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Abstract:



Binomial trees are very popular in both theory and applications of option pricing. As they often suffer from an irregular convergence behavior, improving this is an important task. We build upon a new version of the Edgeworth expansion for lattice models to construct new and quickly converging binomial schemes with a particular application to barrier options.
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1. Introduction: Convergence of Binomial Trees


Since the appearance of the pioneering work by Cox et al. (see [1]) and by Rendleman and Bartter (see [2]), the use of binomial trees in option pricing has been very popular in both application and theory. Their main advantages are that they inherit the important theoretical concepts of completeness and risk-neutral pricing while keeping the technical framework on a very low level. In particular, they can be applied without the necessity to introduce stochastic calculus.



Further, approximating option prices in the Black–Scholes model (BS model) or more advanced models with the help of a sequence of suitable binomial trees is a popular numerical method when it comes to exotic options, in particular those with American or Bermudan features.



Convergence of such a sequence of approximations to the desired option price in the BS model is ensured by constructing the corresponding binomial trees in a way such that they satisfy the (approximate) moment matching conditions of Donsker’s theorem (see, e.g., [3,4]). However, conventional sequences of binomial trees (such as the Cox–Ross–Rubinstein tree (CRR tree) or the Rendleman–Bartter tree (RB tree)) show a quite erratic convergence behavior, which is typically not monotonic in the number of periods n (i.e., the fineness of the trees) and is often referred to as the sawtooth effect.



This issue has been addressed by numerous authors, and different solutions have been offered (see, e.g., [5,6,7,8]). In order to better understand the source of the problem, as well as to be able to compare existing methods theoretically, one has to consider the asymptotics of the discrete models ([9,10]). Moreover, this information can then be used to construct advanced tree models with faster or smoother convergence (see [11,12,13]).



We will focus on the BS model in the one-dimensional setting. There, we offer a general method of constructing asymptotic expansions for lattices based on an appropriate Edgeworth expansion and discuss ways of further improving the convergence behavior for different types of options.



Edgeworth expansions have various applications in the literature, e.g., in statistics. In the context of binomial trees, the Edgeworth expansion has been applied, e.g., by Rubinstein (see [14]) to construct risk-neutral approximations for various types of distributions, however, without providing the exact convergence behavior.



In this article, we propose a new approach to analyze the asymptotic behavior of binomial trees via the introduction of the Edgeworth expansion for lattice triangular schemes. This method provides a general framework for improving the convergence of binomial trees that is not restricted to risk-neutral transition probabilities and can be easily applied to multinomial and multidimensional trees. As an application we provide an asymptotic expansion for the performance of binomial trees for barrier options and construct an extended CRR tree with an improved convergence behavior.




2. Asymptotic Analysis of Binomial Trees: Distributional Fit


Consider the one-dimensional BS model in the risk-neutral setting given by:


dSt=Strdt+σdWt,S(0)=s0



(1)




where [image: there is no content] is a Brownian motion under the risk-neutral measure Q. We then construct approximating binomial trees [image: there is no content], [image: there is no content] via:


Sk(n)=Sk−1(n)eαnΔt+σΔtξk(n),S0(n)=s0



(2)




where [image: there is no content] is a bounded sequence and for each [image: there is no content], [image: there is no content], [image: there is no content] are i.i.d random variables taking on values of one and [image: there is no content] with probabilities [image: there is no content] and [image: there is no content], respectively.



The convergence behavior of the binomial trees above can be controlled with an appropriate selection of values [image: there is no content] and [image: there is no content]. However, in order to ensure weak convergence, the mean and variance of the one-period log returns of the discrete- and continuous-time models should match at least asymptotically (see, e.g., [15]). Therefore, [image: there is no content] and [image: there is no content] should satisfy:


[image: there is no content]



(3)







Note first that a simple consequence of the requirement Equation (3) is:


pn=12+O1n,n→∞



(4)







A natural aim is to optimize the choices for [image: there is no content] and [image: there is no content] for all types of options and, thus, construct a uniformly superior tree. Unfortunately, we will see later that the exact forms of the optimal [image: there is no content] and [image: there is no content] strongly depend on the type of option considered, although they are derived using the same idea.



