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Abstract: Scatter plots of multivariate data sets motivate modeling of star-shaped distributions
beyond elliptically contoured ones. We study properties of estimators for the density generator
function, the star-generalized radius distribution and the density in a star-shaped distribution
model. For the generator function and the star-generalized radius density, we consider
a non-parametric kernel-type estimator. This estimator is combined with a parametric estimator for
the contours which are assumed to follow a parametric model. Therefore, the semiparametric
procedure features the flexibility of nonparametric estimators and the simple estimation and
interpretation of parametric estimators. Alternatively, we consider pure parametric estimators
for the density. For the semiparametric density estimator, we prove rates of uniform, almost
sure convergence which coincide with the corresponding rates of one-dimensional kernel density
estimators when excluding the center of the distribution. We show that the standardized density
estimator is asymptotically normally distributed. Moreover, the almost sure convergence rate of
the estimated distribution function of the star-generalized radius is derived. A particular new
two-dimensional distribution class is adapted here to agricultural and financial data sets.

Keywords: star-shaped distributions; antinorm contoured distributions; norm contoured
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1. Introduction

The classes of multivariate Gaussian and elliptically contoured distributions have served as
the probabilistic basis of many multivariate statistical models over a period of several decades.
Accounts of the theory of elliptically contoured distributions may be found in [1–3]. The book [4]
by Fang and Anderson contains a big chapter about statistical inference of elliptically contoured
distributions. The theory of elliptically contoured distributions including applications to portfolio
theory is presented in the monograph by [5] Gupta et al. On combining the advantages of several
estimators, semiparametric density estimators for elliptical distributions were derived in papers [6–8]
by Stute and Werner, by Cui and He and by Liebscher. In [9] Battey and Linton considered a density
estimator for elliptical distributions based on Gaussian mixture sieves. The performance of their
estimators heavily depends on how the density can be approximated by a mixture of normal
distributions. Scatter plots of multivariate data sets, however, motivate modeling of star-shaped
distributions beyond elliptically contoured ones.

The more flexible star-shaped densities were studied in [10] and later in [11]. The general structure
of their normalizing constant given a density generating function was discovered, a geometric measure
representation and, based upon it a stochastic representation were derived, and a survey of applications
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of such densities was given in [12]. Moreover, two-dimensional non-concentric elliptically contoured
distributions are introduced there and, based upon two-dimensional star-shaped densities, a universal
star-shaped generalization of the univariate von Mises density is derived. These results are further
studied in detail in [13] for several particular classes. The big classes of norm and antinorm contoured
distributions, being particular cases of star-shaped distributions, are considered in [14,15] for dimension
two and for arbitrary finite dimension, respectively. In this paper we study several of those classes
of distributions for arbitrary finite dimension and introduce a particular new class of distributions
for dimension two. The rather general class of distributions considered in the present paper covers
distributions with convex as well as such with non-convex contours.

The main goal of this paper is to develop estimation procedures for fitting multivariate generalized
star-shaped distributions. The semiparametric procedure combines the flexibility of nonparametric
estimators and the simple estimation and interpretation of parametric estimators. Since we apply
nonparametric estimation to a univariate function, we avoid the disadvantages of nonparametric
estimators in connection with the curse of dimensionality. The semiparametric approach of this
paper is based on that in the earlier paper [7] on elliptical distributions but uses partially weaker
assumptions. Alternatively, we consider a pure parametric method. In both cases, a parametric model
is assumed for the density contours given by the star body and the Minkowski functional of it. For the
semiparametric method, we assume that the contours are smooth, more precisely, that the Minkowski
functional is continuously differentiable. The parameters are estimated using a method of moments.
The star generalized radius density is estimated nonparametrically by use of a kernel density estimator,
or parametrically.

The paper is structured as follows. The class of continuous star-shaped distributions and several
of its subclasses are considered in Section 2. Section 3 deals with the estimation of the density and
the star-generalized radius distribution. In Section 3, the statements on convergence rates and on the
asymptotic normality of the density estimator as well as on the convergence rate of the estimated
distribution function of the generalized radius are provided. First the case of a given star body
is considered, later the more general case of a parametrized star body is taken into consideration.
The particular Section 3.4 surveys on the one hand to a certain extent examples where different
subclasses of star-shaped distributions appear in practice and deals on the other hand with applications
of the methods developed here to the analysis of two-dimensional agricultural and financial data.
The proofs can be found in Section 4.

2. Continuous Star-Shaped Distributions

2.1. The General Distribution Class

Throughout this paper, K ⊂ Rd denotes a star body, i.e., a non-empty star-shaped set that is
compact and is equal to the closure of its interior, having the origin as an interior point. The Minkowski
functional of K is defined by

hK(x) = inf{λ ≥ 0 : x ∈ λK} for x ∈ Rd.

The boundary of K is just the set {(u, v)T : hK((u, v)T) = 1}. Further we find a ball {y ∈ Rd :
‖y‖ ≤ r} which covers K where ||.|| denotes Euclidean norm. Hence hK(x ‖x‖−1) ≥ 1/r and

hK(x) ≥ 1
r
‖x‖ . (1)

The function hK is assumed to be homogeneous of degree one,

hK(λx) = λhK(x) for x ∈ Rd, λ > 0,

and to satisfy a further assumption.



Risks 2016, 4, 44 3 of 37

A countable collection F = {C1, C2, ...} of pairwise disjoint sectors (closed convex cones Cj
containing no half-space, with non-empty interior and vertex being the origin 0d) such that Rd =

⋃
j

Cj

will be called a fan. By Bd we denote the Borel-σ-field in Rd and by S, the boundary of K. We denote
Sj = S ∩ Cj, Sj ∩Bd = BS,j and BS = σ{BS,1,BS,2, ...}. We shall consider only star bodies K and sets
A ∈ BS satisfying the following condition.

Assumption 1. The star body K and the set A ∈ BS are chosen such that for every j the set

G(A ∩ Sj) = {ϑ ∈ Rd−1 : ∃η with θ = (ϑT , η)T ∈ A ∩ Sj}

is well defined and such that for every ϑ = (ϑ1, ..., ϑd−1)
T ∈ G(A ∩ Sj) there is a uniquely determined η > 0

satisfying hK((ϑ1, ..., ϑd−1, η)T) = 1.

A star body K satisfying this assumption will be called for short an A1-star-body.
Let g : [0,+∞)→ [0,+∞) be a nonnegative function which fulfills the condition

0 <
∫
Rd

g(hK(x))dx < ∞.

Such function is called a density generating function (dgf).
We consider the class of continuous star-shaped distributions of random vectors X taking values

in Rd:

CStSh(d) = {Φg,K,µ: µ ∈ Rd, K is an A1-star-body with 0d ∈ int K, g is a dgf}

where int K means the interior of K. Suppose that the distribution law Φg,K,µ has the density

ϕg,K,µ(x) = C(g, K) g (hK(x− µ)) for x ∈ Rd, (2)

where C(g, K) is a suitable normalizing constant. Moreover, K is called the contour defining star body
of ϕg,K,µ.

We consider the random vector X having the density (2) (in symbols X ∼ Φg,K,µ). According to
Theorem 8 in [12], this random vector has the representation

X− µ
d
= RU, (3)

where the star-generalized radius variable R = hK(X − µ) and the star-generalized uniform basis
vector U = 1

R (X− µ) are independent.
Moreover, R has the density

fR(r) =
1

I(g, d)
rd−1g(r) (4)

with I(g, d) =
∫ ∞

0 rd−1g(r)dr, and U has a star-generalized uniform probability distribution on the
boundary of K, i.e., P(U ∈ A) = OS(A)/OS(S) for A ∈ BS. According to [12], OS means the
star-generalized surface measure which is a non-Euclidean one unless for S being the Euclidean
sphere, and which is well defined if Assumption 1 is fulfilled. Note that OS(S) = d · vol(K).
If limr→0+0 g(r) > 0 is finite, then in view of (4), R takes values in the neighbourhood of zero with
a rather small probability. This behaviour is called the volcano effect and is the stronger the higher the
dimension is. The density (2) may be written as

ϕg,K,µ(x) =
1

OS(S)
(hK(x− µ))1−d fR (hK(x− µ)) , x ∈ Rd. (5)
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Estimating such density may be studied under various assumptions concerning the degree of
knowledge on the groups of parameters K, hK,OS(S) and fR, as well as µ. Let X = (X(1), . . . , X(d))T

and U = (U1, . . . , Ud)
T . The next lemma gives helpful information about the mean and the covariances.

Here and in what follows 1{A} denotes the indicator function of an event A.

Lemma 1. If ER2 < +∞ and K is symmetric w.r.t. the origin, then

EX = µ, and Cov(X(j), X(k)) = EUjUk ER2 for j, k = 1, . . . , d.

Proof. In view of (3), we have first to show that EU = 0. Because of the symmetry of K, U has the
same distribution as −U, and Uj = 0 with probability 0 for each j. Thus we obtain

EX-µ = ER EU = ER (E (U 1 {U1 > 0}) +E (U 1 {U1 < 0}))
= ER (E (U 1 {U1 > 0}) +E (−U 1 {U1 < 0})) = 0.

Moreover, it follows that

Cov(X(j), X(k)) = E
(

R2UjUk

)
= EUjUk ER2.

The general approach followed here includes non-convex bodies which can occur in applications.
Obviously, hK(U) = 1 and the distribution of the random vector U is concentrated on the set {u ∈ Rd :
hK(u) = 1}.

2.2. A Class of Two-Dimensional Distributions Whose Contour Defining Star Bodies Are Squared Sine
Transformed Euclidean Circles

We define α(u, v) ∈ (−π, π] to be the angle in radians between the positive x-axis and the line
through the point (u, v) and the origin: α(u, v) = arctan(v/u) for u > 0, α(u, v) = arctan(v/u) +
sgn(v)π for u < 0, α(0, v) = π

2 · sgn(v). The Minkowski functional of any two-dimensional star body
K can then be written as

hK((u, v)T) =
√

u2 + v2H(α(u, v)),

where H : (−π, π] → (0, ∞) is a bounded function. In the following examples we consider
two-dimensional star bodies with smooth boundaries; i.e., H is differentiable. Here, the following
generator function is used

g0(r) =
1 + r

3
e−r

which corresponds to the star-generalized radius density of mixed Erlang type

f0R(r) =
r + r2

3
e−r.

Example 1. Here we consider the Minkowski functional

hK((u, v)T) =
√

u2 + v2
(

1 + a
v2

u2 + v2

)
=
√

u2 + v2
(

1 + a sin2 α(u, v)
)

where a ∈ (−1,+∞) is a parameter. The Figures 1–4 show the contour lines of the boundary of the body for
several values of a and the resulting density for one choice of a. These figures show that the distribution class
includes densities with convex as well as with non-convex contours.
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Figure 1. Plot of the boundaries of K in the cases a = 10 (solid line), a = 3 (dashed line), a = 1
(dotted line) and a = 0.3 (dashed/dotted line).

Figure 2. Plot of the boundaries of K in the cases a = 10 (solid line), a = 3 (dashed line), a = 1
(dotted line) and a = 0.3 (dashed/dotted line).

