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1. Introduction

This paper studies the effect of different reference probability measures on reinsurance contracts.

Due to asymmetric information, an insurer may use another probability measure than the reinsurer,

that may price risk based on a population. Therefore, the price of reinsurance may seem very low

for insurers that face relatively high risks. This observation forms the basis of adverse selection

in insurance markets (Finkelstein and Poterba [1]). Alternatively, heterogeneity in reference

probabilities may also be driven by ambiguity of the reinsurer (Hogarth and Kunreuther [2],

Amarante et al. [3]).

In risk sharing, the aim is to redistribute risk among economical agents. For such problem,

the effects of different reference probability measures is studied by Acciaio and Svindland [4] and

Dana and Le Van [5]. Existence of Pareto optimal contracts is not guaranteed and both papers

provide conditions for existence of Pareto optimal risk redistributions. Applications in redistributing

longevity risk with heterogeneous reference probabilities are studied by Boonen et al. [6].

In this paper, we study an optimal reinsurance contract design problem, where mathematically

the key difference with risk sharing is an ex post moral hazard constraint for the insurer

(see, e.g., Huberman et al. [7]). This implies that the retained and ceded risk need to increase if

the insured risk gets larger.

The reinsurance problem of this paper has a similar spirit as studied by Arrow [8]. He studies

the case where one expected utility maximizing insurer is seeking for reinsurance. The reinsurance

premium is hereby given by an expected value premium principle. This model is extended later

by many authors. For instance, Young [9] studies the case where the premium is given by Wang’s

premium principle. Moreover, Asimit et al. [10], Chi and Tan [11], Cui et al. [12], Assa [13],

Balbás et al. [14], Cheung and Lo [15], Zhuang et al. [16]) all consider cases where the insurer

minimizes a risk measure under a premium constraint.

Ghossoub [17] studies the problem where the insurer and reinsurer (or insurance buyer and

insurer) have heterogeneous beliefs about the underlying probability distribution. To the best of our

knowledge, this is the only study that considers heterogeneity in reference probability measures in
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a optimal (re)insurance contract design theory. We differ from Ghossoub [17] in two fundamental

ways. First, we consider more general premium principles. We use generalized Wang’s premium

principles, of which the expected value premium principle studied by Ghossoub [17] is a special case.

Second, we focus on dual utility (Yaari [18]) as preferences of the insurer, whereas Ghossoub [17] uses

expected utility. Our setting is in line with Cui et al. [12] and Assa [13], but extended to the case with

heterogeneous reference probabilities.

Maximizing dual utility of future wealth is equivalent by minimizing a distortion risk measure

(Wang et al. [19]) of future losses. Distortion risk measures include ambiguity by considering multiple

scenarios, and then taking the worst-case. Alternatively, Balbás et al. [14] include ambiguity in

reinsurance contract design. For special loss distributions, Huang et al. [20] show the equilibrium

with asymmetric information. Ambiguity increases selection effects. Both papers use however a

given reference probability measure that is the same for the insurer and the reinsurer.

As mathematical technique to solve the problems, we use the marginal indemnification function

formulation as proposed by Assa [13] and Zhuang et al. [16]. By means of this technique,

these authors solve a reinsurance problem with homogeneous reference probabilities as originally

solved by Cui et al. [12]. Zhuang et al. [16] apply this technique to also solve a problem, where the

insurer can only spend a maximum amount on reinsurance. In this paper, we propose this technique

to solve a reinsurance problem with heterogeneous reference probabilities. Moreover, we show that

this approach can be used in case the insurer also faces costs of holding risk capital. For homogeneous

reference probabilities, this problem is studied by Cheung and Lo [15]. Our result extends the setting

to allow for heterogeneous reference probabilities, and the proof is much simpler.

The remaining of this paper is constructed in the following way. Section 2 specifies the model.

Section 3 shows our main result on optimal reinsurance contracts, and discusses the optimal contracts

when there are costs of holding risk capital. Section 4 provides two examples; one with the

Value-at-Risk and one with the conditional Value-at-Risk. Finally, Section 5 provides the conclusion

and a concluding remark.

