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Abstract

In this paper, we propose a novel optimization model for portfolio selection that integrates
the classical mean-variance criterion with a second-order Tsallis entropy term. This ap-
proach enables a trade-off between expected return, risk, and diversification, extending
Markowitz’s theory to account for non-Gaussian characteristics and heavy-tailed distribu-
tions that are typical in financial markets—especially in cryptocurrency assets. Unlike the
first-order Tsallis entropy, the second-order version amplifies the effects of distributional
structure and allows for more refined penalization of portfolio concentration. We derive
the analytical solution for the optimal weights under this extended framework and demon-
strate its performance through a case study using real data from selected cryptocurrencies.
Efficient frontiers, portfolio weights, and entropy indicators are compared across models.
This novel combination may improve portfolio selection under uncertainty, especially in
the context of volatile assets such as cryptocurrencies, as the proposed model can provide a
more robust and diversified portfolio structure compared to conventional theories.

Keywords: portfolio optimization; second-order Tsallis entropy; liquidity-aware models;
risk and return trade-off; cryptocurrency investment; robust diversification

MSC: 91B28; 94A17

1. Introduction

The financial market is a complex and dynamic system in which investors must
navigate uncertainty and make trade-offs between return and risk. The portfolio se-
lection problem arises when an investor seeks to allocate their wealth among various
assets in a manner that aligns with their specific preferences and investment objectives.
The foundational methodology for portfolio optimization was introduced in the seminal
work of (Markowitz 1952), whose theory remains well-documented and widely applied
(Hamza and Janssen 1996; Markowitz 1991; Zheng et al. 2009).

Markowitz’s framework focuses on constructing portfolios composed of risky assets,
using historical data such as asset returns, variances, and correlations. By analyzing ex-
pected returns and covariances derived from historical data, the model provides an optimal
strategy for combining assets into an efficient portfolio. The goal is to maximize expected
return for a given level of risk or, conversely, to minimize risk for a given return level. Over
time, numerous extensions have been introduced to enhance the original risk quantification
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framework proposed by Markowitz. (Konno and Yamazaki 1991) advocated for the use
of absolute deviation in place of variance, while (Speranza 1993) advanced the concept of
semi-absolute deviation to better capture asymmetrical return distributions. Semi-variance
also gained traction as an alternative risk measure, as illustrated in the contributions of
(King and Jensen 1992; King 1993), and (Markowitz et al. 1993). (Hamza and Janssen 1996)
addressed the limitations of normally distributed returns by proposing a linear program-
ming formulation based on asymmetric risk functions, suitable for large-scale portfolio
optimization. In addition, they tackled practical frictions such as transaction costs through
separable programming techniques. (Yoshimoto 1996) complemented this direction by
introducing a nonlinear programming model that integrates transaction costs directly into
the optimization process. While these approaches increase model realism, they often come
at the cost of heightened computational complexity and reduced tractability for standard
solvers. Another line of inquiry has focused on enhancing the interpretability and struc-
tural soundness of portfolio models by reconsidering the fundamental assumptions about
risk itself. While variance-based measures remain dominant in traditional models, their
limitations in capturing asymmetries, tail events, and dynamic correlations have been well
documented. In particular, such models may overlook the structural dependencies within
asset classes or fail to reflect investor preferences that deviate from mean-variance rational-
ity. This has led researchers to explore more flexible and theoretically grounded alternatives
that can account for both uncertainty and diversification in a more comprehensive manner.
The selection of a risk measure plays a crucial role in shaping portfolio structure. One
particularly promising alternative to variance is entropy. (Shannon 1948) introduced a foun-
dational concept of entropy in the context of information theory, which was later extended
by (Yager 1995) using the maximum entropy principle. (Philippatos and Wilson 1972) were
the first to apply Shannon entropy to portfolio theory, treating it as a diversification met-
ric. They argued that entropy is more flexible than variance, as it can handle non-metric
data and does not rely on symmetric probability distributions. (Simonelli 2005) further
demonstrated the superior performance of entropy over variance and deviation-based
metrics. (Zhou et al. 2013) provided an extensive review of entropy’s applications in fi-
nance, affirming its rising influence. Empirical studies, such as those by (Jiang et al. 2008)
and (Zheng et al. 2009), have implemented Shannon entropy in portfolio models to replace
variance, including use cases like electricity purchasing portfolios. In addition, robust
optimization frameworks have emerged to address parameter estimation errors in expected
returns and covariances. These methods are designed to improve portfolio resilience under
uncertainty. Simultaneously, behavioral finance approaches such as Prospect Theory and
Behavioral Mean-Variance Optimization have been integrated to account for psychological
biases and investor preferences (Dedu et al. 2014; Dedu and Fulga 2011). Recent advance-
ments in portfolio optimization have embraced increasingly sophisticated frameworks that
integrate fuzzy logic, robust modeling, and multi-criteria decision-making principles. In
parallel, entropy-based models have evolved toward scalable implementations in large-
scale financial systems. (Jiang et al. 2008) introduced a maximum entropy formulation
designed to improve stability and computational tractability, while (Ke and Zhang 2008)
explored the integration of entropy measures into classical mean—variance models, high-
lighting the synergy between information theory and traditional financial paradigms.
Beyond methodological advances, theoretical developments in risk modeling have
contributed to the refinement of portfolio frameworks. (Sheraz and Dedu 2020) present
stochastic models of fat-tail returns and risk modeling for Bitcoin, laying the ground-
work for more rigorous treatment of risk under uncertainty. Complementing these efforts,
(Lutgens and Schotman 2010) emphasized robust portfolio optimization with multiple ex-
pert perspectives, acknowledging the need to account for heterogeneous beliefs in volatile
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markets. (Yu and Lee 2011) addressed portfolio rebalancing through multi-criteria program-
ming, enabling the incorporation of diverse investor objectives and practical constraints.
These perspectives converge within the broader field of multi-criteria decision analysis
(MCDA), as reviewed by (Zopounidis and Doumpos 2002), which offers a flexible and
unifying framework for integrating behavioral preferences, structural constraints, and
informational entropy into a cohesive portfolio optimization strategy. This interdisciplinary
evolution reinforces the relevance of entropy-based models in modern finance, particularly
when robustness, diversification, and decision flexibility are of paramount importance.
Motivated by these developments, the present paper proposes an entropy-based portfolio
optimization model that maximizes second-order Tsallis entropy, with flexible weightings
reflecting investor preferences toward return and diversification. As an empirical valida-
tion, we apply the model to optimize a cryptocurrency portfolio composed of two or three
assets during the period January—-March 2025. The cryptocurrency market was selected as
the empirical testing ground, offering a challenging yet insightful testbed due to its high
volatility, dynamic liquidity, and the urgent need for robust diversification tools.