Figure 3. Plot of the boundaries of K in the cases a = −0.8 (solid line), a = −0.6 (dashed line), a = −0.4
(dotted line), a = −0.2 (dashed/dotted line).
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Figure 4. Contour plot of the density of ϕg,K,µ for a = −0.8 and levels 0.39, 0.38, · · · 0.19.

Example 2. We consider the star body K with Minkowski functional

hK((u, v)T) =
√

u2 + v2

(
1 + a1

(u− a2v)2

u2 + v2

)
,

where a1 and a2 ∈ R are parameters such that 1 + a1
(
1 + a2

2
)
> 0, and

H(α) = 1 + a1
(1− a2 tan α)2

1 + tan2 α
.

This star body arises from a rotation of K in Example 1 by an angle α0 where a2 = 1/ tan α0.
In Figures 5 and 6 the boundaries of (multiples of) K are depicted.

Figure 5. Plot of the boundaries of K for a2 = 2 in the cases a1 = 10 (solid line), a1 = 3 (dashed line),
a1 = 1 (dotted line) and a1 = 0.3 (dashed/dotted line).
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Figure 6. Contour plot of the density ϕg,K,µ for a1 = 3 and levels as in Figure 4.

A specific motivation for considering a star body K as in Example 2 arises when studying the
sample cloud in Figure 10.

2.3. Norm-Contoured Distributions

Specific norm-contoured distributions were studied in several papers which are in part surveyed
in Richter [14]. A geometric measure representation of arbitrary norm contoured distributions is
proved in [15]. The class of all norm-contoured distributions is denoted, according to these papers,
by NC. The class NC is a subclass of the class StSh of star-shaped distributions. Here, we consider the
subclass of continuous norm-contoured distributions CNC.

It is well known that there is a one-to-one correspondence between the class of convex bodies
being symmetric w.r.t. the origin, where x ∈ K implies −x ∈ K, and the class of norms in Rd. If K
is any such symmetric convex body then hK(x) = ‖x‖ where ‖.‖ is the uniquely determined norm.
On the other hand, if ‖.‖ is any norm, then K = {x : ‖x‖ ≤ 1} is the corresponding convex symmetric
body having the origin as interior point, and ‖x‖ = hK(x).

Throughout this section, let ‖.‖ be any norm and K = {x : ‖x‖ ≤ 1}, and let the density of
a norm-contoured distribution be

ϕ(x; g, ‖.‖ , O, µ) = C(g, ‖.‖) g
(∥∥∥O−1(x− µ)

∥∥∥) for x ∈ Rd

where O is any orthogonal d × d-matrix. Because any rotated or mirrored norm-ball is again
a norm ball we shall restrict our attention to the case O being the unit matrix and will write then
X ∼ CNC(g, ‖.‖ , µ). In the present situation, S = {x : ‖x‖ = 1} is considered to be the unit sphere in
the Minkowski space (Rd, ‖.‖).

In the following we consider several specific cases of norms and the corresponding
norm-contoured distributions.

Example 3. If K is the Euclidean unit ball then hK is the Euclidean norm and (2) defines a shifted
spherical distribution.

Example 4. Let A ∈ Rd,d be a d× d-matrix satisfying det(A) > 0, ‖.‖◦ any norm, and

‖x‖ = ‖Ax‖◦
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another norm. If X is ‖.‖◦-contoured distributed and A is a symmetric and positive definite then we call the
distribution of AX an elliptically generalized ‖.‖◦-contoured distribution.

Example 5. Let a = (a1, . . . , ad)
T be a vector with ai > 0, i = 1, ..., d and A = diag(1/a1, . . . , 1/ad). If, in

Example 4, ‖.‖◦ is the p-norm, p ≥ 1, then the corresponding norm ‖.‖ is

‖x‖ =
(

d

∑
i=1

∣∣∣∣ xi
ai

∣∣∣∣p
)1/p

.

The distribution of X is called an axes aligned p-generalized elliptically contoured distribution.

Example 6. Assume that data are grouped into k groups, and let k > 1, n = n1 + . . . + nk, ni ≥ 1, pi ≥ 1,
i = 1 . . . k and

hK(x) =
k

∑
j=1

(
d

∑
i=1

∣∣∣∣ xi
ai

∣∣∣∣pj
)1/pj

.

K may be called then an (a, p1, . . . , pk)-generalized axis-aligned ellipsoid and we will say that X
follows a grouped (a, p1, . . . , pk)-generalized axis-aligned elliptically contoured distribution in Rn.

Example 7. In the case of two-dimensional observations, let Pn denote the polygon having the n vertices
In,i = (cos

( 2π
n (i− 1)

)
, sin

( 2π
n (i− 1)

)
)T , i = 1, . . . , n, n ≥ 3. The convex body which is circumscribed by

Pn will be denoted by K. Then hK is a norm defined in R2 and ϕg,K,0 a polygonally contoured density which was
used implicitly in [13] to construct a corresponding geometric generalization of the von Mises density. For the
more general class of multivariate polyhedral star-shaped distributions, see [16].

Example 8. Given a homogeneous polynomial p of degree k with p(|x1|, . . . , |xd|) ≥ 0, the function
N(x) := (p(|x1|, . . . , |xd|))1/k defines a norm in Rd if it is subadditive. An example for a homogeneous
polynomial of degree 3 and d = 2 is p(x1, x2) = x3

1 + x3
2 + 2x2

1x2.

2.4. Antinorm-Contoured Distributions

A function g : Rn → [0, ∞) which is continuous, positively homogeneous, non-degenerate
and superadditive in some fan is called an antinorm in [17]. Thereby, g is called superadditive in
a sector C or in the fan F if it satisfies the reverse triangle inequality in C or in every sector of the
fan F, respectively.

Example 9. If the (a, p)-functional |.|a,p is defined as ‖.‖ in Example 5 but with p ∈ (0, 1) then it is
an antinorm.

For geometric measure representations of elements from a big class of continuous antinorm
contoured distributions we refer to [14,15]. For figures of two-dimensional antinorm balls, see [17]).

2.5. Continuous Non-Concentric Elliptically Contoured Distributions

Let a = (a1, . . . , ad)
T , ai > 0; i = 1 . . . n and Ka = {x ∈ Rd : ∑d

i=1 (xi/ai)
2 ≤ 1}. If e = (e1, ..., ed)

T

satisfies ∑d
i=1 (ei/ai)

2 < 1 then Ka,e = Ka − e is a star body having the origin as an interior point, and

rKa,e =

{
x ∈ Rd :

d

∑
i=1

(
xi + rei

rai

)2
≤ 1

}
= Kra,re.

Moreover, r1Ka,e ⊂ r2Ka,e for r1 ≤ r2. A Minkowski functional hKa,e which is homogeneous of
degree one will be called a non-concentric elliptically contoured function and ϕg,Ka,e ,µ a non-concentric
elliptically contoured density. If O : Rd → Rd denotes an arbitrary orthogonal transformation then
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hOKa,e is also a non-concentric elliptically contoured function which is homogeneous of degree one.
For the special case of d = 2 see [12,13].

3. Estimation for Continuous Star-Shaped Distributions

3.1. Parametric Estimators

Let X1, . . . , Xn be a sample of independent random vectors, where Xi ∼ Φg,K,µ and
Xi = (Xi1, . . . , Xid)

T . Assume that the star body K is given and Assumption 1 is satisfied. From now
on, we suppose that K is symmetric w.r.t. the origin. We consider a model family { fθ : θ ∈ Θ1}
of continuously differentiable densities for the star-generalized radius R on [0, ∞), see (4).
Θ = Θ1 ×Θ2, Θ1 ⊂ Rq, Θ2 ⊂ Rd is the parameter space which is assumed to be compact. Suppose that
hK(.) is a continuous function.

Next we give two reasonable model classes for fθ :

(1) Modified exponential model. θ = τ ∈ (0,+∞),

fτ(r) =
1

(d + 1)(d− 1)!
τ−drd−1

(
1 +

r
τ

)
e−r/τ for r > 0

with the expectation ∫ ∞

0
r fθ(r) dr =

d(d + 2)τ
d + 1

. (6)

(2) Weibull model. θ = (τ, a) ∈ (0,+∞)× (1,+∞),

fθ(r) =
a

τdΓ(d/a)
rd−1e−(r/τ)a

for r > 0

with the expectation ∫ ∞

0
r fθ(r) dr =

Γ( d+1
a )τ

Γ( d
a )

.

Let fR ∈ { fθ : θ ∈ Θ1}. In this section the aim is to fit the specific parametric model for the
density ϕg,K,µ to the data by estimating the parameters θ and µ where ϕg,K,µ is given according to (5)
and (4) with fR = fθ . Therefore, the two models [1] and [2] fulfill the condition limr→0+0 g′(r) = 0
which ensures the differentiability of the density ϕg,K,µ at zero.

For the statistical analysis we suppose that the data X1, . . . , Xn are given and these data comprise
independent random vectors having density ϕg,K,µ. Suppose that θ and µ are interior points of Θ1 and
Θ2, respectively. The concentrated log likelihood function (constant addends can be omitted) reads
as follows

L(θ, µ) =
n

∑
i=1

(ln fθ(hK(Xi − µ)) + (1− d) ln hK(Xi − µ)) .

We introduce the maximum likelihood estimators θ̂n, µ̂n of θ and µ as joint maximizers of the
likelihood function:

L(θ̂n, µ̂n) = max
(θ,µ)∈Θ

L(θ, µ).

Under appropriate assumptions, the maximum-likelihood-estimator are asymptotically normally
distributed (cf. Theorem 5.1 in [18], p. 463)

√
n(θ̂n − θ, µ̂n − µ)T d−→ N (0, I(θ, µ)−1) for n→ ∞,
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where d−→ is the symbol for convergence in distribution and the information matrix is given by
I(θ, µ) = (Iij(δ))i,j=1...d+q with δT = (δ1, . . . , δd+q) = (θT , µT) and

Iij(δ) = −E
(

∂

∂δi∂δj
(ln fθ(hK(Xk − µ)) + (1− d) ln hK(Xk − µ))

)
.

3.2. Nonparametric Estimators without Scale Fit

In the present section we deal with nonparametric estimators in the context of star-shaped
distributions. This type of estimators is of special interest if no suitable parametric model can be found.
The cdf of R will be denoted by FR.

3.2.1. Estimating µ and FR

Let X1, . . . , Xn be the sample as in Section 3.1. In the following the focus is on the estimation of
the parameter µ and the distribution function of the generalized radius R.

First we choose an estimator for µ. For this purpose we assume that E|X| < +∞. In view of
Lemma 1,

µ̂n =
1
n

n

∑
i=1

Xi (7)

is an unbiased estimator for the unknown parameter µ. Define Ri = hK(Xi − µ) and R̂i = hK(Xi − µ̂n)

for i = 1, . . . , n. Using this definition, an estimator for the cdf of R = hK(X − µ) (cf. (3)) is given by
the formula

F̂R
n (r) =

1
n

n

∑
i=1

1
{

R̂i ≤ r
}

(8)

for r ≥ 0. At a first glance, F̂R
n (r) just approximates the empirical distribution function

FR
n (x) =

1
n

n

∑
i=1

1 {Ri ≤ r}

which is not available from the data because of the unknown µ. We can prove that F̂R
n converges to

FR a.s., in fact at the same rate as every common empirical distribution function converges to the cdf.
This is the assertion of the following theorem.