We now consider the convergence behavior of [image: there is no content] to S in distribution and look at the discretization error:


[image: there is no content]



(5)




with [image: there is no content] given by:


[image: there is no content]



(6)







The asymptotics for Equation (5) has already been provided in [9] and later in [11] based on an integral representation of binomial sums (see e.g. [16]). This approach was also used in [10] to obtain an asymptotic expansion for barrier options. Note, however, that this methodology has only been applied to one-dimensional binomial trees. In this section, we present an alternative approach that makes use of an Edgeworth expansion for lattice triangular arrays. The advantage of this approach is that it can be easily generalized to both multinomial and multidimensional trees and can be extended to provide any required order of convergence (see, e.g., [17]).



Consider the discrete-time stock price at maturity:


[image: there is no content]











To be able to make use of the Edgeworth expansion for lattice triangular schemes as introduced in [17] and in particular Theorem A1 in Appendix A, we consider:


ηk(n)=ξk(n)+12,k=1,⋯,n



(7)







Note that this yields:


PSn(n)≤x=P1n∑k=1nξk(n)−Eξk(n)≤lnxs0−μnTσT=P1n∑k=1nηk(n)−Eηk(n)≤lnxs0−μnT2σT









Remark 1. 

The change of variables from [image: there is no content]to [image: there is no content]is necessary as the variables [image: there is no content]take values [image: there is no content]; therefore, their minimal lattice is [image: there is no content]. However, [image: there is no content]has a minimal lattice [image: there is no content]and [image: there is no content]. Therefore, Theorem A1 can be applied to [image: there is no content], but not directly to [image: there is no content]. This transformation is not the only possibility, the resulting expansion, however, will remain the same.







By Theorem A1, the following asymptotic expansion holds (see Appendix A for the definition of the cumulants and for the Lemmas used in the proof).

Corollary 1. 

Let [image: there is no content], σn2=Varη1(n)and [image: there is no content]be the ν-th cumulant of [image: there is no content]. The process [image: there is no content]defined in Equation (2) satisfies:


[image: there is no content]



(8)




where for [image: there is no content]defined as in Equation (3) and with [image: there is no content]denoting the fractional part of z:


yn=lnxs0−μnT2σT,an=nμn+ynn



(9)






S1z=z−12,S2z=12z2−z+16S3z=16z3−32z2+12z



(10)









Proof. 

By relation Equation (4), the assumption Equation (A1) is satisfied for any s and starting from some [image: there is no content]; Lemma A2 is applicable, so the uniform condition Equation (A2) also holds. Furthermore, by Lemma A1, in the one-dimensional case, we obtain:


[image: there is no content]








since, due to Equation (4), [image: there is no content], [image: there is no content]. Therefore, by applying Theorem A1 with [image: there is no content], we get the statement of the corollary. ☐








3. Improving the Convergence Behavior


We will now apply the Edgeworth expansion (Corollary 1) to improve the convergence pattern of one-dimensional binomial trees.



3.1. Existing Methods in the Literature


As mentioned in [9], the irregularities in the convergence behavior of tree methods can be explained by the periodic, n-dependent term [image: there is no content] in Equation (8). Since [image: there is no content] does not have a limit as n goes to infinity and oscillates between [image: there is no content] and [image: there is no content], even large values of n do not guarantee accurate results. As a solution, various methods have been offered to improve convergence by controlling the [image: there is no content] function and with that the leading error term. However, basically, they pursue one of the following goals.



The first one (see, e.g., [8]) is to achieve smooth convergence behavior, so that extrapolation methods can be applied to increase the order of convergence. The second one (see, e.g., [11]) is to construct the tree such that the leading error term becomes zero, thus increasing the order of convergence directly. These methods concentrate only on the leading error term allowing one to increase the order of convergence up to [image: there is no content]. However, if we also incorporate the subsequent terms in expansion Equation (8), it is possible to further improve the convergence behavior. The optimal drift model (OD model) in [13,15] has an improved rate [image: there is no content] for most parameter settings of interest (the order of convergence depends on solving quadratic equations).




3.2. The 3/2-Optimal Model


We now consider a general setting that includes both the RB and CRR tree and show how convergence can be improved in this wider class of models.