2. Model

Fix the state space Ω and σ-algebra Σ. We consider a one-period model with an insurer (I) and

a reinsurer (R). The insurer faces a stochastic loss X that is measurable on Ω. The insurer seeks a

reinsurance coverage against this loss with a reinsurer. We assume that the loss X has realizations

on [0, ∞).

The insurer will cede the risk f (X) to the reinsurer, and pays a premium π ≥ 0 in return. It is

common in the recent literature (e.g., Asimit et al. [10], Chi and Tan [11], Cui et al. [12], Assa [13]) to

consider the following admissible set of ceded loss functions:

F = { f : [0, ∞) → [0, ∞)| f (0) = 0, 0 ≤ f (x)− f (y) ≤ x − y, 0 ≤ y < x} (1)

i.e., we assume that the indemnity f ∈ F is non-decreasing and 1-Lipschitz. Note that this set

allows for deductible, or proportional reinsurance indemnities. The assumption that f ∈ F is often

used in the literature on reinsurance contract design and its importance is particularly highlighted

by Huberman et al. [7], Denuit and Vermandele [21], and Young [9]. Non-increasing reinsurance

indemnities are perceived to be undesirable as it encourages the insurer to underreport its losses.

On the other hand, if f were to increase more rapidly than losses increase, then the insurer would

have an incentive to create incremental losses. Both of these cases trigger the so-called moral hazard in

the sense that they create an opportunity for the insurer to misreport its actual losses to the reinsurer.

Note that every function f ∈ F is absolutely continuous, and thus, it is almost everywhere

differentiable on [0, ∞), and there is a measurable function h such that

f (x) =
∫ x

0
h(z)dz, x ∈ [0, ∞) (2)
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Here, h(z) is the slope of the ceded loss function f at z almost everywhere. Since f ∈ F , we can

assume h ∈ H, where

H = {h : [0, ∞) → IR
∣

∣

∣
h ∈ [0, 1] almost everywhere, h is measurable}

To price risk, we make use of extended Wang’s premium principles. Such a premium principle is

defined via risk measures. The risk measure depends on the countably additive probability measure

P on (Ω, Σ), that may vary in our subsequent definitions.

Definition 1. A distortion risk measure ρg of a random variable Z is defined as the following

Choquet integral:

ρg(Z,P) =
∫

∞

0
g(P(Z > z))dz +

∫ 0

−∞

[g(P(Z > z))− 1]dz (3)

where at least one of the integrals in the right-hand side of (3) converges. Here, g is non-decreasing,

g(0) = 0 and g(1) = 1.

We define G as the collection of non-decreasing functions satisfying g(0) = 0 and g(1) = 1.

For non-negative random variables Z, we note that (3) reduces to

ρg(Z,P) =
∫

∞

0
g(P(Z > z))dz

Next, we define the premium principle that the reinsurer uses.

Definition 2. The generalized Wang’s premium of a random variable Z is defined as

π̂θ,g(Z,P) = (1 + θ)ρg(Z,P)

where θ ≥ 0 and g ∈ G is a distortion function.

In the above definition, θ is the safety loading of the reinsurer. When g(x) = x, the distortion

premium principle recovers the expected value premium principle. Furthermore, when the distortion

function is concave and θ = 0, the distortion principle recovers Wang’s premium principle

(Wang [22]).

We also note the following properties of distortion risk measures ρg:

• Comonotonic Additivity: ρg(X + Y,P) = ρg(X,P) + ρg(Y,P) for any two comonotonic random

variables X, Y;
• Translation Invariance: ρg(Z + c,P) = ρg(Z,P) + c for any constant c ∈ IR and random

variable Z;
• Monotonicity: ρg(X,P) ≤ ρg(Y,P) whenever X ≤ Y P-a.s.

The first property follows from Schmeidler [23], the second one follows from comonotonic

additivity, g(0) = 0 and g(1) = 1, and the last property is shown by Wang et al. [19].