Theorem 1. Suppose that Assumption 1 is satisfied, hK(.) is Lipschitz-continuous on Rd, and∫ ∞

0
rd+1g(r) dr < +∞. (9)

If further f is bounded on [0,+∞), then, for n→ ∞,

sup
r≥0

∣∣∣F̂R
n (r)− FR(r)

∣∣∣ = O

(√
ln ln n

n

)
a.s.

Here the condition (9) ensures that ER2 < +∞ which in turn is an assumption for the law of
iterated logarithm of µ̂n.

3.2.2. Density Estimation

In the remainder of Section 3.2, we establish an estimator for the density ϕg,K,µ in the case of
a bounded generator function g, and provide statements on convergence properties of the estimator.
An estimator for µ is available by Formula (7), the estimation of g is still an open problem. If we
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want to estimate g, then it is necessary that this function is identifiable. In (2), however, function g is
determined up to a constant factor. Therefore, we require I(g, d) = 1 to obtain the uniqueness and
identifiability. As a consequence, we get, according to [12]

C(g, K) =
1

OS(S)
.

In the following we adopt the approach introduced in Section 2 of [7] to the present much
more general situation. This approach combines the advantages of two estimators and avoids their
disadvantages. Let ψ : [0, ∞)→ [0,+∞) be a function having a derivative ψ′ with ψ′(y) > 0 for y ≥ 0,
and the property ψ(0) = 0. We introduce the random variable Y = ψ(hK(X − µ)) and denote the
inverse function of ψ by Ψ. The transformation using ψ is applied to adjust the volcano effect described
above. In view of (4), the density χ of Y = ψ(R) is given by

χ(y) = Ψ(y)d−1g(Ψ(y)) ·Ψ′(y)

for y ≥ 0. This equation implies the following formula for g:

g(z) = z1−d ψ′(z) χ(ψ(z)).

The next step is to establish the estimator for χ. Nonparametric estimators have the advantage
that they are flexible and there is no need to assume a specific model. Let us consider the transformed
sample Y1n, . . . , Ynn with Yin = ψ(R̂i). Further we apply the following kernel density estimator for χ:

χ̂n(y) = n−1b−1
n

∑
i=1

(
k
(
(y−Yin)b−1

)
+ k

(
(y + Yin)b−1

))
for y ≥ 0, (10)

where b = b(n) is the bandwidth and k the kernel function. Note that χ̂n represents the usual
kernel density estimator for χ based upon the Yin’s and including a boundary correction at zero
(the second addend in the outer parentheses of (10)). The mirror rule is used as a simple boundary
correction. Other more elegant corrections can be applied at the price of a higher technical effort.
The properties of χ̂n are essentially influenced by the bandwidth b. Since the kernel estimator shows
reasonable properties only in the case of bounded χ, we have to guarantee by suitable assumptions
that limz→0+ z1−d ψ′(z) > 0 in order to get the boundedness of χ (see below). On the basis of χ̂n,
we can establish the following estimator for ϕg,K,µ:

ϕ̂n(x) = OS(S)−1 ĝn (hK(x− µ̂n)) ,

where
ĝn(z) = z1−d ψ′(z) χ̂n(ψ(z)). (11)

This approach has the property that the theory of kernel density estimators applies here (cf. [19]).
The kernel estimators are a very popular type of nonparametric density estimators because of their
comparatively simple structure. In the literature the reader can find a lot of hints concerning the choice
of the bandwidth.

Let us add here some words to the comparison between this paper and [7]. Although the main
idea for the construction of estimators is the same, there is a difference in the definition of the generator
functions (say g and gL). Considering the special case hK(x) =

∥∥∥Σ−1/2(x− µ)
∥∥∥, identity g(t) = gL(t2)

can be established for t ≥ 0. This causes some changes in the formulas. For more details in a particular
case, see Section 3 in [20].
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3.2.3. Assumptions Ensuring Convergence Properties of Estimators

Next we provide the assumptions for the theorems below. Assumption 2 concerns the parameter
b = b(n) and the function k of the kernel estimator whereas Assumption 3 is posed on function ψ.

Assumption 2. (a) We assume that

lim
n→∞

b ln ln n = 0 and b̄ ≥ b ≥ C1 · n−1/5

with constants b̄, C1 > 0.
(b) Suppose that the kernel function k : R −→ R is continuous and vanishes outside the interval [−1, 1],

and has a Lipschitz continuous derivative on [−1, 1]. Moreover, assume that k(−t) = k(t) holds for t ∈ [−1, 1],

∫ 1

−1
k(t) dt = 1 and

∫ 1

−1
tjk(t) dt = 0 (12)

for even j : 0 < j < p, where p ≥ 2 is an integer.

Note that continuity of the derivative at an enclosed boundary point means that the one-sided
derivative exists and is the limit of the derivatives in a neighbourhood of this point. Symmetric kernel
functions k satisfying (12) are called kernels of order p. Assumption 2 ensures that the bias of the
density estimator χ̂n converges to zero at a certain rate. Under Assumption 2 with p = 2 and k(t) ≥ 0,
the estimator χ̂n is indeed a density. The case p > 2 is added to complete the presentation and is
of minor practical importance unless we have a very large sample size (cf. the discussion in [21]).
From the asymptotic theory for density estimators, it is known that the Epanechnikov kernel

kepa(t) =

{
3
4
(
1− t2) for t ∈ [−1, 1],

0 otherwise

is an optimal kernel of order 2 (i.e., in the case p = 2 in Assumption 2) with respect to the asymptotic
mean square error (cf. [19]). This kernel function is simple in structure and leads to fast computations.
The consideration of optimal kernels can be extended to higher-order kernels. It turned out that their
use is advantageous only in the case of sufficiently large sample sizes (for instance, for a size greater
than 1000).

Assumption 3. The (p + 1)-th order derivative of Ψd exists and is continuous on [0, ∞), ψ′ is positive and
bounded on (0,+∞) for some integer p ≥ 2, and ψ′′ is bounded on (0,+∞). The functions z zd−1ψ′(z)−1

and z z−1ψ′(z) have bounded derivatives on [0, M1] with some M1 > 0. Moreover,

lim
t→0+

(
Ψd(t)

)′
> 0. (13)

Notice that in Assumption 3 we require that the right-sided limit of the (p + 1)-th order derivative
of Ψd is finite at zero. Hence Assumption 3 implies that

Ψd(t) = (Ψd(t̃))′t, t̃ ∈ (0, t),

lim
t→0+

t−1/dΨ(t) = C2, (14)

and
lim

z→0+
z−dψ(z) = C−d

2
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with a finite constant C2 > 0. On the other hand, it follows from (13) that

lim
z→0+

z1−d ψ′(z) = lim
t→0+

Ψ(t)1−dΨ′(t)−1 = d lim
t→0+

((
Ψd(t)

)′)−1
= C3

with a finite constant C3 > 0. Therefore, χ is bounded under Assumption 3.

Example 10. Let

ψ(z) = −a +
(

ad + zd
)1/d

with a constant a > 0. Then Ψd(t) = (t + a)d − ad,
(

Ψd(t)
)′

= d (t + a)d−1,

z−1ψ′(z) = zd−2
(

ad + zd
)−1+1/d

, zd−1ψ′(z)−1 =
(

ad + zd
)1−1/d

,(
z−1ψ′(z)

)′
=

(
ad + zd

)1/d−2
zd−3

(
add− 2ad − zd

)
, and(

zd−1ψ′(z)−1
)′

= (d− 1) zd−1
(

ad + zd
)−1/d

.

Hence, Assumption 3 is satisfied for every p ≥ 2.

Another condition is required now for hK.

Assumption 4. For any bounded subset Q of Rd, 0 /∈ Q, the partial derivatives G1, . . . , Gd of hK(.) exist
and are bounded on Q, and x  ψ′(hK(x))Gj(x) is Hölder continuous of order α > 0.2 on Q for each
j ∈ {1, . . . , d}.

Assumption 5. For any bounded subset Q of Rd, 0 /∈ Q, hK is Hölder continuous of order ᾱ > 0.2.

If Assumption 3 is fulfilled, the function hK has second order derivatives ∂2

∂xj∂xJ
hK(x) = GjJ(x),

and these are bounded on bounded subsets of Rd, then the Assumption 4 is satisfied.

Example 11. We consider the q-norm/antinorm: hK(x) = ‖x‖q,

Gj(x) =
xj|xj|q−2

‖x‖q−1
q

for j = 1, . . . , d,

GjJ(x) =


(1−q)xj |xj |q−2xJ |xJ |q−2

‖x‖2q−1
q

for j 6= J,

(q−1)
‖x‖2q−1

q
|xj|q−2 ∑

ν 6=j
|xν|q for j = J.

Therefore, Assumption 4 is fulfilled in the case q > 1.2, and Assumption 5 is fulfilled in the case q > 0.2.

Examples 1 and 2: (Continued) One can show that Gj(x) exists for x 6= 0, j ∈ {1, . . . , d}, and is
bounded. Moreover, ψ′(hK(.))Gj is Lipschitz continuous on Rd\{0}. Hence, Assumption 4 is satisfied.

3.2.4. Properties of the Density Estimator

First we provide the result on strong convergence of the density estimator.

Theorem 2. Suppose that the p-th order derivative g(p) of g exists and is bounded on [0, ∞) for some even
integer p ≥ 2. Moreover, assume that condition (9) as well as Assumptions 1 to 3 are satisfied for the given p.
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Let Assumption 4 or Assumption 5 be satisfied. In the first case define rn :=
√

ln n(nb)−1/2, in the latter case
rn := n−ᾱ/2b−1. Then, for any compact set D with µ /∈ D and n→ ∞,

sup
x∈D

∣∣ϕ̂n(x)− ϕg,K,µ(x)
∣∣ = O (rn + bp) a.s. (15)

For any compact set D with µ ∈ D and n→ ∞,

sup
x∈D

∣∣ϕ̂n(x)− ϕg,K,µ(x)
∣∣ = O

(
rn + b1/d

)
a.s.

Theorem 2 applies in particular to the Euclidean case hK = ‖.‖2. Since Assumption 2 is weaker
than the corresponding assumption on the kernel in [7], Theorem 2 extends Theorem 3.1 in [7] even
in the case of hK = ‖.‖2. The convergence rate in (15) is the same as that known for one-dimensional
kernel density estimators and cannot be improved under the assumptions posed here (cf. [22]).

The next theorem represents the result about the asymptotic normality of the estimator ϕ̂n.

Theorem 3. Suppose that the assumptions of Theorem 2 and Assumption 4 are satisfied. Let x ∈ Rd, x 6= µ

such that g(p) is continuous at x̃ := hK(x− µ).

(i) Define
σ̄2(x̃) = OS(S)−2 x̃1−dψ′(x̃)g(x̃)

∫ 1

−1
k2(t) dt,

Λ(x̃) = OS(S)−1 x̃1−dψ′(x̃)
1
p!

