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Abstract

This paper uses survival analysis as a tool to assess credit risk in loan portfolios within
the framework of the Basel Internal Ratings-Based (IRB) approach. By modeling the time
to default using survival functions, the methodology allows for the estimation of default
probabilities and the dynamic evaluation of portfolio performance. The model explicitly
accounts for right censoring and demonstrates strong predictive accuracy. Furthermore, by
incorporating additional information about the portfolio’s loss process, we show how to
empirically estimate key risk measures—such as Value at Risk (VaR) and Expected Shortfall
(ES)—that are sensitive to the age of the loans. Through simulations, we illustrate how loss
distributions and the corresponding risk measures evolve over the loans’ life cycles. Our
approach emphasizes the significant dependence of risk metrics on loan age, illustrating
that risk profiles are inherently dynamic rather than static. Using a real-world dataset of
10,479 loans issued by Angolan commercial banks, combined with assumptions regarding
loss processes, we demonstrate the practical applicability of the proposed methodology.
This approach is particularly relevant for emerging markets with limited access to advanced
credit risk modeling infrastructure.

Keywords: survival analysis; loan portfolios; default probability; Gompertz-Makeham
model; hazard function; value at risk (VaR); expected shortfall (ES); Monte Carlo simulation;
Basel IRB approach; loss distribution

JEL Classification: C11; G21; G22; H81

1. Introduction

Survival analysis—a statistical methodology traditionally used in actuarial science,
healthcare, engineering, and reliability studies—has seen growing relevance in the fi-
nancial sector (Kleinbaum and Klein 2012b). In particular, it offers a robust framework
for modeling time-to-event data, such as the time until a loan defaults. This temporal
dimension makes survival analysis especially suitable for assessing credit risk in loan port-
folios, aligning with the Internal Ratings-Based (IRB) approach under the Basel regulatory
framework (BIS 2006).

Unlike traditional credit scoring models that offer static default probabilities, survival
analysis enables a dynamic, time-dependent understanding of credit risk. By modeling the
time to default, financial institutions can obtain more detailed insights into when defaults
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are likely to occur, thereby enhancing their ability to manage risk exposure, allocate capital
efficiently, and comply with regulatory requirements.

This paper presents a survival analysis-based methodology for estimating default prob-
abilities and assessing credit risk in loan portfolios. We employ the Gompertz—Makeham
parametric model to characterize the time to default, explicitly incorporating right-censored
observations, which are common in loan data. These occur when the default event is not
observed within the observation window—for example, due to early repayment, transfer
to another institution, or loan maturity. Right censoring requires special attention during
estimation, as it limits the available information on the timing of potential defaults. Prop-
erly accounting for censored data is essential to avoid biased estimates of default intensities
and survival probabilities.

Survival analysis offers several practical advantages for credit risk management:

¢  Granular Risk Profiling: It enables the evaluation of credit risk at the level of individual
loans or borrower segments.

¢ Dynamic Monitoring: Time-based risk assessment supports early detection of deterio-
rating credit quality.

¢ Strategic Insights: Outputs from survival models inform pricing, capital provisioning,
and portfolio allocation decisions.

*  Regulatory Alignment: The methodology supports key requirements of the IRB ap-
proach within the Basel framework (BCBS 2011).

In implementing this approach, we use a dataset of 10,479 loans from Angolan com-
mercial banks. The dataset includes detailed information on loan characteristics, payment
histories, and the timing of default or prepayment. Based on this information, we esti-
mate survival functions and compute hazard ratios that reflect the relative risk of default
over time. Unfortunately, the database does not contain direct information on losses.
However, we show how the model can be easily extended to incorporate a calibration of
loss given default (LGD), allowing for the construction of a complete loss process. This
extension enables the estimation of key risk metrics such as Value at Risk (VaR) and Ex-
pected Shortfall (ES). In addition, we propose a novel approach to estimate VaR and ES as a
function of loan age, providing a dynamic view of credit risk throughout the life cycle of
a loan.

