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Abstract

There is a growing need to provide Al risk management models that can assess whether
Al applications are safe and trustworthy, to make them responsible. To date, there are
a few research papers on this topic. To fill the gap, in this paper we extend the recently
proposed SAFE framework, a comprehensive approach to measure Al risks across four
key dimensions: security, accuracy, fairness, and explainability (SAFE). We contribute to
the SAFE framework with a novel use of the coefficient of determination (R?) to quantify
deviations from ideal behavior not only in terms of accuracy but also for security, fairness,
and explainability. Our empirical findings shows the effectiveness of the proposal, which
leads to a more precise measurement of risks of Al regression applications, which involve
the prediction of continuous response variables.

Keywords: SAFE Al metrics; responsible Al; coefficient of determination

1. Introduction

Artificial Intelligence (Al) systems are increasingly deployed in domains where their
decisions have significant societal, ethical, and economic consequences, ranging from
healthcare and finance to criminal justice and education. While their adoption promises
efficiency and innovation, growing evidence shows that these systems can also introduce
substantial risks, including biased outcomes, adversarial vulnerabilities, and poor gener-
alization in real-world settings. As such, the demand for responsible AI—AI that is not
only performant but also secure, fair, and robust—has become a central concern in both
academic and policy-making circles Floridi et al. (2018); Jobin et al. (2019).

Indeed, the widespread use of Artificial Intelligence (Al) requires us to develop ad-
vanced statistical methods that can measure its risks, in line with recently proposed regula-
tions and standards such as the European Artificial Intelligence Act (European Commission
(2022)), the American Artificial Intelligence Risk Management framework (United States Na-
tional Institute of Standards and Technologies (2023)), the OECD framework for the classi-
fication of Al Systems (Organisation for Economic Cooperation and Development (2022)),
and the ISO/IEC 23894 international standards (International Organization for Standard-
ization and International Electrotechnical Commission (2023)).

From an organizational and managerial governance viewpoint, the main risks that can
arise from the application of Al derive from the violation of four main principles: accuracy,
explainability, fairness, and security.

First, accuracy. Al applications are complex, and consume a great deal of energy
and costs. Thus, their efficiency requires accurate results. Second, explainability. Al
applications typically have an intrinsic non-transparent (“black-box”) nature. This is a
problem in regulated industries, as authorities aimed at monitoring the risks arising from
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the application of Al may not validate them (see, e.g., Bracke et al. 2019). Third, security.
Cyber attacks and data poisoning naturally increase with the increase in Al applications.
This is one of the most frequent risks related to the resilience and sustainability of Al
applications. Fourth, fairness. The application of Al may pose societal problems, among
which fairness and the risk of discrimination is the most relevant.

Indeed, all the recently proposed regulations and recommendations introduce compli-
ance requirements for these four principles within a risk-based approach to Al applications.
In the regulatory context, several applications of Al have high risks and, therefore, require
an appropriate risk management model. To develop such a model, we need to express the
regulatory requirements in terms of statistical variables, to be measured by appropriate
statistical metrics.

A growing body of work has proposed frameworks for measuring and mitigat-
ing various Al-related risks. For example, frameworks such as FAIR (Fairness, Ac-
countability, Interpretability, and Responsibility) and FAT (Fairness, Accountability, and
Transparency) Barocas and Selbst (2018); Selbst et al. (2019) emphasize the ethical di-
mensions of Al. Others have focused on specific aspects such as robustness to adver-
sarial examples Goodfellow et al. (2015); Szegedy et al. (2014), secure learning against
data poisoning Steinhardt et al. (2017), and algorithmic fairness across demographic
groups Hardt et al. (2016); Kleinberg et al. (2016). However, these frameworks often con-
sider these dimensions in isolation, lacking a unified metric to compare and trade off
between them.