3. Optimal Reinsurance Contract Design

In this section, we discuss the optimal reinsurance contracts. In Section 3.1, we discuss the

baseline model, and in Section 3.2, we discuss the effects of holding a buffer.

3.1. Baseline Model

The insurer’s beliefs are represented by the countably additive probability measure PI on (Ω, Σ),

and the reinsurer’s beliefs are represented by the countably additive probability measure PR on
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(Ω, Σ). Note that risk measures are meaningless whenever it is infinite. Therefore, we impose

throughout this paper the following condition:

ρgi(X,Pi) < ∞, for all i ∈ {I, R}

The wealth at a pre-determined future time for the insurer is given by

W(π, f ) := WI − π − X + f (X) (4)

where WI ∈ IR is the initial wealth, f ∈ F , and π ≥ 0. The insurer maximizes dual utility as

introduced by Yaari [18], i.e., it maximizes

E
gI

PI
[W(π, f )] := −ρgI (−W(π, f ),PI) (5)

where W(π, f ) is defined in (4). Let gI , gR ∈ G, θ ≥ 0, where gR is a distortion function. We do not

require gI or gR to be concave 1.

We assume that the insurer maximizes its dual utility of terminal wealth. The insurer is

allowed to buy any reinsurance indemnity f ∈ F , but needs to pay at least the premium

given by the generalized Wang’s premium π̂θ,gR( f (X),PR). This leads to the following optimal

reinsurance problem:

Problem 1.

max
(π, f )∈IR+×F

E
gI

PI
[WI − X − π + f (X)]

s.t. π ≥ π̂θ,gR( f (X),PR)

Theorem 1. It holds that (π, f ) solves Problem 1 if and only if π = π̂θ,gR( f (X),PR) and f admits the

following representation:

f (z) =
∫ z

0
h∗(s)ds

h∗(z) =











1, if gI(PI(Z > z)) > (1 + θ)gR(PR(Z > z))

κ(z), if gI(PI(Z > z)) = (1 + θ)gR(PR(Z > z))

0, if gI(PI(Z > z)) < (1 + θ)gR(PR(Z > z))

(6)

for all z ∈ [0, ∞), PI- and PR-almost surely, where κ is a measurable and [0,1]-valued function on {z ∈ [0, ∞) :

gI(PI(Z > z)) = (1 + θ)gR(PR(Z > z))} and π̂θ,gR is defined in Definition 2.

Proof. Since the objective in Problem 1 satisfies translation invariance, it is strictly decreasing in π.

Therefore, it holds that the premium constraint in Problem 1 must be binding: π = π̂θ,gR( f (X),PR).

Then, we get that the objective in Problem 1 writes as follows:

E
gI

PI
[WI − X − π + f (X)] = WI − ρgI (X − f (X),PI)− π

= WI − ρgI (X,PI) + ρgI ( f (X),PI)− π̂θ,gR( f (X),PR) (7)

where we also use in the second equality that the distortion risk measure satisfies comonotonic

additivity and the fact that f (X) and X − f (X) are comonotonic for all f ∈ F . Since we assumed

ρgi(X,Pi) < ∞, we get by monotonicity of ρgi that ρgi( f (X),Pi) < ∞ for all f ∈ F and all i ∈ {I, R}.

So, (7) is finite.

1 Concave distortion functions resemble aversion to mean-preserving spreads (Yaari [18]).
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Every function f ∈ F is absolutely continuous, non-decreasing, and such that f (0) = 0.

By standard rules of integration, we get that for every f ∈ F and set function v:

∫

∞

0
v({ f (X) > t})dt =

∫

∞

0
v({X > t}) ḟ (t)dt (8)

whenever the first integral is properly defined, where ḟ is a function coinciding almost everywhere

with the derivative of f . Take v(Y) = gi(Pi(Y)) for any measurable risk Y on Ω, and i ∈ {I, R}.