The remainder of the paper is organized as follows. Section 2 presents a concise
review of the literature on credit risk assessment in loan portfolios. Section 3 introduces the
survival analysis framework, outlining the key variables and methodological foundations.
Section 4 details our empirical application using loan-level data from Angolan banks. This
section is structured to highlight each stage of the methodological approach, demonstrating
how to model loss given default (LGD) in conjunction with default probabilities to construct
realistic loss processes. It concludes by illustrating how the framework can be used to
analyze the evolving risk profile of loan portfolios and derive risk measures by loan age.
Finally, Section 6 summarizes the main findings and discusses their implications for credit
risk management.

2. Literature Review

Credit risk modeling has evolved significantly, with methodologies ranging from
traditional statistical techniques to advanced machine learning (ML) and survival analysis.
Early approaches, such as those by Micocci (2000), relied on Monte Carlo simulations to
estimate default rates, while Crosbie and Bohn (2003) combined accounting- and market-
based indicators to calibrate default probabilities. These foundational works, however,
often made simplifying assumptions (e.g., static transition matrices, constant interest rates)
that limited their adaptability to dynamic economic environments (Derbali 2018).
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Macroeconomic drivers of credit risk have been extensively studied, particularly in
emerging markets. For instance, Poudel (2013) demonstrated the impact of economic
variables on credit risk in Nepal, highlighting macro-financial linkages. Structural and
reduced-form models, such as those by Suisse (1997) and Zokirjonov (2018), extended credit
risk assessment to include rating migrations and portfolio-level Value at Risk (VaR). Yet,
these models often struggle with high-dimensional, non-linear data—a gap that ML meth-
ods have sought to address. Recent work by Bo (2024) underscores how macroeconomic
shocks amplify model risk in regulatory frameworks in developing countries” baks.

The advancement of machine learning has introduced powerful alternatives for credit
risk modeling (Leo et al. 2019). ML techniques, such as ensemble learning (Charpignon et al.
2014) and deep neural networks (Mahbobi et al. 2023), excel at capturing complex patterns
in large datasets. Recent studies, like Sharma et al. (2022) or Hernes et al. (2023), show that
ML models (e.g., XGBoost, random forests) often outperform traditional logistic regression
in default prediction due to their ability to handle non-linear interactions. Cutting-edge
ML approaches continue to push boundaries. Huang et al. (2025) apply language learning
to small- and medium-sized enterprises (SMEs) credit risk, achieving superior accuracy but
underscoring computational costs. Meanwhile, Kakadiya et al. (2024) leverage transformer
architectures for default prediction, demonstrating state-of-the-art performance in high-
data environments. However, their effectiveness depends heavily on data quality and
volume, posing challenges for banks in emerging markets or smaller institutions with
limited data infrastructure (Fejza et al. 2022). Additionally, ML models are often criticized
as “black boxes,” lacking interpretability—a key requirement for regulatory compliance
under frameworks like Basel IRB (Erkkild 2025; Hurlin and Pérignon 2023).

Amid these developments, survival analysis has emerged as a particularly suitable
approach for modeling credit risk in a time-sensitive and probabilistic framework. Origi-
nally applied in biomedical and reliability studies, survival models are increasingly being
adopted in credit scoring and default prediction due to their ability to handle censored
observations and time-varying covariates. Banasik et al. (1999) and Stepanova and Thomas
(2002) were among the first to apply survival techniques to consumer credit, enabling a
more granular analysis of default timing. McDonald et al. (2010) combine survival analy-
sis with Monte Carlo simulation to price mortgages and forecast cash flow distributions.
Likewise, Hassan et al. (2018) use accelerated failure time models to estimate both the prob-
ability and timing of default, incorporating borrower characteristics and macroeconomic
indicators. Recent advances in survival analysis have focused on addressing real-world
constraints in credit risk modeling. Zhang et al. (2021) developed DeepSurv for corporate
default prediction, demonstrating how neural networks can enhance traditional Cox mod-
els while maintaining interpretability. For federated learning applications—particularly
relevant for multi-institutional risk modeling—Kragh Jorgensen et al. (2025) established
foundational methods for discrete-time Cox models which can be applied in privacy-
preserving environments, though implementation challenges remain for real-time banking
applications. These studies focus on modeling the default event, but lack its connection to
losses and risk measure, which is key in addressing the existent regulatory framework.

