

  The Class of (p,q)-spherical Distributions with an Extension of the Sector and Circle Number Functions




The Class of (p,q)-spherical Distributions with an Extension of the Sector and Circle Number Functions







Risks 2017, 5(3), 40; doi:10.3390/risks5030040




Article



The Class of (p,q)-spherical Distributions with an Extension of the Sector and Circle Number Functions



Wolf-Dieter Richter[image: Orcid]





University of Rostock, Institute of Mathematics, Ulmenstraße 69, Haus 3, 18057 Rostock, Germany; Tel.: +49-381-498-6551







Academic Editor: Mogens Steffensen



Received: 24 May 2017 / Accepted: 19 July 2017 / Published: 21 July 2017



Abstract:



For evaluating the probabilities of arbitrary random events with respect to a given multivariate probability distribution, specific techniques are of great interest. An important two-dimensional high risk limit law is the Gauss-exponential distribution whose probabilities can be dealt with based on the Gauss–Laplace law. The latter will be considered here as an element of the newly-introduced family of [image: there is no content]-spherical distributions. Based on a suitably-defined non-Euclidean arc-length measure on [image: there is no content]-circles, we prove geometric and stochastic representations of these distributions and correspondingly distributed random vectors, respectively. These representations allow dealing with the new probability measures similarly to with elliptically-contoured distributions and more general homogeneous star-shaped ones. This is demonstrated by the generalization of the Box–Muller simulation method. In passing, we prove an extension of the sector and circle number functions.






Keywords:


Gauss-exponential distribution; Gauss–Laplace distribution; stochastic vector representation; geometric measure representation; (p,q)-generalized polar coordinates; (p,q)-arc length; dynamic intersection proportion function; (p,q)-generalized Box–Muller simulation method; (p,q)-spherical uniform distribution; dynamic geometric disintegration








1. Introduction


The Gauss-exponential distribution plays an important role as a high risk limit law; see Sections 8 and 9 of the lectures presented in Balkema and Embrechts (2007) on high risk scenarios and extremes. Needless to recall here are the numerous different fields where quantitative risk management applies. The Gauss-exponential distribution can be considered as a particular asymmetric derivation of the Gauss–Laplace law. In particular, Gauss-exponential probabilities of arbitrary events can be dealt with by considering the corresponding Gauss–Laplace probabilities. Density level sets of the standard Gauss–Laplace distribution are topological boundaries of star bodies centered at the origin. The Minkowski functionals of the corresponding star bodies, however, are not homogeneous functions of order one, as is often assumed in the literature on star-shaped distributions. Instead, the bodies corresponding to different density levels reflect different geometric properties and are typically directed in different directions. The aim of the present paper is to model [image: there is no content]-spherical generalizations of the two-dimensional Gauss–Laplace distribution. We prove geometric and stochastic representations, which can be considered as standard tools for dealing with the present distributions later on in a way similar to how one has already for a long time successfully been dealing with elliptically-contoured and, since more recently, even with more general homogeneous star-shaped distributions. This will be shortly indicated here by generalizing the Box–Muller simulation method.