Note that the problem of optimizing the convergence of the CRR tree to a certain order has already been addressed by different authors. The aforementioned OD model of Korn and Müller in [13] allows one to improve convergence up to order [image: there is no content], and the method introduced by Leduc in [18] for vanilla options can also be adjusted to further improve the distributional fit, as well. However, these approaches are restricted to risk-neutral probabilities and involve solving quadratic equations, which rules out certain model parameters. We now present a slightly different approach that involves only linear equations and is, therefore, applicable to any parameter setting.



Consider the following model given by:


[image: there is no content]



(11)






[image: there is no content]










[image: there is no content]



(12)




with bounded [image: there is no content], [image: there is no content] and:


[image: there is no content]



(13)





Proposition 1. 

With an appropriate choice of parameters [image: there is no content], [image: there is no content]and [image: there is no content][image: there is no content], the binomial process [image: there is no content]in Equation (11) satisfies:


[image: there is no content]















The proof of the proposition and the possible choice of the parameters [image: there is no content], [image: there is no content] and [image: there is no content][image: there is no content] is provided in Appendix B.

Remark 2. 

The name [image: there is no content]-optimal model refers to the optimized convergence up to and including order [image: there is no content], in the sense that the corresponding coefficients are set to zero.





Remark 3. 

Other than Equation (13), there are no restrictions on [image: there is no content]and [image: there is no content]. With [image: there is no content], we are in the CRR case; for [image: there is no content], we have the RB tree extension. Either way, the order of convergence is [image: there is no content]; however, [image: there is no content]influences the exact convergence pattern. The optimal choice of [image: there is no content]is still an open question.





Remark 4. 

In case risk-neutral probabilities are considered (see, e.g., [15,18]), the coefficients [image: there is no content]above are completely determined by the drift. We have proposed a different approach, where the coefficients of the probabilities are chosen instead of the drift. This way, we are able to avoid quadratic equations, and hence, we are able to increase the order of convergence for any parameter setting (see also [12] for an alternative approach).





Remark 5. 

Since all absolute moments of [image: there is no content]are bounded, we can apply Theorem A1 to retrieve subsequent terms in the asymptotic expansion Equation (8). We are then able to further increase the order of convergence, by adding more terms to the probability. With the approach described above, all equations will be linear, and unlike the method in [18], the previous coefficients will remain unaltered.







CRR vs. RB


Consider the following log-log plots with the convergence behavior of the 3/2-optimal RB-based and CRR-based trees. By Proposition 1, we should see the slope of [image: there is no content] in the graph. The convergence is not smooth, and the graph is not a straight line; however, the general trend is present.



Figure 1 suggests that the RB-based model gives a slightly better distributional fit. However, to compare the performance of the RB-based and the CRR-based variants for different choices of the coefficient [image: there is no content], we consider a whole set of approximation tasks. The performance will be measured in term of both the root mean squared (RMS) error and the root mean squared relative (RMSR) error.


Figure 1. Distributional fit with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



[image: Risks 04 00015 g001 1024]






First, we randomly generate a sample of m parameter vectors [image: there is no content], following the procedure described in [19], but allowing a slightly wider range for the parameters.

	
The initial asset price [image: there is no content] is fixed to 100,



	
the value x is uniformly distributed between 50 and 150,



	
the riskless interest rate r is uniformly distributed between zero and [image: there is no content],



	
the volatility σ is uniformly distributed between [image: there is no content] and [image: there is no content],



	
the maturity T is chosen uniformly between zero and one years with probability [image: there is no content] and between one and five years with probability [image: there is no content].








Note that [image: there is no content] remains fixed, and we only vary x as we are only interested in the ratio [image: there is no content]. Parameter vectors, for which [image: there is no content], are excluded from the sample to ensure a reliable relative error estimate. For each [image: there is no content] and every parameter vector π, let [image: there is no content] and [image: there is no content] denote the absolute and relative error, respectively, i.e.,


εabsπn=Fnπx−Φπd2(x),εrelπn=εabsπnΦπd2(x)








where [image: there is no content] and [image: there is no content] refer to the distribution functions of the discrete- and continuous-time models, corresponding to the parameters π. Then, we look at:


RMS(n)=1m∑i=1mεabsπin2,RMSR(n)=1m∑i=1mεrelπin2











Due to Proposition 1, both errors are of order [image: there is no content]. Consider the following convergence behavior of the errors, taken over a sample of [image: there is no content] parameter vectors, 995 of which are included. For both errors, a maximum of [image: there is no content] time steps is considered.