The choice between survival analysis and ML depends on the use case. While ML
excels in high-data environments (e.g., Borisov et al. (2022)), survival analysis is more
adaptable to sparse datasets and provides explicit time-to-event estimates—critical for
regulatory capital calculations under IRB. On the data scarcity and the limitations of ML,
see for instance Abdalla et al. (2025). Hybrid approaches are emerging as promising
solutions (Baesens et al. 2005). For instance, Siphuma and van Zyl (2025) introduced
Transformer survival models for credit risk, achieving state-of-the-art performance in
temporal pattern recognition while Djeundje and Crook (2019) developed dynamic survival
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analysis frameworks specifically for loan portfolios. These approaches address the critical
need for models that adapt to evolving economic conditions, a key requirement under
Basel I1I, but also depend on large datasets, which are not available in emerging markets.

The choice between survival analysis and ML thus depends on the use case. While
ML excels in high-data environments (e.g., Borisov et al. (2022)), survival analysis is more
adaptable to sparse datasets and provides explicit time-to-event estimates—critical for
regulatory capital calculations under IRB. On the data scarcity and the limitations of ML,
see for instance Abdalla et al. (2025).

We propose a survival-based framework for IRB compliance, emphasizing not only
time-to-default estimation, but also dynamic risk metrics (e.g., age-dependent VaR and ES).
Unlike ML models, our approach is data-efficient and interpretable, making it suitable for
banks with limited data. We extend survival analysis to loss given default (LGD) modeling,
enabling end-to-end loss process simulation. In opposition to the existent literature we
illustrate our approach on real data from a set of Angolan banks, thus focusing on the
difficulties faced by emerging markets’” banks.

3. Survival Analysis

Survival analysis is a statistical method used to analyze time-to-event data, where
the event of interest—such as failure, recovery, or death—can occur at any point in time.
Its primary objective is to estimate the likelihood of the event occurring over time. A key
challenge in survival analysis is dealing with right-censored data, where the exact timing
of the event is unknown for some observations, but it is known that the event has not
occurred up to a certain point.

This modeling framework is particularly relevant for credit risk analysis, where
we may observe defaults, but we may also observe loan repayment (at maturity), early
settlement, or transfer to another institution —situations that lead to right-censored data.

In what follows, we introduce the survival analysis method, establish the key notation,
and demonstrate its application to a credit portfolio. Most of the theoretical foundations are
drawn from actuarial references such as Rocha and Papoila (2009), Kleinbaum and Klein
(2012a), Dickson et al. (2013), and Smith (2017).

3.1. Setup and Notation

Let us define the “lifetime of a loan” as a non-negative, real-valued random variable
T, representing the duration from loan origination to either default or censoring.

Based on the random variable T, we define the following:

¢ Ageof aloan t: The duration (in years) from the origination date until default or the
end of the observation period, where ¢ > 0.

e Loan at age t: Denoted as (t).

¢ Maturity of a loan M: The time at which the loan is contractually scheduled to end.

*  Remaining lifetime of a loan T — t: The time left until default or maturity, satisfying
0<t+T<M.

*  Attheloan’s origination (t = 0), we have T = 0.

The survival distribution function S(t) is the probability that a loan survives longer than
time t, mathematically expressed as:

S() =P(T>t)=1-F(b), 1)

where F(t) is the cumulative distribution function (CDF) of T, representing the probability
of default by time t. Denoted by f(t) the probability density function (pdf) of F(t), it
follows that f(t) = fd%—(tt) .
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The hazard rate function, h(t), focuses on the instantaneous probability of default. For a
loan that has survived until time ¢ (i.e., T > t), the conditional probability of default in the
next small interval (t, t 4 dt) is given by the following:

Pr(t <T <t+dt|T >t)

Since h(t) is derived from a probability density function, it satisfies i(t) > 0. However,
because /(t) is not itself a probability, it is not necessarily less than 1. For very small dt,
we can interpret h(t)dt as the approximate probability that a loan, having reached age t,
defaults before reaching age t + dt:

h(t)dt ~ P(T < t+dt|T > t). 3)