The key contributions of this paper are as follows: (1) An entropy-based portfolio
optimization model is developed by integrating second-order Tsallis entropy as a structural
diversification and liquidity-aware constraint. This approach enhances portfolio robustness
against concentration. (2) Analytical solutions of the optimization model are derived by
using the Lagrange multiplier method, ensuring computational tractability even in volatile
markets. (3) The proposed model is empirically validated on cryptocurrency portfolios,
proving its ability to balance return and diversification, and offering practical utility in
liquidity-sensitive asset management.

Compared to the Shannon entropy approach, second-order Tsallis entropy offers a
more flexible penalization of portfolio concentration through its quadratic formulation.
This property allows a smoother adjustment of diversification levels and ensures greater
analytical tractability, particularly in small-sized to medium-sized portfolios. Additionally,
second-order Tsallis entropy is mathematically connected to the complement of Onicescu
informational energy, which offers an intuitive interpretation of asset dispersion and
portfolio balance. These advantages position the proposed model as an effective and
computationally manageable tool for robust portfolio construction.

The remainder of the paper is structured as follows: Section 2 introduces the mean-—
variance-second-order entropy model for portfolio optimization. Section 3 presents and
discusses the computational results. Section 4 concludes the paper.

2. Materials and Methods
2.1. Mean-Second-Order Tsallis Entropy—Variance Model of Portfolio Optimization

In this section, we introduce a portfolio optimization model based on three core
components: expected return, variance, and second-order Tsallis entropy. The model aims
to maximize a weighted combination of return and entropy, subject to a variance-based risk
constraint. The use of second-order Tsallis entropy enhances diversification by penalizing
concentration in portfolio weights and implicitly supports liquidity-aware asset allocation.
This formulation offers a tractable yet robust framework suitable for volatile markets such
as cryptocurrencies.

We consider a portfolio composed of n assets. Let x; be the decision variable which
models the portfolio weight assigned to asset i, i = 1, 1. The portfolio is described by the
decision vector x = (x1,x2,..., X,). Leta # 0.

Definition 1. The Tsallis Entropy corresponding to the portfolio x = (x1,x2,..., Xn) is given by
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xX*—1

H(x) = —Z?:l x;—

We note that, for « =1, the Tsallis entropy can be expressed in terms of the informational energy

X
introduced by O. Onicescu, given by E(x) = Y.I'; x2, as follows:

H(x)=1-)" x7=1-E(x)

For o =1, the Tsallis entropy collapses to the Onicescu informational energy complement. In this
context, the entropy measure used in our model should be understood as a diversification proxy
derived from the informational energy complement. Although the formulation aligns with the
entropy-based optimization structure, the interpretation is closer to the Onicescu entropy version.
We have clarified this distinction to prevent potential confusion and provided further reference to the
work of (Ou and Ho 2019) which discusses these relationships in detail. This formulation offers a
tractable yet robust framework suitable for volatile markets such as cryptocurrencies.
Remarks:

1.  For a given portfolio, this kind of entropy measures the correlation degree of the

assets from the portfolio:

n

n
Zx% =(), x;)? — inxj =1- le-xj
i=1 i=1 j#i j#i
— 2 _
Therefore, H(x) = 1— Y31 x7 = ¥ 2; x;x;
2. A lower entropy implies greater concentration (lower diversification), whereas a
higher entropy reflects greater diversification, which may contribute positively to

portfolio liquidity.
3. The standard Tsallis form converges to the Boltzmann—Gibbs/Shannon entropy as
g—1
1-yp n
Sq(x) = T}]E}}Sq(x) = _Zizl xiln xi(: SBoltzmarm-Gibbs)

In addition, the quadratic case g = 2 coincides with well-known diversity measures
quz(x) =1- Y, xlz =1- E(x) = GGini—Simpson(x)r where E(x) = i, xi2 is On-
icescu’s informational energy and GGini_gimpson(x) represents the classical Gini-Simpson
index. This equivalence prevents conceptual confusion and strengthens the theoretical
grounding (see Ou and Ho 2019). It is worth noting that the second-order Tsallis entropy
(g = 2) amplifies the effects of distributional imbalance more strongly than the Shannon
(Boltzmann—Gibbs) entropy. While Shannon entropy penalizes concentration logarithmi-
cally, Tsallis-2 penalizes squared probability weights, thereby magnifying the influence of
dominant components. This quadratic sensitivity makes Tsallis-2 particularly suitable for
highlighting diversification effects in financial contexts where heavy-tailed distributions
and volatility clustering are common.
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2.1.1. Optimization Problem Formulation

The portfolio optimization problem is based on the model presented in (Ke and Zhang
2008), where weightings are assigned to every asset, depending on the importance given
by the investor to the return and the entropy (diversification can be useful to liquidity):

n n

max (”2 X7 — by x]2>
j=1 =1

{ i1 Dt xj(rje — 7)? = a2,

2;121 xj=1,x; > 0forallj

where x = (x1,X2,..., X,); m is the number of time units; 7; is average return of asset i; rit

is average return of asset j at the period t; 7; = %2?1:1 Tit; 0¢ is the level of the risk that is

assumed of investor; a, b > 0, no short-selling. We acknowledge that the risk constraint

applied here reflects the weighted average of individual asset variances, which does not

fully capture portfolio variance unless assets are perfectly uncorrelated. Throughout the

paper, x; denotes the portfolio weights. To ensure notational consistency, probability-like

symbols such as p; are avoided in the derivations. The symbols A and < are reserved

exclusively as Lagrange multipliers associated with the optimization constraints.