A related line of research is to employ Al to measure risks. Papers in this stream
of research include those by Naim (2022) and Sundra et al. (2023), who consider the ap-
plication of Al in financial risk management; Sachan et al. (2020); Bussmann et al. (2020);
Moscato et al. (2021); Liu et al. (2022) and Biicker et al. (2022), who employ Al to mea-
sure credit risk; Giudici and Polinesi (2021) and Giudici and Abu-Hashish (2019), who
employ Al to measure contagion risks in algorithmic trading and crypto exchanges;
Ganesh and Kalpana (2022), who review Al methodologies for supply chain risk manage-
ment, whereas Frost et al. (2019) and Kuiper et al. (2021) do so for financial intermediation;
Ainslie et al. (2017); Melancon et al. (2021); Aldasoro et al. (2022) and Giudici and Raffinetti
(2021), who employ Al to measure IT risk and cyber risks; and Achakzai and Juan (2022)
and Chen et al. (2018), who employ Al to detect financial frauds and money laundering.

The previously mentioned papers propose Al methodologies to measure different
types of risks, often from a financial perspective. We instead propose a methodology
to measure the “model” risks the Al itself generates, following the recently proposed
SAFE Al risk management framework (Babaei et al. (2025)), which evaluates Al models
along four fundamental dimensions: security, accuracy, fairness, and explainability. The
SAFE framework is motivated by the need for a holistic and quantitative approach to Al
risk assessment.

We contribute to the SAFE framework with a novel use of the coefficient of determi-
nation (R?)—traditionally used to measure model fit in regression—as a general-purpose
metric to quantify deviations from ideal behavior not only in terms of accuracy but also for
security, fairness, and explainability. By extending R? to capture the proportion of variation
in each of these domains, we offer a coherent and interpretable tool to compare models that
aim to predict continuous responses.

The rest of the paper is structured as follows: Section 2 formalizes the SAFE Al
dimensions and extends the R? metric to each of them. Section 3 presents the application of
our proposal to a case study, followed by a discussion of the obtained results in Section 4.
We conclude in Section 5 with a summary of our contribution.
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2. Extending the SAFE AI Metrics

The security, accuracy, fairness, and explainability (S.A.F.E.) Al metrics proposed in
Babaei et al. (2025) are derived from the Lorenz curve. Their core is Rank Graduation
Accuracy (RGA), which is a rank-based metric to assess the accuracy of a model, a classifier
or a regressor, as explained in Giudici and Raffinetti (2025). We now briefly recall them.

Consider Y* and Y**, two statistical variables (continuous, ordinal or binary). To
build the Lorenz curve, we can utilize the sorted Y* values in a non-decreasing order. For
i =1,...,n, the Lorenz curve can be defined by the pairs (i/n, Z;':1 y;‘]* /(niy*)), where
r]’-‘ indicates the non-decreasing ranks of Y* and #* indicates the mean of Y*. Using the
same variable Y* but in a non-increasing order, we can build the dual Lorenz curve. For
i =1,...,n, the dual Lorenz curve can be defined by the pairs (i/n, 2}21 y:j;+1—j /(ng*)),
il
If the Y* values are sorted according to the ranks of the Y** values in a non-decreasing

where r indicates the non-increasing ranks of Y.

order, we can define the concordance curve. Fori = 1,...,n, the concordance curve is
defined by the pairs (i/n, Z§:1 y;}* /(ny*)), where r{* indicates the non-decreasing ranks
of Y**. Regarding accuracy evaluation, Y* and Y** refer to the actual and predicted
values, respectively. RGA is the ratio of the area below the last two curves (dual Lorenz
curve and concordance curve) to the area between the first two curves (Lorenz and dual
Lorenz curves).

Babaei et al. (2025) extended the construction behind the RGA to different types
of comparison between pairs of variables that arise from the assessment of ML models.
The comparison between the predicted Y* and the predicted Y* when the input data are
modified lead to a Rank Graduation Robustness (RGR) measure, which can be employed to
assess whether the output from Artificial Intelligence applications is robust under variations
in the data, caused by extreme events, or by cyber attacks, which may alter the values of
the explanatory variables. We remark that the SAFE framework essentially equates security
with robustness and can accommodate alternative red teaming scenarios, such as prompt
injection or coordinated-agent failure.