Note that the absolute error has a very similar convergence pattern for both models (see Figure 2). However, Figure 3 suggests that the CRR-optimal tree delivers better results for the relative error.


Figure 2. [image: there is no content] and [image: there is no content] error.



[image: Risks 04 00015 g002 1024]





Figure 3. [image: there is no content] and [image: there is no content] error.



[image: Risks 04 00015 g003a 1024][image: Risks 04 00015 g003b 1024]









4. Expansions for Barrier Option Prices


We now apply the above results to improve the convergence behavior for barrier options.



To examine the performance of our new approach, we will focus on the price of an up-and-in put option with payoff:


K−S(T)+ 1St≥B,for some t∈0,T











Prices of other barrier options can be obtained in a similar manner or using the in-out parities for single barrier options. We assume [image: there is no content], as otherwise, the barrier option becomes a plain vanilla option. Let [image: there is no content]; then, the price of an up-and-in put is given by (see, e.g., [20]):


[image: there is no content]








where [image: there is no content] and:


d3=logKs0B2−r−12σ2TσT,d4=d3−σT











Lattice methods for barrier options have a very irregular convergence behavior due to the position of the barrier. This phenomenon, as well as possible solutions have been studied by various authors; see, for example, [5,6,21], etc. A first order asymptotic expansion for binomial trees has been obtained in [22]. An expansion for barrier options with coefficients up to order [image: there is no content] has already been provided in [10]. Here, we show how the Edgeworth expansion (Corollary 1) can be used to increase the order of convergence to [image: there is no content].



4.1. Binomial Trees for Barrier Options


Consider the model:


Sk(n)=Sk−1(n)eσΔtξk(n),k=1⋯,n



(14)




with the probability of an up-jump given by:


[image: there is no content]



(15)




where:


[image: there is no content]








and [image: there is no content] are bounded. We set:


Vnui=Ene−rTK−Sn(n)1max1≤k≤nSk(n)≥B,Sn(n)≤K











Let:


anK=logKs0σΔt,anB=logBs0σΔt,lnB=anB











Then, [image: there is no content] is the overshoot of the barrier in the discrete model (Figure 4).


Figure 4. Dynamics of [image: there is no content].



[image: Risks 04 00015 g004 1024]






Therefore, we get:


Vnui=∑x≤anKEne−rTK−s0eσΔt∑i=1nξi(n)1max1≤k≤n∑i=1kξi(n)≥anB,∑i=1nξi(n)=x=e−rTK∑x≤anKPmax1≤k≤n∑i=1kξi(n)≥lnB,∑i=1nξi(n)=x−s0∑x≤anKe−rT+σΔt·xPmax1≤k≤n∑i=1kξi(n)≥lnB,∑i=1nξi(n)=x



(16)







To calculate the probabilities in Equation (16), we need the following lemma that makes use of the reflection principle for a simple random walk. Its proof is similar to that of the continuous-time analogue and can be found in [17].

Lemma 1. 

Let [image: there is no content], where [image: there is no content]are i.i.d, [image: there is no content]with probabilities p and q. Then:


Pmax1≤k≤nSk≥b,Sn=x=pqbPSn=x−2b,if x<bPSn=x,if x≥b



(17)











Substituting Lemma 1 into Equation (16), we get:


e−rTK∑x≤anKPmax1≤k≤n∑i=1kξi(n)≥lnB,∑i=1nξi(n)=x=e−rTKpqlnB∑x≤anKP∑i=1nξi(n)=x−2lnB=e−rTKpqlnBP∑i=1nξi(n)≤anK−2lnB











To get the dynamics of the second term in Equation (16), we need to perform a suitable change of measure. Let:


λn,k=e−rΔt+σΔtξk(n),k=1,⋯,n








and:


[image: there is no content]



(18)







We can now define new transition probabilities for [image: there is no content], [image: there is no content]. Let the new probabilities of an up-jump [image: there is no content] and a down-jump [image: there is no content] be:


