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Abstract:



Motivated by the EU Solvency II Directive, we study the one-year ruin probability of an insurer who makes investments and hence faces both insurance and financial risks. Over a time horizon of one year, the insurance risk is quantified as a nonnegative random variable X equal to the aggregate amount of claims, and the financial risk as a d-dimensional random vector [image: there is no content] consisting of stochastic discount factors of the d financial assets invested. To capture both heavy tails and asymptotic dependence of [image: there is no content] in an integrated manner, we assume that [image: there is no content] follows a standard multivariate regular variation (MRV) structure. As main results, we derive exact asymptotic estimates for the one-year ruin probability for the following cases: (i) X and [image: there is no content] are independent with X of Fréchet type; (ii) X and [image: there is no content] are independent with X of Gumbel type; (iii) X and [image: there is no content] jointly possess a standard MRV structure; (iv) X and [image: there is no content] jointly possess a nonstandard MRV structure.
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1. Introduction


Ruin theory, as one of the most developed areas in risk theory, mainly focuses on the ultimate ruin probability (RP) as a measurement of solvency of an insurance business. However, property and casualty insurance companies mainly sell short-term insurance contracts such as auto insurance, home insurance, and so on. Then the policyholders do not really care about the ultimate RP, but they are satisfied as long as the insurer is able to cover all qualified claims during the contract year. Moreover, the estimation of the RP depends on valuations of assets and liabilities. As insurers usually prepare their balance sheets and close their books annually, it is natural to check ruin on a yearly time grid. As an important application, the one-year RP is used in evaluation of Solvency Capital Requirement. The Solvency II Directive (2009/138/EC)1 states that “the Solvency Capital Requirement should be determined as the economic capital to be held by insurance and reinsurance undertakings in order to ensure that ruin occurs no more often than once in every 200 cases or, alternatively, that those undertakings will still be in a position, with a probability of at least 99.5%, to meet their obligations to policy holders and beneficiaries over the following 12 months.” See Bauer et al. (2012) and Christiansen and Niemeyer (2014) for in-depth discussions on the issue of calculating Solvency Capital Requirement from the Solvency II Directive.



Consider a one-year insurance risk model. Let [image: there is no content] represent the initial wealth of the insurer at time [image: there is no content], which includes a regulatory initial capital and premiums collected on policies with coverage from [image: there is no content] to [image: there is no content]. Suppose that there are d risk-free or risky assets available for the insurer to make investments, each with an annual return rate [image: there is no content], [image: there is no content]. The restriction [image: there is no content] is to exclude the worst scenario of losing everything invested in the ith asset. Suppose that the insurer invests a proportion [image: there is no content] of its initial wealth in the ith asset, [image: there is no content], where we have excluded short positions. Thus,


[image: there is no content]











The value of the investment portfolio at time [image: there is no content] becomes [image: there is no content]. Further assume that all insurance claims and associated expenses, totaled by a nonnegative random variable X, are paid at time [image: there is no content]. Then the insurer’s wealth at time [image: there is no content] becomes [image: there is no content].



The insurer becomes insolvent if its wealth runs too low. Naturally, the one-year RP is defined by


RP=Pu(1+w⊺R)-X<0,u>0,w∈Σd.



(1)







We point out that, although this may not exactly define the probability of ruin, it indeed measures the likelihood that the insurer is in the insolvency state. This definition is consistent with most of recent works in this literature; see, e.g., Eling et al. (2009) and Asanga et al. (2014).



From the risk management point of view, it is more customary to look at discount factors than returns. Denote by [image: there is no content], …, [image: there is no content] the discount factors of the d individual assets and by [image: there is no content] the overall discount factor of the investment portfolio, which are, respectively,


Yi=11+Ri,i=1,…,d,








and


[image: there is no content]



(2)







In this way, the RP in (1) is reduced to the tail probability of the product of X and [image: there is no content],


[image: there is no content]



(3)







As calculated by Tang and Tsitsiashvili (2003), the random variable X quantifies the insurance risk and the random variables [image: there is no content], [image: there is no content], and [image: there is no content] quantify the financial risks.



For calculating the RP in (1) and its equivalent expression in (3), a closed-form solution is available only under some ideal but usually unrealistic model assumptions on the marginal distributions and the dependence structure. Alternatively, one can employ the crude Monte Carlo (CMC) method to estimate it. However, the true value of the RP must be very small, such as 0.5% as required by the Solvency II Directive, and correspondingly u must be very large. When the RP is about [image: there is no content], a sample of size as large as [image: there is no content] is needed for the coefficient of variation of the CMC estimate to be about 1–2%. See Tang and Yuan (2012) for a related discussion on this issue.