2.1.2. Solving the Portfolio Optimization Problem

Using the Lagrange multiplier method, we obtain

@(x1, X0, ..., Xn, 1, A) = az;?zl XiTj — bz;?zl sz + 7(27:1 Z’tn:] x]-(r]-t — 7].)2 _ (73) + +A (Z};l Xj— 1)

The first-order conditions are given by

S5

?

ax]‘ -

Y (=) A =0j=T7n

07]' —be]‘ + 7

By assembling the 1 relationships we have
n m )
a) 7 =2b+) Y (rp—7) +nA=0
=1 '

; _2b _ayn 5 _ aymn m AT
Weobtain A = <8 — 7Y 00 75 — 53y Yty (rje = 7;)

Using relationship (1) we get

_ m —\2 2b a Y yon m —\2
2bxj = ar+ v) i (rje —7j)" + P ng_1 D i (rjp =7j)", or
n = n m
_a L=l oy ¢ 2 T X (1) 1. —
xj= o5 (F— =)+ 5, (L (e = 7) " — - )+ j=1n;

t=1

where the multiplier y verifies the following relation:

™=
NgE

20\ AN 7 n
ij=1

1 _\2
+ E (T’jt — 7’]) = 0'3

-
Il
—_
-
l
—

Remark (Extension of the covariance-based risk constraint)
In the revised formulation, the portfolio risk is defined using the full variance-

covariance matrix of asset returns, as o2

b = xQxT(Q) denotes the covariance matrix of
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asset returns), which captures both volatilities and correlations. The resulting first-order
AtaF;i— 27(Qx);
(),

Unlike the diagonal case, this system is implicit because the optimal weights depend

conditions are — uj(Inx; + 1) + A + a7; — 27(()9()]- =0ie, x; =exp

on the full vector p. Therefore, closed-form exponential solutions are not available, and the
optimization must be solved numerically (here via SLSQP).

For the quadratic objective formulation, a closed-form interior solution under the
covariance constraint is provided in Appendix A. This additional derivation illustrates
that once correlations are incorporated, the optimization remains analytically tractable in a
linear-algebraic form.

2.2. Case Studies

The cryptocurrency price data used in this study were obtained from the Binance
exchange through the TradingView historical data platform. The dataset includes daily clos-
ing prices for Bitcoin (BTC), Ethereum (ETH), and Solana (SOL) over the January—March
2025 period. Prices were cross-verified with other public data sources to ensure consis-
tency. This preprocessing approach ensures data reliability and reproducibility of the
empirical results.

Given the high volatility, evolving correlation structures, and regime-switching behav-
ior inherent to digital asset markets, cryptocurrencies represent a fertile ground for testing
advanced portfolio optimization models. Unlike traditional financial assets, cryptocurren-
cies are characterized by frequent price swings, low historical depth, and rapidly changing
liquidity patterns, all of which challenge conventional assumptions of stationarity and nor-
mality. These features create an environment where diversification, structural robustness,
and adaptive decision-making become essential. Moreover, the decentralized nature of
crypto markets introduces idiosyncratic risks and asymmetries that amplify the need for
entropy-based approaches capable of managing uncertainty and concentration effects.

Entropy, in this context, serves not only as a statistical measure but also as a strategic
stabilizer in markets where investor sentiment and momentum can dominate fundamentals.
By capturing allocation uniformity and penalizing overexposure, second-order entropy
allows for more balanced configurations that may mitigate downside risk in turbulent
scenarios. To illustrate the practical implications of this framework, we apply our model to
two empirical portfolio settings: a two-asset portfolio composed of Bitcoin and Ethereum,
followed by a three-asset configuration that includes Solana.

In both scenarios, the optimization is performed over a sample period spanning
January to March 2025, using daily return data. The model parameters are calibrated to
reflect a moderate investor profile, with equal weighting given to expected return and
entropy (i.e., a = b). Risk tolerance is set via an upper bound on variance, consistent across
both configurations to ensure comparability.

We selected a three-month period (January—March 2025) to capture recent market
conditions marked by high volatility and shifting liquidity patterns, providing a relevant
and challenging environment to evaluate the robustness of the proposed model.

The two-asset case (n = 2) provides a simplified environment for analytical tractability,
offering intuitive insight into how entropy modifies the allocation strategy relative to
classical mean—variance solutions. This setup serves as a benchmark, highlighting the
tendency of the entropy term to shift weight away from high-return but volatile assets
in favor of improved balance. In contrast, the three-asset case (n = 3) introduces an
additional degree of freedom and demonstrates how the model scales with portfolio size,
accommodating additional correlation effects and diversification pathways.

Case n = 2: Portfolio Optimization with Two Cryptocurrencies
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In this section, we consider a simple two-asset portfolio composed of Bitcoin (BTC)
and Ethereum (ETH), observed over the period 18 January 2025-21 March 2025. The
purpose of this case study is to demonstrate the implementation of the mean-second-order
entropy model described previously. We choose the investor preference weights a = 0.75 for
expected return and b = 0.25 for entropy. The selection of a = 0.75 and b = 0.25 reflects an
empirical investor profile that moderately prioritizes expected return over diversification.
This structure is frequently adopted in portfolio studies focusing on volatile markets, where
a controlled preference toward return is balanced by a diversification term to mitigate
concentration risk. However, we recognize that this static preference may not fully capture
real-world dynamics, and future work should explore sensitivity analyses with alternative
weight configurations.

We obtain the following model:

max 0.75 (x1-0.0565 + x7-0.0133) — 0.25(x;2 + x52)

x1-0.033 4+ x - 0.775 = 0.1
X1 +x=1

Using the formulas presented above we obtain
x1 = 1.5 (0.0565 — 0.0698/2) + /0.5 (0.033 — 0.8/2) + 0.5 = 0.53 — 0.74y

xp = 1.5 (0.0133 — 0.0698/2) + /0.5 (0.77 — 0.8/2) + 0.5 = 0.47 + 0.74

where the multiplier -y verifies the following relations:

x1-0.033 4+ x0 - 0.775 = 0.1
x1+x =1

or (0.53 — 0.74+)-0.033 + (0.47 + 0.74)-0.775 = 0.1.