The comparison between the predicted values Y* of a machine learning model in-
cluding and excluding one or more explanatory variables leads to the Rank Graduation
Explainability (RGE) measure, which can be employed to assess the interpretability of the
Al output. The comparison between the predicted Y*, conditionally and unconditionally to
a protected attribute, such as gender or race, leads to a Rank Graduation Fairness (RGF)
measure, which can be employed to assess the bias and degree of discrimination of Al

The advantage of the RG divergence is that it can be used to assess, in a consistent
way, the accuracy, the robustness, the explainability and the fairness for different types
of response variables. Therefore, understanding a unique formula and concept, we can
measure the mentioned Al principles and easily interpret them. Against the advantages,
the above metrics have the disadvantage of reducing the comparison between different
models to the comparison of the ranks. If two models have the same predictive ranks, RGA
is the same if RGR and RGE are the same. Similarly, if two perturbed models have the
same predicted ranks, RGR is the same. And, if two simplified models, with some variables
removed, have the same predicted ranks, RGE is the same. This may not be ideal when
the response variable is continuous. An additional disadvantage, for continuous response
models, is the need to assume that the response is non-negative, implicit in the construction
of the Lorenz curve.

To overcome the previous limitations, in this paper we propose to extend the SAFE Al
metrics by employing the coefficient of determination R? in regression problems, character-
ized by a continuous response.
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In regression analysis, R? is a widely used metric that quantifies the proportion of the
variance in the dependent variable that is explained by the independent variables. Given a
set of n observations {(x;,y;)}"_,, and a regression function §; = f(x;), R? is defined as:

R2_q1_ Lim1li ~ i) 1)
im1(yi — 9)?
where 7 = % Y 1 i is the mean of the observed values.

The numerator in Equation (1) represents the residual sum of squares (RSS), which
captures the error of the model. The denominator, known as the total sum of squares (TSS),
quantifies the total variance in the observed data.

The notion of R? as a measure that describes the percentage of variability of a response
variable explained by a set of explanatory independent variables can be extended to a
predictive context. In this case, the n observations are partitioned in a training sample of
n1 observations, on which the regression function §j; = f(x;) is estimated (learned), and a
test sample 715, on which the regression function is applied, to derive predictions which are
compared to the ground truth values. Thus, R? becomes

Y2 (vi — 9:)?

RP=1-
Z?il(yi —7)?

, ()

where 7 = % Y12, y; is the mean of the observed values in the test sample. A key difference
between the R? in Equation (1) and that in Equation (2) is that, while in the former case the
“explained variance” Y- (y; — §/;)? is smaller than the total variance Y"_; (y; — 7)?, as the
fitted and error vectors are orthogonal, this may not be true in the latter case.

We remark that (2) can be extended to a classification problem, in which the response
variable is binary, resorting to the Brier score (see, e.g., Rufibach 2010). To that end, given
the true 0/1 responses, y;, whose mean is the probability of 1, p, §j; becomes the predicted
probability of a 1 response for the ith individual, p;. Formula (2) becomes:

Y2 (vi — pi)?

R>?=1-
Y2 (vi — p)?

, )

In this paper, we will employ the predictive R? in Equation (2) not only to measure
predictive accuracy, but also to measure other principles in the SAFE Al framework such as
security, explainability, and fairness.

Concerning robustness, which is employed as a measure of security of Al applications,
we measure the resilience of a model against modifications to the data. Consider 7; and §7
as the original predicted values and predicted values after modifying the data. Equation (2)
can be rewritten as follows to measure robustness:

In terms of explainability, we measure the contribution of a variable to the model
predictions. Consider §j; and 1]1 as the original predicted values and the predicted values
obtained after removing a variable x; from the predictors for j = 1,..., J. Equation (2) can
be rewritten as follows to measure the explainability of the ] available variables:

. "2 (9 — 9>
R =1 Bl ) ®
Zizl(yi _]/)



Risks 2025, 13,178

50f12

A value of R/> equal to zero shows a small and negligible contribution for the consid-
ered variable X;. The higher R/ 2, the more important the variable.

Finally, the comparison between the R? values in different protected groups consider-
ing a variable (predictor) as a protected variable leads to a fairness measurement based on
the model parity concept.

Formally, let R% and R% be two predictive R? values, calculated according to
Equation (2) separately for all data that belong, respectively, to individuals in groups
A and B. For example, A can be a group of females and B a group of males. To measure

fairness we can then calculate
R} = [R} — R3] (6)

A small value of R% indicates that a model achieves similar R? values when applied
to different protected groups and, for this reason, we can consider it as a fair model.
Differently, a large value of R% in (6) indicates that the model has a degree of unfairness.

