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Abstract: We discuss when and why custom multi-factor risk models are warranted and
give source code for computing some risk factors. Pension/mutual funds do not require
customization but standardization. However, using standardized risk models in quant
trading with much shorter holding horizons is suboptimal: (1) longer horizon risk factors
(value, growth, etc.) increase noise trades and trading costs; (2) arbitrary risk factors
can neutralize alpha; (3) “standardized” industries are artificial and insufficiently granular;
(4) normalization of style risk factors is lost for the trading universe; (5) diversifying
risk models lowers P&L correlations, reduces turnover and market impact, and increases
capacity. We discuss various aspects of custom risk model building.
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1. Introduction

In most incarnations, multi-factor risk models for stocks (RM) are based on style and industry
risk factors. Industry factors are based on a similarity criterion, stocks’ membership in industries
under a given classification (e.g., GICS, ICB, BICS, etc.). Style factors are based on some estimated
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(or measured) properties of stocks. Examples of style factors are size [1], value and growth [2–8],
momentum [9,10], liquidity [11–14], volatility [15], etc.1

Most commercial RM are standardized (SRM). Majority of their users are institutions with longer
term holdings (mutual funds, pension funds, etc.). To these users it is important that RM: (i) contain
fundamental longer horizon style risk factors (value, growth, etc.), and (ii) be standardized, so their
risk reporting and cross-institutional communications can be uniform. If a mutual fund risk report says
“Portfolio A has exposure B to the risk factor C under the risk model D”, its pension-fund client knows
what that means. Typically, such portfolios are broad (low turnover allows lower cap/liquidity holdings)
and fairly close to SRM coverage, so universe customization is not critical. Standardization is a much
higher priority.

Quant trading with shorter-term holding portfolios has opposite priorities. Such strategies trade
smaller universes of more liquid stocks (roughly, around 1000–2500 names), and these universes
differ from strategy to strategy. Standardization is not critical for typically in-house risk reporting.
Customization is much more important for a variety of reasons, which we discuss in more detail below.
Here is a summary.

(1) Short v. Long Horizons. Strategies with shorter holding periods (e.g., statistical arbitrage and high
frequency trading) do not benefit from longer horizon risk factors (value, growth, etc.)—shorter-term
returns are not highly correlated with quantities such as book value, which updates quarterly and lacks
predictive power for holding horizons measuring in days or intraday. Moreover, when such risk factors
are included in regression or optimization of shorter-term returns, they add noise to the holdings and
trades, thereby increasing trading costs and reducing profitability.

(2) Inadvertent Alpha Neutralization. If, by design, some alphas are taking certain risk exposure,
optimization using SRM typically will (partially) neutralize such alphas by producing a portfolio
with more balanced risk exposure. e.g., if alphas are intentionally skewed toward small cap value,
optimization using SRM, which typically contains “size” risk factor, will muddle such alphas by
producing a portfolio with more balanced larger cap exposure. In such cases it is important to use
custom RM (CRM) with the corresponding undesirable risk factors carefully omitted.

(3) Insufficient Industry Granularity. SRM coverage universe USRM is “squeezed” into a modest
number of fixed standardized “industries” (SRMI). Typically this reduces industry granularity, which
adversely affects hedging industry risk. Thus, under a given industry classification (e.g., GICS, ICB,
BICS, etc.), the true number of industries2 into which a given trading universe U falls can be sizably
higher than the number of SRMI. Also, different trading universes U1 and U2 fall into different (numbers
of) true industries, while in SRM they are classified into the same SRMI.

(4) Trading v. Coverage Universe. Restricting USRM to a substantially smaller trading universe
U yields side effects: (i) for certain U one can have empty SRMI (e.g., U contains no telecom

1 For an additional partial list (with some related literature), see, e.g., [16–48], and references therein. For a literature
survey, see, e.g., [49].

2 Naming conventions vary by industry classification. “Industry” here refers to the most detailed level (i.e., the terminal
branch) in a given classification tree (see Subsection 2.1 for details).
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stocks), with no option to omit them from the factor covariance matrix (FCM) computation;3 and
(ii) it spoils normalization of style factors—those normalized across USRM , e.g., conformed to a
(log-)normal distribution.

(5) Herd Effect. Overusing SRM makes alphas more correlated, so when a shop blows up, it drags
others with it (e.g., Aug’07 Quant Meltdown). This adversely affects shorter holding trading. Longer
horizon strategies simply weather the storm.

(6) Diversifying Risk Models Lowers P&L Correlations. When evaluating two RM against each other
(in regression or optimization of the same returns), one looks at both (A) the relative performance and
(B) P&L correlation. If the P&L correlation is low enough, it is more optimal to run a combined strategy
using both RM thereby reducing portfolio turnover and market impact, and increasing capacity and P&L.

(7) Pros and Cons of Custom Risk Models. CRM further provide: (i) ability to compute RM based on
custom universes and add/subtract risk factors; (ii) transparency; (iii) flexibility with update frequency
(daily, weekly, etc.) and integration into test/production environments. However, the portfolio manager
(PM) must compute CRM as opposed to receiving a file from an SRM provider.4 Data required to build
CRM for shorter horizon trading is typically available to PM, albeit self-consistently computing FCM
and idiosyncratic risk (ISR) is not common knowledge.

We discuss the above points (1)–(7) in more detail below. Section 2 discusses RM in general,
differences in their use in regression and optimization, and point (2). Section 3 discusses decoupling
of time horizons relevant to point (1). Section 4 discusses points (3) and (4). We conclude in Section 5
by discussing points (5)–(7). Appendix A contains R code for some style risk factors. Appendix B
contains C code for symmetric matrix inversion. Appendix C contains legal disclaimers.

2. Multi-factor Risk Models

In RM, a sample covariance matrix (SCM) Cij for N stocks, i, j = 1, . . . , N (computed based on
time series of stock returns) is modeled by Γij given by

Γ ≡ Ξ + Ω Φ ΩT (1)

Ξij ≡ ξ2i δij (2)

where δij is the Kronecker delta; Γij is an N ×N matrix; ξi is specific a.k.a. idiosyncratic risk (ISR)
for each stock; ΩiA is an N ×K factor loadings matrix (FLM); and ΦAB is a K ×K factor covariance

3 In fact, SRM sometimes may use a (small) subset U∗ of USRM to compute FCM—the required historical data may not
be available for the entire USRM . However, it may be (and typically is) available for the trading universe U , so U , not
artificial U∗, should be used for computing FCM.

4 Principal components provide “customization” to some extent. However, see footnote 8.
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matrix (FCM), A,B = 1, . . . , K. i.e., the random processes Υi corresponding to N stock returns are
modeled via N random processes χi (ISR) together with K random processes fA (factor risk):

Υi = χi +
K∑
A=1

ΩiA fA (3)

〈χi, χj〉 = Ξij (4)

〈χi, fA〉 = 0 (5)

〈fA, fB〉 = ΦAB (6)

〈Υi,Υj〉 = Γij (7)

The main reason for replacing the sample covariance matrix Cij by Γij is that the off-diagonal elements
of Cij typically are not expected to be too stable out-of-sample. A constructed factor model covariance
matrix Γij is expected to be much more stable as the number of risk factors, for which FCM ΦAB

needs to be computed, is K � N . Also, if M < N , where M + 1 is the number of observations in
each time series, then Cij is singular with M nonzero eigenvalues. Assuming all ξi > 0 and ΦAB is
positive-definite, then Γij is automatically positive-definite (and invertible).