[image: there is no content]



(19)






[image: there is no content]



(20)







Note that [image: there is no content] are well defined, starting from some [image: there is no content], and [image: there is no content]. The new probability measure [image: there is no content] is now defined as:


[image: there is no content]



(21)




where [image: there is no content], [image: there is no content] and [image: there is no content] and [image: there is no content] are the numbers of ones and [image: there is no content]’s in the sequence [image: there is no content]. Therefore, the Radon–Nikodým derivative of [image: there is no content] with respect to [image: there is no content] is given by:


[image: there is no content]











All conditions for a change of measure are now satisfied, and we arrive at:


s0∑x≤anKe−rT+σΔt·xPmax1≤k≤n∑i=1kξi(n)≥lnB,∑i=1nξi(n)=x=s0pqlnB∑x≤anKe−rT+σΔt·xP∑i=1nξi(n)=x−2lnB=s0pqlnBe2lnBσΔtMnnP˜∑i=1nξi(n)≤anK−2lnB











As a result, we obtain:


Vnui=e−rTKpqlnBP∑i=1nξi(n)≤anK−2lnB−s0pqlnBe2lnBσΔtMnnP˜∑i=1nξi(n)≤anK−2lnB



(22)





Proposition 2. 

With an appropriate choice of coefficients [image: there is no content]and [image: there is no content], the binomial model in Equation (14) satisfies:


[image: there is no content]















The proof of the proposition and the possible choice of the coefficients [image: there is no content] and [image: there is no content] are provided in Appendix C. We call the resulting modified binomial tree the 1-optimal tree.

Remark 6. 

Consider the leading error coefficient in Equation (C9). Note that [image: there is no content], [image: there is no content]are constant; therefore, the oscillatory convergence behavior is due to the overshoot of the barrier [image: there is no content]. The relative position of the strike with respect to the two neighboring nodes at maturity does not enter into the expression. The strike is only present starting from the [image: there is no content]coefficient in the term [image: there is no content]together with the barrier in quadratic form. Therefore, the position of the barrier will have a much stronger effect on the convergence pattern than the position of the strike (see also [10]).








4.2. Numerical Results


We now consider the convergence pattern of a specific barrier option.

Remark 7. 

Note that as in the CRR tree, we have [image: there is no content]; the leading error coefficient in Equation (C9) becomes [image: there is no content], where [image: there is no content]. Therefore, the binomial tree will either overestimate or underestimate the BS price for all n, depending on the sign of [image: there is no content], as can be seen in Figure 5 and Figure 6.

Figure 5. CRR vs. RB: up-and-in barrier put, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



[image: Risks 04 00015 g005 1024]





Figure 6. CRR vs. 1-opt.: Up-and-in barrier put, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



[image: Risks 04 00015 g006 1024]











CRR vs. RB


For barrier options, we have a different behavior for the RB and the CRR trees. Expansions for the RB tree cannot be obtained with the method described above, since the reflection principle is directly applicable only to the CRR tree; however, numerical results show that the RB tree has a much smoother convergence compared to the CRR tree. This can be explained by the fact that, as the CRR tree is symmetric around zero in the log-scale, the overshoot of the barrier [image: there is no content] is the same for each time step. Therefore, with an increase of n, a whole row of nodes becomes out-of-the-money. The RB tree, on the other hand, is tilted; therefore, this effect is not that pronounced.



See Figure 5 for the numerical illustration of this behaviour.



Figure 6 illustrates the superior behaviour of the 1-optimal tree compared to the CRR-tree.



Due to the smooth convergence pattern, we can apply extrapolation to the RB tree to increase the order of convergence(see Figure 7).


Figure 7. RB with extrapolation: up-and-in barrier put with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



[image: Risks 04 00015 g007 1024]






Although the RB tree with extrapolation outperforms the CRR tree, the 1-optimal tree outperforms the two others by far. This observation is summarized in Table 1 below.



Table 1. Convergence behaviour of CRR, RB with extrapolation and the 1-optimal tree.







