,

CPCp,q(A) =
⋃
r>0

[Dp,q(r)A].

Here, multiplication of a set by a matrix is defined in the common pointwise sense.
Furthermore, a (p, q)-sector of Kp,q(r) having (p, q)-generalized radius r is defined by:

Sep,q(A, r) = CPCp,q(A) ∩ Kp,q(r),

and we consider the (p, q)-radius dependent area content function:

f (ρ) = µ(Sep,q(A, ρ)) =

ρ∫
0

∫
Pol∗−1

p,q (A)

|J(Polp,q)(r, φ)|d(r, φ), ρ ≥ 0. (3)

Here, Pol∗p,q(φ) = Polp,q(1, φ), and Pol∗−1
p,q denotes the inverse function of Pol∗p,q.

Definition 2. The (p, q)-arc length measure ALp,q(A) is defined for arbitrary A ∈ B(Sp,q) by:

ALp,q(A) = f ′(1).

It follows from the definition of f that:

ALp,q(A) =
∫

Pol∗−1
p,q (A)

|J∗(φ)|dφ, A ∈ B(Sp,q) (4)

and:
ALp,q(Dp,q(r)A) = r1/p+1/q−1 ALp,q(A). (5)

In particular,

ALp,q(Sp,q(r)) = 4B(
1
p

,
1
q
)p1/p−1q1/q−1r1/p+1/q−1. (6)
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If B ∈ B2 has finite area content, then:

µ(B) =
∫
B

dx =

∞∫
0

2π∫
0

IB(Polp,q(r, φ))|J(r, φ)|dφdr

=

∞∫
0

r1/p+1/q−1
2π∫
0

IB(Polp,q(r, φ))|J∗(φ)|dφ

 dr.

Because IB(Polp,q(r, φ)) = 1 if and only if Polp,q(r, φ) ∈ Sp,q(r) ∩ B, it follows that:

µ(B) = ALp,q(Sp,q)

∞∫
0

r1/p+1/q−1Fp,q(B, r)dr (7)

where:
Fp,q(B, r) = ALp,q([Dp,q(r−1)B] ∩ Sp,q)/ALp,q(Sp,q), r > 0 (8)

denotes the (p, q)-spherical intersection proportion function of the set B. By similar argumentation,
the following theorem is proven. We note that (7) represents a new non-Euclidean type of geometric
disintegration of the Lebesgue measure in R2, which due to the effects of action Dp,q will be called
a dynamic disintegration. For this reason, the function in (8) will be called a dynamic intersection
proportion function, and the integration method in (7) will be called dynamic geometric disintegration
of the Lebesgue measure.

Theorem 1. If h is integrable over B, then the dynamic geometric disintegration:

∫
B

h(x)dx =

∞∫
0

r1/p+1/q−1
∫

B∗(r)

h(Polp,q(r, φ))|J∗(φ)|dφ

 dr

is valid where:
B∗(r) = {φ ∈ [0, 2π) : Polp,q(1, φ) ∈ [Dp,q(r−1)B] ∩ Sp,q}.

2.3. The (p, q)-Circle and Sector Number Functions

Circle numbers of star discs are studied in Richter (2011b) and for particular cases in earlier papers
cited therein. Similarly, we define the (p, q)-circle number function to assign the number πp,q to any
(p, q)-circle of (p, q)-radius r where for any r > 0:

µ(Kp,q(r))
r1/p+1/q = πp,q =

ALp,q(Sp,q(r))
(1/p + 1/q)r1/p+1/q−1 .