It is well known from two-dimensional spherical distribution theory that a random vector X following such distribution allows a stochastic representation [image: there is no content] with independent non-negative random variable R and singular (with respect to the Lebesgue measure in [image: there is no content]) random vector U being uniformly distributed on the Euclidean unit circle. Understanding the suitable way of generalizing the latter distribution requires the most effort in general homogeneous star-shaped distribution theory. The corresponding singular distribution is dealt with by several authors (even in higher dimensions) by considering densities of marginal variables (vectors); see (Yue and Ma 1995) and (Song and Gupta 1997) for the particular case of [image: there is no content]-spherical distributions. Studying a disintegration formula for this case, it is proven in (Rachev and Rueschendorf 1991) that the geometric surface measure cannot coincide with their uniform distribution if [image: there is no content]. Moreover, the authors mention that ‘its treatment seems to need a completely different proof than the proof for the uniform distribution given in this (their) paper.’ In (Schechtman and Zinn 1990), the authors exploit properties of the distribution being called the uniform distribution on [image: there is no content]-spheres in (Rachev and Rueschendorf 1991), by making use of a representation of it later called a cone measure representation; see (Barte et al. 2005). An insightful Kepler law interpretation of this measure is discussed in (Wallen 1995). A coordinate-based approach to describing uniform distributions on [image: there is no content]-spheres is given in (Szablowski 1998) where it is inter alia said that ‘it seems that the usage of the word uniform’ ... ’ does not refer to the real, geometrical uniformity of the probability mass on the surface of the unit sphere in n-dimensional [image: there is no content]’. The differential geometric explanation of the generalized uniform distribution given for the particular case of [image: there is no content]-spheres for arbitrary finite dimension in Richter (2009) (and for dimension two already in two earlier papers on the circle number function mentioned there) provided a qualitatively new approach to this long standing measure theoretical problem. Elliptically contoured and more general homogeneous star-shaped distributions are studied analogously in (Richter 2011a, 2013, 2014, 2015a, 2015b, 2016a, 2016b) based on the consideration of suitably-introduced non-Euclidean geometries.



Much effort is expected to be necessary to give a suitable explanation of the geometric nature of a uniform distribution in the present case that the Minkowski functional of the density contour sets defining the star body is not homogeneous of order one. In going through all of the necessary steps to reach such an interpretation, we will be confronted with generalizing the notions of circle and its radius, as well as its circumference and with an extension of the sector and circle number functions. In the homogeneous case, that is if the mentioned Minkowski functional is homogeneous of order one, the analogous steps can be observed in Richter (2007) and in the author’s series of papers mentioned before. Even more information on the history of the mentioned measure theoretical problem can be found there.



Among others, a technical key role will be played here by the suitable choice of coordinates for describing generalized uniform distributions. Moreover, we make a next basic step of extending the sector and circle number functions to classes of generalized circles having different geometric properties for different values of their generalized radii.



The density of the standard Gauss–Laplace law [image: there is no content] in [image: there is no content] is given by:


[image: there is no content]











Let us consider the [image: there is no content]-spherical generalized normal density:


[image: there is no content]








where [image: there is no content], [image: there is no content] and [image: there is no content]. We note that [image: there is no content] and [image: there is no content] and [image: there is no content] are two-dimensional standard Gauss and Laplace distribution laws, respectively. Figure 1 shows [image: there is no content]-spherical densities for different choices of [image: there is no content].


Figure 1. [image: there is no content]-spherical densities.
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The case [image: there is no content] has been considered elsewhere, and we emphasize that this case will not be dealt with in the present paper. Thus, [image: there is no content] is assumed here. Let:


[image: there is no content]








denote the functional generating the density level sets or contour lines:


[image: there is no content]











Such a level set can be generated from the [image: there is no content]-generalized unit circle [image: there is no content] by matrix multiplication:


[image: there is no content]








and will be called the [image: there is no content]-circle of [image: there is no content]-radius r. Here, [image: there is no content] with [image: there is no content] denoting the diagonal matrix with diagonal entries a and b. The star body:


[image: there is no content]








having the origin in its interior and [image: there is no content] as its topological boundary will be called the [image: there is no content]-circle disc of [image: there is no content]-radius r. It satisfies the subset relation:


Kp,q(r1)⊂Kp,q(r2)ifr1<r2








and allows the representation:


[image: there is no content]











Such a disc is convex if [image: there is no content] and [image: there is no content] and is radially concave if [image: there is no content] and [image: there is no content]. For the latter notion, we refer to (Moszyńska and Richter 2012). Figure 2 (drawn with MATLAB, as Figure 1) shows [image: there is no content]-circles [image: there is no content] according to different values of the [image: there is no content]-generalized radius r, starting from a local (central) and turning to more global view. Roughly said, the impression of the main orientation of density level lines is changing within two steps from ‘west-east’ to ‘south-north’.