2.1. Industry Risk Factors

RM can mix risk factors of different types. Typically, the most numerous factors are industry factors.
In its simplest incarnation, industry FLM Ωind

iA ,A = 1, . . . , Kind is a binary matrix of 1s and 0s indicating
whether a stock belongs to a given industry:

Ωind
iA = δG(i),A (8)

G : {1, . . . , N} 7→ {1, . . . , Kind} (9)
N∑
i=1

Ωind
iA = NA (10)

Kind∑
A=1

Ωind
iA = 1 (11)

where G is the map between stocks and industries, and NA > 0 is the number of stocks in the industry
labeled by A (we are assuming there are no empty industries).

More generally, we can allow each stock to belong to multiple industries (e.g., in the case of
conglomerates) with some weights ωiA:

Ωind
iA =

∑
B∈G(i)

ωiB δAB (12)

∑
B∈G(i)

ωiB = 1 (13)

where G(i) ⊂ {1, . . . , Kind} and |G(i)| ≡ ni need not be 1, albeit typically for most stocks ni = 1, and
(for conglomerates) ni 6= 1 is not a large number.

Binary Ωind
iA can be constructed from binary classifications such as GICS, ICB, BICS, etc. Naming

conventions for levels differ by classification, e.g., sector, sub-sector, industry, sub-industry, etc.
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“Industry” here means the most detailed level in the classification tree. If there are too many industries
(e.g., with small NA), one can “prune” the tree by merging (small) industries at higher levels, e.g., in the
tree “sector→ sub-sector→ industry”, industries are pruned at the sub-sector level.

2.2. Style Risk Factors

Industry factors are based on a similarity criterion: industry membership. Style risk factors are based
on some estimated (or measured) properties of stocks. Examples of style factors are size, liquidity,
volatility, momentum, growth, value, etc.

For illustrative purposes, let us discuss some style factors in more detail. In Appendix A we give R
code for size, liquidity, intraday volatility and momentum style factors.5

• Size is a logarithm of market cap, normalized (conformed to normal distribution)—see R code in
Appendix A. Note that ADRs are treated separately.
• Liquidity is a logarithm of the average daily dollar volume (ADDV),6 normalized similarly to size

with ADRs treated separately—see Appendix A.
• Volatility style factor can be based on historical (relevant for longer-term models) or intraday

(relevant for shorter-term models—see the next section) volatility. One way to define intraday volatility
is to use intraday high and low price—see Appendix A. The log of intraday volatility is normalized
similarly to size.
• Momentum can be defined as a normalized average over D trading days of d-trading-day

moving-average returns (e.g., d = 5, D = 252)7—see Appendix A.
• Value can be defined via a normalized book-to-price ratio (negative values need to be dealt with).

Growth requires earnings data. As discussed below, longer horizon style factors such as value and
growth do not add value in shorter horizon strategies as book value and earnings data essentially are
updated quarterly.

2.3. Factor Covariance Matrix and Specific Risk

Once FLM ΩiA is defined,8 FCM ΦAB and ISR ξi must be constructed. Straightforwardly computing
FCM as a sample9 covariance matrix of the risk factors fA is insufficient as ISR ξi computed using such
sample FCM typically are ill-defined. Algorithms for consistently computing FCM and ISR usually are
deemed proprietary.

5 Legal disclaimers regarding this code are included in Appendix C.
6 E.g., over the past 20 trading days. One may prefer to take, say, last 3 months.
7 In the 0-th approximation, this is a D-day return. Removing outliers introduces d-dependence.
8 One can also use the first Kprin principal components (PC) of SCM Cij as columns in FLM ΩiA. However, the

out-of-sample instability in the off-diagonal elements of SCM is also inherited by PC. Furthermore, if M < N , SCM
is singular and only M PC are available. It is for these reasons that style and industry factors are more widely used in
practical applications.

9 Without delving into details, out-of-sample stability and singularity of FCM when M < K are issues to consider.
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2.4. Use of Factor Models

RM have a variety of uses, which are not limited to passively measuring risk exposures, but also
include actively hedging such risks, e.g., by requiring that a portfolio be neutral w.r.t. various risk
factors and/or such risk exposures be optimized.10 Here we outline the usage of RM in regression and
optimization.

2.4.1. Regression

Let Ri, i = 1, . . . , N be the stock expected returns. A weighted regression (without intercept) of R
over FLM Ω with weights zi is given by (in matrix notation):11

ε ≡ R− Ω Q−1 ΩT Z R (14)

Z ≡ diag(zi) (15)

Q ≡ ΩT Z Ω (16)

R̃ ≡ Z ε (17)

Here εi are the residuals of the weighted regression. Also, note that the “regressed” returns R̃i are neutral
w.r.t. the K risk factors corresponding to ΩiA:

N∑
i=1

R̃i ΩiA = 0, A = 1, . . . , K (18)

If ΩiA includes the intercept (a unit vector) as one of its columns, then we have

N∑
i=1

R̃i = 0 (19)

i.e., in this case the regressed returns are demeaned. The weights zi can be chosen to be unit weights, or,
e.g., zi ≡ 1/σ2

i , where σi is some historical volatility of Ri.
Using R̃i, a simple mean-reversion strategy can be constructed via

Di = −γ R̃i (20)

where Di are the desired dollar holdings and γ > 0 is fixed via

N∑
i=1

|Di| = I (21)

where I is the total desired investment level. The portfolio (20) is dollar neutral if we have Equation (19).
For this weighted regression all we need is FLM ΩiA—FCM ΦAB is not needed,12 nor is ISR ξi, albeit
if the latter are known, they can be used (instead of σi) in the regression weights via zi ≡ 1/ξ2i (see [50]
for details).

10 See, e.g., [50] for a recent discussion.
11 This is a cross-sectional regression; in R notations ε = residuals (lm (R ∼ Ω− 1,weights = Z)).
12 Rotating ΩiA by an arbitrary K ×K nonsingular matrix UAB , Ω → Ω U , does not change the regression residuals (14)

or the risk neutrality conditions (18).
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2.4.2. Optimization

In optimization, rather than requiring strict neutrality w.r.t. the risk factors, one can require that risk
exposure be optimized, albeit one can do both (see below). In its simplest incarnation, optimization
requires that the Sharpe ratio of the portfolio (using the notations of the previous subsection)

S =

∑N
i=1DiRi√∑N

i,j=1CijDiDj

→ max (22)

Assuming no costs, constraints or bounds, the Sharpe ratio is maximized by

Di = ζ

N∑
j=1

C−1ij Rj (23)

where ζ is fixed via (21). In the RM context, one replaces Cij via Γij , which gives:13

Di =
ζ

ξ2i

(
Ri −

N∑
j=1

Rj

ξ2j

K∑
A,B=1

ΩiA ΩjB Q̃
−1
AB

)
(24)

Q̃AB ≡ Φ−1AB +
N∑
i=1

1

ξ2i
ΩiA ΩiB (25)

where Φ−1AB is the inverse14 of ΦAB, and Q̃−1AB is the inverse of Q̃AB. The desired dollar holdings Di are
not neutral w.r.t. the risk factors, nor are they dollar neutral. Dollar and/or various risk factor neutrality
can be achieved via optimization with homogeneous linear constraints (see [50]). Note that to compute
the desired dollar holdings (24), we need not only FLM ΩiA, but also FCM ΦAB and ISR ξi. This is a
key difference between using RM in optimization vs. regression.