	
Parameters

	
n

	
CRR Tree

	
RB Extrapolation

	
1-Optimal

	
BS Value






	
[image: there is no content]

	
100

	
1.0370950

	
1.2728844

	
1.3071811

	
1.3714613




	
[image: there is no content]

	
200

	
1.1428755

	
1.3064705

	
1.3528020

	




	
[image: there is no content], [image: there is no content]

	
500

	
1.2210427

	
1.3667218

	
1.3668495

	




	
[image: there is no content]

	
1000

	
1.2248525

	
1.3608690

	
1.3671287

	




	
[image: there is no content]

	
2000

	
1.3285299

	
1.3731534

	
1.3713814

	




	

	
4000

	
1.3018025

	
1.3696310

	
1.3710375

	













5. Conclusions


We have considered applications of the Edgeworth expansions to one-dimensional tree models in the Black–Scholes setting. We have seen how expansions can be obtained for barrier options and how these results can be used to improve convergence behavior. For applications to digital and European options, as well as multidimensional trees, see [17].



Once again, we consider the binomial method as a purely numerical approach and do not restrict ourselves to the equivalent martingale measure in the binomial setting. This gives us more freedom in the construction of the advanced trees, as it allows one to choose the probabilities, as well as the drift of the tree. Nevertheless, the expansions obtained in the proofs of the propositions above hold for a very general setting and can also be applied to trees under the risk-neutral measure.
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Appendix A. The Edgeworth Expansion


We consider a triangular array of lattice random vectors [image: there is no content] defined on the probability spaces [image: there is no content], with common minimal lattice [image: there is no content] s.t.:


EXn,1=μn,CovXn,1=Vn,PXn,1∈Zd=1andρn,s+1=EXn,1−μns+1=O1,for some integers≥2



(A1)




where the sequence of positive-definite covariance matrices [image: there is no content] converges to a positive-definite limit matrix V.



For each [image: there is no content], let [image: there is no content] be the normalized sum


[image: there is no content]











Since [image: there is no content], starting from some [image: there is no content], then the cumulants of [image: there is no content], [image: there is no content], of order ν, [image: there is no content], exist and can be obtained from the Taylor expansion of the logarithm of the characteristic function [image: there is no content] as:


[image: there is no content]











There exists a one-to-one correspondence between the cumulants and the moments of a distribution. In the theory of Fourier transforms, cumulants are the preferred choice due to their additivity. For a further discussion, please refer to [17,23].



A detailed description of Edgeworth expansions for various types of distributions, including lattice distributions, is provided in [23]. The following theorem is an extension for lattice triangular arrays, applicable to binomial trees with n-dependent transition probabilities.

Theorem A1. 

Let [image: there is no content]and [image: there is no content]be a fundamental domain of [image: there is no content]. Under condition Equation (A1), if for all constants [image: there is no content], s.t. [image: there is no content]is non-empty, the characteristic functions of [image: there is no content], [image: there is no content], satisfy the condition:


NC:=supψXn,1t:t∈F*∖E(C),n∈N<1



(A2)




then the distribution function of [image: there is no content]satisfies:


supx∈RdPSn≤x−∑α≤s−2n−α/2−1αSαnμn+nxDαΦ0,Vnx−n−1/2∑α≤s−3n−α/2−1αSαnμn+nxDαP1−Φ0,Vn,κn,νx−⋯−n−(s−2)/2Ps−2−Φ0,Vn,κn,ν=On−(s−1)/2



(A3)




where [image: there is no content]is the finite signed measure on [image: there is no content]whose density is [image: there is no content]defined in Lemma A1 and [image: there is no content], with the periodic functions [image: there is no content]obtained from the Fourier series:


[image: there is no content]








for [image: there is no content].







For details, please refer to [23,24]:

Lemma A1. 

[image: there is no content]is a polynomial multiple of [image: there is no content]and can be written as:


[image: there is no content]








where [image: there is no content]is the summation over all m-tuples of positive integers [image: there is no content]satisfying [image: there is no content]and [image: there is no content]is the summation over all m-tuples of nonnegative integral vectors [image: there is no content]s.t. [image: there is no content], [image: there is no content].







For details, see [23]. The following lemma gives a sufficient condition for Equation (A2), which holds for multidimensional and multinomial trees. Compare also [25].

Lemma A2. 