χ(p)(ψ(x̃))
∫ 1

−1
tpk(t) dt.

Then
ϕ̂n(x)− ϕg,K,µ(x) = Zn + en,

where en = Λ(x̃) bp + o(bp),

√
nbZn

d−→ N (0, σ̄2(x̃)) for n→ ∞.

(ii) If additionally limn→∞ n1/(2p+1)b = C4 holds true with a constant C4 ≥ 0, then, for n→ ∞,

√
nb
(

ϕ̂n(x)− ϕg,K,µ(x)
) d−→ N (C(2p+1)/2

4 Λ(x̃), σ̄2(x̃)).

The assertion of Theorem 3 can be used to construct an asymptotic confidence region for ϕg,K,µ(x).
Term en describes the asymptotic behaviour of the the bias of the estimator ϕ̂n whereas the fluctuations
of the estimator are represented by Zn. In view of Theorem 3,

√
nbZn converges in distribution to

Z ∼ N (0, σ̄2(x̃)). The mean squared deviation of the leading terms in the asymptotic expansion of ϕ̂n

is thus given by

E
(

n−1/2b−1/2Z + Λ(x̃) bp
)2

= n−1b−1σ̄2(x̃) + Λ2(x̃) b2p.

The minimization of this function w.r.t. b leads to the asymptotically optimal bandwidth

b∗ =
(

σ̄2(x̃)
2pΛ2(x̃)n

)1/(2p+1)

. (16)

The bandwidth b∗ converges at rate n−1/(2p+1) to zero. Under the conditions of Theorem 3(ii),
ϕ̂n(x)− ϕg,K,µ(x) has the convergence rate n−p/(2p+1). This convergence rate of ϕ̂n is better than that
of a nonparametric density estimator but slower than the usual rate n−1/2 for parametric estimators.
In principle, Formula (16) could be used for the optimal choice of the bandwidth. However, one would
need then an estimator for χ(p) and typically, estimators of derivatives of densities do not exhibit a
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good performance unless n is very large. As a resort, one can consider a bandwidth which makes
reference to a specific radius distribution.

To illustrate how the estimators work in practice, we simulated data from a q-norm distribution
with q = 1.3 and the radius distribution to be the modified exponential distribution with τ = 1.1.
The Figures 7 and 8 include graphs of the underlying function g and its estimator in two cases.

Figure 7. Estimator of g (solid line) and the model function (dashed line) for n = 1000.

Figure 8. Estimator of g (solid line) and the model function (dashed line) for n = 10, 000.

3.2.5. Reference Bandwidth

Let us consider an estimator ϕ̂n(x) with Epanechnikov kernel, function ψ as in Example 10,
and modified exponential radius density in the case p = 2. According to (16), the reference bandwidth
is then

b∗ =
(

15(d + 1)(d− 1)!ex̃/τ x̃4dτ5/d(1 + x̃d)−1+5/d(x̃ + τ)
(
OS(S) D2n

)−1
)1/5

,

where
D = x̃2(x̃ + (d− 2)τ) + x̃d+2(2x̃− (d + 1)τ)

+x̃2d
(

x̃3 + (d− 2)(d− 1)(x̃ + τ)τ2 + x̃2τ(1− 2d)
)

.

This formula was generated using the computer algebra system Mathematica. The parameter τ

can be estimated by utilizing the above Formula (6) for the expectation of the radius.
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3.3. Semiparametric Estimators Involving a Scale and a Parameter Fit

In this section we consider the situation where the contour of the body K depends on scale
parameters σ1, . . . , σd. Suppose that I(g, d) = 1. We introduce the diagonal matrix Σ = diag(σ1, . . . , σd)

and a master body K0, which is symmetric w.r.t. the origin. Define

K = ΣK0 := {Σx : x ∈ K0},

and Ũ = Σ−1U. The distribution of Ũ is concentrated on the boundary S0 of K0. We assume that K0 is
given such that

EŨ2
j = 1 for j = 1, . . . , d. (17)

Otherwise, K0 is rescaled. Suppose that hK0 depends on a further parameter vector θ ∈ Θ where
the parameter space Θ ⊂ Rq is a compact set. Then

hK(x) = hK0(θ, Σ−1x) for x ∈ Rd.

The parameter vector θ is able to describe the shape of the boundary of body K, see Examples 1
and 2 (parameters a1 and a2). From Lemma 1, we obtain

V(X(j)) = σ2
j EŨ2

j ER2 = σ2
j ER2,

Cov(X(j), X(k)) = σjσkEŨjŨk ER2,

and
ρjk = Corr(X(j), X(k)) = EŨjŨk for j, k = 1, . . . , d.

Here we see that (17) results in V(X(j)) = σ2
j ER2. The density is given by

ϕg,K,µ(x) = OS0(S0)
−1 det(Σ)−1g

(
hK0(θ, Σ−1(x− µ))

)
, x ∈ Rd.

In this context, a scaling problem occurs concerning g. Assume that g is a suitably given generator
function satisfying I(g, d) = 1. Then x g∗t (x) := td−1g(tx) is a modified generator for every t ∈ R
with I(g∗t , d) = 1. For any t ∈ R, we obtain the same model when g is replaced by g∗t and σj is replaced
by σjt for j = 1, . . . , d. To get uniqueness, we choose t such that

ER2 =
∫ ∞

0
rd+1g∗t (r) dr = t−2

∫ ∞

0
rd+1g(r) dr = 1.

Let µ̂n = (µ̂n1, . . . , µ̂nd)
T as above. Then σ2

j represents the variance of the j-th component of X.

Based on this property, the sample variances of the components of X can be used as estimators for σ2
j :

σ̂2
nj =

1
n− 1

n

∑
i=1

(
Xij − µ̂nj

)2 for j = 1, . . . , d.

Moreover, we have the sample correlations

ρ̂njk = σ̂−1
j σ̂−1

k
1

n− 1

n

∑
i=1

(
Xij − µ̂nj

)
(Xik − µ̂nk) for j, k = 1, . . . , d.

In the following we use the notation Σ̂n = diag(σ̂n1, . . . , σ̂nd). If θ is unknown, we consider
moment estimators based on the correlations. For this we need the following assumptions.
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Assumption 6. Let I be a subset of {(j, k) : j, k = 1, . . . , d, j < k} with cardinality q. There is a vector
ρ = (ρjk)(j,k)∈I ∈ Rq such that for l = 1, . . . , q,

θl = γl(ρ).

Assume that γl : C → Θ has bounded partial derivatives, ρ ∈ C and θ is an interior point of Θ.

Assumption 7. For any bounded subset Q of Rd, 0 /∈ Q, the partial derivatives G̃1, . . . , G̃q, G1, . . . , Gd of
(θ, x) hK0(θ, x) exist, are bounded for θ ∈ Θ, x ∈ Q, and (θ, x) ψ′(hK0(θ, x))
Gj(θ, x), ψ′(hK0(θ, x))G̃j(θ, x) is Hölder continuous of order α > 0.2 on Θ×Q for each j ∈ {1, . . . , d}.

Assumption 8. For any bounded subset Q of Rd, 0 /∈ Q, hK0 is Hölder continuous of order ᾱ > 0.2.

Example 1 and 2: (Continued) Similarly as above, it can be proven that Assumption 7 is fulfilled.
Let ρ̂ be the sample version of ρ. Then

θ̂nl = γl(ρ̂) for l = 1, . . . , q

is the estimator for θ, θ̂n = (θ̂nl)l=1...q. Define R̂i = Σ̂−1(Xi− µ̂n). With this definition, F̂R
n is determined

according to Formula (8). The following result on the convergence rate of F̂R
n can be proven:

Theorem 4. Suppose that Assumptions 1 and 6 are satisfied, and∫ ∞

0
rd+3g(r) dr < +∞. (18)

Let r r fR(r) be bounded on [0,+∞). Then, for n→ ∞,

sup
r≥0

∣∣∣F̂R
n (r)− FR(r)

∣∣∣ = O

(√
ln ln(n)

n

)
a.s.

In this section the transformed sample Y1n, . . . , Ynn is given by Yin = ψ(hK0(θ̂n, R̂i)) with ψ as in
Section 3.2. The estimator ĝn for the generator g is calculated using Formulas (10) and (11) from the
previous section. The following estimator for the density has thus been established:

ϕ̂n(x) = OS0(S0)
−1 det(Σ̂n)

−1 ĝn

(
hK0(θ̂n, Σ̂−1

n (x− µ̂n))
)

(19)

The next two theorems show the results concerning strong convergence and asymptotic normality
of the density estimator:

Theorem 5. Suppose that the p-th order derivative g(p) of g exists and is bounded on [0, ∞) for some even
integer p ≥ 2. Where needed, with this p, assume further that Assumptions 1, 2, 3, 6, (1) and (18) are satisfied.
Let Assumption 7 or Assumption 8 be satisfied, and define in the first case rn :=

√
ln n(nb)−1/2 and in the

latter case rn := n−ᾱ/2b−1.Then the claim of Theorem 2 holds true for estimator ϕ̂n defined in (19).

Theorem 6. Suppose that the assumptions of Theorem 5 are satisfied. Let x ∈ Rd, x 6= µ such that g(p) is
continuous at x̃ := hK0(θ, Σ−1(x− µ)). Assume that limn→∞ n1/(2p+1)b = C4 holds true with a constant
C4 ≥ 0. Then for n→ ∞,

√
nb
(

ϕ̂n(x)− ϕg,K,µ(x)
) d−→ N (C(2p+1)/2

4 Λ(x̃), σ̄2(x̃)),
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where ϕ̂n is defined in (19),

σ̄2(x̃) = OS0(S0)
−2 det(Σ)−2 x̃1−dψ′(x̃)g(x̃)

∫ 1

−1
k2(t) dt,

Λ(x̃) = OS0(S0)
−1 det(Σ)−1 x̃1−dψ′(x̃)

1
p!

χ(p)(ψ(x̃))
∫ 1

−1
tpk(t) dt.

The remarks following Theorems 2 and 3 are valid similarly.

3.4. Applications

For many decades, statistical applications of multivariate distribution theory were manly based
upon Gaussian and elliptically contoured distributions. Studies using non-elliptically contoured
star-shaped distributions were basically made during the last two decades and are dealing in most
cases with p-generalized normal distributions. Such distributions are convex or radially concave
contoured if p ≥ 1 or 0 < p ≤ 1, respectively, and are also called power exponential distributions.
Moreover, common elliptically contoured power exponential (ecpe) distributions build a particular
class of the wide class of star-shaped distributions that allows modeling much more flexible contours
than elliptically ones.