We conclude this section with an illustration of the practical importance of our pro-
posal, in terms of the risk management standard established by the International Organiza-
tion for Standardization and International Electrotechnical Commission (2023), in Table 1.
The Table lists, for each risk management requirement, the corresponding action based on
the S.A.EE. Al framework presented in this paper.
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Table 1. ISO/IEC 23894:2023 Al Risk Management controls, corresponding S.A.E.E. actions, and accountability across lifecycle.

Control Category ISO/IEC 23894:2023 S.A.EE. Actions Who Measures What When in the AI Lifecycle Who Escalates/Rolls Back
Requirement Actions
Define scope, objectives, ) - . .
- Define Al applications and, for Business owners, risk . .
. boundaries, and stakeholders; . Conception/ Governance board or project
Context Establishment . . each of them, response and managers—define scope RO . .
identify intended use and . . project initiation. steering committee.
: - explanatory variables. and variables.
potential misuse.
Identify risks from data, Data scientists, domain
. P models, processes, deployment For AI application identify " Data collection and Risk manager with
Risk Identification - ) . - . experts—map risks . .
environment, and misuse which S.A EE. metric applies. and metrics model design. compliance team.
scenarios across lifecycle. ’
Calculate the identified metrics,
I . equate likelihood with their S -
. . Assess l.lkEthO.d’ severity, and complement to one, and D.ata scientists, quantitative Model development Chief Risk Officer (CRO) or
Risk Analysis uncertainty of risks; consider . . - risk analysts—compute o - . -
S severity with the quantity and . and validation. equivalent oversight function.
emergent and systemic risks. . metrics.
quality of
impacted stakeholders.
. Calculate thresholds,
Compare risks to acceptance using appropriate statistical Validation team—appl Independent risk committee or
Risk Evaluation criteria; prioritize risks § approp PP Pre-deployment validation. P

for treatment.

tests, such as Diebold and
Mariano (1995).

thresholds, statistical testing.

model validation unit.

Risk Treatment

Apply measures such as data
quality and governance checks,
bias and fairness analysis,
robustness testing,
explainability, human
oversight, security safeguards,
fallback and incident

response mechanisms.

Interpret deviation from
threshold as potential lack of
fairness, robustness and
security, explainability and
human oversight or

fallback accuracy.

ML engineers,
auditors—monitor controls and
implement safeguards.

Deployment and
operational readiness.

Al ethics board, compliance
lead, or IT security head.

Continuously monitor Al
performance and risks;

Update model, metrics and

Operations/

Post-deployment, continuous

Incident response manager,

Monitoring : comparison with threshold as monitoring team—track .

implement feedback loops and Ay : . . operation. system owner.

. new training data arrives. metrics over time.
update risk assessments.
En keholders in risk . . .
gage stakeho ders s Report S.A.EE. metrics values, Risk managers, reporting . .
- decisions; ensure transparency . . . . . . Throughout lifecycle, Senior management, external

Communication in comparison with thresholds, officers—communicate metrics

and reporting of risk
management outcomes.

to stakeholders.

and risks.

periodic reviews.

regulators if required.
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3. Application

To demonstrate the practical utility of the proposed extended SAFE Al metrics, we
apply them to the employee dataset, available from the stima R package.! The dataset
contains various features describing the characteristics of the employees of a bank, including
salary, job level, and experience. Table 2 describes the variables available in the dataset.

Table 2. The available explanatory variables in the employee dataset.

Variable Definition

salary a numeric variable, used as response variable: current salary in US dollars
age a numeric variable: age in years
edu a numeric variable: educational level in years

startsal ~ a numeric variable: beginning salary in US dollars

jobtime  a numeric variable: months since hire

prevexp  anumeric variable: previous work experience in months

a factor variable: minority classification with levels min, indicating minority,

minority . S

and no_min, no minority

a factor variable: gender type with levels f, indicating female, and
gender o

m, indicating male
jobcat a factor variable: type of job with levels Clerical, Custodial, and Manager

We consider a regression problem, where the target variable is salary_growth, which
represents the actual numeric increase in an employee’s salary over a specified period. The
presence of a continuous response allows us to assess the effectiveness of our extended
SAFE Al metrics. To that aim, we fit a regression model using the available feature variables,
and evaluate the model using our proposed R?-based metrics.