Figure 2. Gauss–Laplace density level sets: from local (central) to global view.
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The paper is organized as follows. Section 2 presents preliminary material on [image: there is no content]-generalizations of the common polar coordinates, the notions of arc-length and geometric disintegration, the sector and circle number functions and the generalized uniform distribution on a generalized circle. After further developing the general methodology from the theory of homogeneous star-shaped distributions, we are in a position to formally introduce the family of [image: there is no content]-spherical distributions in Section 3 including the [image: there is no content]-generalized normal distributions as particular cases of such distributions having a density. Section 4 deals with a geometric generalization of the asymmetric Gauss-exponential law, and Section 5 is devoted to some aspects of simulation. The discussion in Section 6 delivers a look back to and ahead toward the present distribution theory. Finally, we give some conclusions in Section 7.




2. Preliminaries


2.1. A Class of [image: there is no content]-Generalized Polar Coordinates


Let [image: there is no content]. The p-generalized cosine and sine functions are defined according to Richter (2007) by:


cosp(ϕ)=cosϕNp(ϕ)andsinp(ϕ)=sinϕNp(ϕ).











Definition 1.

The [image: there is no content]-generalized polar, or [image: there is no content]-spherical, coordinate transformation:


[image: there is no content]








is defined by [image: there is no content] where:


x=(pr)1/p(cospq(ϕ))q,0≤ϕ<π/2,3π/2≤ϕ<2πx=−(pr)1/p(−cospq(ϕ))q,π/2≤ϕ<3π/2y=(qr)1/q(sinpq(ϕ))p,0≤ϕ<πy=−(qr)1/q(−sinpq(ϕ))p,π≤ϕ<2π.













Lemma 1.

The absolute value of the Jacobian of this transformation is:


[image: there is no content]








where:


[image: there is no content]



(1)









The proof of this lemma makes use of the results in Richter (2007). Moreover, the inverse of the coordinate transformation [image: there is no content] is given by:


[image: there is no content]










ϕ=π2ify>0,x=0arctan(p/q)1/(pq)y1/px1/qify>0,x≠0








and:


ϕ=32πify<0,x=0arctan−(p/q)1/(pq)(−y)1/px1/qify<0,x≠0.












2.2. The [image: there is no content]-arc Length Measure and Dynamic Geometric Disintegration of the Lebesgue Measure


In this section, first, the [image: there is no content]-generalized arc length and the area content of [image: there is no content]-circles and -circle discs are introduced, respectively. Then, a new type of geometric disintegration of the Lebesgue measure will be established. In the next section, extensions of the sector and circle number functions are considered. To start with, we recall that the area content of the [image: there is no content]-circle disc with [image: there is no content]-generalized radius [image: there is no content] is:


[image: there is no content]











Successively changing variables [image: there is no content] and [image: there is no content] shows that:


[image: there is no content]



(2)







We note that the power exponent of [image: there is no content] reflects a certain aspect of the change of shape of [image: there is no content] when [image: there is no content] varies. Moreover, we emphasize the remarkable differences between convex and radially-concave cases. In the sequel, in a certain analogy to what was done in (Richter 2007, 2009, 2011b, 2013)for various situations, we define the [image: there is no content]-generalized arc length measure [image: there is no content] on the Borel [image: there is no content]-field [image: there is no content] of [image: there is no content]. To this end, for an arbitrary set [image: there is no content], let us call:


CPCp,q(A)={Dp,q(r)(x,y)T:(x,y)T∈A,r>0}








a nonlinear matrix transformed central projection cone. Note that [image: there is no content] if [image: there is no content] and that [image: there is no content] if [image: there is no content]. The set [image: there is no content] can be considered as a union of pairwise disjoint sets,


[image: there is no content]











Here, multiplication of a set by a matrix is defined in the common pointwise sense. Furthermore, a [image: there is no content]-sector of [image: there is no content] having [image: there is no content]-generalized radius r is defined by:


[image: there is no content]








and we consider the [image: there is no content]-radius dependent area content function:


[image: there is no content]



(3)







Here, [image: there is no content], and [image: there is no content] denotes the inverse function of [image: there is no content].