In this paper, we aim at asymptotic estimates for the RP for the case with a large initial wealth u. Throughout the paper we assume that [image: there is no content] possesses a multivariate regular variation (MRV) structure. Exact asymptotic formulas for the RP are derived for the following cases, which essentially cover all important scenarios with regularly varying insurance and financial risks:

	(i)

	
X and [image: there is no content] are independent with X of Fréchet type;




	(ii)

	
X and [image: there is no content] are independent with X of Gumbel type;




	(iii)

	
X and [image: there is no content] jointly possess a standard MRV structure;




	(iv)

	
X and [image: there is no content] jointly possess a nonstandard MRV structure.









In the rest of this paper, first we highlight some preliminaries of max-domains of attraction (MDA) and MRV in Section 2, and then we derive asymptotic formulas of the RP for cases (i) and (ii) in Section 3, and for cases (iii) and (iv) in Section 4.




2. Preliminaries


We need to collect some preliminaries before we are able to state our main results.



2.1. Max-Domain of Attraction (MDA)


In this subsection, we highlight some preliminaries of max-domain of attraction (MDA), a basic concept in univariate extreme value theory, to be used in deriving our main results. Standard textbook treatments of this concept in the context of insurance, finance, and risk management are given by Embrechts et al. (1997) and McNeil et al. (2015), among others.



A distribution function H on [image: there is no content] is said to belong to the MDA of a non-degenerate distribution function [image: there is no content], denoted by [image: there is no content], if


[image: there is no content]








holds for some normalizing constants [image: there is no content] and [image: there is no content], [image: there is no content]. By the classical Fisher–Tippett–Gnedenko theorem, only three choices for [image: there is no content] are possible, namely the Fréchet, Gumbel, and Weibull distributions, which are denoted by [image: there is no content], [image: there is no content], and [image: there is no content], respectively.



The following results give equivalent descriptions of the membership of the three MDAs. These results are well known; the reader is referred to Section 3.3 of Embrechts et al. (1997) for more details. A distribution function H belongs to [image: there is no content] for [image: there is no content] if and only if its upper endpoint [image: there is no content] is infinite and its survival function [image: there is no content] is regularly varying at ∞ with index [image: there is no content], denoted as [image: there is no content], namely, the relation


limx↑∞H¯(xy)H¯(x)=y-γ,y>0,








holds. A distribution function H belongs to [image: there is no content] if and only if the relation


limx↑x^H¯x+ya(x)H¯(x)=e-y,y∈R,








holds for some positive auxiliary function [image: there is no content] on [image: there is no content], where the upper endpoint [image: there is no content] can be finite or infinite. The auxiliary function [image: there is no content] is unique up to asymptotic equivalence and a commonly used choice for [image: there is no content] is the mean excess function,


a(x)=EZ-x|Z>x,x<x^,








where Z is a random variable distributed by H. Moreover, a distribution function H belongs to [image: there is no content] for [image: there is no content] if and only if its upper endpoint [image: there is no content] is finite and [image: there is no content] is regularly varying at [image: there is no content] with index [image: there is no content], namely,


limx↓0H¯(x^-xy)H¯(x^-x)=yγ,y>0.












2.2. Multivariate Regular Variation (MRV)


In this subsection, we highlight some preliminaries of MRV, an important concept in multivariate extreme value theory, to be used in deriving our main results. Since its introduction by de Haan and Resnick (1981), this concept has been extensively applied to many topics in insurance, finance, and risk management. To deal with multivariate extreme risks, one needs to model both the possibly enormous sizes of and the dependence between the risks. In this regard, MRV provides an ideal modeling framework, which models both marginal tails and asymptotic dependence in a unified manner and provides an explicit approximation to the tail of the joint distribution. For thorough theoretical discussions on MRV, we refer the reader to Resnick (1987), Resnick (2007), and Rüschendorf (2013).



Consider a random vector [image: there is no content] consisting of d nonnegative risk variables. Assume that the marginal distributions [image: there is no content], [image: there is no content], are tail equivalent in the sense that the relations


limx→∞Hi¯(x)H¯(x)=ci,i=1,…,d,



(4)




hold for some distribution function H on [image: there is no content] and some positive numbers [image: there is no content]. The vector [image: there is no content] is said to have a multivariate regularly varying tail if there exist a positive normalizing function [image: there is no content] monotonically increasing to ∞ and a limit Radon measure [image: there is no content] not identically 0 such that, as [image: there is no content],


xPZb(x)∈·→vν(·)on[0,∞]∖{0}.