The class of ecpe distributions is used in a crossover trial on insulin applied to rabbits in [23],
in image denoising in [24] and in colour texture retrieval in [25]. Applications of multivariate g-and-h
distributions to jointly modeling body mass index and lean body mass are demonstrated in [26]
and accompanied by star-shaped contoured density illustrations. The ln,p-elliptically contoured
distributions build another big class of star-shaped distributions and are used in [27] to explore
to which extent orientation selectivity and contrast gain control can be used to model the statistics
of natural images. Mixtures of ecpe distributions are considered for bioinformation data sets in [28].
Texture retrieval using the p-generalized Gaussian densities is studied in [29]. A random vector
modeling data from quantitative genetics presented in [30] are shown in [31] to be more likely to have
a power exponential distribution different from a normal one. The reconstruction of the signal induced
by cosmic strings in the cosmic microwave background, from radio-interferometric data, is made
in [32] based upon generalized Gaussian distributions. These distributions are also used in [33] for
voice detection.

More recently, the considerations in [11] opened a new field of financial applications of more
general star-shaped asymptotic distributions, where suitably scaled sample clouds converge onto
a deterministic set.

Figure 3 in [34]represents a sample cloud which might be modeled with a density being
star-shaped w.r.t. a fan having six cones that include sample points and other cones that do not.
Note, however, that Figures 1 d-f in the same paper do not reflect a homogeneous density but might be
compared in some sense to the level sets of the characteristic functions of certain polyhedral star-shaped
distributions in [16], Figure 5.2.

When modeling Lymphoma data, [35] analyze sample clouds of points, see Figures 2 and 3, which
might be interpreted as mixtures of densities having contours in part looking similar like that in [36]
where flow cytometric data, Australian Institute of Sport data and Iris data are analyzed, or like that of
certain skewed densities as they were (analytically derived and) drawn in [37]. In a similar manner,
Figures 2 and 5 in [20] indicate that mixtures of different types of star-shaped distributions might be
suitable for modeling residuals of certain stock exchange indices. It could be of interest to closer study
in future work more possible connections of all the models behind.

The following numerical examples of the present section are aimed to illustrate the agricultural
and financial application of the estimators described in this paper. To this end, we make use of the
new particular non-elliptically contoured but star-shaped distribution class introduced in Section 2.2
of the present paper.
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Example 12. Example 2 of Section 2.2 continued. We consider the class of bodies K of Example 2. Let a2 = 1.
Figure 9 shows the dependence of the correlation on the parameter a1.

Figure 9. Function γ−1
1 with a1 on the x-axis, ρ on the y-axis; γ1 is defined in Assumption 6.

Here we apply the above described methods to the dataset 5 of [38]. The yield of grain and straw
are the two variables. The sample correlation is 0.73077. Starting from that value, we can calculate the
moment estimator for a1: â1 = 0.83641. Moreover, we obtain

OS0(S0) = 2.6406, µ̂1 = 3.9480, µ̂2 = 6.5148

σ̂1 = 0.45798, σ̂2 = 0.89831.

The data and the shape of the estimated multivariate density are depicted in Figures 10 and 11.

Figure 10. Scatter plot of the dataset 5 of [38].
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Figure 11. Estimated generator function g at left (bandwidth b = 0.5) and contour plot of ϕ̂ at right.

Example 13. We want to illustrate the potential of our approach for applications to financial data and consider
daily index data from Morgan Stanley Capital International of the countries Germany and UK for the period
August 2011 to June 2016. The data indicate the continuous daily return values computed as logarithm of
the ratio of two subsequent index values. The modelling of MSCI data using elliptical models is considered
in [5]. The data are depicted in Figure 12. A visual inspection seems to give some preference for our model from
Section 2.2 compared to the elliptically contoured model. Figures 13 and 14 show the estimated model for the
data. The basic numerical results are:

OS0(S0) = 2.1966, â1 = 1.2088, µ̂1 = 0.00026725, µ̂2 = 0.00026855

σ̂1 = 0.013519, σ̂2 = 0.011715.

Figure 12. Scatter plot of the MSCI data.
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Figure 13. Contour plot of the estimated density.

Figure 14. Estimated generator function g (bandwidth b = 0.25).

Further we proceed with proving the results.

4. Proofs

Throughout the remainder of the paper, suppose that Assumptions 1–3 are satisfied for some
integer p ≥ 2. First, we prove auxiliary statements which are used in the proof of strong convergence
of ϕ̂n and later.

4.1. Proof of Auxiliary Statements

The following Lemma 2 clarifies the asymptotic behaviour of χ in the neighbourhood of zero.

Lemma 2. Suppose that g′ exists and is bounded. Then

sup
t,u∈[0,M̄]

|χ(t)− χ(u)| |t− u|−1/d < +∞

for any M̄ > 0.
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Proof. Observe that by the Lipschitz continuity of the functions g and z  zd−1ψ′(z)−1 in view of
Assumption 3,

|χ(t)− χ(u)|

≤ C ·
(

Ψ(t)d−1

ψ′(Ψ(t))
|g(Ψ(t))− g(Ψ(u))|+

∣∣∣∣∣ Ψ(t)d−1

ψ′(Ψ(t))
− Ψ(u)d−1

ψ′(Ψ(u))

∣∣∣∣∣ g(Ψ(u))

)
≤ C · |Ψ(t)−Ψ(u)| (20)

uniformly for t, v ∈ [0, M̄]. Here and in the following C is a generic constant which may differ from
formula to formula. By assumption, we have∣∣∣Ψd(t)−Ψd(u)

∣∣∣ ≤ C · |t− u|.

On the other hand,

sup
t,u≥0

|t1/d − u1/d|
|t− u|1/d < +∞.

Hence

|Ψ(t)−Ψ(u)| ≤ C ·
∣∣∣Ψd(t)−Ψd(u)

∣∣∣1/d
≤ C · |t− u|1/d.

In view of (20), the proof is complete.

Lemma 3. Let (9) be fulfilled. Then, for n→ ∞,

‖µ̂n − µ‖2 = O

(√
ln ln(n)

n

)
a.s.

If in addition (18) is satisfied then, for n→ ∞,

max
j=1,...,d

∣∣σ̂nj − σj
∣∣ = O

(√
ln ln(n)

n

)
a.s.

Proof. Because of (9), the law of iterated logarithm applies and leads to

lim sup
n→∞

√
n

ln ln n
∣∣µ̂nj − µj

∣∣ = √2 VXj a.s. (21)

Since there is a constant C > 0 such that ‖y‖2 ≤ C ‖y‖∞ for all y ∈ Rd in view of the
norm equivalence property, the first part of the lemma follows from (21). The second part can
be shown similarly.

In several places, we will use the following property:

Lemma 4. Suppose that Λ : Rd → R is a measurable function with Λ(−x) = −Λ(x). Then

E (Λ(X− µ)) = 0

Proof. Since −X + µ has the same distribution as X− µ, we have

E (Λ(X− µ)) = E (Λ(X− µ)1{X1 − µ1 < 0}) +E (Λ(X− µ)1{X1 − µ1 > 0})
= E (Λ(−X + µ)1{X1 − µ1 > 0}) +E (Λ(X− µ)1{X1 − µ1 > 0}) = 0

which proves the lemma.
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4.2. Proving Convergence of F̂R
n

In this section we prove Theorem 1. The law of the iterated logarithm for the empirical process
says (cf. [39], p. 268, for example)

∆n := sup
r∈R

∣∣∣FR
n (r)− FR(r)

∣∣∣ = O

(√
ln ln(n)

n

)
a.s.

By Lipschitz-continuity of hK and Lemma 3,

∆̄n : = sup
x∈Rd
|hK(x− µ̂n)− hK(x− µ)|

≤ C ‖µ̂n − µ‖2 = O

(√
ln ln(n)

n

)
a.s.

Moreover,

F̂R
n (r)− FR(r) =

1
n

n

∑
i=1

(1 {hK(Xi − µ̂n) ≤ r} − 1 {hK(Xi − µ) ≤ r}) + FR
n (r)− FR(r)

≤ 1
n

n

∑
i=1

(1 {hK(Xi − µ̂n) ≤ r, hK(Xi − µ) > r}

−1 {hK(Xi − µ) ≤ r, hK(Xi − µ̂n) > r}) + FR
n (r)− FR(r)

≤ 1
n

n

∑
i=1

1
{

r < hK(Xi − µ) ≤ r + ∆̄n
}
+ ∆n,

and

F̂R
n (r)− FR(r) ≥ −

1
n

n

∑
i=1

1
{

r− ∆̄n < hK(Xi − µ) ≤ r
}
− ∆n.

Hence, by the boundedness of fR,

sup
r≥0

∣∣∣F̂R
n (r)− FR(r)

∣∣∣
≤ 1

n
sup
r≥0

n

∑
i=1

1
{

r− ∆̄n < hK(Xi − µ) ≤ r + ∆̄n
}
+ ∆n

= sup
r≥0

(
FR

n (r + ∆̄n)− FR
n (r− ∆̄n)

)
+ ∆n

≤ sup
r≥0

(FR(r + ∆̄n)− FR(r− ∆̄n)) + 3∆n

≤ 2 sup
r≥0

fR(r) ∆̄n + O

(√
ln ln n

n

)
= O

(√
ln ln n

n

)
a.s.,

which leads to the theorem. �

4.3. Proving Strong Convergence of the Density Estimator

Let Ỹi = ψ (hK(Xi − µ)) for i = 1, . . . , n, Kb(y, t) = k((y − t)/b) + k((y + t)/b) for y, t ≥ 0,
Yin = ψ(hK(Xi − µ̂n)), and

χ̃n(y) =
1

nb

n

∑
i=1

Kb(y, Ỹi)
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for y ≥ 0. Then (cf. (10))

χ̂n(y) =
1

nb

n

∑
i=1

Kb(y, Yin).

Next we prove strong convergence rates for χ̂n and later for ϕ̂n. Throughout this section we
suppose that Assumptions 1 to 3 and (9) are fulfilled for some even integer p ≥ 2. The compact set
[m, M] with arbitrary m and M, 0 ≤ m < M can be covered with closed intervals U1, . . . , Un having
sides of length (M−m)n−1 and centres u1, . . . , un such that

⋃n
i=1 Ui = [m, M]. The constants m and M

will be specified later. Note that

sup
y∈[m,M]

|χ̂n(y)− χ(y)| ≤ max
l=1,...,n

(
sup
y∈Ul

|χ̂n(y)− χ̂n(ul)|+ |χ̂n(ul)− χ̃n(ul)| (22)

+ |χ̃n(ul)− χ(ul)|+ sup
y∈Ul

|χ(ul)− χ(y)|
)

.

The asymptotic behaviour of the right hand side in (22) as n→ ∞ is analyzed term by term in the
next lemmas.

Lemma 5. Assume that the p-th order derivative χ(p) of χ exists for some even integer p ≥ 2 and is bounded
on every finite closed subinterval of (0, ∞). Let g′ be bounded. Then

max
l=1,...,n

|χ̃n(ul)− χ(ul)| = O
(√

ln n(nb)−1/2 + βn

)
a.s.

where βn = bp if m > 0 and βn = b1/d if m = 0.

The proof of this lemma is omitted since, with minor changes, this lemma can be proven in the
same way as Lemma 4.4 in [7]. The following lemma is used later several times in proofs of almost
sure convergence rates. We provide it without proof. The proof is almost identical to that of Lemma 4.6
in [7].