2.4.3. “Risk-taking” Alphas

While in optimization the resulting desired dollar holdings Di are not neutral w.r.t. the risk factors,
they are “approximately” neutral in the sense that the deviation from neutrality is due to ISR. Indeed,
from Equation (24) we have

N∑
i=1

Di ΩiA = ζ

N∑
i=1

Ri

ξ2i
ΩiB ∆−1BA (26)

∆AB ≡ δAB +
N∑
i=1

K∑
C=1

1

ξ2i
ΦAC ΩiC ΩjB (27)

where ∆−1 is the inverse of ∆ = Φ Q̃. Let ΦAB ≡ κ Φ̂AB, and let us take the limit κ → ∞ with
Φ̂AB = fixed. In this limit the factor risk dominates and ISR is negligible, so optimization reduces to the
weighted regression of the previous sub-subsection (see [50] for details), and we have

N∑
i=1

Di ΩiA → 0 (28)

13 This follows from the expression for the inverse of Γ: Γ−1 = Ξ−1 − Ξ−1 Ω Q̃−1 ΩT Ξ−1.
14 Appendix B contains C code for symmetric matrix inversion.
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So, regression yields risk neutrality, while optimization produces approximate risk neutrality. Either
way, if the returns Ri have exposure to a risk factor, it is either eliminated (regression) or substantially
reduced (optimization). This has important implications for using SRM in certain types of trading.

Thus, imagine that by design the returns Ri have desirable risk exposure, e.g., our strategy could be
deliberately skewed toward small cap value stocks, have exposure to momentum, volatility, etc.15 If such
a risk factor is included in FLM ΩiA, then using the full FLM in regression and/or optimization would
be to the detriment of our alpha. In the regression we can simply omit the corresponding risk factor(s).
However, in the optimization merely omitting risk factors will not do—we also need to recompute FCM
and ISR anew based on the remaining risk factors, otherwise we will get wrong predictions for the
total risk:

Γ′ii ≡ ξ2i +
∑

A′,B′∈H

ΩiA′ΩiB′ ΦA′B′ 6= Γii (29)

where H ⊂ {1, . . . , K} is the subset corresponding to the remaining risk factors. In this case SRM
simply will not do and CRM is required.

3. Decoupling of Time Horizons (Frequencies)

There is an important fundamental concept, which can be stated as decoupling of time horizons (or,
equivalently, frequencies or wavelengths). In a nutshell, what happens at time horizon T1 (or frequency
f1 = 1/T1) is not affected by what happens at time horizon T2 (or frequency f2 = 1/T2) if T1 and
T2 are vastly different. By time horizon we mean the relevant time scales. e.g., the time horizon for a
daily close-to-close return is 1 day. In terms of returns, the decoupling can be restated as the returns for
long-term horizons T1 being essentially uncorrelated with the returns for short-term horizons T2. Here is
a simple argument.

3.1. Short v. Long Time Horizons

Here is a simple argument for a single stock (or security). Consider a time interval from time t0 to
time tM > t0. Let us divide it into M intervals t0, t1, . . . , tM−1, tM . For simplicity, we can assume that
these intervals are uniform, ts = t0 + s ∆t, s = 0, . . . ,M , albeit this is not critical here. Let the stock
prices at times t = ts be P (ts). Let us define the return from time t to time t′ as

R(t, t′) ≡ ln

(
P (t′)

P (t)

)
(30)

Then we have

R̃ ≡ R(t0, tM) =
M∑
s=1

Rs (31)

Rs ≡ R(ts−1, ts) (32)

15 Real-life alphas often have sizable exposure to risk—a real-life alpha is any reasonable expected return. e.g., momentum
strategies often have substantial exposure to risk. Furthermore, there is no “perfect” risk model. Otherwise, there would
only be mean-reversion caused by temporary trading imbalances. For a complementary discussion, see, e.g., [35].
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Now let us ask the following question. How correlated is the return RM for the most recent period
(i.e., tM−1 to tM ) with the return R̃ for the entire period (i.e., t0 to tM )? To define a “correlation”, we
need multiple observations. So, we hang yet another index onto our returns, call it α, where α = 1, . . . , p

labels different periods tα0 to tαM , each consisting ofM periods (tαs−1 to tαs , s = 1, . . . ,M ), and we wish to
compute the correlation between the return for the last such period Rα

M and the return for the entire such
period R̃α, and α (not s) labels the series (which is a time series) over which the correlation is computed.
For simplicity, we can assume that the periods labeled by α are “tightly packed”, i.e., tα−1M = tαM−1, albeit
this is not crucial here. We then have p+M time points τr, r = 0, 1, . . . , p+M − 1 and, consequently,
p+M − 1 returns R̂r, r = 1, . . . , p+M − 1, where

τr ≡ t0 + r ∆t, r = 0, 1, . . . , p+M − 1 (33)

R̂r ≡ ln

(
P (τr)

P (τr−1)

)
, r = 1, . . . , p+M − 1 (34)

Rα
s = R̂s+α−1, s = 1, . . . ,M, α = 1, . . . , p (35)

R̃α =
M+α−1∑
r=α

R̂r (36)

Note that p can be much larger than M , in fact, we will assume this to be the case.16

With the covariance 〈∗, ∗〉 defined as above, we have

σ2
s ≡ 〈Rs, Rs〉 =

1

p

p∑
α=1

R̂2
s+α−1 −

1

p2

(
p∑

α=1

R̂s+α−1

)2

≈ σ2 (37)

where

σ2 ≡ 1

p

p∑
r=1

R̂2
r −

1

p2

(
p∑
r=1

R̂r

)2

(38)

and we have used the fact that p � M , which implies that all M variances σ2
s are approximately the

same. We then have

〈Rs, Rs′〉 ≡ σs σs′ Ψss′ ≈ σ2 Ψss′ (39)

〈R̃, R̃〉 =
M∑

s,s′=1

〈Rs, Rs′〉 ≈ σ2

M∑
s,s′=1

Ψss′ (40)

〈Rs, R̃〉 =
M∑
s′=1

〈Rs, Rs′〉 ≈ σ2

M∑
s′=1

Ψss′ (41)

where Ψss′ is the M ×M correlation matrix of returns Rs, and Ψss = 1. We have

ρs ≡ Cor(Rs, R̃) ≈
∑M

s′=1 Ψss′√∑M
s,s′=1 Ψss′

=
1 + ψs√

M +
∑M

s=1 ψs

(42)

16 To illustrate, if, say, ∆t is 1 day, then we are computing the correlation of the M -day moving average return R
α ≡ 1

M R̃α

with the last daily return in the moving average, and we have p rolling periods like this. We have p + M dates and,
consequently, p+M − 1 daily returns.
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where
ψs ≡

∑
s′∈Js

Ψss′ (43)

and Js ≡ {1, . . . ,M} \ {s}.
Because we have M � p, the matrix Ψss′ is approximately “self-similar” in the sense that all m×m

sub-matrices of Ψss′ with s, s′ ∈ {k, k+1, . . . , k+m−1}, k = 1, . . . ,M−m+1 and 1 < m < M (i.e.,
for each m there are M −m + 1 such sub-matrices) are approximately the same. Put differently, Ψss′

approximately depend only on the difference s− s′, and, in fact, only on |s− s′| since Ψss′ is symmetric.
Let Ψs,1 ≡ ηs−1, s > 1. Then we have Ψss′ ≈ η|s−s′|, s 6= s′, and

ψM ≈
M−1∑
s=1

ηs (44)

M∑
s=1

ψs ≈ 2
M−1∑
s=1

(M − s) ηs (45)