Then, for every f ∈ F , there exists an h ∈ H independent of function gi ∈ G, such that

f (z) =
∫ z

0 h(s)ds, and ρgi( f (X),Pi) =
∫

∞

0 gi(Pi(X > z))h(z)dz for i ∈ {I, R}.

Maximizing (7) yields the same location of the optimum f as for the maximum of the

following function:

−ρgI ( f (X),PI) + π̂θ,gR( f (X),PR)

= −ρgI ( f (X),PI) + (1 + θ)ρgR( f (X),PR)

= −
∫

∞

0
gI(PI(X > z))h(z)dz + (1 + θ)

∫

∞

0
gR(PR(X > z))h(z)dz

=
∫

∞

0
[−gI(PI(X > z)) + (1 + θ)gR(PR(X > z))]h(z)dz

Then, the result follows directly, and the proof is complete.

Corollary 1. Let (π∗, f ∗) solve Problem 1. If gI = gR and θ = 0, then ( f ∗)′(z) = 1 whenever PI(Z > z) >

PR(Z > z) and ( f ∗)′(z) = 0 whenever PI(Z > z) < PR(Z > z).

For instance, if gI = gR, θ = 0 and PI = PR, any contract (π, f ) with f ∈ F and π = π̂0,gR( f (X))

solves Problem 1.

So, the optimal reinsurance contracts depend critically on gI(PI(X > z)) S (1 + θ)gR(PR(X >

z)), for z ∈ [0, ∞). Note that even if a firm assigns probability zero to an event, and the counterparty

assigns a positive probability to this event, it may happen that the firm fully covers the risk in

this event.

Remark 1. Suppose we have multiple reinsurers that all use a generalized Wang premium principle

as in Definition 2, but with heterogeneous parameters and reference probabilities. In case of

homogeneous reference probabilities, Boonen et al. [24] show that minimizing the total premium

for a given coverage yields a representative distortion premium principle for all reinsurers.

With heterogeneous reference probabilities, this may no longer be the case. We here can use the

same techniques as in Theorem 1 to solve an optimal reinsurance problem with multiple reinsurers.

This also leads to optimality of layer-reinsurance.

3.2. Costs of Regulatory Capital

In this subsection, we study the case when the insurer bears costs of holding regulatory

capital. The insurer is enforced hold risk capital given by ρĝI (X − f (X),PI)− EPI
[X − f (X)], where

ρĝI (X − f (X),PI), ĝI ∈ G, is a distortion risk measure used to determine the risk capital is based on

the probability measure PI . Such a valuation principle is used commonly in practice and is embedded

in regulatory requirements under the Swiss Solvency Test and Solvency II (see, e.g., Chi [25],

Asimit et al. [26], and Cheung and Lo [15]). The wealth at a pre-determined future time for the

insurer is given by

Ŵ := WI − π − X + f (X)− λ
(

ρĝI (X − f (X),PI)−EPI
[X − f (X)]

)

(9)
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where λ ≥ 0 is the cost of capital as a percentage of the risk capital. Suppose the risk capital is

determined by ρĝI (X − f (X),PI), where ĝI ∈ G. We assume ρĝI (X,PI) < ∞ and EPI
[X] < ∞.

Similar to Problem 1, we assume that the insurer maximizes its dual utility of future wealth,

where the insurer is allowed to buy any reinsurance indemnity f ∈ F under a premium constraint.

In this subsection, we however include costs of holding regulatory capital in the terminal wealth.

This leads to the following problem:

Problem 2.

max
(π, f )∈IR+×F

E
gI

PI
[WI − π − X + f (X)− λ

(

ρĝI (X − f (X),PI)−EPI
(X − f (X))

)

]

s.t. π ≥ π̂θ,gR( f (X),PR)

where π̂θ,gR is defined in Definition 2.