Let [image: there is no content], [image: there is no content]be a triangular array of lattice random vectors with a common minimal lattice L and support S=x∈Rdpx,n:=Pξn,1=x>0, [image: there is no content]. If for each [image: there is no content], there exists a constant [image: there is no content], such that:


px,n≥Kx,n∈N








then for all constants [image: there is no content], s.t. [image: there is no content]is non-empty:


NC:=supψξn,1t:t∈F*∖E(C),n∈N<1



(A4)







Here, [image: there is no content]is the fundamental domain of [image: there is no content], and [image: there is no content]is defined as in Theorem A1.





Proof. 

Since S has a finite number of elements, define [image: there is no content]. Then:


ψξn,1t=∑x∈Seit,xpx,n=∑x∈Seit,xpx,n−K+∑x∈Seit,xK=∑x∈Seit,xpx,n−K+Km∑x∈Seit,x1m















Set:


[image: there is no content]








which is the characteristic function of an m-nomial random vector that has the same support S, but assigns an equal probability [image: there is no content] to each attainable value. Note that [image: there is no content] is independent of n, and for any constant [image: there is no content], [image: there is no content], for [image: there is no content]. Then, since [image: there is no content], for all [image: there is no content],


ψξn,1t≤∑x∈Spx,n−K+Kmψt=∑x∈Spx,n+KmδC−1=1−Km1−δC:=εC











Since [image: there is no content], we have [image: there is no content] for all [image: there is no content] and [image: there is no content]. Therefore, we have shown Equation (A4). ☐




Appendix B. Proof of Proposition 1


In order to get an expansion of all of the required terms in Corollary 1, we need to consider the asymptotics of the standard normal distribution and density functions. For a fixed [image: there is no content] and sequences [image: there is no content]:


[image: there is no content]








with bounded [image: there is no content], by applying Taylor’s theorem, we get the following expansions up to order 3/2:


Φz+εn=Φz+1nϕze1,n+1nϕze2,n−12ze1,n2+1n3/2ϕze3,n−ze1,ne2,n+16(z2−1)e1,n3+O1n2



(B1)






[image: there is no content]



(B2)





Proposition B1. 

We use the notation of Corollary 1. Given Equation (12), we get the following dynamics:


[image: there is no content]








with:


mi=ki,n+2σci+1,nTTσ,i=1,2,3



(B3)




and:


[image: there is no content]















Therefore, by the binomial series theorem (Taylor series at zero for [image: there is no content], [image: there is no content]):


[image: there is no content]








and as a result, for [image: there is no content] as in Equation (9), we get:


ynσn=d2−m11n+2d2c1,n2−m21n+4d2c1,nc2,n−m3−2c1,n2m11n3+O1n2



(B4)







Then, by Equations (B1) and (B2), we obtain:


[image: there is no content]










ϕ0,σn2yn=ϕd2+1nϕ(d2)d2m1+1nϕ(d2)m2d2−2d22c1,n2+12d22−1m12+O1n3











Let [image: there is no content], [image: there is no content] denote the ν-th moment of [image: there is no content]. Then, the cumulants can be represented in terms of moments (see, e.g., [17], Section 3.2) as:


[image: there is no content]











Substituting the above expansions into Equation (8), we get:


PSn(n)≤x=Φd2−1nϕ(d2)f1αn,pn+1nϕ(d2)f2αn,pn+1n3ϕ(d2)f3αn,pn+O1n2



(B5)




where:


f1αn,pn:=m1+2S1anf2αn,pn:=−m2+2d2c1,n2+23c1,nd22−1+d23−d212−d22m1+2S1an2f3αn,pn:=−m3+4d2c1,nc2,n+23c2,nd22−1−8S3and22−1−16m1d22−1m12+d22−1m1S1an+4S2and22−1−m1+2S1an2c1,n21−d22+d2m2+2c1,nd2−23c1,nd23−112d24−6d22+3



(B6)







The goal now is to choose the coefficients [image: there is no content], [image: there is no content], so that [image: there is no content], [image: there is no content]. As there are more variables than equations, there are various ways of doing that. Set [image: there is no content], and choose [image: there is no content] such that [image: there is no content] is satisfied, i.e.,