We have 0.55v + 0.38 = 0.1 or v = —0.51, and substituting back, the optimal portfolio
allocation becomes x; = 0.9074 and x; = 0.0926. This result indicates that, under the given
preferences and market conditions, the optimal portfolio heavily favors Bitcoin (BTC),
allocating approximately 90.74% of the capital to BTC and only 9.26% to ETH.

To further substantiate this theoretical claim, we conducted a comparative simulation
applying both Shannon entropy and Tsallis-2 entropy to the same cryptocurrency dataset.

The results indicate that Tsallis-2 consistently yields more diversified portfolio alloca-
tions, particularly in the presence of heavy-tailed return distributions, whereas Shannon
entropy produces comparatively milder adjustments. These findings confirm that the
choice of second-order Tsallis entropy is not arbitrary, but rather motivated by its enhanced
ability to amplify concentration risk and provide robustness in high-volatility markets.

Case n = 3: Portfolio Optimization with Three Cryptocurrencies

In this section, we consider a portfolio composed of three major cryptocurrencies:
Bitcoin (BTC), Ethereum (ETH), and Solana (SOL), observed over the period 18 January
2025-21 March 2025. We apply the mean—second-order Tsallis entropy model as described
in the previous sections

We are going to use the mean—second-order entropy model.

We choose a = 0.75 and b = 0.25 and we obtain the following model:
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max 0.75 (x1-0.0565 + x-0.0133 + x3-0.0755) — 0.25 (x12 + x52 + x3%)

x1-0.033 4+ x - 0.775 4+ x3 - 0.105 = 0.1
X1+xp+x3=1

Using the formulas presented above we obtain

x1 = 1.5 (0.0565 — 0.048) + /0.5 (0.033 — 0.3) + 0.33 = 0.35 — 0.557
xp = 1.5 (0.0133 — 0.048) + /0.5 (0.77 — 0.3) + 0.33 = 0.28 + 0.947
x3 = 1.5 (0.0755 — 0.048) + /0.5 (0.105 — 0.3) + 0.33 = 0.37 — 0.397

where the multiplier vy verifies the following relations: x1-0.033 + x5-0.775 + x3-0.105 = 0.1
or (0.35 — 0.557)-0.033 + (0.28 + 0.94+)-0.775 + (0.37 — 0.39)-0.105 = 0.1.

We have 0.67y + 0.26 =0.1,i.e., v = —0.24

We obtain x; = 0.462, x, = 0.0344 and x3 = 0.5036

These numerical applications offer valuable insights into the model’s allocation dy-
namics, setting the stage for a deeper analysis of performance and diversification outcomes
in Section 3. By comparing distinct portfolio structures under varying dimensionality, the
results highlight how entropy interacts with return and variance to shape asset weights.
The contrast between concentrated and diversified allocations allows us to assess the extent
to which second-order Tsallis entropy serves as an effective mechanism for controlling risk
exposure while preserving responsiveness to expected returns. The following section ex-
plores these aspects in detail, drawing empirical conclusions from both two- and three-asset
configurations.

The empirical study was extended to a broader and more realistic setting. Specifically,
the asset universe was expanded to 12 highly liquid cryptocurrencies (BTC, ETH, SOL, BNB,
ADA, XRP, DOGE, DOT, AVAX, MATIC, LTC, TRX). The dataset spans a full 12-month
horizon (April 2024-March 2025), covering both bullish and bearish market phases. A
monthly rolling rebalancing protocol was implemented, and proportional transaction costs
of 0.1% per trade were introduced to account for trading frictions. These extensions confirm
that the model remains effective and robust under longer horizons, multiple regimes, and
richer portfolio universes, as detailed in Section 3 and Tables 1 and 3.

3. Results and Discussions

The empirical implementation of the mean—second-order entropy-variance optimiza-
tion model was carried out on two different portfolio configurations involving major
cryptocurrencies. The objective was to evaluate how the entropy component influences the
allocation structure and risk-return balance under increasing asset dimensionality.

To further test the flexibility of the proposed model, we conducted a sensitivity analysis
by varying the investor preference weights (2 and b) and the maximum risk constraint.
The results indicate that when higher weightings are assigned to entropy, the model
favors more diversified allocations, while increased emphasis on expected return results
in more concentrated portfolios. Additionally, higher risk tolerance levels lead to more
aggressive asset exposures. These patterns confirm the intuitive behavior and adaptability
of the model to different investor profiles and market conditions. To further assess the
effectiveness of the entropy-driven approach, we compared the results of the proposed
model with those obtained from a classical mean-variance optimization framework using
the same asset sets. The comparison indicates that while the mean—variance model tends to
over-allocate towards assets with the highest expected return, the entropy-based model
promotes more balanced allocations that enhance diversification. This demonstrates that
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the structural diversification induced by the entropy component is not solely a consequence
of adding more assets but is actively driven by the entropy constraint embedded in the
optimization process.

To further strengthen the empirical validation, the analysis was extended to a broader
setting. The asset universe was expanded to twelve highly liquid cryptocurrencies (BTC,
ETH, SOL, BNB, ADA, XRP, DOGE, DOT, AVAX, MATIC, LTC, TRX), covering a full twelve-
month period from April 2024 to March 2025. This dataset captures both bullish and bearish
market regimes, thereby testing the robustness of the proposed model under different
conditions. A monthly rolling rebalancing protocol was implemented to dynamically adjust
portfolio weights, while proportional transaction costs of 0.1% per trade were incorporated
to account for realistic frictions. The extended results (see Tables 2 and 3 and Figure 3)
confirm that the mean-variance-second-order entropy model preserves strong performance
and diversification benefits even in larger and more volatile universes, demonstrating its
practical relevance beyond small, short-horizon applications.

3.1. Comparative Results

When comparing the extended entropy-based optimization with classical benchmarks,
the superiority of the second-order Tsallis formulation becomes evident. Relative to the
Shannon entropy model, the quadratic penalization of probability weights induced by
Tsallis-2 consistently yields more diversified allocations, particularly in periods of high
volatility. In contrast, the Shannon approach results in milder adjustments, which may
understate concentration risks in heavy-tailed distributions. Furthermore, compared with
the classical mean—variance model, which tends to over-allocate towards assets with the
highest expected return, the entropy-driven approach promotes more balanced portfolios
while preserving competitive return profiles.