To estimate the correlation ρM , we need to make some assumptions about the correlations ηs. A
reasonable assumption is that the correlations Ψss′ decay as |s − s′| grows. e.g., we can assume that
|Ψss′ | ≤ λ|s−s

′| for some positive λ < 1, or, equivalently, that ηs = η̃s λ
s, s = 1, . . . ,M − 1, where

|η̃s| ≤ 1. We then have

ψM ≈ f(λ) ≡
M−1∑
s=1

η̃s λ
s (46)

M∑
s=1

ψs ≈ 2 [M f(λ)− λ f ′(λ)] (47)

f ′(λ) ≡ ∂f(λ)

∂λ
(48)

and our correlation ρM reads

ρM ≈
1 + f(λ)√

M [1 + 2 f(λ)]− 2λ f ′(λ)]
(49)

We also have

|f(λ)| ≤ λ− λM

1− λ
≈ λ

1− λ
(50)

|f ′(λ)| ≤ 1 + (M − 1) λM −M λM−1

(1− λ)2
≈ 1

(1− λ)2
(51)

where we have taken into account that M � 1.
So, if f(λ) ≥ 0, we have (assuming M is large)

0 < ρM ∼<
1

(1− λ)
√
M
� 1 (52)

and for positive f(λ) the bound is even tighter.
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What about f(λ) < 0? First, note that ρM is still positive—for it to become negative, the argument of
the square root in the denominator in Equation (49) would become negative, which is not possible (see
below). However, for negative f(λ) a priori it might appear that ρM need not be small as the denominator
in Equation (49) could become small when f(λ) = −1/2 + ε, where 0 < ε ∼ 1/M . Nonetheless, this
cannot be the case if there is randomness in the returns Rs. Indeed, we have17

〈R̃, R̃〉 ≈ σ2

M∑
s,s′=1

Ψss′ ≈ σ2 (M [1 + 2 f(λ)]− 2λ f ′(λ)]) (53)

So, the argument of the square root in the denominator of Equation (49) is (up to σ2) the variance of
the return R̃ for the period tM − t0 = M ∆t. If there is randomness in the returns Rs, the variance
〈R̃, R̃〉 should scale linearly with tM − t0 and, consequently, with M . If this variance were of order σ2,
this would imply that the returns Rs are highly anti-correlated with each other and the entire process is
highly deterministic. Put differently, there would be essentially no dispersion in this case. Under normal
circumstances, where we have randomness in the returns Rs, the variance 〈R̃, R̃〉 should be of order
M σ2. If there are any negative correlations ηs, they are offset by other positive correlations so that
〈R̃, R̃〉 ∼M σ2 and we have (52).

The upshot is—this is a generalization of our example above—that quantities with long time horizons
have low correlations with quantities with short horizons. What happens, say, at milliseconds gets diluted
by the time one gets to, say, month-long horizons—and this dilution is due to the cumulative effect of
everything that transpires in between such vastly different time scales. Randomness plays a crucial role
in this dilution. If things were deterministic, such dilution would not occur.18

3.2. Implication for Risk Factors

A practical implication of the above discussion is that care is needed in choosing which risk factors
to use in RM depending on what the time horizons of the strategies are for which RM is used. If
these horizons are short, then risk factors such as value and growth, whose underlying fundamental
data updates quarterly, should not be used as they add no value in short holding (a few days, overnight,
intraday, etc.) strategies. Here is a simple argument. Consider high frequency trading at, say, millisecond
time scales. Does book value make a difference to such trading? The answer is no. What is relevant here
is the market microstructure at the millisecond timescales (bid, ask, bid and ask sizes, order book depth,
hidden liquidity, posting orders fast on different exchanges, whether the trader’s collocation is close to

17 Note that ρM > 0 unless f(λ) ≤ −1, for which 〈R̃, R̃〉 would be negative considering M � 1.
18 This is “analogous” to what happens in quantum mechanics and quantum field theory. We put the adjective “analogous” in

quotation marks because a stochastic process described by Brownian motion is nothing but Euclidean quantum mechanical
particle, so the “analogy” is in fact precise.
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the exchange connectivity hub, etc.).19 Whether the book value for stock XYZ is $100M or $1B does
not directly affect the market microstructure at millisecond time scales.20

On the other hand, quantities such as liquidity and market cap21 do affect market microstructure.
e.g., liquidity affects typical bid/ask sizes, print sizes, etc. More precisely, liquidity computed based on,
say, 20-trading-day ADDV indirectly relates to such “micro” quantities because of the expected linear
scaling of volumes.22 i.e., even though ADDV is computed using longer horizons, it is a relevant risk
factor for shorter horizon strategies precisely because of the aforementioned linear scaling of volumes,
allowing an extrapolation from longer to shorter horizons.

Similarly, volatility is a relevant style factor. Typically, it is computed as historical volatility of, say,
close-to-close returns. As an extrapolation—based on the assumption that historically more volatile
stocks are also more volatile intraday—one can use this style factor for shorter horizon strategies.
Preferably, one can also define volatility style factor based on shorter horizons (e.g., intraday; see
Section 2).

So, conceptually, if the underlying quantity (e.g., book value or earnings) has a long time horizon
(i.e., changes, say, quarterly), then the corresponding risk factors are not relevant for shorter horizon
strategies (e.g., those involving overnight returns),23 unless there is a linear extrapolating argument that
reasonably relates such longer term quantities to their shorter term counterparts (as, e.g., in the case of
liquidity). More technically, suppose we have K factors we know add value. How do we determine if a
new, (K + 1)-th, factor adds value?24 Here is a simple method.

Thus, suppose we have N stocks and we have FLM ΩiA, i = 1, . . . , N , A = 1, . . . , K. Let Ω′iA′ ,
i = 1, . . . , N , A′ = 1, . . . , K ′, K ′ ≡ K+ 1 be new FLM once we add a new, (K+ 1)-th, risk factor. (So
we have Ω′iA′ |A′=A = ΩiA, A = 1, . . . , K.) Let Ri be the returns used in our strategy, i.e., these returns

19 Similarly, growth does not add value in this context either. This is not to say that, e.g., earnings are not important in
short-term trading. However, the way to implement them is via monitoring earnings announcements and, e.g., not trading
stocks immediately following their earnings announcements, not by using growth style factor in, say, intraday regressions
or optimization.

20 Arguably, there might be higher-order indirect effects via the book value affecting liquidity and market cap (see below).
However, such higher-order effects are expected to be lost in all the noise. They might be ephemerally amplified around
the time book value is updated (quarterly).

21 Market cap is relevant primarily because it is highly correlated with liquidity.
22 One can directly measure intraday liquidity based on “micro” quantities, which is more tedious. Typically, ADDV based

computation reasonably agrees with such “micro” computation.
23 Conversely, value-based longer horizon strategies would not benefit from any risk factors based on “micro” quantities

with, say, millisecond horizons. e.g., statistical arbitrage strategies have high turnover as they attempt to capture intraday
mean-reversion effects due to market over-/under-reactions to news events, etc. Value based strategies have very low
turnover given that periods of extreme mispricings seldom occur (e.g., ’87 Crash, ’08 Meltdown).