Lemma 1. Contract (π, f ) ∈ IR+ ×F is a solution of the Problem 2 if and only if it solves:

max
(π, f )∈IR+×F

∫

∞

0
g∗I (PI( f (X) > z))dz − π

s.t. π ≥ π̂θ,gR( f (X),PR)

where

g∗I (s) := gI(s) + λ(ĝI(s)− s), s ∈ [0, 1] (10)

Proof. We obtain

E
gI

PI
[Ŵ] = E

gI

PI
[WI − π − X + f (X)− λ

(

ρĝI (X − f (X),PI)− EPI
[X − f (X)]

)

]

= WI − π + E
gI

PI
[−X + f (X)]− λ

(

ρĝI (X − f (X),PI)−EPI
[X − f (X)]

)

= WI − π + E
gI

PI
[−X]−E

gI

PI
[− f (X)]− λ

(

ρĝI (X,PI)− ρĝI ( f (X),PI)

−EPI
[X − f (X)]

)

= WI − π −
∫

∞

0
gI(PI(X > z)) dz − λ

∫

∞

0
ĝI(PI(X > z)) dz

+ λ

∫

∞

0
PI(X > z) dz +

∫

∞

0
gI(PI( f (X) > z)) dz

+ λ

∫

∞

0
ĝI(PI( f (X) > z)) dz − λ

∫

∞

0
PI( f (X) > z)

= WI − π −
∫

∞

0
[gI(PI(X > z)) + λĝI(PI(X > z))− λPI(X > z)]dz

+
∫

∞

0
[gI(PI( f (X) > z)) + λĝI(PI( f (X) > z))− λPI( f (X) > z)]dz

= WI − π −
∫

∞

0
g∗I (PI(X > z))dz +

∫

∞

0
g∗I (PI( f (X) > z))dz

Here, the second equality follows from translation invariance, and the third equation is due

to comonotonic additivity and the fact that f (X) and X − f (X) are comonotonic. Then, since WI

and X are given, maximizing this yields the same location of the optimum as for the maximum of
∫

∞

0 g∗I (S f (X)(z))dz − π. This concludes the proof.

Note that the function g∗I is not required to be non-decreasing. If it is non-decreasing, it is a

distortion function. The following result provides the optimal reinsurance contracts of Problem 2.
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Theorem 2. It holds that (π, f ) solves Problem 2 if and only if π = π̂θ,gR( f (X),PR) and f admits the

following representation:

f (z) =
∫ z

0
h∗(s)ds

h∗(z) =











1, if g∗I (PI(Z > z)) > (1 + θ)gR(PR(Z > z))

κ(z), if g∗I (PI(Z > z)) = (1 + θ)gR(PR(Z > z))

0, if gI(PI(Z > z)) < (1 + θ)gR(PR(Z > z))

(11)

for all z ∈ [0, ∞), PI- and PR-almost surely, where κ is a measurable and [0,1]-valued function on {z ∈ [0, ∞) :

gI(PI(Z > z)) = (1 + θ)gR(PR(Z > z))}. Here, g∗I is defined in (10).

Proof. Since ρgI (X,PI) < ∞, ρĝI (X,PI) < ∞ and EPI
[X] < ∞, we have by monotonicity of distortion

risk measures that |
∫

∞

0 g∗I (PI( f (X) > z))dz| < ∞ for all f ∈ F .

Moreover, by (8), we have that for every f ∈ F , there exists an h ∈ H independent of function

g ∈ G, such that f (z) =
∫ z

0 h(s)ds, and
∫

∞

0 g∗I (PI( f (X) > z))dz =
∫

∞

0 g∗I (P(X > z))h(z)dz. Using this

and Lemma 1, we get that the rest the proof of the theorem is similar to the proof of Theorem 1.

So, even when risks are valued by means of non-monotonic preferences, we characterize

optimal reinsurance contracts in Theorem 2. We find again that an optimal reinsurance contract

is layer-reinsurance.

Suppose the risk capital ρĝI is based on the beliefs P̂ instead of PI , where P̂ is a countable additive

probability measure on (Ω, Σ). Then, the optimal reinsurance indemnity functions in Theorem 2

need to be adjusted in line with Theorem 1. Then, the constraints of the function h∗ ∈ H in (11) are

based on gI(PI(Z > z)) + λ(ĝI(P̂(Z > z)) − P̂(Z > z)) instead of g∗I (PI(Z > z)) for z ∈ [0, ∞).