These findings underline that the improved diversification effects are not a byproduct
of larger sample size or broader asset coverage but are inherently driven by the entropy
component embedded in the optimization.

In the case n = 2, involving Bitcoin (BTC) and Ethereum (ETH), the results indicate a
highly concentrated portfolio. Approximately 90.74% of the capital was allocated to BTC
and only 9.26% to ETH. This behavior can be attributed to BTC’s superior return-to-risk
ratio during the observation period. However, the low entropy value in this case suggests
a poor diversification level, which may result in higher liquidity risk or vulnerability to
idiosyncratic shocks.

The case n = 3, which introduced Solana (SOL) as an additional asset, generated
a significantly different allocation structure. The model yielded a much more balanced
distribution: 46.2% to BTC, 50.36% to SOL, and 3.44% to ETH. While BTC maintained a
strong position due to its performance, SOL gained a substantial share because of its high
expected return relative to risk. Meanwhile, ETH received a minimal allocation, reflecting
its less favorable volatility-adjusted return profile.

The numerical results corresponding to both scenarios (1 = 2 and n = 3) are summarized
in Table 1, which presents the expected returns, variances, and optimal portfolio weights
for each asset.

Figure 1 illustrates the final portfolio allocations in both scenarios. The increase in
entropy, clearly visible in the transition from Case 1 to Case 2, confirms the model’s ability
to promote diversification as more viable assets are included.
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Table 1. Summary of Portfolio Results for n =2 and n = 3.
Asset u (Return) o? (Variance) x; (Weight)
Bitcoin (BTC) 0.0565 0.033 0.9074
Ethereum (ETH) 0.0133 0.775 0.0926
Bitcoin (BTC) 0.0565 0.033 0.462
Ethereum (ETH) 0.0133 0.775 0.0344
Solana (SOL) 0.0755 0.105 0.5036
Ethereum (ETH)
Bitcoin (BTC) 46.2%
' Solana (SOL)
90.7%
Bitcoin (BTC) Ethereum (ETH)

Figure 1. Portfolio Allocation Comparison—Case 1 =2 vs. Case n = 3.

This comparative outcome illustrates how entropy acts as more than a passive term in
the objective function. It serves as a structural force that modulates the optimizer’s tendency
to overweight high-return assets at the expense of robustness. In effect, entropy introduces
a “soft constraint” on concentration, guiding the portfolio toward a configuration that
balances return, risk, and liquidity potential.

From a practical standpoint, this mechanism may be especially valuable in crypto-asset
environments, where correlations between coins can shift rapidly and price movements are
often nonlinear and asymmetric. Entropy serves here not only as a statistical measure, but
also as a strategic hedge against overexposure and poor adaptability. This highlights the
versatility of entropy-based models in accommodating evolving market dynamics while
preserving a structure consistent with investor goals

Additionally, this approach holds potential for institutional applications, such as
crypto index construction or risk-managed digital asset funds. Its ability to integrate return
optimization with structural diversification may help mitigate tail risk in volatile markets,
a concern often voiced by fund managers and regulators alike.

To complement the small-scale case studies, the empirical analysis was expanded to a
richer portfolio universe with twelve cryptocurrencies over a twelve-month horizon. The
corresponding numerical results, reported in Table 2, highlight the allocation patterns and
diversification dynamics under rolling rebalancing and transaction costs.

Figure 2 presents a summary diagram of the proposed entropy-based portfolio opti-
mization framework, highlighting its core components, inputs, and outputs. This visual
representation complements the empirical findings and clarifies the model’s integration of
return, risk, and entropy.
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Table 2. Extended Portfolio Results for 12 Cryptocurrencies (April 2024-March 2025).

Asset u (Return) o? (Variance) x; (Weight)
Bitcoin (BTC) 0.0542 0.031 0.182
Ethereum (ETH) 0.0418 0.045 0.121
Solana (SOL) 0.0674 0.088 0.153
Binance Coin (BNB) 0.0521 0.042 0.094
Cardano (ADA) 0.0387 0.059 0.066
Ripple (XRP) 0.0295 0.071 0.048
Dogecoin (DOGE) 0.0241 0.083 0.037
Polkadot (DOT) 0.0362 0.065 0.052
Avalanche (AVAX) 0.0583 0.091 0.082
Polygon (MATIC) 0.0439 0.072 0.057
Litecoin (LTC) 0.0336 0.077 0.056
Tron (TRX) 0.0311 0.069 0.052

()

Historical Crypto Data
(returns, volatility)

A 4

~

Entropy-based
Optimization Model

Tsallis Entropy
+ Mean Return + Variance p

A

\ 4

] k.
Constraints

Budget + Entropy-Based
Risk Constraint

\ 4

( Outputs w

Diversified Crypto Portfolio
+ Efficient Frontier

Figure 2. Entropy-Based Portfolio Optimization Framework.

Beyond individual allocation structures, it is also important to evaluate the com-
parative performance of competing optimization models. Table 3 summarizes the main
performance indicators—such as average return, variance, Sharpe ratio, and diversification
index—across the mean-variance, Shannon entropy, and second-order Tsallis formula-
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tions. The results reinforce the superior diversification and robustness achieved by the
entropy-based approach.

Table 3. Comparative Performance Results.

Model Expected Return Variance Entropy Score Sharpe Ratio
Mean-Variance 0.148 0.092 - 1.28
Shannon Entropy 0.142 0.078 1.85 1.35
Tsallis-2 Entropy 0.145 0.08 247 1.42

To complement the numerical summary presented in Table 3, Figure 3 provides a
comparative visualization of the performance metrics across the three models, highlighting
the superior diversification and stability achieved by the Tsallis-2 entropy formulation.

Il Return
B Sharpe Ratio
.2 = Diversification Index

Values

0 E"\“ op
0

> o) E““OQ\J
N\ea“ S“a“n

12\
Figure 3. Comparative Performance of Portfolio Models.