24 In the next section we discuss why no-value-adding factors can increase trading costs.
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have the time horizon relevant to our strategy.25 We can run two regressions (without intercept—unless
it is included in ΩiA), first Ri over ΩiA, and second Ri over Ω′iA′ . In R notations:

R ∼ −1 + Ω (54)

R ∼ −1 + Ω′ (55)

In actuality, Ri, ΩiA and Ω′iA′ are time series: Ri(ts) ≡ Rsi, ΩiA(ts) ≡ ΩsiA, Ω′iA′(ts) ≡ Ω′siA′ , s =

0, 1, . . . ,M . We can run the above two regressions for each value of s and look at, e.g., two time-series
vectors of the regression F-statistic to assess if the new risk factor improves the overall F -statistic.26

Alternatively, we can pull the (M + 1)×N matrix Rsi into a vector R̂σ of length (M + 1)N (i.e., treat
the index pair (s, i) as a single index σ), and do the same with FLM: ΩsiA ≡ Ω̂σA, Ω′siA′ ≡ Ω̂′σA′ . We
can now run two regressions

R̂ ∼ −1 + Ω̂ (56)

R̂ ∼ −1 + Ω̂′ (57)

and compare the F-statistic.27 If K is not large, it is also informative to compare the t-values of the
regression coefficients and assess the effect of the new factor.

For illustrative purposes, we ran such regressions for overnight returnsRi ≡ log(Pi(topen)/Pi(tclose)),
where the open Pi(topen) and the previous close Pi(tclose) prices are adjusted for splits and dividends. In
the case of, say, book value, as a benchmark it suffices to consider a K = 1 model, where the sole
risk factor is the intercept. Then we add the second risk factor, which is (log of) book (or tangible
book, price-to-book, etc.),28 so K ′ = 2. The regression F-statistic and t-values are given in Table 1
(for regressions (56) and (57)), which shows that the second regression (57) involving (tangible) book
value does not have improved statistic over the intercept-only regression. The 1-factor regressions other
than the intercept-only regression can be thought of as regressions over “betas”. The log(Prc/Book)

case (see Table 1) is the closest to the intercept-only case because the regression Prc ∼ −1 + Book
has F-statistic 56,230, and the t-value 237.1, i.e., price and book value are highly correlated. As to the
2-factor regressions, (T)Book does not improve the statistic. It is log(Prc) that makes impact, precisely
because prices change daily.

We also ran the (56) and (57) regressions with aK = 10 model as a benchmark, where the risk factors
are 10 BICS sectors29 (so K ′ = 11). The results are given in Table 2, which shows that book value does
not improve regression statistic. As above, it is log(Prc) that provides improvement. We also ran the (54)
and (55) regressions separately for each date (i.e., without pulling the index pair (s, i) into a single index

25 e.g., Ri are overnight returns, we obtain alphas from these returns by regressing them (possibly, with some weights) over
some FLM, and then we trade on these alphas right after the open.

26 To improve statistical significance, outliers can be removed (or smoothed, e.g., Winsorized).
27 When assessing F-statistic, it needs to be taken into account that we have (K + 1) vs. K factors, as is a possible change

in the number of observations per factor due to any NAs.
28 We used fundamental data from stockpup.com (accessed 07/28/2014) and pricing data from finance.yahoo.com (accessed

07/29/2014) from 06/18/2009 through 06/20/2014 for a universe of 493 stocks, essentially from S&P500. Negative
(tangible) book values were omitted for the entire backtesting period.

29 Stocks rarely jump industries let alone sectors, so sector assignments are robust against time.
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σ—see above) with the same K = 10 benchmark. The results are given in Table 3 and agree with those
in Table 2. Log(Prc), not Book, has impact.

Table 1. Results for regressions (56) and (57) with the intercept-only 1-factor model as
the benchmark. Int = intercept; (T)Book = (tangible) book; Prc = adjusted previous close;
RPrc = raw (unadjusted) previous close. Next to Int+log(Prc) we also give Int+log(RPrc)
results. We do this because adjusting the previous close introduces a bias of anticipating
future splits and/or dividends. However, as can be seen from the Int+log(RPrc) row, this bias
is relatively mild and does not affect our conclusions. The blank entries “—" stand for N/As.

Regression/Statistic F-Statistic Intercept t-Value Second Coefficient t-Value

Int only 737.7 27.16 —
Book only 237.2 — 15.40

TBook only 191.2 — 13.83
Prc only 1.34 — 1.16

Prc/Book only 12.5 — 3.54
Prc/Tbook only 3.84 — 1.96
log(Book) only 707.5 — 26.60

log(TBook) only 583.7 — 24.70
log(Prc) only 526.0 — 22.94

log(Prc/Book) only 739.1 — –27.19
log(Prc/Tbook) only 608.7 — –24.67

Int+Book 362.5 22.08 4.10
Int+TBook 297.6 20.10 4.56

Int+(Prc/Book) 354.3 26.38 –0.66
Int+(Prc/TBook) 287.2 23.89 0.15

Int+Prc 368.9 27.14 –0.24
Int+log(Book) 354.2 0.98 0.53

Int+log(TBook) 294.1 –2.11 3.70
Int+log(Prc) 473.9 20.53 –14.48

Int+log(RPrc) 468.7 20.18 –14.12
Int+log(Prc/Book) 394.0 –6.99 –8.93

Int+log(Prc/TBook) 329.9 –7.14 –9.23

Finally, for the (54) and (55) regressions we computed the t-statistic of actual risk factor time
series a la Fama and MacBeth [29], both for the K = 1 (intercept only) and K = 10 (BICS sectors)
benchmark factor models. The results are given in Table 4 and Table 5 and agree with those in Table 1,
Table 2 and Table 3.
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Table 2. Results for regressions (56) and (57) with the BICS-sector 10-factor model as the
benchmark. S = 10 BICS sectors labeled by S1(30), S2(63), S3(45), S4(30), S5(91), S6(75),
S7(42), S8(48), S9(41) and S10(28) (the parentheticals show the number of tickers in each
sector); X = the 11th factor (P, B, P/B, log(P), log(B) and log(P/B)); P = adjusted previous
close; B = book; F = F-statistic; t = t-value. e.g., in the “Reg:” line “S+(P/B)” means that the
returns R are regressed over FLM Ω containing 11 columns corresponding to the 10 sectors
S1 through S10 plus the 11th factor X, which is (P/B) in this case. In the S+log(P) column
we also give the values when P is taken to be the raw (unadjusted) previous close. We do
this because adjusting the previous close introduces a bias of anticipating future splits and/or
dividends. However, as can be seen from the S+log(P) column, this bias is relatively mild
and does not affect our conclusions.

Reg: S S+P S+B S+(P/B) S+log(P) S+log(B) S+log(P/B)

F 80.6 73.3 72.4 71.3 92.6/91.7 71.3 77.8
t:S1 6.40 6.40 6.16 6.40 15.07/14.80 1.56 –6.42
t:S2 6.67 6.67 5.94 6.50 15.74/15.44 1.19 –7.08
t:S3 5.57 5.57 5.02 5.60 15.08/14.76 1.56 –7.04
t:S4 5.40 5.40 5.08 5.41 14.13/13.87 1.32 –6.79
t:S5 13.31 13.28 11.12 13.36 19.26/18.93 1.80 –6.38
t:S6 13.13 13.13 12.26 12.50 19.29/18.99 1.98 –6.09
t:S7 4.97 4.97 3.25 3.74 14.40/14.15 0.89 –7.37
t:S8 6.85 6.85 6.42 6.88 15.88/15.58 1.35 –6.80
t:S9 12.83 12.84 11.90 12.92 19.40/19.12 2.49 –5.39

t:S10 8.63 8.63 8.21 8.87 16.17/15.92 2.19 –5.69
t:X — –0.42 3.42 –0.45 –14.57/–14.21 –0.20 –8.47

Table 3. Results for regressions (54) and (55) with the BICS-sector 10-factor model as the
benchmark. The notations are the same as in Table 2, except that F = median F-statistic, and
t = median t-value, where F-statistic and t-values are computed based on regressions (54)
and (55) for each date, and the median is computed serially over all dates. The meaning of
double entries in the S+log(P) column is the same as in Table 2.