So, we remain to have layer-reinsurance in optimal reinsurance contracts.

4. Two Examples

In this section, we illustrate Theorem 1 by means of two examples. The two most commonly

used distortion risk measures in the literature are the Value-at-Risk (VaR) and the Conditional

Value-at-Risk (CVaR), which we illustrate in Subsections 4.1 and 4.2. The reason for taking these

two risk measures as the criteria for optimal reinsurance is due to their popularity among banks and

insurance companies for quantifying risks and determining capital requirements. Asimit et al. [26]

study our setting with VaR and CVaR in the context of insurance risk transfers in more detail in case

of a homogeneous reference probability.

4.1. Value-at-Risk

A prominent example of distortion risk measures is the Value-at-Risk (VaR). For instance, it is

used in Solvency II regulations. The VaR of a random variable Z at a confidence level α ∈ (0, 1) is

given by:

VaRα(Z,P) = inf{z ∈ IR : P(Z ≤ z) ≥ α}

The VaR has distortion function g(s) = 1s>1−α for s ∈ [0, 1] (see Dhaene et al. [27]).

The focus of this paper is on heterogeneity of reference probability, and so we assume that both

firms use a different probability distribution of X. A popular, non-negative distribution with one

parameter is the exponential distribution. An exponentially distributed variable X with parameter

µi > 0 has survival function P(X > z) = exp(−µiz) for z ∈ [0, ∞). The insurer believes that the

risk X is exponentially distributed with parameter µI , and the reinsurer believes that the risk X is

exponentially distributed with parameter µR.

Since X is continuously distributed, we get the VaR by solving Pi(X > VaRαi
(X,Pi)) = 1 − αi.

We get

VaRαi
(X,Pi) = −

ln(1 − αi)

µi
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Suppose both the insurer and the reinsurer use VaR with parameters αI and αR respectively.

From Theorem 1, we get immediately that the optimal marginal indemnity contract has the following

functional form when θ = 0:

h(z) =











1 if VaRαR(X,PR) < z < VaRαI (X,PI)

0 if VaRαI (X,PI) < z < VaRαR (X,PR)

κ(z) otherwise

for all z ∈ [0, ∞), PI- and PR-almost surely. Moreover, when θ > 0, we get

h(z) =











1 if VaRαR(X,PR) < z < VaRαI (X,PI)

0 if z < VaRαR(X,PR)

κ(z) otherwise

for all z ∈ [0, ∞), PI- and PR-almost surely. So, the contracts critically depend on whether we have

− ln(1−αI)
µI

S − ln(1−αR)
µR

. We illustrate the four different cases in Figure 1.

z
0

z
0

z
0

z
0

VaRαI (X,PI) VaRαR(X,PR)

κ

θ = 0:

0 κ

VaRαR(X,PR) VaRαI (X,PI)

κ 1 κ

VaRαI (X,PI) VaRαR(X,PR)

0

θ > 0:

0 κ

VaRαR(X,PR) VaRαI (X,PI)

0 1 κ

Figure 1. This figure graphically illustrates the optimal marginal indemnity function h ∈ H of

Theorem 1 in case the Value-at-Risk (VaR) is used. The range of X, denoted by z ∈ [0, ∞), is

partitioned in sub-domains, and the value h(z) is shown above the relevant sub-domain. Recall that

f (z) =
∫ z

0 h(s)ds, and κ(z) is any measurable and [0,1]-valued function. The first two illustrations

represent cases where θ = 0, and in the last two illustrations represent cases where θ > 0.

Moreover, the first and third illustration show the case that VaRα I (X,PI) ≤ VaRαR (X,PR), and the

second and last illustration show the case that VaRα I (X,PI) ≥ VaRαR (X,PR).