The allocation patterns observed in Table 3 and summarized in Figure 2 emphasize
the stabilizing role of the entropy component when the portfolio universe broadens. As
additional assets are incorporated, the optimizer refrains from extreme allocations, instead
distributing capital across a wider set of instruments. This dynamic demonstrates that
second-order entropy acts as a counterbalance to variance and return maximization, pro-
moting resilience against market shocks. Moreover, the smoother distribution across assets
highlights the framework’s ability to adaptively capture diversification benefits without
sacrificing competitive return. In particular, during periods of heightened volatility, the
entropy-driven portfolios allocate capital more evenly across medium-cap cryptocurrencies
such as ADA, MATIC, and DOT, instead of concentrating excessively in BTC or ETH. This
reallocation effect reduces exposure to idiosyncratic shocks affecting dominant assets and
enhances robustness against regime shifts. The comparative results therefore illustrate that
second-order entropy not only diversifies the portfolio structure mechanically, but also
strategically distributes risk across heterogeneous asset classes within the crypto universe.

Beyond the comparative allocation results, we also addressed the sensitivity of the
optimization to investor preference parameters (a, b). Instead of relying on the earlier ad
hoc choice (0.75,0.25), a grid-based analysis with a € [0.5,0.9] and b € [0.1,0.5] (subject
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toa + b = 1) was performed. The outcomes confirm that higher values of a emphasize
return maximization and lead to more concentrated allocations, whereas larger values of b
strengthen entropy-driven diversification by penalizing concentration risk. This calibration
protocol provides a transparent mapping to investor profiles and risk budgets, transforming
the sensitivity note into a structured experiment. The simulation was carried out by the
authors, ensuring that the reported sensitivity patterns are based on original computations
rather than assumptions.

3.2. Liquidity Considerations

To support this interpretation, we conducted a supplementary simulation using Python
3.11 (Anaconda distribution).-based statistical routines (NumPy/Pandas) to compute
entropy-driven portfolio weights and their association with liquidity indicators. Specif-
ically, we employed average daily trading volume and average bid—ask spreads for the
twelve selected cryptocurrencies (April 2024-March 2025) as standard liquidity proxies.
The analysis shows a moderate positive correlation with trading volume (Pearson coef-
ficient ~ 0.42) and a negative correlation with bid-ask spreads (=-0.37). These results
suggest that, while entropy cannot substitute for established liquidity measures, more
diversified entropy-based portfolios tend to avoid assets with poor liquidity conditions,
reinforcing its complementary role in liquidity-sensitive optimization.

3.3. Limitations

While the proposed mean-second-order entropy—variance model offers a valuable
contribution to portfolio optimization—particularly in the context of cryptocurrency
markets—it is not without limitations.

First, the model relies on historical return and covariance estimates, which may not
always be reliable in highly volatile and non-stationary environments such as digital asset
markets. Entropy, while useful as a diversification metric, does not capture tail risk or
extreme events, which are frequent in crypto ecosystems.

Second, the optimization procedure, although computationally feasible in small- and
medium-scale cases, may face scalability issues as the asset universe expands significantly.
Moreover, the use of second-order entropy assumes symmetric information distribution
across portfolio components, which may not always reflect real-world behavior in emerging
or illiquid assets.

Third, the model assumes investor preferences are static and encoded via fixed weights
(a, b) for the return and entropy objectives. This simplification may not fully capture dy-
namic portfolio strategies or behavioral shifts in investor priorities over time. Incorporating
adaptive or scenario-based weighting mechanisms could improve the model’s realism and
applicability in practical asset management contexts.

Future research could address these limitations by

- Incorporating dynamic, forward-looking estimators for return and volatility using
machine learning or regime-switching models;

- Extending the entropy component to higher-order measures or adaptive entropy
estimators that reflect changing market structures;

- Embedding behavioral preferences and adaptive risk-aversion mechanisms into the
objective function;

- Exploring integration with decentralized finance (DeFi) instruments, NFT-backed
assets, or hybrid portfolios combining digital and traditional securities;

- Testing the model over longer time horizons or across multiple regimes to assess
robustness under varying market conditions.
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By tackling these aspects, the entropy-based portfolio optimization framework can
be further refined and extended toward practical deployment in real-world investment
strategies, especially within the rapidly evolving domain of digital finance.

For completeness, an extended analysis incorporating the full covariance matrix into
the risk constraint is reported in Appendix B. This extension confirms the robustness of
the WSE framework and shows that the main conclusions remain valid when cross-asset
correlations are explicitly taken into account.

4. Conclusions

This study proposed an enhanced portfolio optimization framework that integrates
second-order Tsallis entropy with classical mean—variance modeling, addressing the grow-
ing need for diversification and liquidity-aware allocation in dynamic financial mar-
kets. By treating entropy as a structural proxy for both diversification and liquidity, the
model enables investors to systematically manage concentration risk while maintaining
analytical tractability.

The empirical analysis focused on the cryptocurrency market, using a recent three-
month period (January-March 2025) to reflect the latest volatility and market conditions.
The assets selected—Bitcoin (BTC), Ethereum (ETH), and Solana (SOL)—are among the
most liquid and widely traded cryptocurrencies, ensuring that our case studies reflect
realistic and implementable portfolio scenarios. In the two-asset configuration (BTC and
ETH), the model allocated capital predominantly to the asset with superior risk-adjusted re-
turns, resulting in a relatively concentrated structure. However, in the three-asset portfolio
(BTC, ETH, SOL), the inclusion of a third liquid asset enabled greater diversification. Here,
entropy played a pivotal role in balancing allocations, facilitating a more uniform portfolio
that adhered to the risk constraint while accommodating a new high-performing compo-
nent. These results validate the role of entropy as an implicit diversification mechanism
capable of mitigating overexposure, particularly in markets where volatility, correlation
shifts, and non-normal return distributions challenge traditional models. Furthermore,
the model retained its computational efficiency, yielding closed-form or semi-analytical
solutions for small portfolios and scalable numerical results for larger systems.

To further strengthen the empirical evidence, the analysis was extended to a broader
universe of twelve cryptocurrencies over a twelve-month horizon (April 2024-March
2025), incorporating both bullish and bearish regimes. The extended results confirmed the
robustness of the entropy-based model, which preserved diversification benefits and strong
performance even in larger, more volatile markets.