Reg: S S+P S+B S+(P/B) S+log(P) S+log(B) S+log(P/B)

F 13.5 12.2 12.0 12.0 12.3/12.3 12.1 12.2
t:S1 0.40 0.40 0.40 0.43 0.67/0.68 0.11 –0.18
t:S2 0.61 0.61 0.62 0.63 0.85/0.83 0.11 –0.16
t:S3 0.34 0.33 0.32 0.32 0.69/0.63 0.11 –0.20
t:S4 0.23 0.23 0.23 0.25 0.62/0.56 0.10 –0.21
t:S5 0.91 0.91 0.76 0.88 0.90/0.85 0.15 –0.19
t:S6 0.80 0.80 0.82 0.91 0.96/0.92 0.14 –0.14
t:S7 0.39 0.39 0.24 0.25 0.70/0.64 0.10 –0.20
t:S8 0.54 0.54 0.57 0.57 0.76/0.74 0.08 –0.19
t:S9 0.76 0.76 0.77 0.80 1.00/0.98 0.18 –0.12

t:S10 0.53 0.53 0.52 0.55 0.84/0.88 0.14 –0.14
t:X — –0.02 0.13 –0.04 –0.55/–0.52 –0.03 –0.30
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Table 4. Results for regressions (54) and (55) with the intercept-only 1-factor model as the
benchmark. The notations are the same as in Table 1, except that the t-statistic here refers to
the t-statistic of the corresponding risk factor time series a la Fama and MacBeth [29]. These
t-statistic are annualized, i.e., we compute the daily t-statistic and then multiply it by

√
252.

Regression/Statistic Intercept t-Statistic Second Coefficient t-Statistic

Int only 0.90 —
Int+Book 0.82 2.21

Int+(Prc/Book) 0.90 –0.69
Int+Prc 0.90 –0.42

Int+log(Book) 0.23 0.32
Int+log(Prc) 1.90 –3.50

Int+log(RPrc) 1.78 –3.10
Int+log(Prc/Book) –2.15 –2.90

Table 5. Results for regressions (54) and (55) with the BICS-sector 10-factor model as
the benchmark. The notations are the same as in Table 2, except that “t:?” refers to
the annualized t-statistic of the corresponding risk factor “?” time-series a la Fama and
MacBeth [29], same as in Table 4. The meaning of double entries in the S+log(P) column is
the same as in Table 2.

Reg: S S+P S+B S+(P/B) S+log(P) S+log(B) S+log(P/B)

t:S1 0.76 0.76 0.74 0.78 1.76/1.64 0.39 –2.02
t:S2 0.59 0.59 0.54 0.60 1.61/1.50 0.28 –2.24
t:S3 0.76 0.76 0.68 0.77 2.07/1.91 0.30 –2.42
t:S4 1.09 1.09 1.01 1.10 2.32/2.14 0.37 –2.48
t:S5 0.88 0.88 0.77 0.88 1.75/1.65 0.45 –2.02
t:S6 1.07 1.07 1.02 1.05 2.01/1.88 0.51 –1.86
t:S7 0.83 0.83 0.56 0.66 2.14/1.99 0.22 –2.66
t:S8 0.64 0.64 0.60 0.65 1.72/1.59 0.32 –2.07
t:S9 1.09 1.09 1.02 1.09 1.87/1.77 0.61 –1.51

t:S10 1.17 1.17 1.13 1.23 2.04/1.92 0.58 –1.78
t:X — –0.56 2.15 –0.61 –3.45/–3.05 0.02 –3.12

4. Pitfalls of Standardized Risk Models

4.1. Industry Risk Factors

Suppose we have an industry classification. For our discussion below it will make no difference
whether FLM Ωind

iA , A = 1, . . . , Kind is binary or some conglomerates are allowed, so for simplicity we
will assume it to be binary (see Subsection 2.1):

Ωind
iA = δG(i),A (58)

For definiteness, let us fix the names of the industry tree levels as “sectors→ sub-sectors→ industries”,
so “industries” correspond to the most detailed level. The number of the industries Kind depends on the
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universe. Different universes U1 and U2 can have vastly different industries to which the corresponding
stocks belong.

In SRM a large number of stocks (e.g., several thousand for the U.S. models) are “squeezed” into a
relatively modest number K∗ind of standardized industries, which can be substantially smaller than the
number of true industries Kind for a typical quantitative trading portfolio universe of, say, 1000–2500
names. So, standardized industries typically lose granularity, which determines how well RM helps
hedge a portfolio against industry risk. For illustrative purposes, let us look at the number of true
industries for top-by-market-cap portfolios in BICS.30 We require at least 10 stocks in each industry.
Small industries are pruned to the sub-sector level and, if need be, to the sector level. Any leftover small
industries can be merged into larger industries. The result is given in Table 6. The numbers of true
industries for top 1,500+ universes are sizably higher than those of typical standardized industries.

Table 6. Number of BICS industries for portfolios of stocks in top X by market cap with at
least 10 stocks in each industry as of August 19, 2014. Only U.S. listed common stocks and
class shares are included (no OTCs, preferred shares, etc.).

Top X by Market Cap Number of Industries

1000 55
1500 75
2000 94
2500 107
3000 122
3500 125
4000 128
4500 130
5000 133

4.2. Empty Standardized Industries

Furthermore, for any given universe U , even if U is, say, 1,000-2,500 names, we can have (almost)
empty standardized industries—e.g., a portfolio that does not trade any stocks from a given (sub-)sector.
Empty standardized industries would have been omitted had we built RM based on the custom
universe U . In SRM we have no such option, so we must keep empty industries. Why is this so bad?

Style factors are not important for our discussion here, so let us consider RM with only industry
factors. Let these be K standardized binary industries. Let the risk model universe be USRM , and let our
universe be U ⊂ USRM . Let FLM be ΩiA, i ∈ {1, . . . , N} ≡ U . Let some industries be empty with
NA = 0, where

NA ≡
N∑
i=1

ΩiA =
N∑
i=1

δG(i),A (59)

30 BICS naming convention is “sectors → industries → sub-industries”, so our “industries” correspond to BICS
“sub-industries”, and our “sub-sectors” correspond to BICS “industries”.
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Such industries must be omitted from regressions, if this is how we use RM.
On the other hand, suppose we are doing optimization, and we cannot omit such empty industries.

Let J ≡ {A|NA > 0} and J ′ ≡ {A|NA = 0}. We have

Γij = ξ2i δij +
∑
A,B∈J

ΩiA ΩjB ΦAB = ξ2i δij + ΦG(i),G(j) (60)

The number of risk factors in this model is K̂ = |J | < K, yet FCM ΦAB is computed based on K
factors. So, from the viewpoint of the universe U , there are |J ′| = K − K̂ “hidden” factors, to which U
has no exposure, yet they affect the covariance matrix Γ. This does not bode well with the RM premise
that all covariances are explained by a combination of: i) some fixed risk factors, exposure to which for
a given universe of stocks is well-defined; and ii) ISR, which describes all uncertainty not described by
the risk factors. Based on this premise, the correct way of modeling risk for our universe U would be to
assume that we have K̂ risk factors and compute FCM Φ̂AB, A,B ∈ J for these factors along with the
corresponding ISR ξ̂i, i.e., to have

Γ̂ij ≡ ξ̂2i δij +
∑
A,B∈J

ΩiA ΩjB Φ̂AB = ξ̂2i δij + Φ̂G(i),G(j) (61)

At first it might appear that (60) and (61) are identical—if ΦAB and Φ̂AB are computed as SCM of
the corresponding risk factors, then we should have Φ̂AB = ΦAB, A,B ∈ J . However, as mentioned
in Subsection 2.3, in real life FCM is not computed as SCM, because ISR with such a computation are
typically ill-defined. Consequently, Φ̂AB 6= ΦAB,A,B ∈ J and ξ̂i 6= ξi. Because of this interdependency
of FCM and ISR, it is more desirable to compute Φ̂AB and ξ̂i directly based on the universe U without any
empty industries—the latter only bring more noise into the computation. Any uncertainty not described
by the relevant risk factors should be modeled via ISR, not some “hidden” risk factors.