Rearranging Equation (2), we get

S(t) = exp( /0 ") du) — exp[—H(1)], @)

where the cumulative hazard function H(t) is defined as

H(t) = /Oth(u) du. 5)

Also from Equation (2), the density function f(t) can then be written in terms of S(t)
and h(t),
f(t) = S(B)h(t). 6)

Considering N(t) the number of defaults at risk at time ¢, the expected number of
defaults at time ¢, d(t), is given by

d(t) = N(£)f(t) - )

3.2. Censoring

As previously mentioned, in the context of loan portfolios, censoring occurs when a
loan is repaid in full before its scheduled term, transferred to another financial institution
with due compensation to the original lender or reaches its contractual maturity M without
defaulting. For those observations, the exact time of default is unknown and is treated as
right-censored. Figure 1 illustrates instances of censored data. Right censorship leads to
special care when building the key estimates for the survival table, in the next section.

Loan Timelines with Default and Censored Events

Loan

0 10 20 30 40
Time (years)

— Censored = Default

Figure 1. Loan timelines, indicating default and censored events.
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Using data from our empirical study, Figure 2 illustrates the relationship between the
survival function S(t) and the hazard rate function h(t) over time, with right censoring
already considered. As time progresses, the survival probability S(¢) (red line) decreases,
while the hazard rate h(t) (red dashed line) increases, representing the growing risk of
default as loans age.

Survival Function S(t) and Hazard Rate h(t)

°
5
o

Probability / Rate
3
&

0.25

0 10 20 30 40
Time (years)

= Hazard Rate h() — Survival Function S(t)

Figure 2. Visual representation of the Survival Function (S(t)) and Hazard Rate (h(t)).

When determining the number of defaults in a censored dataset, the survival function
S(t) is derived from the number of loans at risk (still “alive”). Therefore, defaults should
be calculated relative to the remaining loan pool, N(t) at each ¢.

3.3. Survival Table

Consider a cohort of 1 loans from a given portfolio. The interval [0, c0) is divided into
k + 1 adjacent intervals of fixed width,

I]:[t]*llt])/ ]:l,,k+1,

with ty) = 0, fy = M, and t; 1 = oo, where M is the upper limit of observation.

The data consists of the number of loans active at the beginning of each interval and
the number of loans that defaulted or are censored in each interval.

Let us denote

*  nj: number of loans at risk at the beginning of interval [;;
e jt number of defaults observed in I]- ;
s mj number of censored observations in | -

With these we determine the number of loans at risk at the beginning of interval I; as
nj=mnj1—dji1—mjq for j=23...,k+1.

The Kaplan and Meier (1958) estimator is a non-parametric method for estimating the
survival function S(t), accounting for right-censored data. The estimator computes the
probability of surviving beyond each observed time point. If we had complete data, we
could simply calculate the fraction of survivors at each time step. However, right-censored
observations introduce uncertainty, so we need to adjust accordingly.

Instead of treating censored cases as failures, we only consider observed default events
when updating survival probabilities. At each time t where a default occurs, we update
the survival function based on the fraction of loans still “at risk” (i.e., not defaulted or
censored before).



Risks 2025, 13, 155

7 of 22

To estimate the survival function S(t), we start by determining the estimated probabil-
ity of default in the interval I;. This can be calculated using the actuarial estimator,

4j = i forn; >0, )]

where g is the estimated probability of default in interval I}, adjusted for censoring (Rocha
and Papoila 2009). Here, d; represents the number of defaults, 1; is the number of loans
at the beginning of the interval, and m; denotes the number of censored observations in
interval I;.

Note that n; — % is the adjusted number of loans at risk in interval I;. The adjustment
is crucial for accurately estimating the number of loans at risk within interval I; in the
presence of censoring. The adjustment 1; — % assumes that the instances of censoring are
uniformly distributed throughout the interval I;.