Lemma 6. Assume that χ is bounded. Let k̄, λ : R→ R be bounded measurable functions with k̄(t) = 0 for
t : |t| > 1. Then

max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

(Unil −EUnil)

∣∣∣∣∣ = O
(√

nb ln(n)
)

a.s.,

max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

(Ūnil −EŪnil)

∣∣∣∣∣ = O
(√

nb ln(n)
)

a.s.,

max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

(Vnil −EVnil)

∣∣∣∣∣ = O
(√

nb ln(n)
)

a.s.

where Unil := k̄((ul − Ỹi)/b)1{|Ỹi − ul | ≤ b− wn}λ(Xi),
Ūnil := k̄((ul + Ỹi)/b)1{|Ỹi − ul | ≤ b− wn}λ(Xi),
Vinl := 1{b− wn < |Ỹi − ul | < b + wn}.

We proceed with proving convergence rates of the terms in (22).
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Lemma 7. Suppose that Assumption 4 or 5 is satisfied. Then, as n→ ∞,

max
l=1,...,n

|χ̂n(ul)− χ̃n(ul)| =

 o
(
(nb)−1/2

)
under Assumption 4,

O(b−1 (n−1 ln ln n
)ᾱ/2

) under Assumption 5
a.s.

Proof. (a) Let Assumption 4 be satisfied. In view of Lemma 3, we obtain∣∣Yin − Ỹi
∣∣ ≤ sup

t∈[0,∞)

∣∣ψ′(t)∣∣ |hK(Xi − µ̂n)− hK(Xi − µ)|

≤ C5 ·
√

ln ln n
n

=: wn

with a suitable constant C5 > 0 for n ≥ n1(ω). We introduce

κn(u, t) =
(
k′((u− t)/b)− k′((u + t)/b)

)
1 (|u− t| ≤ b− wn) .

Let ψ̄(z) := z−1ψ′(z). Observe that k′ is bounded and Lipschitz continuous on [−1, 1], ψ′, ψ̄ and ψ̄′

are bounded on [0,+∞), functions Gj are bounded, and functions ψ′(hK(.))Gj are Hölder continuous
of order α > 0.2. We have then by Taylor expansion

k
(

u−Yin
b

)
+ k

(
u + Yin

b

)
− k

(
u− Ỹi

b

)
− k

(
u + Ỹi

b

)
= −1

b
(
k′((u− Ỹi)/b)− k′((u + Ỹi)/b)

)
ψ′(hK(X̄i))

×
d

∑
j=1

Gj(X̄i)
(
µ̂nj − µj

)
1
{∣∣Ỹi − u

∣∣ ≤ b− wn
}
+ Wni(u),

where

|Wni(u)| ≤ C
(

b−2w2
n + b−1w1+α

n

)
1
{∣∣Ỹi − u

∣∣ ≤ b− wn
}

+Cb−1wn1
{

b− wn <
∣∣Ỹi − u

∣∣ < b + wn
}

a.s.

uniformly w.r.t. u ∈ [0, M]. Here we have used Assumption 4 and Lipschitz continuity of k on R.
This leads to max

l=1,...,n
|χ̂n(ul)− χ̃n(ul)| ≤ C

d

∑
j=1

B1nj
∣∣µ̂nj − µj

∣∣+ B2n + B3n, (23)

where

B1nj = n−1b−2 max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

κn(ul , Ỹi)ψ
′(hK(X̄i))Gj(X̄i)

∣∣∣∣∣ ,

B2n = C
(

b−3w2
n + b−2w1+α

n

)
max

l=1,...,n

n

∑
i=1

1
{∣∣Ỹi − ul

∣∣ ≤ b− wn
}

,

B3n = Cn−1b−2wn max
l=1,...,n

n

∑
i=1

1
{

b− wn <
∣∣Ỹi − ul

∣∣ < b + wn
}

a.s.

Note that

B1nj = n−1b−2 max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

κn(ul , Ỹi)ψ
′(hK(X̄i))Gj(X̄i)

−
n

∑
i=1

E
(
κn(ul , ψ(hK(X̄i)))ψ

′(hK(X̄i))Gj(X̄i)
)∣∣∣∣∣
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since the expectation in the last term is zero in view of Lemma 4 (Gj(−x) = −Gj(x) holds for all
x ∈ Rd). Applying Lemma 6, it follows that

d

∑
j=1

B1nj
∣∣µ̂nj − µj

∣∣ ≤ Cn−3/2b−2
√

ln ln n ·
√

nb ln n = o
(
(nb)−1/2

)
. (24)

On the other hand, we obtain

B2n ≤ C
ln ln n
n2b3

(
1 + bn(1−α)/2

)
max

l=1,...,n

n

∑
i=1

I
(∣∣Ỹi − ul

∣∣ ≤ b− wn
)
≤ C

ln ln n
n2b3

(
1 + bn(1−α)/2

)
(

max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

(
1
{∣∣Ỹi − ul

∣∣ ≤ b− wn
}
− P

{∣∣Ỹi − ul
∣∣ ≤ b− wn

})∣∣∣∣∣
+n · sup

v∈[0,∞)

P
{

v ≤ Ỹi ≤ v + 2b− 2wn
})

≤ C
ln ln n
n2b3

(
1 + n(1−α)/2b

) (√
nb ln n + nb

)
≤ C ln ln n

(
n−1b−2 + n−(1+α)/2b−1

)
= o

(
(nb)−1/2

)
a.s., (25)

by utilizing Lemma 6 and taking α > 0.2 into account. Similarly, it follows that

B3n ≤ C

√
ln ln n
n3b4 max

l=1,...,n

n

∑
i=1

1
{

b− wn ≤
∣∣Ỹi − ul

∣∣ ≤ b + wn
}

≤ C

√
ln ln n
n3b4 max

l=1,...,n

(∣∣∣∣∣ n

∑
i=1

(
1
{

b− wn ≤
∣∣Ỹi − ul

∣∣ ≤ b + wn
}

−P
{

b− wn ≤
∣∣Ỹi − ul

∣∣ ≤ b + wn
}) ∣∣∣∣∣∣+ n · P

{
ul + b− wn < Ỹi ≤ ul + b + wn

}

+n · P
{

ul − b− wn < Ỹi ≤ ul − b + wn
}

= C

√
ln ln n
n3b4

(√
nb ln n + nwn

)
= o

(
(nb)−1/2

)
a.s. (26)

Therefore, an application of (23)–(26) leads to the lemma under Assumption 4.
(b) Let Assumption 5 be satisfied. We obtain∣∣Yin − Ỹi

∣∣ ≤ sup
t∈[0,∞)

∣∣ψ′(t)∣∣ |hK(Xi − µ̂n)− hK(Xi − µ)|

≤ C5 ·
(

ln ln n
n

)ᾱ

=: wn.

Further, by Lipschitz continuity of k,∣∣∣∣k(u−Yin
b

)
+ k

(
u + Yin

b

)
− k

(
u− Ỹi

b

)
− k

(
u + Ỹi

b

)∣∣∣∣ ≤ Cb−1wn1
{∣∣Ỹi − u

∣∣ ≤ b + wn
}
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uniformly w.r.t. u ∈ [0, M]. Hence

max
l=1,...,n

|χ̂n(ul)− χ̃n(ul)|

≤ Cn−1b−2wn max
l=1,...,n

(
n

∑
i=1

(
1
{∣∣Ỹi − ul

∣∣ ≤ b + wn
}
− P

{∣∣Ỹi − ul
∣∣ ≤ b + wn

})
+n · P

{
ul − b− wn ≤ Ỹi ≤ ul + b + wn

}
= n−1b−2wn

(√
n(b + wn) ln n + n(b + wn)

)
= O(wnb−1) a.s.

Lemma 8. Suppose that the assumptions of Lemma 5 are satisfied. Then

(a) max
l=1,...,n

sup
y∈Ul

|χ̂n(y)− χ̂n(ul)| = O(n−1b−2) a.s.,

(b) max
l=1,...,n

sup
y∈Ul

|χ̃n(y)− χ̃n(ul)| = O(n−1b−2) a.s.,

(c) sup
y∈[m,M]

|χ̂n(y)− χ(y)| = O
(√

ln n(nb)−1/2 + βn

)
a.s.,

βn as in Lemma 5.

Proof. In view of Lemma 2, we have

max
l=1,...,n

sup
y∈Ul

|χ(ul)− χ(y)| =
{

O(n−1) if m 6= 0,
O(n−1/d) if m = 0.

Moreover, by the Lipschitz continuity of k, we obtain

max
l=1,...,n

sup
y∈Ul

|χ̂n(y)− χ̂n(ul)|

= n−1b−1 max
l=1,...,n

sup
y∈Ul

∣∣∣∣∣ n

∑
i=1

(Kb(y, Yin)− Kb(ul , Yin))

∣∣∣∣∣
≤ Cb−2 max

l=1,...,n
sup
y∈Ul

|y− ul |

= O(n−1b−2) a.s.

which proves assertion (a). Analogously, the validity of assertion (b) can be shown. In view of (22),
the lemma follows by Lemma 5 and 7.

We are now in a position to prove the result on strong convergence of ϕ̂n.
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Proof of Theorem 2: (i) Case µ /∈ D. By Lemma 3, there are M0 > m0 > 0 such that hK(x − µ̂n) ∈
[m0, M0] for x ∈ D, n ≥ n2(ω). In view of (11), we obtain

sup
x∈D
|ϕ̂n(x)− ϕ(x)| ≤ OS(S)−1

(
sup
x∈D
|ĝn (hK(x− µ̂n))− g (hK(x− µ̂n))|

+ sup
z≥0
|g′(z)| sup

x∈D
|hK(x− µ̂n)− hK(x− µ)|

)

≤ OS(S)−1 sup
z∈[m0,M0]

|ĝn(z)− g(z)|+ C

√
ln ln n

n

≤ OS(S)−1 sup
z≥0

(
z1−d ψ′(z)

)
sup

z∈[ψ(m0),ψ(M0)]

|χ̂n(z)− χ(z)|+ C

√
ln ln n

n
a.s.

for n ≥ n3(ω). Lemma 8 applies to complete the proof of part (i).
(ii) Case µ ∈ D. The proof can be done analogously to part (i) taking m0 = 0 into account.

4.4. Proving Asymptotic Normality of ϕ̂n(x)

Throughout this subsection, assume that Assumptions 1–3 and (9) are fulfilled for some integer
p ≥ 2. First, an auxiliary result is proven. Define x̂ := hK(x− µ̂n) and x̃ := hK(x− µ).

Lemma 9. Under Assumption 4, we have

(a) |χ̂n(ψ(x̃))− χ̃n(ψ(x̃))| = o
(
(nb)−1/2

)
a.s.

(b) |χ̂n(ψ(x̂))− χ̂n(ψ(x̃))| = o
(
(nb)−1/2

)
a.s. as n→ ∞.