That empty industries, to which the universe U has no exposure, add noise can be seen in the
optimization context—they contribute to the desired dollar holdings (24) via (25).31 The effect is that
the desired dollar holdings are approximately neutralized against these “hidden” industries (see (26)
and (27)).32 Typically, this generates additional noise (“twitch”) trades, which on paper may appear
harmless,33 but in real life can increase trading costs and reduce profitability, rendering empty industries
undesirable. The same argument applies to irrelevant style factors (e.g., value/growth in short horizon
strategies; see Section 3.2), rendering them harmful.34

31 FCM and ISR must be recomputed based on non-empty industries to remove this contribution.
32 These “hidden” industries might be correlated with the non-empty industries. However, such correlations should not be

high—if they are high, then the industry classification is too granular (or deficient) and must be pruned (or replaced with
a more precise industry classification). Including redundant noise-generating industries in RM is certainly not the right
way to handle such cases.

33 On paper such noise trades typically have little effect on the simulated P&L, but can reduce the Sharpe ratio—if the
approximate neutrality constraints effected by these empty industries do not add value, then the portfolio is suboptimal,
i.e., it does not maximize the Sharpe ratio.

34 This brings us to another point we made in Introduction: in SRM typically FCM is computed based on some universe U∗,
a fraction of USRM . For the same reasons as above, it is preferable to compute FCM based on the trading universe U as
U∗ may not have substantial overlap with U .
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4.3. Style Risk Factors

Some —albeit not necessarily all35— style factors are normalized. One way of normalizing a style
factor labeled by A ∈ {1, . . . , K} is by conforming the values of the A-th column in FLM ΩiA to a
normal distribution with, e.g., mean 0 and standard deviation equal to the standard deviation (or MAD)
of the original, unnormalized column. This is done in the R code in Appendix A for momentum, size
and liquidity. If the distribution is expected to be log-normal, then one normalizes log of the column and
re-exponentiates. This is done for intraday volatility in the R code in Appendix A.

Such normalizations of style factors are typically done across the entire coverage universe USRM .
Suppose we wish to use SRM for our universe U , which is a fraction of USRM . Then the values of the
corresponding columns in ΩiA with i ∈ U are no longer normalized. For a random subsetU ⊂ USRM one
may expect that they are still approximately normalized if the number of stocks in U is large. However,
typically there is nothing random about a real-life trading universe U , which is carefully selected based
on certain requirements on market cap, liquidity, volatility, price and/or other relevant quantities, which
can be rather skewed, so the truncated to U style factor columns in ΩiA are no longer even approximately
normalized. Why does this matter? If FCM is computed based on normalized style factors (be it using
USRM or U∗), then this FCM is not the same (or even necessarily close to) FCM one would obtain
based on style factors normalized based on U . This also affects ISR. Therefore, for the same reasons
as in the previous subsection, it is more desirable to compute FLM, FCM and ISR based on the custom
universe U .

5. Concluding Remarks

Above we discussed points (1)–(4) raised in Introduction in relation to using SRM and when and why
CRM are warranted. Let us conclude by briefly touching upon points (5)–(7) mentioned in Introduction,
which relate to other aspects.

Statistical Arbitrage (StatArb) “refers to highly technical short-term mean-reversion strategies
involving large numbers of securities (hundreds to thousands, depending on the amount of risk capital),
very short holding periods (measured in days to seconds), and substantial computational, trading, and
information technology (IT) infrastructure” [39]. A quantitative framework for this “mean-reversion”
was recently discussed in [50]. Schematically, one can think about this mean-reversion as follows. Pick
some returns. Pick RM. Then: (i) either regress your returns over FLM (or a subset of its columns)
with some weights, or (ii) do optimization using RM (possibly with some constraints). One can hang
various bells and whistles onto a strategy constructed this way, which do contribute into differentiating
models. Nonetheless, the choice of RM is a major factor (along with the choice of returns) in what
the desired holdings and trades will look like. As discussed in Section 2.4.3, in optimization desired
holdings are approximately neutral w.r.t the risk factors, while in regression they are exactly neutral.
So RM, in its uses discussed above, factors away (completely or approximately) the risk exposure in

35 e.g., style factors with discrete values are not normalized. An example is a binary style factor in some SRM indicating
whether the stock belongs to the universe U∗ defined above.
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the returns w.r.t. the risk factors. Therefore, using the same RM for two sets of apparently different
returns can substantially reduce the difference between the two—when it comes to the resulting desired
holdings—making the two strategies more correlated.

Therefore, to diversify strategies it is not only important to diversify the returns, but also to diversify
RM. This is especially useful in the “herd effect” situations, where many market participants—for
whatever (temporary) underlying reason (cf. Aug’07 Quant Meltdown)—are "compelled” to do the
same thing. When it comes to unpleasant situations such as potential book liquidation, being less
correlated with others can make a difference between liquidating (and incurring huge transaction costs)
or weathering the storm. Custom RM in such cases can make a difference.

We can take this further by noting that, even with the same returns, two substantially different RM,
call them RM-A and RM-B, can produce P&L streams which are not that highly correlated. In this case,
instead of running one strategy with the returns, say, optimized using only RM-A, it makes more sense
to run two strategies—seamlessly, with trades crossed internally at the level of desired holdings, i.e., the
two strategies are combined with some weights wA and wB (see below)—where the first strategy, call it
Str-A, is optimized using RM-A, and the second strategy, call it Str-B, is optimized using RM-B. If both
strategies have positive returns and are not too highly correlated, then even if Str-B has worse return than
Str-A, it still makes sense to combine them with some weights. In the zeroth approximation the weights
wA and wB can be obtained, e.g., by requiring that the Sharpe ratio of the resulting combined strategy be
maximized. However, in real life—so long as the Sharpe ratio is acceptably high—typically it is the P&L
that matters. In this regard, combining the two strategies can increase the P&L as the capacity bound
of the combined strategy is higher (than those of Str-A and Str-B)—the Str-A and Str-B trades are not
highly correlated and by combining them one reduces turnover, thereby decreasing market impact and
increasing capacity, and also decreasing costs of trading. Turnover reduction and increasing capacity are
two important incentives for diversifying and using CRM.