In terms of accuracy, our trained linear regressor leads to a R? value equal to 0.4023,
which shows that about 40% of the variability of the response can be explained by the
considered machine learning model. The RGA metric proposed in Babaei et al. (2025)
turns out to be equal to 0.8925. The comparison between the predictive R? and RGA
emphasizes that the calibration task (predicting numerical values) is more difficult than the
discrimination task (predicting ranks).

We proceed to determine explainability in terms of the proposed R/ ? metric. The
obtained values are in Table 3.

i2 . . . . .
Table 3. R/" values representing the contributions of the explanatory variables to the regression model.

Variable R
edu 0.4523
gender 0.1405
prevexp 0.0392
jobtime 0.0274
minority 0.0207
age 0.0001

From Table 3, note that the most important variable to predict the rate of growth
of salaries is the education level, followed by the years of previous experience and the
time spent in the company. Notice that the age is not relevant; its effect is likely absorbed
by the time spent in the company, highly correlated with it. Note also that gender has
some importance, indicating some bias in salary growth. The other possible protected
variable, minority, has a much lower importance. For comparison with the SAFE metrics in
Babaei et al. (2025), Table 4 contains the RGE values for the same model.
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Table 4. RE (Rank Graduation Explainability) values values representing the contributions of the
explanatory variables to the regression model.

Variable RGE
edu 0.0910
gender 0.0256
jobtime 0.0094
prevexp 0.0069
minority 0.0063
age 0.0000

Looking at the results reported in Table 4, we can see that the most important variable
to predict the rate of growth of salaries is the education level, followed by gender, the
time spent in the company, and the previous experience. Overall, the results from RGE
are consistent with those from Ri> with a stronger effect of gender and, in general, smaller
values of explainability.

We then consider model robustness, considering the original predicted values and the
predictions obtained perturbing the input variables. As perturbation type we consider a
permutation in the original data. More precisely, we perturb all input variables by swapping
the 5% top with the 5% bottom observations.

The result of the robustness metric, calculated in terms of our proposed R*? statis-
tics, is equal to 0.0389. This indicates that the model has a low degree of robustness,
consistently with the limited sample size. Note that the application of the RGR metric
in Babaei et al. (2025) leads to an RGR value of 0.7621. This is a higher value than that
obtained using R*z, consistent with the fact that statistics based on ranks are more robust
than those based on actual values.

We remark that R*? is rather general, and can be applied to different types of perturba-
tions, which simulate different types of adversarial attack, for example within a red teaming
framework, such as prompt injection, see, e.g., Pathade (2025), or coordinated-agent failure,
see, e.g., Manheim and Garrabrant (2018). To this aim, it is sufficient to know the data, as
modified by the perturbation, and apply R*? to the comparison of the model output before
and after the perturbation.

We also remark that an important aspect of the proposed R*? statistics is that, being
a function of a mean squared error, it is easy to derive test statistics, such as Diebold and
Mariano’s (Diebold and Mariano (1995)). For any given type I error probability level (such
as 5%) an escalation threshold value (such as 1.96) can be derived and, thus, employed to
escalate and prompt a deployment action.

Finally, we have obtained that the model imparity, employing gender as a protected
variable, is equal to 0.0277. Note that the application of the SAFE Al framework in
Babaei et al. (2025) leads to a model imparity equal to 0.0462. Both the original SAFE
metric and our extension indicate a limited degree of bias, in line with the small value of ex-
plainability of the gender variable obtained with our proposed metric (but not using RGE).

Benchmarking

For a further comparison of our extension with the original SAFE metrics, in this
section we consider a classification problem, in which the objective is to predict whether an
employee’s salary has doubled.

We define a binary target variable, doubling_salary, which takes the value 1 if
an employee’s salary has increased by a factor of two or more, and 0 otherwise. This
classification problem can be evaluated using the classic SAFE Al framework, or more
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traditional metrics, such as accuracy, the Area Under the Curve (AUC), the F1 score and
classic group-based fairness measures.

To this aim, we train a simple binary classifier, logistic regression, on the dataset. The
resulting AUC, F1 score, and accuracy of the classifier are equal to 0.7523, 0.6763, and
0.6831, respectively, all indicating acceptable (but not excellent) levels.