Definition 2.

The [image: there is no content]-arc length measure [image: there is no content] is defined for arbitrary [image: there is no content] by:


[image: there is no content]













It follows from the definition of f that:


[image: there is no content]



(4)




and:


[image: there is no content]



(5)







In particular,


[image: there is no content]



(6)







If [image: there is no content] has finite area content, then:


μ(B)=∫Bdx=∫0∞∫02πIB(Polp,q(r,ϕ))|J(r,ϕ)|dϕdr=∫0∞r1/p+1/q−1∫02πIB(Polp,q(r,ϕ))|J*(ϕ)|dϕdr.











Because [image: there is no content] if and only if [image: there is no content], it follows that:


[image: there is no content]



(7)




where:


[image: there is no content]



(8)




denotes the [image: there is no content]-spherical intersection proportion function of the set B. By similar argumentation, the following theorem is proven. We note that (7) represents a new non-Euclidean type of geometric disintegration of the Lebesgue measure in [image: there is no content], which due to the effects of action [image: there is no content] will be called a dynamic disintegration. For this reason, the function in (8) will be called a dynamic intersection proportion function, and the integration method in (7) will be called dynamic geometric disintegration of the Lebesgue measure.



Theorem 1.

If h is integrable over B, then the dynamic geometric disintegration:


[image: there is no content]








is valid where:


[image: there is no content]














2.3. The [image: there is no content]-Circle and Sector Number Functions


Circle numbers of star discs are studied in Richter (2011b) and for particular cases in earlier papers cited therein. Similarly, we define the [image: there is no content]-circle number function to assign the number [image: there is no content] to any [image: there is no content]-circle of [image: there is no content]-radius r where for any [image: there is no content]:


[image: there is no content]











As for any [image: there is no content],


[image: there is no content]








we can also define the [image: there is no content]-sector number function to assign the number [image: there is no content] to any [image: there is no content]-sector [image: there is no content] of [image: there is no content]-radius r where:


[image: there is no content]








and:


[image: there is no content]



(9)







In particular, the [image: there is no content]-circle number [image: there is no content] allows the following integral representations:


[image: there is no content]








thus:


[image: there is no content]



(10)




Moreover,


[image: there is no content]



(11)







To summarize some results from this and the last sections for the case [image: there is no content], that is for the case being of particular interest when considering the Gauss–Laplace law, we have seen that:


μ(K2,1(r))=π2,1r3/2andAL2,1(S2,1(r))=32π2,1r1/2whereπ2,1=823.












2.4. The [image: there is no content]-Spherical Uniform Distribution


The [image: there is no content]-arc length measure introduced in Section 2.2 will be used now to define the generalized (non-Euclidean) uniform distribution on a [image: there is no content]-circle.



Definition 3.

The [image: there is no content]-spherical uniform probability law on the Borel σ-field [image: there is no content] is defined by:


[image: there is no content]













This relative arc-length measure appears to be quite natural. To see this, let [image: there is no content] be a probability space; a random vector [image: there is no content] follows the common uniform distribution on the [image: there is no content]-circle disc [image: there is no content],


P(X∈M)=μ(M)μ(Kp,q),M∈B(Kp,q),








and [image: there is no content] be the [image: there is no content]-radius of X. Excepting the origin, every point from the interior of [image: there is no content] belongs just to one of the [image: there is no content]-circles [image: there is no content][image: there is no content]; thus, for every [image: there is no content], there is a uniquely-defined [image: there is no content], such that:


[image: there is no content]











Theorem 2.

The random vector [image: there is no content] follows the [image: there is no content]-spherical uniform distribution on [image: there is no content] and is independent of the random variable R, and R has the following density with respect to the Lebesgue measure on the real line:


[image: there is no content]



(12)









Proof. 