As for any A ∈ B(Sp,q),
f ′(r) = ALp,q(Dp,q(r)A),

we can also define the (p, q)-sector number function to assign the number πp,q(A) to any (p, q)-sector
Sep,q(A, r) of (p, q)-radius r where:

µ(Sep,q(A, r))
r1/p+1/q = πp,q(A) =

ALp,q(Dp,q(r)A)

(1/p + 1/q)r1/p+1/q−1 , ∀r > 0
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and:

πp,q(A) =
p1+1/pq1+1/q

p + q

∫
Pol∗−1

p,q (A)

|J∗(φ)|dφ. (9)

In particular, the (p, q)-circle number πp,q allows the following integral representations:

πp,q =
p1+1/pq1+1/q

p + q

2π∫
0

| cospq(φ)|q−1| sinpq(φ)|p−1 dφ

N2
p,q(φ)

,

πp,q = 4
p1/pq1/q

p + q

1∫
0

x1/p−1(1− x)1/q−1dx,

thus:

πp,q = 4
p1/pq1/q

p + q
Γ(1/p)Γ(1/q)
Γ(1/p + 1/q)

. (10)

Moreover,

πp,q =
1

Γ(1/p + 1/q + 1)

∫
R2

e−
|x|p

p −
|x|q

q d(x, y). (11)

To summarize some results from this and the last sections for the case (p, q) = (2, 1), that is for
the case being of particular interest when considering the Gauss–Laplace law, we have seen that:

µ(K2,1(r)) = π2,1r3/2 and AL2,1(S2,1(r)) =
3
2

π2,1r1/2 where π2,1 =
8
√

2
3

.

2.4. The (p, q)-Spherical Uniform Distribution

The (p, q)-arc length measure introduced in Section 2.2 will be used now to define the generalized
(non-Euclidean) uniform distribution on a (p, q)-circle.

Definition 3. The (p, q)-spherical uniform probability law on the Borel σ-field B(Sp,q) is defined by:

ωp,q(A) = ALp,q(A)/ALp,q(Sp,q).

This relative arc-length measure appears to be quite natural. To see this, let (Ω,A, P) be
a probability space; a random vector X = (X1, X2)

T : Ω → R2 follows the common uniform
distribution on the (p, q)-circle disc Kp,q,

P(X ∈ M) =
µ(M)

µ(Kp,q)
, M ∈ B(Kp,q),

and R = |(X1, X2)
T |p,q be the (p, q)-radius of X. Excepting the origin, every point from the interior

of Kp,q belongs just to one of the (p, q)-circles Sp,q(r), r ∈ (0, 1); thus, for every ω ∈ Ω, there is
a uniquely-defined r ≥ 0, such that:

X(ω) ∈ Dp,q(r)Sp,q.

Theorem 2. The random vector Up,q = Dp,q(R−1)X follows the (p, q)-spherical uniform distribution on Sp,q

and is independent of the random variable R, and R has the following density with respect to the Lebesgue
measure on the real line:

(1/p + 1/q)r1/p+1/q−1 I[0,1)(r)dr. (12)
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Proof. The cumulative distribution function of R is:

FR(ρ) = P(X ∈
⋃
r≤ρ

Dp,q(r)Sp,q) = P(X ∈ Kp,q(ρ)) = µ(Kp,q(ρ))/µ(Kp,q)

= ρ1/p+1/q I(0,1)(ρ) + I[1,∞)(ρ),

thus the density of R is given by:

FR(dρ) = I(0,1)(ρ)(1/p + 1/q)ρ1/p+1/q−1dρ.

Now, let A ∈ B(Sp,q), then:

P(Up,q ∈ A) = P(X ∈ Sep,q(A, 1)) =
µ(Sep,q(A, 1))

µ(Kp,q)
.

Because:
µ(Sep,q(A, r)) =

pq
p + q

rALp,q(Dp,q(r)A),

it follows that:

P(Up,q ∈ A) =
ALp,q(A)

µ(Kp,q)(1/p + 1/q)
=

ALp,q(A)

ALp,q(Sp,q)
= ωp,q(A).