We now consider the application of the classic SAFE metrics. RGA is equal to AUC, in
this case 0.7523.

In terms of explainability, we consider the original predicted values and the predictions
after removing each of the variables to find the contributions of the variables, in terms of
the RGE metric in Babaei et al. (2025). Table 5 contains the results.

Table 5. RGE values as the explanatory scores representing the contributions of the explanatory
variables to a classification model.

Variable RGE

age 0.3329
jobtime 0.1386
prevexp 0.0009
gender 0.0005

edu 0.0001
minority 0.0000

Looking at the results in Table 6, note that the most important variables for the
doubling of the salary are the age of an employee and their time spent in the company.
This is quite consistent with a traditional company, as the bank whose data is considered in
this paper.

For comparison, we now consider the application of our proposed R/ ? metric to assess
explainability for the classification problem. Table 6 contains the results.

Table 6. R*? values as the explanatory scores representing the contributions of the explanatory
variables to a classification model.

Variable R*?
age 0.9992
jobtime 0.3684
prevexp 0.0091
gender 0.0016
edu 0.0008
minority 0.000

Comparing Table 6 with Table 5, note that the ranks of the R*? values are consistent
with those of the RGE values, with age and jobtime as the most important variables.

In terms of robustness, the application of the RGR metric in the SAFE Al approach
leads to a value equal to 0.7892. The application of our proposed R*? value leads to a value
equal to 0.0593. Both results are in line with those obtained for the regression problem,
with our metric indicating low robustness, consistent with the relatively small amount of
data considered.

Finally, in terms of fairness, the RGE statistics leads to a model imparity equal to
0.0317. The same imparity, calculated with our proposed R*? statistics, is equal to 0.0529.
Both cases indicate little bias, consistent with that obtained for the regression problem.

Overall, the results from the benchmarking exercise indicate once more that the cali-
bration task is different from the discrimination task. While in the latter the explainability



Risks 2025, 13,178

10 of 12

and fairness metrics give similar results, in the former case they do not, and show that the
proposed R? metrics are more precise than the RG metrics in Babaei et al. (2025), as they
compare values rather than their ranks.

4. Discussion

The obtained results and empirical findings indicate that the proposed R*? safe Ar-
tificial Intelligence metrics are well suited to evaluate machine learning models aimed at
predicting continuous response variables within a calibration framework.

The comparison with the Rank Graduation metrics of Babaei et al. (2025) shows that
our proposed metrics lead to values of accuracy, robustness and explainability that are
consistent with the nature of the calibration problem, more difficult and less robust than
the discrimination problem considered in classification problems, where the RG metrics of
Babaei et al. (2025) are more useful.

To summarize, the R*? and the RG metrics should be seen as complementary. While
the latter are universal, and can be used for all types of responses, the former are more
precise, but can be used, and should indeed be used, when the objective of the study is the
prediction of point values and not of ranks.

5. Conclusions

We have presented a set of novel SAFE Al risk management metrics, based on a
predictive R? measure. The metrics extend those proposed using the rank-based measures
in Babaei et al. (2025). While the latter are more general than the metrics proposed in this
paper, as they can be applied to all types of variables, the metrics considered here apply
only to continuous response variables but are more informative, in the same fashion as a
point prediction is more informative than a categorical prediction.

We have tested our proposal on a real and well known dataset, concerning the growth
of the salaries of a set of employees. Our results indicate that the model has a moderate
accuracy, and a limited robustness, consistent with the considered small sample size. In
terms of explainability, to predict growth of the salary in continuous time, what matters
most is the education level, the years of experience and the time spent in the company.
Finally, the model shows a reasonable level of fairness.

The potential users of the proposed solution include all stakeholders that participate
to the Al lifecycle: providers, deployers, users, consumers and authorities that control and
monitor Al applications. We also remark that the proposed solution is quite general and
can be applied to alternative frameworks, not only based on tabular data, but also text and
other unstructured data.

Indeed, the main limitation of this study is that is focused on tabular data, and the
application to the financial sector. Further research work should include the extension of
the work to unstructured data, including generative AI models, and to other sectors, such
as healthcare and manufacturing. Further work may also include extending the security
metrics to include simulation scenarios based on different types of read teaming.
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