The cumulative distribution function of R is:


FR(ρ)=P(X∈⋃r≤ρDp,q(r)Sp,q)=P(X∈Kp,q(ρ))=μ(Kp,q(ρ))/μ(Kp,q)=ρ1/p+1/qI(0,1)(ρ)+I[1,∞)(ρ),








thus the density of R is given by:


[image: there is no content]











Now, let [image: there is no content], then:


[image: there is no content]











Because:


[image: there is no content]








it follows that:


[image: there is no content]








Finally,


[image: there is no content]










[image: there is no content]










[image: there is no content]








☐





Remark 1.

If Y is uniform on a [image: there is no content]-distributed random variable, then [image: there is no content] follows the distribution having the density in (12).





On the one hand, the [image: there is no content]-spherical uniform probability distribution is singular with respect to the Lebesgue measure in the two-dimensional Euclidean space [image: there is no content] but on the other hand, it is absolutely continuous with respect to the Lebesgue measure on the real line. Its density is given therefore [image: there is no content] by:


[image: there is no content]








that is:


[image: there is no content]



(13)







Now, let us define the [image: there is no content]-spherical sector measure on the Borel [image: there is no content]-field of [image: there is no content] as:


[image: there is no content]











According to our consideration in Section 2.3, the [image: there is no content]-spherical uniform distribution allows the [image: there is no content]-spherical sector measure and the [image: there is no content]-arc length representations:


[image: there is no content]








respectively. An additional nonlinear matrix transformed cone measure representation of the [image: there is no content]-spherical uniform distribution is given by:


ωp,q(A)=Φp,q(CPCp,q(A)),A∈B(Sp,q).













3. On the [image: there is no content]-Spherical Generalization of the Gauss–Laplace Law


The following analogue to Theorem 2 is our starting point for introducing here the new general family of [image: there is no content]-spherical distributions.



Theorem 3.

Let a random vector [image: there is no content] follow the [image: there is no content]-spherical distribution law [image: there is no content], and put [image: there is no content]. The random vector [image: there is no content] follows the [image: there is no content]-generalized uniform distribution on [image: there is no content] and is independent of the random variable R, and R has the density with respect to the Lebesgue measure on the real line:


[image: there is no content]



(14)









Proof. 

The cumulative distribution function of R is:


[image: there is no content]










[image: there is no content]











Because of:


[image: there is no content]



(15)




it follows that:


[image: there is no content]











Furthermore, for [image: there is no content]


[image: there is no content]










[image: there is no content]








and


[image: there is no content]










[image: there is no content]








☐





Remark 2.

According to Theorem 3, if [image: there is no content], then X allows the stochastic representation:


[image: there is no content]








where [image: there is no content] follows the [image: there is no content]-spherical uniform distribution, [image: there is no content], and R has the density (14) and is independent of [image: there is no content].





The following definition is well motivated by Remark 2.



Definition 4.

(a) Let [image: there is no content] follow the [image: there is no content]-spherical uniform distribution on the Borel σ-field of the [image: there is no content]-unit circle [image: there is no content], [image: there is no content] and R a non-negative random variable having cumulative distribution function F and characteristic function ϕ and being independent of [image: there is no content], then:


[image: there is no content]



(16)




is said to follow the [image: there is no content]-spherical distribution [image: there is no content]. The vector [image: there is no content] is called the [image: there is no content]-spherical uniform basis and R the generating variate of X. The distribution of X will alternatively be denoted [image: there is no content] if R has density function f.



(b) An arbitrary random vector X taking values in [image: there is no content] is called [image: there is no content]-spherically distributed if there exists a nonnegative random variable R being independent of a [image: there is no content]-spherical uniformly-distributed random vector U, such that [image: there is no content].





Here, [image: there is no content] means that random vector Y is distributed as random vector Z.



Theorem 4.

The characteristic function of a [image: there is no content]-spherically distributed random vector X satisfying the representation [image: there is no content] can be written as:


[image: there is no content]








where [image: there is no content] and [image: there is no content] denote the distribution law induced by the random variable R and the characteristic function of the [image: there is no content]-spherical uniform distribution, respectively.