(5)







In this relation, the notation [image: there is no content] stands for vague convergence; in other words, for every Borel set A in [image: there is no content] away from [image: there is no content] with boundary [image: there is no content] of [image: there is no content] measure zero, [image: there is no content], we have


[image: there is no content]











The definition of MRV implies that the limit measure [image: there is no content] is homogeneous in the sense that there exists some [image: there is no content] such that the relation


[image: there is no content]



(6)




with [image: there is no content], holds for any [image: there is no content] and any Borel set [image: there is no content]; see (Resnick 2007, p. 178).



The normalizing function [image: there is no content] is not unique, but different choices may result in limit measures that differ by a constant factor. Commonly, [image: there is no content] is chosen to be [image: there is no content], based on which relation (5) can be rewritten as


xPZH←(1-1/x)∈·→vν(·)on[0,∞]∖{0}.



(7)







Here and hereafter, for a non-decreasing function f on [image: there is no content], its càglàd inverse is defined by


[image: there is no content]








where we follow the usual convention [image: there is no content]. Furthermore, as discussed by Tang and Yuan (2013), relation (7) is equivalent to


1H¯(x)PZx∈·→vν(·)on[0,∞]∖{0}.



(8)







We shall follow the style of relation (8) in defining a standard MRV structure, and we denote it by [image: there is no content] depending on the context.



Some comments on the limit measure [image: there is no content] follow. First, the information of asymptotic dependence in the upper-right tail of [image: there is no content] is contained in the limit measure [image: there is no content]. Plugging the set [image: there is no content] into relation (8) yields


[image: there is no content]











To capture the common impact on insurance and financial risks of a certain external macroeconomic environment, it is often assumed that [image: there is no content], which means that the components of [image: there is no content] exhibit large joint movements or, in other words, are asymptotically dependent. Second, it is easy to see that the constants [image: there is no content] in (4) can be expressed as


ci=ν(Ai),i=1,…,d,








where [image: there is no content] and [image: there is no content] denotes the vector with the ith element being 1 and the other elements being ∞.



Next we introduce the concept of nonstandard MRV. A nonnegative random vector [image: there is no content] is said to possess a nonstandard MRV structure if there exist normalizing functions [image: there is no content] monotonically increasing to ∞, [image: there is no content], and a limit Radon measure [image: there is no content] not identically 0 such that, as [image: there is no content],


xPZ1b1(x),…,Zdbd(x)∈·→vν(·)on[0,∞]∖{0}.



(9)







The nonstandard MRV given by relation (9), in comparison to the standard MRV given by (5), allows different normalizing functions for different components, and hence enables to model the case with multiple risks having different tails. By the way, the normalizing functions [image: there is no content], [image: there is no content], are necessarily regularly varying at ∞ but with different indices. See Section 6.5.6 of Resnick (2007) for more discussions on the concept of nonstandard MRV.



The following lemma is excerpted from Tang and Xiao (2017), which establishes the homogeneity of the limit measure [image: there is no content] of the nonstandard MRV. For two vectors [image: there is no content] and [image: there is no content] in [image: there is no content], the operation [image: there is no content] represents their Hadamard product with elements given by [image: there is no content], [image: there is no content].



Lemma 1.

Suppose that the nonnegative random vector [image: there is no content] possesses a nonstandard MRV structure with a limit measure ν and normalizing functions [image: there is no content] for some [image: there is no content], [image: there is no content]. The relation


[image: there is no content]








with [image: there is no content], holds for any [image: there is no content] and any Borel set [image: there is no content].





Clearly, if all [image: there is no content], [image: there is no content], are identical to some [image: there is no content], then the homogeneity described by Lemma 1 reduces to that of a standard MRV structure as described by (6) above.





3. Independent Cases


In the rest of this paper, unless otherwise stated, all limit relations are according to [image: there is no content] or [image: there is no content] depending on the context. For two positive functions [image: there is no content] and [image: there is no content], we write [image: there is no content] if [image: there is no content]. Following the notation in Section 1, denote by X the aggregate amount of claims, by [image: there is no content] the discount factor of the ith individual asset, [image: there is no content], and by [image: there is no content], [image: there is no content], the overall discount factor of the investment portfolio. Furthermore, denote by F, [image: there is no content], and [image: there is no content] their distribution functions, respectively. We simply call X the insurance risk and call [image: there is no content], [image: there is no content], and [image: there is no content] the financial risks.



In this section we consider the case with independent insurance and financial risks. This independence assumption can be justified by the fact that the occurrence of perils, such as natural catastrophes and car accidents, is in general uncorrelated with events in the broad economy, such as stock market and interest rate movements. Actually, such an assumption has been widely made in the literature; see, e.g., Tang and Tsitsiashvili (2003), Nowak and Romaniuk (2013), and Asanga et al. (2014).