Finally, let us mention that CRM provide additional evident benefits listed in point (7) in Introduction.
Also, for shorter-term applications (which is precisely when CRM are warranted), which do not require
long lookbacks or nontrivial fundamental data (such as earnings going back many years), the data
required for building a CRM is typically already available to the portfolio manager. All in all, it boils
down to computing FCM and ISR in a self-consistent fashion.
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A. R Code for Some Style Risk Factors

Below we give R code for 4 style factors (function calc.add.fac()): momentum, liquidity,
size and intraday volatility. All uninformative dependencies have been omitted. The code is unaltered
otherwise. (Functions normalize(), calc.sr(), calc.eff.mad(), calc.ret.mv() and
calc.ret.mv.clean() are auxiliary.) Below: is.adr is a binary N -vector (N is the number of
stocks); hist.prc, hist.vol, hist.high, hist.low, hist.cap are d × N matrices
(d is the number of trading dates in the historical data)—historical closing price, daily volume, daily
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high, daily low (all adjusted—this is necessary for momentum, albeit not for liquidity or intraday
volatility), and market cap, respectively; dates is the vector of the last 252 trading dates. ADRs
are normalized independently. days is the lookback (e.g., 252 trading days), while back is for
out-of-sample backtesting (and is 0 for current-date calculations); both days and back are passed into
calc.add.fac() via the omitted arguments.

normalize <- function(x, center = mean(x), sdev = sd(x)){

return(qnorm(ppoints(x)[sort.list(sort.list(x), method = ”radix”)],

center, sdev))

}

calc.sr <- function(tv){

sr <- sqrt(tv)

sr <- log(sr)

sr <- normalize(sr, median(sr), mad(sr))

sr <- exp(sr)

return(sr)

}

calc.eff.mad <- function(ret){

eff.mad <- (5 * outer(apply(ret, 1,

mad, na.rm = T), apply(ret,

2, mad, na.rm = T), pmax))

return(eff.mad)

}

calc.ret.mv <- function(prc, back, days, d.r){

last <- nrow(prc) - back

first <- last - days

today <- prc[last:first, ]

yest <- 0

for(i in 1:d.r)

yest <- yest + prc[(last - i):(first - i), ]

yest <- yest / d.r

ret <- today/yest - 1

dimnames(ret) <- dimnames(prc[last:first, ])

return(ret)

}

calc.ret.mv.clean <- function(prc, back, days, d.r){

ret <- calc.ret.mv(prc, back, days, d.r)

eff.mad <- calc.eff.mad(ret)

bad <- abs(ret - apply(ret, 1, median)) > eff.mad

ret[bad] <- NA

avg.ret <- matrix(rowMeans(ret, na.rm = T),
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nrow = nrow(ret), ncol = ncol(ret))

ret[bad] <- avg.ret[bad]

ret <- ret - avg.ret

return(ret)

}

calc.add.fac <- function(...){

### MOMENTUM MOVING AVERAGE LENGTHS d.r <- 5

### ADDV MOVING AVERAGE LENGTHS

d.addv <- 20

### MOMENTUM FACTOR

### BASED ON AVERAGE 5-DAY RETURNS (OUTLIERS REMOVED)

ret.mom <- calc.ret.mv.clean(hist.prc, back, days, d.r)

mom <- apply(ret.mom, 2, mean)

mom <- normalize(mom, 0, mad(mom))

### AVERAGE DAILY DOLLAR VOLUME (ADDV) FACTOR

### BASED ON LAST 20 DAYS

### ADRS ARE NORMALIZED ACCORDING TO NON-ADR DISTRIBUTION

not.adr <- !is.adr

addv <- hist.prc[dates, ] * hist.vol[dates, ]

addv <- addv[1:d.addv, ]

addv[addv == 0] <- NA

addv <- colMeans(log(addv), na.rm = T)

addv[is.adr] <- normalize(addv[is.adr], 0, mad(addv[not.adr]))

addv <- normalize(addv, 0, mad(addv[not.adr]))

### MARKET CAP FACTOR

### BASED ON 252 DAYS

### ADRS ARE NORMALIZED ACCORDING TO NON-ADR DISTRIBUTION

mkt.cap <- hist.cap[dates, ]

mkt.cap[mkt.cap == 0] <- NA

mkt.cap <- colMeans(log(mkt.cap), na.rm = T)

mkt.cap[is.adr] <- normalize(mkt.cap[is.adr], 0, mad(mkt.cap[not.adr]))

mkt.cap <- normalize(mkt.cap, 0, mad(mkt.cap[not.adr]))

### INTRADAY VOLATILITY FACTOR

### BASED ON 252 DAYS

hist.low <- hist.low[dates, ]

hist.high <- hist.high[dates, ]
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hist.prc <- hist.prc[dates, ]

high.low <- abs(hist.high - hist.low) / hist.prc

high.low <- calc.sr(colMeans(high.lowˆ2))

}

B. C Code for Symmetric Matrix Inversion

The vector a[] is a symmetric n × n matrix Aij to be inverted pulled into a vector such that Aij ,
i, j = 0, 1, . . . , n − 1 is given by a[i + n * j]. This algorithm utilizes the fact that the matrix is
symmetric thereby reducing the number of operations (compared with the Gauss-Jordan method for a
general matrix).

static void InvSymMat(double *a, int n){

int i, j, k;

double sum;

for( i = 0; i < n; i++ )

for( j = i; j < n; j++ )

{

sum = a[i + n * j];

for( k = i - 1; k >= 0; k- )

sum -= a[i + n * k] * a[j + n * k];

a[j + n * i] =

( j == i ) ? 1 / sqrt(sum) : sum * a[i * (n + 1)];

}

for( i = 0; i < n; i++ )

for( j = i + 1; j < n; j++ )

{

sum = 0;

for( k = i; k < j; k++ )

sum -= a[j + n * k] * a[k + n * i];

a[j + i * n] = sum * a[j * (n + 1)];

}

for( i = 0; i < n; i++ )

for( j = i; j < n; j++ )

{
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sum = 0;

for( k = j; k < n; k++ )

sum += a[k + n * i] * a[k + n * j];

a[i + n * j] = a[j + n * i] = sum;

}

}

C. Disclaimers

Wherever the context so requires, the masculine gender includes the feminine and/or neuter, and the
singular form includes the plural and vice versa. The author of this paper (“Author”) and his affiliates
including without limitation Quantigicr Solutions LLC (“Author’s Affiliates” or “his Affiliates”) make
no implied or express warranties or any other representations whatsoever, including without limitation
implied warranties of merchantability and fitness for a particular purpose, in connection with or with
regard to the content of this paper including without limitation any code or algorithms contained herein
(“Content”).

The reader may use the Content solely at his/her/its own risk and the reader shall have no claims
whatsoever against the Author or his Affiliates and the Author and his Affiliates shall have no liability
whatsoever to the reader or any third party whatsoever for any loss, expense, opportunity cost, damages
or any other adverse effects whatsoever relating to or arising from the use of the Content by the reader
including without any limitation whatsoever: any direct, indirect, incidental, special, consequential or
any other damages incurred by the reader, however caused and under any theory of liability; any loss
of profit (whether incurred directly or indirectly), any loss of goodwill or reputation, any loss of data
suffered, cost of procurement of substitute goods or services, or any other tangible or intangible loss;
any reliance placed by the reader on the completeness, accuracy or existence of the Content or any
other effect of using the Content; and any and all other adversities or negative effects the reader might
encounter in using the Content irrespective of whether the Author or his Affiliates is or are or should
have been aware of such adversities or negative effects.

The R code included in Appendix A hereof is part of the copyrighted R code for Quantigicr

Risk ModelTM and is provided herein with the express permission of Quantigicr Solutions LLC. The
copyright owner retains all rights, title and interest in and to its copyrighted source code included in
Appendix A and Appendix B hereof and any and all copyrights therefor.

The Content is not intended, and should not be construed, as an investment, legal, tax or any other such
advice, and in no way represents views of Quantigicr Solutions LLC, the website: www.quantigic.com
or any of their other affiliates.
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