Finally,

P(R < ρ, Up,q ∈ A) = P(X ∈ Sep,q(A, ρ)) =
µ(Sep,q(A, ρ))

µ(Kp,q)

=
1

µ(Kp,q)

ρ∫
0

∫
Pol∗−1

p,q (A)

|J(Polp,q)(r, φ)|d(r, φ) =
ρ1/p+1/q

1/p + 1/q
ALp,q(A)

µ(Kp,q)

= ρ1/p+1/q ALp,q(A)

ALp,q(Sp,q)
= FR(ρ)ωp,q(A).

Remark 1. If Y is uniform on a (0, 1)-distributed random variable, then Ypq/(p+q) follows the distribution
having the density in (12).

On the one hand, the (p, q)-spherical uniform probability distribution is singular with respect
to the Lebesgue measure in the two-dimensional Euclidean space R2, but on the other hand, it is
absolutely continuous with respect to the Lebesgue measure on the real line. Its density is given
therefore φ ∈ (0, 2π) by:

ωp,q(dφ) =
ALp,q(dφ)

ALp,q(Sp,q)
=

|J∗(φ)|dφ

πp,q(1/p + 1/q)
,

that is:

ωp,q(dφ) =
p1/p+1q1/q+1

πp,q(p + q)
| cospq(φ)|q−1| sinpq(φ)|p−1 dφ

N2
pq(φ)

. (13)

Now, let us define the (p, q)-spherical sector measure on the Borel σ-field of Sp,q as:

smp,q(A) = µ(Sep,q(A, 1))/µ(Kp,q).
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According to our consideration in Section 2.3, the (p, q)-spherical uniform distribution allows the
(p, q)-spherical sector measure and the (p, q)-arc length representations:

ωp,q(A) = smp,q(A) =
ALp,q(A)

(1/p + 1/q)πp,q
, A ∈ B(Sp,q),

respectively. An additional nonlinear matrix transformed cone measure representation of the
(p, q)-spherical uniform distribution is given by:

ωp,q(A) = Φp,q(CPCp,q(A)), A ∈ B(Sp,q).

3. On the (p, q)-Spherical Generalization of the Gauss–Laplace Law

The following analogue to Theorem 2 is our starting point for introducing here the new general
family of (p, q)-spherical distributions.

Theorem 3. Let a random vector X = (X1, X2)
T : Ω→ R2 follow the (p, q)-spherical distribution law Φp,q,

and put R = |(X1, X2|Tp,q. The random vector Up,q = Dp,q(R)−1X follows the (p, q)-generalized uniform
distribution on Sp,q and is independent of the random variable R, and R has the density with respect to the
Lebesgue measure on the real line:

1
Γ(1/p + 1/q)

r1/p+1/q−1e−r I(0,∞)(r)dr. (14)

Proof. The cumulative distribution function of R is:

FR(ρ) = P(X ∈ Kp,q(ρ)) = CpCq

∫
{(x,y)T∈R2 :|(x,y)T |p,q≤ρ}

e−|(x,y)T |p,q d(x, y)

= CpCq

ρ∫
0

 2π∫
0

r1/p+1/q−1e−r|J∗(φ)|dφ

 dr = CpCq

ρ∫
0

r1/p+1/q−1e−rdrALp,q(Sp,q).

Because of:
CpCq ALp,q(Sp,q)Γ(1/p + 1/q) = 1, (15)

it follows that:
FR(dρ) =

1
Γ(1/p + 1/q)

ρ1/p+1/q−1e−ρdρ.

Furthermore, for A ∈ B(Sp,q),

P(Up,q ∈ A) = P(X ∈ CPCp,q(A)) = CpCq

∞∫
0

r1/p+1/q−1e−rdr
∫

Pol∗−1
p,q (A)

|J∗(φ)|dφ

=
ALp,q(A)

ALp,q(Sp,q)
= ωp,q(A)

and

P(R < ρ, Up,q ∈ A) = P(X ∈ Sep,q(A, ρ)) = CpCq

ρ∫
0

 ∫
Pol∗−1

p,q (A)

|J∗(φ)|dφ

 r1/p+1/q−1e−rdr
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=

ρ∫
0

r1/p+1/q−1e−rdr

Γ(1/p + 1/q)
ALp,q(A)

ALp,q(Sp,q)
= FR(ρ)P(Up,q ∈ A).