Proof. Let Ul and ul as in Section 4.3. We can choose m, M : 0 < m < M such that ψ(x̂), ψ(x̃) ∈ [m, M]

for n ≥ n4(ω). By Lemmas 7 and 8,

sup
y∈[m,M]

|χ̂n(y)− χ̃n(y)| ≤ max
l=1,...,n

sup
y∈Ul

|χ̂n(y)− χ̂n(ul)|+ max
l=1,...,n

|χ̂n(ul)− χ̃n(ul)|

+ max
l=1,...,n

sup
y∈Ul

|χ̃n(y)− χ̃n(ul)|

≤ Cn−1b−2 + o
(
(nb)−1/2

)
= o

(
(nb)−1/2

)
a.s. (27)

which yields immediately assertion (a). Since

|x̂− x̃| = O(wn) a.s.

by Lemma 3, we obtain the inequality

|χ̃n (ψ(x̂))− χ̃n (ψ(x̃))| ≤ D1n + D2n + D3n
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by Taylor expansion, where

D1n =

∣∣∣∣∣n−1b−2
n

∑
i=1

d

∑
j=1

k′((ψ(x̃))− Ỹi)b−1)1
{∣∣ψ(x̃)− Ỹi

∣∣ ≤ b− wn
}

ψ′(x̃)Gj(x− µ)
(
µ̂nj − µj

) ∣∣∣∣∣∣ ,

D2n ≤ Cn−1b−3 · w2
n

n

∑
i=1

1
{∣∣ψ(x̃)− Ỹi

∣∣ ≤ b− wn
}

,

D3n ≤ Cn−1b−2 · wn

n

∑
i=1

1
{

b− wn <
∣∣ψ(x̃)− Ỹi

∣∣ < b + wn
}

a.s. Observe that k′(−t) = −k′(t) and

Ek′((ψ(x̃)− Ỹi)b−1)1
{∣∣ψ(x̃)− Ỹi

∣∣ ≤ b− wn
}
= b

∫ 1−wnb−1

−1+wnb−1
k′(t)χ(ψ(x̃)− tb) dt

= b
∫ 1−wnb−1

0
k′(t) (χ(ψ(x̃)− tb)− χ(ψ(x̃) + tb)) dt

= O(b2).

Analogously to Lemma 6, we can deduce

D1n ≤ Cn−1b−2 · wn ·
d

∑
j=1

∣∣∣∣∣ n

∑
i=1

k′((ψ(x̃)− Ỹi)b−1) 1
{∣∣ψ(x̃)− Ỹi

∣∣ ≤ b− wn
}

ψ′(x̃)Gj(x− µ)

∣∣∣∣∣∣∣
≤ Cn−3/2b−2

√
ln ln n ·

(√
nb ln n + nb2

)
= o

(
(nb)−1/2

)
a.s.

since the expectation is zero due to Lemma 4. Analogously to the examination of B3n and B4n in
Lemma 7, we obtain

D2n + D3n = o
(
(nb)−1/2

)
a.s.

Hence
|χ̃n (ψ(x̂))− χ̃n (ψ(x̃))| = o

(
(nb)−1/2

)
a.s.

In view of (27), the proof of part b) is complete.

From kernel density estimation theory, we can take the following lemma, see [40]. Subsequently,
we prove asymptotic normality of ϕ̂n.

Lemma 10. Suppose that χ is continuous at y. Then

√
nb (χ̃n(y)−Eχ̃n(y))

d−→ N (0, σ2
1 ), σ2

1 = χ(y)
∫ 1

−1
k2(t) dt.

Proof of Theorem 3. Note that z z1−dψ′(z) has a bounded derivative on every finite subinterval of
(0, ∞). By Lemmas 3 and 9, we obtain

hK(x− µ̂n)
1−dψ′(hK(x− µ̂n))− x̃1−dψ′(x̃) = O

(√
ln ln n

n

)



Risks 2016, 4, 44 30 of 37

and hence

ϕ̂n(x)− ϕ(x) = OS(S)−1hK(x− µ̂n)
1−d ψ′(hK(x− µ̂n)) (χ̂n(ψ(hK(x− µ̂n)))− χ̂n(ψ(x̃)))

+OS(S)−1 x̃1−dψ′(x̃) (χ̂n(ψ(x̃))− χ(ψ(x̃)))

+
(

hK(x− µ̂n)
1−dψ′(hK(x− µ̂n))− x̃1−dψ′(x̃)

)
OS(S)−1 χ̂n(ψ(x̃))

= o
(
(nb)−1/2

)
+
(
OS(S)−1 x̃1−dψ′(x̃) + o((nb)−1/2)

)
(χ̂n(ψ(x̃))− χ(ψ(x̃)))

= Zn + en + o
(
(nb)−1/2

)
a.s.,

where

Zn = OS(S)−1 x̃1−dψ′(x̃) (χ̂n(ψ(x̃))−Eχ̂n(ψ(x̃))) ,

en = OS(S)−1 x̃1−dψ′(x̃) (Eχ̂n(ψ(x̃))− χ(ψ(x̃))) .

Using Lemma 10, we have √
nbZn

d−→ N (0, σ̄2)

where σ̄2(x̃) = OS(S)−2 x̃2−2d ψ′(x̃)2σ2
1 . By Taylor expansion, we obtain

en = OS(S)−1 x̃1−d ψ′(x̃)
(∫ ∞

0
k
(

ψ(x̃)− y
b

)
χ(y) dy− χ(ψ(x̃))

)
= OS(S)−1 x̃1−d ψ′(x̃)

∫ 1

−1
k(t) (χ(ψ(x̃)− tb)− χ(ψ(x̃))) dt

= OS(S)−1 x̃1−d ψ′(x̃) ·
∫ 1

−1
k(t)

(
p−1

∑
j=1

(j!)−1χ(j)(ψ(x̃)) (−tb)j + (p!)−1χ(p)(x̃n) tpbp

)
dt

= OS(S)−1(p!)−1 x̃1−dψ′(x̃) χ(p)(ψ(x̃))
∫ 1

−1
tpk(t) dt bp + o(bp),

and x̃n lies between ψ(x̃)− tb and ψ(x̃). This completes the proof.

4.5. Proofs When Additional Scale Fit Is Involved

When proving Theorem 4 we shall make use of the following lemma.

Lemma 11. Let (18) be satisfied. Then

θ̂nl − θl = O

(√
ln ln n

n

)
a.s. for l = 1, . . . , q.

Proof. By the law of iterated logarithm and Lemma 3, we obtain

ρ̂njk − ρjk = σ̂−1
nj σ̂−1

nk

(
1

n− 1

n

∑
i=1

XijXik −EXjXk

− n
n− 1

((
µ̂nj − µj

)
µ̂nk + µj (µ̂nk − µk)

)
+ O(n−1)

)
+EXjXk

(
σ̂njσ̂nkσjσk

)−1 (
σj (σk − σ̂nk) + σ̂nk

(
σj − σ̂nj

))
= O

(√
ln ln n

n

)
a.s.
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for all j, k = 1, . . . , d. Since the partial derivatives of functions γl are bounded, it follows that∣∣θ̂nl − θl
∣∣ ≤ C max

j,k=1,...,d

∣∣∣ρ̂njk − ρjk

∣∣∣
= O

(√
ln ln n

n

)
a.s.

Proof of Theorem 4. Let u(x) = hK0(θ, Σ−1(x− µ)). Note that u(Xi) = Ri. By Lipschitz-continuity of
hK0 , (1) and Lemma 3, we have

∆̄n : = sup
x∈Rd

∣∣∣hK0(θ̂n, Σ̂−1
n (x− µ̂n))− u(x)

∣∣∣ (1 + u(x))−1

≤ C sup
x∈Rd

(∥∥θ̂n − θ
∥∥+ Σ̂−1

n ‖µ̂n − µ‖+
d

∑
j=1

∣∣∣σ̂−1
nj − σ−1

j

∣∣∣ ∣∣xj − µj
∣∣) · (1 + u(x))−1

≤ C

√
ln ln n

n
· sup

x∈Rd
(1 + ‖x− µ‖) · (1 + u(x))−1

= O

(√
ln ln n

n

)
a.s.

We obtain the result as follows:

sup
r≥0

∣∣∣F̂R
n (r)− FR(r)

∣∣∣
≤ 1

n
sup
r≥0

n

∑
i=1

1
{

r− ∆̄n(1 + u(Xi)) ≤ u(Xi) ≤ r + ∆̄n(1 + u(Xi))
}
+ ∆n

=
1
n

sup
r≥0

n

∑
i=1

1
{

r− ∆̄n

1 + ∆̄n
≤ Ri ≤

r + ∆̄n

1− ∆̄n

}
+ ∆n

= sup
r≥0

(
FR

n ((r + ∆̄n)/(1− ∆̄n))− FR
n ((r− ∆̄n)/(1 + ∆̄n))

)
+ ∆n

≤ sup
r≥0

(FR((r + ∆̄n)/(1− ∆̄n))− FR((r− ∆̄n)/(1 + ∆̄n))) + 3∆n

≤ 2∆̄n sup
r≥0

r fR(r) (1− ∆̄2
n)
−1 + C

√
ln ln n

n
= O

(√
ln ln n

n

)
a.s.

We proceed with proving Theorem 5. The next two lemmas are used in the proof of this theorem.
Here we define Yin = ψ(hK0(θ̂n, Σ̂−1

n (Xi − µ̂n))) and Ỹi = ψ(hK0(θ, Σ−1(Xi − µ))). Notice that Ỹi has
density χ, and Lemmas 6 and 5 hold true for the modified Yin and Ỹi, too.

Lemma 12. Let g′ be bounded. Then we have

sup
u∈[0,M]

∣∣Eκn(u, ψ(Ri))ψ
′(Ri)Ri

∣∣ = O(b2).

Proof. Note that ∫ 1−wn/b

−1+wn/b
k′ (t) dt = k(1− wn/b)− k(−1 + wn/b) = 0.
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For u > b, we obtain

Ek′((u− ψ(Ri))/b)ψ′(Ri)Ri 1 {|u− ψ(Ri)| ≤ b− wn}

=
∫ ∞

0
k′
(

u− ψ(t)
b

)
ψ′(t)tdg(t) 1 (|u− ψ(t)| ≤ b− wn)dt

= −b
∫ 1−wn/b

−1+wn/b
k′ (t)

(
Ψd(u− tb)g(Ψ(u− tb))−Ψd(u)g(Ψ(u))

)
dt.

Since g, g′, Ψd and (Ψd)′ are bounded, we can conclude

sup
u∈(b,M]

∣∣Eκn(u, ψ(Ri))ψ
′(Ri)Ri

∣∣ = O(b2).

Further we obtain

sup
u∈[0,b]

∣∣∣∣E(k′
(

u− ψ(Ri)

b

)
− k′

(
u + ψ(Ri)

b

))
ψ′(Ri)Ri

1 {|u− ψ(Ri)| ≤ b− wn}
∣∣∣∣

≤ C sup
u∈[−1,1]

|k′(u)| sup
u≥0
|g(u)|

∫ Ψ(2b)

0
tdψ′(t) dt

≤ C
∫ 2b

0
Ψd(t) dt ≤ C

∫ 2b

0
t dt = O(b2),

by (14). This inequality completes the proof.

Lemma 13. Suppose that Assumption 7 or Assumption 8 is satisfied. Then

max
l=1,...,n

|χ̂n(ul)− χ̃n(ul)| =

 o
(
(nb)−1/2

)
under Assumption 7,

O(b−1 (n−1 ln ln n
)ᾱ/2

) under Assumption 8
a.s.