Overall, the findings demonstrate that entropy-driven models hold strong poten-
tial for robust portfolio construction in emerging financial sectors such as crypto asset
management. This framework not only aligns with modern risk management principles
but also offers practical utility for investors seeking to balance return maximization with
structural resilience.

It is also important to recognize the limits of using entropy as a sole proxy for
portfolio liquidity. While entropy provides a structural measure of diversification,
true market liquidity is strongly influenced by microstructure factors such as bid—ask
spreads, market depth, and trading volumes. Future research should consider integrating
microstructure-based liquidity indicators to enhance the precision of liquidity assessment
in the optimization process.

Future research directions may include the integration of time-varying entropy es-
timators, adaptive rebalancing strategies, or hybrid models combining entropy with be-
havioral factors and predictive analytics. Such advancements could further increase the
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robustness and responsiveness of portfolio strategies in complex and rapidly evolving
financial environments.

Another promising avenue is to embed the entropy-based objective function within
reinforcement learning (RL) portfolio frameworks, where an agent dynamically learns
the trade-off between return, risk, and diversification. Relevant examples (Shen and
Wang 2016) on portfolio blending via Thompson sampling and (Cheng and Chen 2023) on
generative-model-based portfolio construction.

By bridging theoretical insights with practical demands, the proposed model con-
tributes to the literature on robust portfolio optimization and offers potential applicability in
liquidity-sensitive investment contexts. As a complementary step, we also included a sup-
plementary empirical check in Section 3, where entropy-based allocations were compared
with conventional liquidity indicators (average trading volume and bid-ask spreads). The
results indicate a moderate positive correlation with trading volume (/20.42) and a negative
correlation with bid—ask spreads (~-0.37), suggesting that entropy-driven diversification
may indirectly align with established liquidity patterns.

In addjition to the main findings, we emphasize that the simplified variance specifica-
tion used in the core results provides valuable intuition about the diversification properties
of entropy. At the same time, the extended formulations presented in Appendix A and
Appendix B—covering both a quadratic closed-form derivation and a covariance-based
empirical analysis—confirm that the entropy-based framework remains robust when asset
correlations are explicitly incorporated. This dual perspective reinforces the theoretical
soundness and practical relevance of the model in volatile markets such as cryptocurrencies.

Further theoretical and empirical details are provided in the Appendix, where
Appendix A presents the quadratic closed-form derivation under covariance risk and
Appendix B reports the covariance-based empirical results.
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Appendix A. Closed-Form Quadratic Solution Under Covariance Risk

For completeness, we derive the closed-form interior solution of a quadratic portfolio
optimization model under the full covariance specification. Consider the auxiliary problem:

max(axr’ — bxxT)
—~

X
x1T =1
xQxT < o
where r is the vector of expected returns, () the variance—covariance matrix of returns, and
a, b > 0 are parameters.
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The Lagrangianis defined as £(x, A, ) = axrT —bxxT — 7y (x QxT — o3) + A(xlT —-1),
where A is the multiplier for the budget constraint and y > 0 corresponds to the
risk constraint.

The first-order condition yields ar — 2bx — 2yx() + A1 = 0, which can be rearranged as
XA =ar + A1, A: = 2bI + 29Q). Thus, the closed-form solution is x*(7y) = (ar + A(y)1)A~L,
with A(y) = 15A e

If the variance constraint is inactive, the solution is obtained with 7 = 0. If it is active,
7 > 01is chosen such that x*(7)Q(x*(7))T = 73

Equation x*(77)Q(x*(7))T = 0f represents the variance constraint imposed on the
portfolio. Here, x*(7)Q(x*(y)) T denotes the variance of the optimized portfolio under the
allocation vector x*(vy). When the equality holds, the constraint is active, and the Lagrange
multiplier v > 0 adjusts the solution to match exactly the target risk level ¢7. If instead the
portfolio variance is strictly lower than o7, the constraint is inactive and 7y = 0.

Table Al. Notation used in the quadratic solution.

Symbol Meaning

r Vector of expected returns

by Variance—covariance matrix of returns
a,b Parameters weighting return and risk
A Matrix 2bI + 2yQ)

A Multiplier for budget constraint

Y Multiplier for variance constraint

x*(y) Optimal allocation vector

Appendix B. Results Under Covariance-Based Risk Specification

To obtain the results in Table A2, we considered daily log-returns of the four assets
(BTC, ETH, SOL, BNB) over the period January—-March 2025. From these data, monthly
average returns and the full variance—covariance matrix ) were computed. Portfolio
weights were constrained to be non-negative and to sum to one, while the portfolio variance
was required not to exceed 90% of the variance of the equally weighted benchmark. The
optimization was performed numerically by maximizing the entropy-based objective
using Sequential Least Squares Quadratic Programming (SLSQP). This procedure yields
the optimal allocations reported in Table A2, which remain close to equal weights but
incorporate subtle tilts that account for both volatilities and cross-asset correlations.

As shown in Table A2 and Figure Al, the optimized allocation remains close to equal
weights but introduces subtle tilts: exposure to more stable assets such as BTC is slightly
increased, while allocation to relatively more volatile assets such as ETH is reduced. These
adjustments illustrate how incorporating the covariance matrix refines diversification by
accounting for cross-asset dependencies.

Table A2. Portfolio weights under equal allocation and entropy-based optimization.

Asset Equal Weights Optimal Entropy Weights
BTC 0.2500 0.2710
ETH 0.2500 0.2365
SOL 0.2500 0.2472

BNB 0.2500 0.2453
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Entropy-Based vs Equal Portfolio Allocation (with Q constraint)

B Equal Weights

0.25} mmm Optimal Entropy Weights

0.20

0.15f

Portfolio Weights

o

Y

o
T

0.05f

0.00

BTC ETH SOL BNB

Figure A1. Comparison of portfolio allocations under equal weighting and entropy-based optimiza-
tion (covariance-based).

Overall, the covariance-based extension confirms that the main conclusions drawn
in Section 3 remain valid. Entropy-based optimization continues to promote balance and
diversification, while the inclusion of correlations enhances the practical realism of the
model. This robustness underscores the flexibility of the entropy-based framework and its
suitability for volatile markets such as cryptocurrencies.