Remark 2. According to Theorem 3, if X ∼ Φp,q, then X allows the stochastic representation:

X d
= Dp,q(R) ·Up,q

where Up,q follows the (p, q)-spherical uniform distribution, Up,q ∼ ωp,q, and R has the density (14) and is
independent of Up,q.

The following definition is well motivated by Remark 2.

Definition 4. (a) Let Up,q follow the (p, q)-spherical uniform distribution on the Borel σ-field of the (p, q)-unit
circle Sp,q, Up,q ∼ ωp,q and R a non-negative random variable having cumulative distribution function F and
characteristic function φ and being independent of Up,q, then:

X = Dp,q(R)Up,q (16)

is said to follow the (p, q)-spherical distribution Φcd f (F)
p,q = Φc f (φ)

p,q . The vector Up,q is called the (p, q)-spherical

uniform basis and R the generating variate of X. The distribution of X will alternatively be denoted Φd f ( f )
p,q if R

has density function f .
(b) An arbitrary random vector X taking values in R2 is called (p, q)-spherically distributed if there exists

a nonnegative random variable R being independent of a (p, q)-spherical uniformly-distributed random vector

U, such that X d
= Dp,q(R)U.

Here, Y d
= Z means that random vector Y is distributed as random vector Z.

Theorem 4. The characteristic function of a (p, q)-spherically distributed random vector X satisfying the

representation X d
= Dp,q(R)U can be written as:

φX(t) =
∞∫

0

φU(Dp,q(r)t)PR(dr), t ∈ R2

where PR and ΦU denote the distribution law induced by the random variable R and the characteristic function
of the (p, q)-spherical uniform distribution, respectively.

Proof. By definition,
φX(t) = E exp{itTX} = E exp{itT(Dp,q(R)U)},

thus
φX(t) = E exp{i(t1R1/pU1 + t2R1/qU2)}, t ∈ R2.

Because R and U are independent,

φX(t) =
∫

(0,∞)×Sp,q

exp{i(t1r1/p, t2r1/q)u}(PR × PU)(dr× du),
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and by Fubini’s theorem,

φX(t) =
∞∫

0

E exp{i(t1r1/p, t2r1/q)U}PR(dr).

Corollary 1. (a) The distribution of a (p, q)-spherically distributed random vector X is uniquely determined by
the distribution of its generating variate R.

(b) If a (p, q)-spherically distributed random vector X has a density, then it is of the form fX = ϕg;p,q,

ϕg;p,q(x) = C(g; p, q)g(|x|p,q), x ∈ R2,

where g : [0, ∞)→ [0, ∞) is a density generating function (dgf) satisfying:

0 < I(g; p, q) =
∞∫

0

r1/p+1/q−1g(r)dr < ∞,

and the normalizing constant allows the factorization:

1/C(g; p, q) = I(g; p, q)ALp,q(Sp,q).

Proof. (a) If X d
= Dp,q(R1)U, Y d

= Dp,q(R2)U with R1 and R2 being independent of U, and R1
d
= R2,

then, by Theorem 4, φX = φY.

(b) Because the distribution of a (p, q)-spherically distributed random vector X d
= Dp,q(R)U with

nonnegative R being independent of U, U ∼ ωp,q, is already determined by the distribution of R,
the density of X is already determined by the density of R. By Fubini’s theorem,

1 = C(g; p, q)
∞∫

0

 2π∫
0

r1/p+1/q−1g(r)|J∗(φ)|dφ

 dr = C(g; p, q)I(g; p, q)ALp,q(Sp,q).

In what follows, we denote the distribution law of a (p, q)-spherically distributed random vector
having dgfg by Φg;p,q. The following theorem deals with a geometric representation of such measures.