3.1. The Fréchet Case


In the following theorem we assume [image: there is no content] for some [image: there is no content] or [image: there is no content] for some [image: there is no content], indicating a univariate regularly varying tail of the insurance risk or a multivariate regularly varying tail of the financial risks, respectively. For [image: there is no content], we consider the asymptotically dependent case, which as stated before reflects the common impact on financial risks of the external macroeconomic environment.



Theorem 1.

Assume that X and [image: there is no content] are independent of each other, and let [image: there is no content] be arbitrarily fixed.

	(a) 

	
If [image: there is no content] and [image: there is no content] for some [image: there is no content] and all [image: there is no content], then


[image: there is no content]



(10)








	(b) 

	
If [image: there is no content] with [image: there is no content] satisfying [image: there is no content] and [image: there is no content] for some [image: there is no content], then [image: there is no content] and


[image: there is no content]








where [image: there is no content].











Proof. 

(a) Recall relation (2) and notice the convexity of the function [image: there is no content] for [image: there is no content]. We have


[image: there is no content]











Then relation (10) follows straightforwardly by applying the well-known Breiman’s theorem to relation (3). See Breiman (1965) for the original version of this theorem and see Cline and Samorodnitsky (1994) and Proposition 7.5 of Resnick (2007) for restatements.



(b) Starting from relation (2), one sees that


[image: there is no content]











For every [image: there is no content], by Lemma A.1 of Shi et al. (2017), the boundary [image: there is no content] has [image: there is no content] measure zero. Thus, it follows from the assumption [image: there is no content] that


[image: there is no content]








where [image: there is no content] is guaranteed by the condition [image: there is no content]. Since [image: there is no content] necessarily holds by [image: there is no content], so does [image: there is no content]. Thus, [image: there is no content]. Finally, applying Breiman’s theorem to relation (3) again, we obtain


[image: there is no content]











This completes the proof. ☐





We give a remark on the application of Theorem 1(a) in the mean-RP optimization problem, where the insurer attempts to make an investment choice—seeking the lowest RP for a given expected return or seeking the highest expected return for a given RP. Given an i.i.d. sample Xi,Yi,i=1,…,n of the random vector [image: there is no content], relation (10) proposes an asymptotic estimate of the RP, that is,


[image: there is no content]








which is infinitely differentiable and convex as a function of the investment strategy [image: there is no content]. Hence, after replacing the RP by its asymptotic estimate [image: there is no content] in the mean-RP optimization problem, standard techniques of convex optimization can be applied straightforwardly to find the optimal investment strategy.




3.2. The Gumbel Case


In this subsection, we assume that [image: there is no content]. As described by Embrechts et al. (1997), [image: there is no content] is a really large class of distributions with very different tail behaviors, ranging from moderately heavy (such as lognormal) to light (such as normal), or even with a bounded support. Hence, it serves as an ideal distribution class for modeling purposes in insurance and finance.



Moreover, we allow the investment portfolio to be more heterogeneous. Under modern insurance regulatory frameworks, insurers usually invest a large proportion of their wealth into short-term low-risk assets such as money market funds and sovereign bonds. Graph 14 of EIOPA 2011 report2 on the fifth quantitative impact study for Solvency II displays a typical decomposition of the investment portfolio of an insurer in Europe. In view of this, we assume that the investment portfolio consists of both risk-free assets with deterministic nonnegative returns and risky assets with stochastic returns such that the corresponding discount factors possess an MRV structure.



Precisely, denote by I the index set of those risk-free assets and by [image: there is no content] the index set of those risky assets. To avoid triviality, assume that both I and J are non-empty and that at least one of [image: there is no content], [image: there is no content], is nonzero. Each risk-free asset [image: there is no content] yields a deterministic annual return rate [image: there is no content], while each risky asset [image: there is no content] yields a stochastic annual return rate [image: there is no content]. It follows that


Yw=11+w⊺R=1∑i∈Iwi(1+ri)+∑j∈Jwj(1+Rj),w∈Σd.











Then [image: there is no content] is bounded from above by [image: there is no content]. Further assume that the vector of corresponding financial risks [image: there is no content] possesses [image: there is no content] with [image: there is no content] satisfying [image: there is no content].



Theorem 2.

Assume that X and [image: there is no content] are independent of each other, that X is distributed by [image: there is no content] with an auxiliary function [image: there is no content], and that the above-mentioned conditions on the investment portfolio are in force. Then it holds for every [image: there is no content] that


[image: there is no content]








where [image: there is no content].