Proof. 

By definition,


[image: there is no content]








thus


[image: there is no content]











Because R and U are independent,


[image: there is no content]








and by Fubini’s theorem,


[image: there is no content]








☐





Corollary 1.

(a) The distribution of a [image: there is no content]-spherically distributed random vector X is uniquely determined by the distribution of its generating variate R.



(b) If a [image: there is no content]-spherically distributed random vector X has a density, then it is of the form [image: there is no content],


φg;p,q(x)=C(g;p,q)g(|x|p,q),x∈R2,








where [image: there is no content] is a density generating function (dgf) satisfying:


[image: there is no content]








and the normalizing constant allows the factorization:


[image: there is no content]













Proof. 

(a) If [image: there is no content][image: there is no content] with [image: there is no content] and [image: there is no content] being independent of U, and [image: there is no content], then, by Theorem 4, [image: there is no content].



(b) Because the distribution of a [image: there is no content]-spherically distributed random vector [image: there is no content] with nonnegative R being independent of U, [image: there is no content], is already determined by the distribution of R, the density of X is already determined by the density of R. By Fubini’s theorem,


[image: there is no content]








☐





In what follows, we denote the distribution law of a [image: there is no content]-spherically distributed random vector having dgfg by [image: there is no content]. The following theorem deals with a geometric representation of such measures.



Theorem 5.

For every [image: there is no content], [image: there is no content]





Proof. 

Because of: [image: there is no content],


[image: there is no content]











Since [image: there is no content] if and only if [image: there is no content], it follows that:


[image: there is no content]








☐





The geometric measure representation in Theorem 5 will be called a dynamic geometric disintegration of the [image: there is no content]-spherical measure [image: there is no content].



Corollary 2.

Let [image: there is no content] and [image: there is no content]. Then, R follows the density:


[image: there is no content]













Proof. 

Let [image: there is no content]. Theorem 5 applies with [image: there is no content], and R follows the density:


[image: there is no content]








☐





Finally, we note that Corollary 2 generalizes Formula (14). That is, if [image: there is no content] in Corollary 2, then [image: there is no content] and [image: there is no content]




4. Asymmetric [image: there is no content]-Spherical Generalization of the Gauss-Exponential Law


The Gauss-exponential density [image: there is no content] and the Gauss–Laplace density [image: there is no content] are connected through the equation [image: there is no content]. Accordingly, the Gauss-exponential probability of an arbitrary random event from [image: there is no content] can be dealt with by doubling the corresponding Gauss–Laplace probability. Therefore, the Gauss-exponential law can be considered as an asymmetric derivation of the Gauss–Laplace law.



In (Balkema and Embrechts 2007), the exponential component of the Gauss-exponential distribution law arises when a Gaussian vector is subject to a certain conditioning process assuming that this vector belongs to a half space having a positive distance from the origin. As one result of this conditioning process, the domain of definition of a multivariate distribution is restricted to a proper subset. If the conditioning process were to be modified, other asymmetric distributions derived from the Gauss–Laplace law could be of interest.



The possible consequences on the geometric measure representation of a multivariate star-shaped distribution law caused by a restriction of the domain of definition to a proper subset are described in Remark 1 in Richter (2015b). A similar approach can be of interest here.



The two-dimensional exponential distribution may be considered as a restriction of the distribution [image: there is no content] with [image: there is no content] (not considered here) to the domain of definition [image: there is no content]. For a geometric generalization of the multivariate exponential law, we refer to the class of regular simplicially contoured or [image: there is no content]-norm symmetric distributions studied in (Henschel and Richter 2002). Further results for p-spherical distributions with p from [image: there is no content] can be found in (Rachev and Rueschendorf 1991), (Kamiya et al. 2008) and (Richter and Schicker 2016).




5. Simulation


First of all, we recall that the radius component of a uniformly on [image: there is no content] distributed random vector can be simulated according to Remark 1. Numerous others generalized radius distributions may be simulated using various particular methods.