Proof. We prove the Lemma under Assumption 7, the proof of the other part is analogous to that of
Lemma 7(b). As we see later, we need only to involve data vectors Xi with Yin = ψ(hK0(θ̂n, Σ̂−1

n (Xi −
µ̂n))) ≤ M + b̄ or Ỹi = ψ(hK0(θ, Σ−1(Xi − µ))) ≤ M + b̄. This implies min{‖Xi − µ̂n‖ , ‖Xi − µ‖} ≤
CΨ(M + b̄) by (1), and therefore ‖Xi − µ‖ ≤ C5 for n ≥ n6(ω) with a constant C5 > 0. In view of
Lemma 3 and by Assumption 7, we obtain∣∣Yin − Ỹi

∣∣ ≤ sup
t∈[0,∞)

∣∣ψ′(t)∣∣ ∣∣∣hK0(θ̂n, Σ̂−1
n (Xi − µ̂n))− hK0(θ, Σ−1(Xi − µ))

∣∣∣
≤ C

(∥∥θ̂n − θ
∥∥+ d

∑
j=1

(
σ̂−1

nj

∣∣µj − µ̂nj
∣∣+ ∣∣Xij − µj

∣∣ ∣∣∣σ̂−1
nj − σ−1

j

∣∣∣))

≤ C6 ·
√

ln ln n
n

=: wn

(Xi = (Xi1, . . . , Xid)
T) with a suitable constant C6 > 0 for n ≥ n7(ω). We introduce

κn(u, t) =
(
k′((u− t)/b)− k′((u + t)/b)

)
1 (|u− t| ≤ b− wn) .

Let ψ̄(z) := z−1ψ′(z), X̄i := Σ−1(Xi − µ) = (X̄i1, . . . , X̄id)
T . Observe that k′ is bounded and

Lipschitz continuous on [−1, 1], ψ′, ψ̄ and ψ̄′ are bounded on [0,+∞), functions Gj, G̃j are bounded,
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and functions ψ′(hK(.))Gj are Hölder continuous of order α > 0.2. By Taylor expansion, Assumption 7
and Lipschitz continuity of k on R, we have

k
(

u−Yin
b

)
+ k

(
u + Yin

b

)
− k

(
u− Ỹi

b

)
− k

(
u + Ỹi

b

)
= −1

b
(
k′((u− Ỹi)/b)− k′((u + Ỹi)/b)

)
ψ′(hK0(θ, X̄i))1

{∣∣Ỹi − u
∣∣ ≤ b− wn

}
·
(

d

∑
j=1

Gj(θ, X̄i)
(

σ̂−1
nj
(
µj − µ̂nj

)
+
(
Xij − µj

) (
σ̂−1

nj − σ−1
j

))
+

q

∑
j=1

G̃j(θ, X̄i)
(
θ̂nj − θj

))
+ Wni(u),

where, uniformly for u ∈ [0, M],

|Wni(u)| ≤ Cb−2w2
n1
{∣∣Ỹi − u

∣∣ ≤ b− wn
}

+Cb−1wn1
{

b− wn <
∣∣Ỹi − u

∣∣ < b + wn
}

a.s.

This leads to

max
l=1,...,n

|χ̂n(ul)− χ̃n(ul)|

≤ C

(
d

∑
j=1

(
B1njσ̂

−1
nj

∣∣µ̂nj − µj
∣∣+ B4nj

∣∣∣σ̂−1
nj − σj

∣∣∣)+ q

∑
j=1

B5nj
∣∣θ̂nj − θj

∣∣)
+B2n + B3n,

where B2n, B3n are as above, and

B1nj = n−1b−2 max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

κn(ul , Ỹi)ψ
′(hK0(θ, X̄i))Gj(θ, X̄i)

∣∣∣∣∣ ,

B4nj = n−1b−2 max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

κn(ul , Ỹi)ψ
′(hK0(θ, X̄i))Gj(θ, X̄i)X̄i

∣∣∣∣∣ ,

B5nj = n−1b−2 max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

κn(ul , Ỹi)ψ
′(hK0(θ, X̄i))G̃j(θ, X̄i)

∣∣∣∣∣ .

Analogously to Lemma 7, we obtain

d

∑
j=1

B1nj
∣∣µ̂nj − µj

∣∣ ≤ Cn−3/2b−2
√

ln ln n ·
√

nb ln n = o
(
(nb)−1/2

)
.

Observe that X̄i = RiŪi, Gj(θ, RiŪi) = Gj(θ, Ūi) and G̃j(θ, RiŪi) = RiG̃j(θ, Ūi) a.s. (hK0(θ, .) is a
homogeneous function). Applying Lemmas 6 and 12, we can derive

B4nj ≤ n−1b−2 max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

(
κn(ul , Ỹi)ψ

′(hK0(θ, X̄i))Gj(θ, X̄i)X̄ij

−E
(
κn(ul , ψ(hK0(θ, X̄i)))ψ

′(hK0(θ, X̄i))Gj(θ, X̄i)
)

X̄ij
)∣∣

+b−2 max
l=1,...,n

∣∣E (κn(ul , ψ(Ri))ψ
′(Ri)Ri

)
EŪijGj(θ, Ūi)

∣∣
= O

(√
n−1b−3 ln n + 1

)
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(Ūi = (Ūi1, . . . , Ūid)
T) which implies

d

∑
j=1

B4nj

∣∣∣σ̂−1
nj − σj

∣∣∣ = o
(
(nb)−1/2

)
.

Further, by Lemma 12,

B5nj ≤ n−1b−2 max
l=1,...,n

∣∣∣∣∣ n

∑
i=1

(
κn(ul , Ỹi)ψ

′(hK0(θ, X̄i))G̃j(θ, X̄i)

−E
(
κn(ul , ψ(hK0(θ, X̄i)))ψ

′(hK0(θ, X̄i))G̃j(θ, X̄i)
))∣∣

+b−2 max
l=1,...,n

∣∣E (κn(ul , ψ(Ri))ψ
′(Ri)Ri)EG̃j(θ, Ūi)

)∣∣
= O

(√
n−1b−3 ln n + 1

)
and

q

∑
j=1

B5nj
∣∣θ̂nj − θj

∣∣ = o
(
(nb)−1/2

)
.

This completes the proof.

Proof of Theorem 5. We consider only the case µ /∈ D, the proof in the other case is similar.
By Lemma 3, there are M0 > m0 > 0 such that hK0(θ̂n, Σ̂−1(x− µ̂n)) ∈ [m0, M0] for x ∈ D, n ≥ n8(ω).
In view of (11), we obtain

sup
x∈D
|ϕ̂n(x)− ϕ(x)|

≤ OS(S)−1 det(Σ̂n)
−1(

sup
x∈D

∣∣∣ĝn

(
hK0(θ̂n, Σ̂−1

n (x− µ̂n))
)
− g

(
hK0(θ̂n, Σ̂−1

n (x− µ̂n))
)∣∣∣

+ sup
z≥0
|g′(z)| sup

x∈D

∣∣∣hK0(θ̂n, Σ̂−1
n (x− µ̂n))− hK0(θ, Σ−1(x− µ))

∣∣∣)

≤ C

(
sup

z∈[m0,M0]

|ĝn(z)− g(z)|+
√

ln ln n
n

)

≤ C

(
sup
z≥0

(
z1−d ψ′(z)

)
sup

z∈[ψ(m0),ψ(M0)]

|χ̂n(z)− χ(z)|+
√

ln ln n
n

)
a.s.

for n ≥ n9(ω). An application of Lemma 8 completes the proof.

In last part of this section, we prove the result on asymptotic normality. Define x̂ :=
hK0(θ̂n, Σ̂−1

n (x− µ̂n)) and x̃ := hK0(θ, Σ−1(x− µ)).

Lemma 14. Under Assumption 7, we have

a) |χ̂n(ψ(x̃))− χ̃n(ψ(x̃))| = o
(
(nb)−1/2

)
a.s.

b) |χ̂n(ψ(x̂))− χ̂n(ψ(x̃))| = o
(
(nb)−1/2

)
a.s.
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Proof. Let Ul and ul as in Section 4.3. We can choose m, M : 0 < m < M such that ψ(x̂), ψ(x̃) ∈ [m, M]

for n ≥ n10(ω). By Lemmas 7 and 8,

sup
y∈[m,M]

|χ̂n(y)− χ̃n(y)| ≤ max
l=1,...,n

sup
y∈Ul

|χ̂n(y)− χ̂n(ul)|+ max
l=1,...,n

|χ̂n(ul)− χ̃n(ul)|

+ max
l=1,...,n

sup
y∈Ul

|χ̃n(y)− χ̃n(ul)|

≤ Cn−1b−2 + o
(
(nb)−1/2

)
= o

(
(nb)−1/2

)
a.s. (28)

which yields immediately assertion a). Since

|x̂− x̃| = O(wn) a.s.

by Lemma 3, we obtain the inequality

|χ̃n (ψ(x̂))− χ̃n (ψ(x̃))| ≤ D1n + D2n + D3n

by Taylor expansion, where

D1n =

∣∣∣∣∣n−1b−2
n

∑
i=1

k′((ψ(x̃))− Ỹi)b−1)ψ′(x̃)1
{∣∣ψ(x̃)− Ỹi

∣∣ ≤ b− wn
}

(
d

∑
j=1

Gj(θ, x̃)
(

σ̂−1
nj
(
µj − µ̂nj

)
+
(
Xij − µj

) (
σ̂−1

nj − σ−1
j

))

+
q

∑
j=1

G̃j(θ, x̃)
(
θ̂nj − θj

)) ∣∣∣∣∣∣ ,

D2n and D3n are as in Section 4.3. Analogously to Lemma 6, we can deduce that

D1n ≤ Cn−1b−2wn ·
(∣∣∣∣∣ n

∑
i=1

k′((ψ(x̃)− Ỹi)b−1)1
{∣∣ψ(x̃)− Ỹi

∣∣ ≤ b− wn
}∣∣∣∣∣

ψ′(x̃)

(
d

∑
j=1

∣∣Gj(θ, x̃)
∣∣+ q

∑
j=1

∣∣G̃j(θ, x̃)
∣∣)
∣∣∣∣∣∣∣

≤ Cn−3/2b−2
√

ln ln n ·
(√

nb ln n

+n
∣∣∣E (k′((ψ(x̃)− Ỹi)b−1)1

{∣∣ψ(x̃)− Ỹi
∣∣ ≤ b− wn

})∣∣∣)
= o

(
(nb)−1/2

)
a.s.

The remainder of the proof is done as in the proof of Lemma 9.

Proof of Theorem 6. By Lemmas 3 and 14, and analogously to the proof of Theorem 3, we obtain

ϕ̂n(x)− ϕ(x) =
(
OS(S)−1 det(Σ)−1 x̃1−d ψ′(x̃) + o((nb)−1/2

)
(χ̃n(ψ(x̃))− χ(ψ(x̃)))

+o((nb)−1/2) a.s.

The remainder of the proof can be done in the same manner as in the proof of Theorem 3.
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