Theorem 5. For every B ∈ B(R2), Φg;p,q(B) = 1
I(g;p,q)

∞∫
0

r1/p+1/q−1g(r)Fp,q(B, r)dr.

Proof. Because of: Φg;p,q(B) = C(g; p, q)
∫
B

g(|x|p,q)dx,

Φg;p,q(B) = C(g; p, q)
∞∫

0

r1/p+1/q−1g(r)
2π∫
0

IB(Polp,q(r, φ))|J∗(φ)|dφ

 dr.

Since IB(Polp,q(r, φ)) = 1 if and only if Polp,q(r, φ) ∈ Sp,q(r) ∩ B, it follows that:

ALp,q(Sp,q)Fp,q(B, r) = ALp,q([Dp,q(r)B] ∩ Sp,q) =

2π∫
0

IB(Polp,q(r, φ))|J∗(φ)|dφdr.
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The geometric measure representation in Theorem 5 will be called a dynamic geometric
disintegration of the (p, q)-spherical measure Φg;,p,q.

Corollary 2. Let X ∼ Φg;p,q and R = |X|p,q. Then, R follows the density:

fR(ρ) = I(g; p, q)−1ρ1/p+1/q−1g(ρ)I(0,∞)(ρ).

Proof. Let B = Kp,q(ρ). Theorem 5 applies with Fp,q(Kp,q(ρ), r) = I(0,ρ](r), and R follows the density:

fR(ρ) =
d

dρ
Φg;p,q(Kp,q(ρ)).

Finally, we note that Corollary 2 generalizes Formula (14). That is, if g(r) = e−r in Corollary 2,
then I(g; p, q) = Γ(1/p + 1/q) and Φg;p,q = Φp,q.

4. Asymmetric (p, q)-Spherical Generalization of the Gauss-Exponential Law

The Gauss-exponential density ϕG,E and the Gauss–Laplace density ϕG,L are connected through
the equation ϕG,E(x, y) = 2I(0,∞)(y)ϕG,L(x, y). Accordingly, the Gauss-exponential probability of
an arbitrary random event from B(R × [0, ∞)) can be dealt with by doubling the corresponding
Gauss–Laplace probability. Therefore, the Gauss-exponential law can be considered as an asymmetric
derivation of the Gauss–Laplace law.

In (Balkema and Embrechts 2007), the exponential component of the Gauss-exponential
distribution law arises when a Gaussian vector is subject to a certain conditioning process assuming
that this vector belongs to a half space having a positive distance from the origin. As one result of this
conditioning process, the domain of definition of a multivariate distribution is restricted to a proper
subset. If the conditioning process were to be modified, other asymmetric distributions derived from
the Gauss–Laplace law could be of interest.

The possible consequences on the geometric measure representation of a multivariate star-shaped
distribution law caused by a restriction of the domain of definition to a proper subset are described in
Remark 1 in Richter (2015b). A similar approach can be of interest here.

The two-dimensional exponential distribution may be considered as a restriction of
the distribution Φp,q with p = q = 1 (not considered here) to the domain of definition
[0, ∞)× [0, ∞). For a geometric generalization of the multivariate exponential law, we refer
to the class of regular simplicially contoured or l1-norm symmetric distributions studied in
(Henschel and Richter 2002). Further results for p-spherical distributions with p from {1, 2, ∞} can be
found in (Rachev and Rueschendorf 1991), (Kamiya et al. 2008) and (Richter and Schicker 2016).

5. Simulation

First of all, we recall that the radius component of a uniformly on Kp,q distributed random vector
can be simulated according to Remark 1. Numerous others generalized radius distributions may be
simulated using various particular methods.