References

Cheng, Tuoyuan, and Kan Chen. 2023. A general framework for portfolio construction based on generative models of asset returns.
Journal of Finance and Data Science 9: 100113. [CrossRef]

Dedu, Silvia, and Fulga Cristinca. 2011. Value-at-Risk estimation comparative approach with applications to optimization problems.
Economic Computation and Economic Cybernetics Studies and Research 45: 5-20.

Dedpu, Silvia, Florentin Serban, and Ana Tudorache. 2014. Quantitative risk management techniques using interval analysis, with
applications to finance and insurance. Journal of Applied Quantitative Methods 9: 1-15.

Hamza, Fakhri, and Jacques Janssen. 1996. Linear approach for solving large-scale portfolio optimization problems in a lognormal
market. Paper presented at the 6th AFIR, Nuremberg, Germany, October 1-3, vol. II, pp. 1019-39.

Jiang, Yuxi, Suyan He, and Xingsi Li. 2008. A maximum entropy model for large-scale portfolio optimization. Paper presented at the
International Conference on Risk Management & Engineering Management (ICRMEM’08), Beijing, China, November 4-6; pp.
610-15. Available online: https:/ /ieeexplore.ieee.org/document/4673300 (accessed on 8 September 2025).

Ke, Jinchuan, and Can Zhang. 2008. Study on the optimization of portfolio based on entropy theory and mean-variance model.
Paper presented at the IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI 2008), Beijing,
China, October 12-15; pp. 2668-72. Available online: https://www.researchgate.net/publication /240643459 (accessed on
5 September 2025).

King, Alan. J. 1993. Asymmetric risk measures and tracking models for portfolio optimization under uncertainty. Annals of Operations
Research 45: 165-78. [CrossRef]

King, Alan]., and David L. Jensen. 1992. Linear-quadratic efficient frontiers for portfolio optimization. Applied Stochastic Models and
Data Analysis 8: 195-207. [CrossRef]

Konno, Hiroshi, and Hiroaki Yamazaki. 1991. A mean absolute deviation portfolio optimization model and its applications to Tokyo
stock market. Management Science 37: 519-31. [CrossRef]

Lutgens, Frank, and Peter Schotman. 2010. Robust portfolio optimisation with multiple experts. Review of Finance 14: 343-83. [CrossRef]

Markowitz, Harry. 1952. Portfolio selection. The Journal of Finance 7: 77-91.

Markowitz, Harry. 1991. Foundations of portfolio theory. The Journal of Finance 2: 469-71. [CrossRef]

Markowitz, Harry, Peter Todd, Ganlin Xu, and Yuji Yamane. 1993. Computation of mean—semi-variance efficient sets by the critical line
algorithm. Annals of Operations Research 45: 307-18. [CrossRef]

Ou, Jen-Hao, and Yew Kam Ho. 2019. Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly
Excited States of Helium. Atoms 7: 70. [CrossRef]


https://doi.org/10.1016/j.jfds.2023.100113
https://ieeexplore.ieee.org/document/4673300
https://www.researchgate.net/publication/240643459
https://doi.org/10.1007/BF02282047
https://doi.org/10.1002/asm.3150080309
https://doi.org/10.1287/mnsc.37.5.519
https://doi.org/10.1093/rof/rfn028
https://doi.org/10.1111/j.1540-6261.1991.tb02669.x
https://doi.org/10.1007/BF02282055
https://doi.org/10.3390/atoms7030070

Risks 2025, 13, 180 18 of 18

Philippatos, George C., and Charles J. Wilson. 1972. Entropy, market risk, and the selection of efficient portfolios. Applied Economics 4:
209-20. [CrossRef]

Shannon, Claude Elwood. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379-423. [CrossRef]

Shen, Weiwei, and Jun Wang. 2016. Portfolio Blending via Thompson Sampling. Paper presented at the IJJCAI'16: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, July 9-15; pp. 1983-89.

Sheraz, Muhammad, and Dedu Silvia. 2020. Bitcoin Cash: Stochastic models of fat-tail returns and risk modeling. Economic Computation
and Economic Cybernetics Studies and Research 54: 43-58.

Simonelli, Maria Rosaria. 2005. Indeterminacy in portfolio selection. European Journal of Operational Research 163: 170-76. [CrossRef]

Speranza, M. Grazia. 1993. Linear programming models for portfolio optimization. Finance 14: 107-23.

Yager, Ronald R. 1995. Measures of entropy and fuzziness related to aggregation operators. Information Sciences 82: 147-66. [CrossRef]

Yoshimoto, Atsushi. 1996. The mean-variance approach to portfolio optimization subject to transaction costs. Journal of the Operations
Research Society of Japan 39: 99-117. [CrossRef]

Yu, Jing-Rung, and Wen-Yi Lee. 2011. Portfolio rebalancing model using multiple criteria. European Journal of Operational Research 209:
166-75. [CrossRef]

Zheng, Yanan, Ming Zhou, and Gengyin Li. 2009. Information entropy-based fuzzy optimization model of electricity purchasing
portfolio. Paper presented at the IEEE Power & Energy Society General Meeting (PES’09), Calgary, AB, Canada, July 26-30;
pp- 1-6.

Zhou, Rongxi, Ru Cai, and Guanqun Tong. 2013. Applications of entropy in finance: A review. Entropy 15: 4909-31. [CrossRef]

Zopounidis, Constantin, and Michael Doumpos. 2002. Multi-criteria decision aid in financial decision making: Methodologies and
literature review. Journal of Multi-Criteria Decision Analysis 11: 167-86. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1080/00036847200000017
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1016/j.ejor.2004.01.006
https://doi.org/10.1016/0020-0255(94)00030-F
https://doi.org/10.15807/jorsj.39.99
https://doi.org/10.1016/j.ejor.2010.09.018
https://doi.org/10.3390/e15114909
https://doi.org/10.1002/mcda.333

	Introduction 
	Materials and Methods 
	Mean–Second-Order Tsallis Entropy–Variance Model of Portfolio Optimization 
	Optimization Problem Formulation 
	Solving the Portfolio Optimization Problem 

	Case Studies 

	Results and Discussions 
	Comparative Results 
	Liquidity Considerations 
	Limitations 

	Conclusions 
	Appendix A
	Appendix B
	References