Proof. 

First, we show [image: there is no content] with an upper endpoint [image: there is no content]. For this purpose we derive


PYw>y^w-u-1=P1y^w-1+∑j∈JwjYj-1>y^w-u-1=P∑j∈JwjYj-1-1>y^w-u-1-1-y^w-1-1.











The proof of Theorem 1(b) shows that [image: there is no content] implies [image: there is no content]. In addition,


[image: there is no content]











It follows that


PYw>y^w-u-1∼y^w-2βP∑j∈JwjYj-1-1>u=y^w-2βPYJ∈uAw*∼y^w-2βνY*(Aw*)G¯u.



(11)







In the last step of (11), the verification of [image: there is no content] can be done by using Lemma A.1 of Shi et al. (2017), and [image: there is no content] is guaranteed by the condition [image: there is no content]. This shows that [image: there is no content], as desired.



Next, we apply Theorem 3.1(a) of Hashorva et al. (2010) to obtain


[image: there is no content]











Note that, by relation (11),


[image: there is no content]











Plugging this into the above ends the proof. ☐







4. Dependent Cases


Recently, discussions about the convergence of the insurance and financial markets have emerged in the insurance literature; see Cummins and Weiss (2009) and references therein. For example, to hedge against catastrophe risk, insurers and reinsurers now securitize their insurance risk and transferring it to the capital market using insurance-linked securities such as catastrophe bonds and industry loss warranties. This yields interconnection between the insurance and financial markets, and hence expedites the convergence of the two markets. Motivated by this, in this section we assume that the insurance risk variable X and the financial risk vector [image: there is no content] jointly possess a standard or nonstandard MRV structure so as to allow for asymptotic dependence between them.



4.1. A Standard MRV Case


Theorem 3.

Assume that the [image: there is no content] dimensional risk vector [image: there is no content] possesses [image: there is no content], and let [image: there is no content] be arbitrarily fixed. Then


[image: there is no content]



(12)




where [image: there is no content].





Proof. 

Starting from relation (3), we derive


[image: there is no content]











As before, the verification of [image: there is no content] can be done by using Lemma A.1 of Shi et al. (2017). Thus, by relation (8), we have


[image: there is no content]











This completes the proof. ☐





It is possible that [image: there is no content], for which case relation (12), while still valid, can no longer capture the asymptotic behavior of the RP. Nevertheless, this happens only if the the components of [image: there is no content] are asymptotically independent, that is,


[image: there is no content]











In other words, for the asymptotically dependent case (that is, [image: there is no content]), which is of particular interest for our purpose, relation (12) gives an asymptotic formula for the RP.




4.2. A Nonstandard MRV Case


The standard MRV assumption in the preceding subsection implies equivalent tails of the insurance risk X and the financial risks [image: there is no content], [image: there is no content], which is not necessarily true in practice. In this subsection, we extend the study to a nonstandard MRV structure, which allows X and [image: there is no content] to have different tails.



Theorem 4.

Assume that the [image: there is no content] dimensional risk vector [image: there is no content] possesses the following nonstandard MRV structure: for some limit measure ν on [image: there is no content] and some distribution functions F and G on [image: there is no content] with unbounded supports, as [image: there is no content],


[image: there is no content]








Then it holds for every [image: there is no content] that


[image: there is no content]








where [image: there is no content] is identical to the one in Theorem 3 and [image: there is no content] solves


[image: there is no content]



(13)









Proof. 

Still starting from (3) we derive, for arbitrarily fixed [image: there is no content] and all large u,


RP=PXF←(1-1/u*)YwG←(1-1/u*)>uF←(1-1/u*)G←(1-1/u*)≤PXF←(1-1/u*)YwG←(1-1/u*)>1-ε=PXF←(1-1/u*),YG←(1-1/u*)∈1-εAw.











The same as in the proof of Theorem 3, the set [image: there is no content] has a boundary of [image: there is no content] measure 0. Thus,


[image: there is no content]











By Lemma 1 and the arbitrariness of [image: there is no content], we have


[image: there is no content]











The other inequality can be established similarly and this completes the proof. ☐





Two remarks on Theorem 4 follow. First, the assumed nonstandard MRV structure implies that the components of [image: there is no content] have marginal tails equivalent to [image: there is no content]. Second, both normalizing functions [image: there is no content] and [image: there is no content] are necessarily regularly varying, though we do not need to specify their indices here. Thus, the solution [image: there is no content] to the asymptotic Equation (13) exists and is unique in the asymptotic sense.
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