The derived optimal reinsurance indemnities include layer-reinsurance. Proportional reinsurance is

however never optimal unless θ = 0 and VaRαI (X,PI) = VaRαR (X,PR) both hold. In that case,

every indemnity f ∈ F is optimal. If, for instance, we are at a realization z of X such that

VaRαR(X,PR) < z < VaRαI (X,PI), then marginal increases in risk at z will be irrelevant for

VaRαR(X,PR), but not for VaRαI (X,PI). As a result, it is optimal to shift marginal risk to the reinsurer,

i.e., h(z) = 1.
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4.2. Conditional Value-at-Risk

Another prominent example of distortion risk measures in the conditional VaR. It is also known

as expected shortfall, and it is used in the Swiss Solvency Test and the new Basel regulations.

The conditional VaR of a random variable Z at a confidence level α ∈ (0, 1) is given by:

CVaRα(Z,P) =
1

1 − α

∫ 1

α
VaRs(Z,P)ds

provided that the integral exists. The distortion function of CVaRα is given by g(s) = min{ s
1−α , 1}

for s ∈ [0, 1] (see Dhaene et al. [27]).

When, according to Pi, the risk X is exponentially distributed with parameter µi > 0, we find

CVaRαi
(X,Pi) =

1

1 − αi

∫ 1

αi

−
ln(1 − s)

µi
ds =

− ln(1 − αi) + 1

µi

= VaRαi
(X,Pi) +EPi

[X] (12)

where the second step can be shown by L’Hôpital’s rule.

Suppose both the insurer and the reinsurer use the conditional Value-at-Risk (CVaR) with

parameters αI and αR respectively. From Theorem 1, we get immediately that optimal reinsurance

contracts have the following functional form:

h(z) =











1 if (1 + θ)min{ 1
1−αR

exp(−µRz), 1} < min{ 1
1−αI

exp(−µIz), 1}

0 if (1 + θ)min{ 1
1−αR

exp(−µRz), 1} > min{ 1
1−αI

exp(−µIz), 1}

κ(z) otherwise

for all z ∈ [0, ∞), PI- and PR-almost surely. From (12), we can write this as follows

h(z) =



















1 if (1 + θ)(1
z<−

ln(1−αR)
µR

+ exp(−µRz)) < 1
z<−

ln(1−αI )
µI

+ exp(−µIz)

0 if (1 + θ)(1
z<−

ln(1−αR)
µR

+ exp(−µRz)) > 1
z<−

ln(1−αI )
µI

+ exp(−µIz)

κ(z) otherwise

for all z ∈ [0, ∞), PI- andPR-almost surely. This allows for many reinsurance contracts. If, for instance,

we are at a realization z of X such that VaRαI (X,PI) < z < VaRαR(X,PR), then marginal increases in

risk at z will be more sensitive for CVaRαR(X,PR) than for CVaRαI (X,PI). As a result, it is optimal

for the insurer to keep the marginal risk, i.e., h(z) = 0.

In general, we find that the structure of the optimal indemnity functions contain more

parameters compared to the case with VaR. If µI gets larger, then the insurer believes that the risk

is larger in expectation, and so there is optimal reinsurance contract in which the insurer will reinsure

more: f (z) weakly increases for all z ∈ [0, ∞). Likewise, if the price gets smaller due to a smaller

value of θ, µR or αR, there is an optimal reinsurance contract in which the insurer will reinsure more.

5. Conclusions and Concluding Remark

In this paper, we characterize optimal reinsurance contracts under a moral hazard constraint.

Our novel contribution is the focus on heterogeneous beliefs regarding the underlying probability

distribution. We solve the optimal reinsurance problem by means of the marginal indemnification

method approach, as introduced by Assa [13]. We find that optimal reinsurance indemnity functions

are given by layer-reinsurance.

We study the case where an insurer seeks reinsurance with only one reinsurer. This setting seems

restrictive, but can easily be extended to the case with multiple reinsurers. In that case, there is also

optimality of layer-reinsurance, but different layers are possibly reinsured by different reinsurers.
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