The well-known simulation method in (Box and Muller 1958) was extended to the p-generalized normal distribution in (Kalke and Richter 2013). Similarly, here, we establish a simulation method for arbitrary [image: there is no content]-spherically distributed vectors. According to Theorem 2, the vector [image: there is no content] follows, independently of the variable R, the [image: there is no content]-spherical uniform distribution on [image: there is no content],


(p1/pcospqq(Φ),q1/qsinpqp(Φ))T∼ωp,q.



(17)







By (13), the density of angle [image: there is no content] is given as:


fΦ(ϕ)=pqB(1/p,1/q)|cospq(ϕ)|q−1|sinpq(ϕ)|p−1Npq2(ϕ),0≤ϕ<2π.



(18)







Starting from this representation, one can proceed as described in (Kalke and Richter 2013) and Richter (2015a), Example 9(b), or any of the standard monographs on simulation mentioned there.




6. Discussion


The way of probabilistic modeling developed in this paper is closely related to various challenging mathematical problems. It is well known from the results in (Richter 2014, 2016a, 2016b) and the references given there that representations of star-shaped distributions whose contour-defining star body has a homogeneous Minkowski functional of order one are closely related to suitably-chosen non-Euclidean geometries. Here, we discover that there is again a need to go some steps beyond such geometries and realize the first of them.



Already in the 17th Century, basically starting from the work of Descartes, various coordinate systems played a fruitful role in geometric applications. Nevertheless, it seems that suitably chosen coordinates may serve even these days as a powerful tool for solving nontrivial problems in different areas of mathematics. In the present case, star bodies whose Minkowski functionals are not homogeneous functions of degree one are effectively described for the purposes of representing two-dimensional Gauss–Laplace laws and their [image: there is no content]-spherical generalizations with the help of generalized polar coordinates based on generalized sine and cosine functions.



Starting latest from the work of Leibniz and Newton who founded modern calculus, in many areas of mathematics, one makes use of thin parallel layers when defining and studying certain basic notions. Here, however, small changes of a generalized radius variable related to such a body generate thin layers close to the bodies’ boundary, being nonparallel. To the best of the author’s knowledge, the fundamental measure theoretical problem of understanding the factorization components of cross-sections or disintegrations of the present type seems to be approached here for the first time.



The present work extends the line of interchanging the role that the notions of circle and distance play in comparison with Euclidean geometry, described inter alia in (Richter 2011a, 2011b). Here, the ‘circle’ is given by a density level set modeling a ‘contour line’ of a sample cloud, and the understanding of what is a ‘distance’ leads to a directionally-dependent notion of radius being related to a matrix-vector multiplication. This remains, however, that the question of what is the differential geometric meaning of the newly-introduced [image: there is no content]-generalized arc length measure. Therefore, it is stated here as an open problem.



Finally, we remark that the results in Section 2 allow the following additional representations of the Lebesgue measure, which may be useful in future applications of [image: there is no content]-spherical distributions. For [image: there is no content],


μ(dx)=(1/p+1/q)r1/p+1/q−1drp1/pq1/q1/p+1/q|cospq(ϕ)|q−1|sinpq(ϕ)|p−1dϕNpq2(ϕ)








and for [image: there is no content],


[image: there is no content]











An alternative representation is given for [image: there is no content] by:


μ(dx)=(1/p+1/q)r1/p+1/q−1drt1/p−1(1−t)1/q−1dt.












7. Conclusions


The Gauss-exponential distribution being of particular interest in high risk scenarios can be numerically dealt with now based upon a method newly developed in this paper. This method, moreover, opens new perspectives for studying in the future broad classes of multivariate distributions not just being homogeneous of order one. A detailed and full developement of this distribution theory will further bring together methods at least from measure theory, non-Euclidean differential geometry, isoperimetry, extending ball and sector number functions, defining suitable coordinates, solving partial differential equations, and functional analysis.
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