The well-known simulation method in (Box and Muller 1958) was extended to the p-generalized
normal distribution in (Kalke and Richter 2013). Similarly, here, we establish a simulation method
for arbitrary (p, q)-spherically distributed vectors. According to Theorem 2, the vector Up,q follows,
independently of the variable R, the (p, q)-spherical uniform distribution on Sp,q,

(p1/p cosq
pq(Φ), q1/q sinp

pq(Φ))T ∼ ωp,q. (17)
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By (13), the density of angle Φ is given as:

fΦ(φ) =
pq

B(1/p, 1/q)
| cospq(φ)|q−1| sinpq(φ)|p−1

N2
pq(φ)

, 0 ≤ φ < 2π. (18)

Starting from this representation, one can proceed as described in (Kalke and Richter 2013) and
Richter (2015a), Example 9(b), or any of the standard monographs on simulation mentioned there.

6. Discussion

The way of probabilistic modeling developed in this paper is closely related to various challenging
mathematical problems. It is well known from the results in (Richter 2014, 2016a, 2016b) and the
references given there that representations of star-shaped distributions whose contour-defining star
body has a homogeneous Minkowski functional of order one are closely related to suitably-chosen
non-Euclidean geometries. Here, we discover that there is again a need to go some steps beyond such
geometries and realize the first of them.

Already in the 17th Century, basically starting from the work of Descartes, various coordinate
systems played a fruitful role in geometric applications. Nevertheless, it seems that suitably chosen
coordinates may serve even these days as a powerful tool for solving nontrivial problems in
different areas of mathematics. In the present case, star bodies whose Minkowski functionals are
not homogeneous functions of degree one are effectively described for the purposes of representing
two-dimensional Gauss–Laplace laws and their (p, q)-spherical generalizations with the help of
generalized polar coordinates based on generalized sine and cosine functions.

Starting latest from the work of Leibniz and Newton who founded modern calculus, in many
areas of mathematics, one makes use of thin parallel layers when defining and studying certain basic
notions. Here, however, small changes of a generalized radius variable related to such a body generate
thin layers close to the bodies’ boundary, being nonparallel. To the best of the author’s knowledge,
the fundamental measure theoretical problem of understanding the factorization components of
cross-sections or disintegrations of the present type seems to be approached here for the first time.

The present work extends the line of interchanging the role that the notions of circle and
distance play in comparison with Euclidean geometry, described inter alia in (Richter 2011a, 2011b).
Here, the ‘circle’ is given by a density level set modeling a ‘contour line’ of a sample cloud, and the
understanding of what is a ‘distance’ leads to a directionally-dependent notion of radius being related
to a matrix-vector multiplication. This remains, however, that the question of what is the differential
geometric meaning of the newly-introduced (p, q)-generalized arc length measure. Therefore, it is
stated here as an open problem.

Finally, we remark that the results in Section 2 allow the following additional representations of
the Lebesgue measure, which may be useful in future applications of (p, q)-spherical distributions.
For r ∈ (0, 1), φ ∈ [0, 2π),

µ(dx) = (1/p + 1/q)r1/p+1/q−1dr
p1/pq1/q

1/p + 1/q
| cospq(φ)|q−1| sinpq(φ)|p−1 dφ

N2
pq(φ)

and for ρ ∈ (0, 1],

µ(Sep,q(A, ρ)) =
∫ ρ

0
ALp,q(Dp,q(r)A)dr.

An alternative representation is given for r ∈ (0, 1), t ∈ (0, 1) by:

µ(dx) = (1/p + 1/q)r1/p+1/q−1dr t1/p−1(1− t)1/q−1dt.
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7. Conclusions

The Gauss-exponential distribution being of particular interest in high risk scenarios can be
numerically dealt with now based upon a method newly developed in this paper. This method,
moreover, opens new perspectives for studying in the future broad classes of multivariate distributions
not just being homogeneous of order one. A detailed and full developement of this distribution theory
will further bring together methods at least from measure theory, non-Euclidean differential geometry,
isoperimetry, extending ball and sector number functions, defining suitable coordinates, solving partial
differential equations, and functional analysis.

Conflicts of Interest: The author declares no conflict of interest.
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