2S1an+k1,n+2σc2,nTTσ=0⇔lnxs0−k0,nT2σΔt+n2−12+c2,n=lnxs0−k0,nT−k1,nTn2σΔt+n2











The above equation is solved by:


[image: there is no content]



(B7)




and [image: there is no content] taking any of the following values:


[image: there is no content]



(B8)







The other terms in Equation (B5) become:


f2αn,pn=−2c3,n+2d2c1,n2+23c1,nd22−1+d23−d212f3αn,pn=−2c4,n+4d2c1,nc2,n+23c2,nd22−1−8S3and22−1−16d22−1m13−m1








where we have used [image: there is no content] (see Equation (10)). Therefore, if we set:


[image: there is no content]



(B9)




and:


c4,n=2d2c1,nc2,n+13c2,nd22−1−4S3and22−1−112d22−1m13−m1



(B10)




all chosen coefficients are bounded, [image: there is no content] and [image: there is no content] vanish and we get the statement of the proposition. ☐




Remark B1. 

[image: there is no content]can be chosen freely, as long as Equation (B8) is satisfied. We will usually choose [image: there is no content], since in this case, [image: there is no content], [image: there is no content], and therefore, the values assigned to [image: there is no content]and [image: there is no content]have a simpler form and require less computations.








Appendix C. Proof of Proposition 2



Proposition C1. 

Note:


[image: there is no content]








where [image: there is no content] is defined as in Equation (7), [image: there is no content] and:


[image: there is no content]















From Equation (15), we get:


[image: there is no content]








and following the proof of Proposition 1, we get:


[image: there is no content]








and:


[image: there is no content]



(C1)




where [image: there is no content]. Similarly, we deduce:


[image: there is no content]








and:


[image: there is no content]



(C2)






[image: there is no content]



(C3)







Further, a Taylor expansion yields:


pqlnB=Bs0μ1+4nc1,n−anB+c2,nlogBs0σT+4nc2,n−anB−logBs0σT23c1,n3−c3,n+2c1,n−anB+c2,nlogBs0σT2+O1n3



(C4)







[image: there is no content] in Equation (18) satisfies:


Mn=1+1n3σTm1+1n2σTm2−2σ2Tc1,n+16σT2−136σ4T2+1n5σTm3−4σ2c1,nc2,nT−23c2,nσ3T3+O1n3



(C5)




with [image: there is no content], [image: there is no content] as in Equation (B3). To get the asymptotics of [image: there is no content], consider the binomial formula:


1+xn=∑knxknk=1+nx+n(n−1)2x2+n(n−1)(n−2)6x3+∑k=4nxknk



(C6)







If [image: there is no content], then [image: there is no content]. Indeed,


n2·∑k=4nOn−32knk=n2·∑k=0n−4On−32k+4nk+4≤n2·n44!On−324∑k=0n−4On−32kn−4k≤C1+On−32n−4











The last expression is convergent and, therefore, bounded, and we have the necessary result. If we now substitute Equation (C5) into Equation (C6), we get:


[image: there is no content]



(C7)




where:


a1,n=σTm1a2,n=σTm2−2σ2Tc1,n+16σT2−136σ4T2+12σ2Tm12a3,n=σTm3−4σ2c1,nc2,nT−23c2,nσ3T3+σTm1σTm2−2σ2Tc1,n+16σT2−136σ4T2+16m13σ3T3



(C8)







Substituting Equations (C1)–(C4) and (C7) into Equation (22) and using [image: there is no content], we get:


[image: there is no content]



(C9)




where:


[image: there is no content]








and:


h1,n=−2c1,n2−c1,nσT+d3+d43−18σ2T+14−d328+d4224−2−anB+c2,n+S1an2+4−anB+c2,n−anB+c2,n+S1anh2,n=2σT−anB+c2,n2−2σT(c1,n+16σT)2−136σ3T3+8−anB+c2,nc1,n−anB+c2,nlogBs0σTh3,n=c2,n−anB−2logBs03σTc1,n3+2c1,n−anB+c2,nlogBs0σT2











Therefore, if [image: there is no content], then by setting:


c2,n=−−anBg2,ng1,n,c3,n=g3,ng1,n








we get the assertion of the proposition. ☐
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