The estimated probability of survival through interval I; is then as follows:
5i=1-4; ©)

and the cumulative survival probability .§j up to the end of interval [; is given by the
following;:

j
Si=11s- (10)
i=1

A

Alternatively, it can be expressed recursively as $ j =8j-5j-1, with So=1.

4. Empirical Application

In this section, we present an application of survival analysis to a portfolio of loans,
demonstrating its practical use in evaluating credit risk.

The analysis is based on a dataset of 10,479 loans from the portfolios of 10 Angolan
commercial banks, all classified within the same rating category and all with the same
maturity of 40 years. The observation period spans from the origination date of each loan
to the occurrence of a default or the end of the observation period. The latter includes
scenarios where loans reach maturity, are prepaid, or are transferred to another financial
institution with due compensation to the original lender.

Table 1 gives a detailed statistical overview of loan defaults and survival rates over
their lifetime. Its columns are as follows: age (in years), for each interval, d; shows the
number of defaults, m; shows the number of censored loans, and n;j shows the number
of credits at risk in the beginning of the interval. The remaining columns result from the
above formulas; §; is the estimated default probability in the interval (Equation (8)), §; the
estimated survival probability in the interval (Equation (9)), and S; represents the estimated
cumulative survival probability (Equation (10)).

From Table 1, we observe that the estimated cumulative survival probability declines
progressively over time, reflecting an increasing cumulative risk of default as loans mature.
Default probabilities are very low in the early intervals but rise modestly in the later stages
of the loan term. Additionally, the number of censored loans increases with loan age,
with roughly half of the original loans reaching maturity without default or censoring.
Overall, this table offers valuable insights into the long-term performance and evolving
risk profile of the loan portfolio.
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Table 1. Performance data of the portfolio.
Age Interval d]' m; nj g4j §j gj
1 [0, 1) 0 0 10,479  0.000000 1.000000 1.000000
2 [1,2) 2 12 10,479  0.000191 0.999809 0.999809
3 [2,3) 3 0 10,465  0.000287 0.999713 0.999522
4 [3,4) 3 25 10,462  0.000287 0.999713 0.999235
5 [4,5) 4 23 10,434 0.000384 0.999616 0.998852
6 [5, 6) 8 3 10,407  0.000769 0.999231 0.998084
7 [6,7) 9 23 10,396  0.000867 0.999133 0.997219
8 [7,8) 8 4 10,364  0.000772  0.999228 0.996449
9 [8,9) 9 7 10,352 0.000870 0.999130 0.995583
10 [9, 10) 9 43 10,336  0.000873 0.999127 0.994714
11 [10,11) 11 10 10,284  0.001070 0.998930 0.993649
12 [11,12) 9 24 10,263  0.000878 0.999122  0.992777
13 [12, 13) 13 77 10,230  0.001276 0.998724 0.991511
14 [13,14) 12 67 10,140  0.001187 0.998813 0.990333
15 [14, 15) 12 13 10,061  0.001193 0.998807 0.989151
16 [15, 16) 13 56 10,036  0.001299 0.998701 0.987866
17 [16,17) 15 5 9967 0.001505 0.998495 0.986379
18 [17,18) 20 7 9947 0.002011 0.997989  0.984395
19 [18, 19) 23 8 9920 0.002319 0.997681 0.982112
20 [19, 20) 22 9 9889 0.002226  0.997774 0.979926
21 [20, 21) 24 23 9858 0.002437 0.997563 0.977538
22 [21, 22) 25 0 9811 0.002548 0.997452  0.975047
23 [22, 23) 24 0 9786 0.002452  0.997548 0.972656
24 [23, 24) 27 0 9762 0.002766  0.997234  0.969965
25 [24, 25) 30 15 9735 0.003084 0.996916 0.966974
26 [25, 26) 33 56 9690 0.003415 0.996585 0.963671
27 [26,27) 33 275 9601 0.003487 0.996513 0.960311
28 [27, 28) 37 106 9293 0.004004 0.995996 0.956465
29 [28, 29) 39 200 9150 0.004309 0.995691 0.952344
30 [29, 30) 40 85 8911 0.004510  0.995490 0.948048
31 [30, 31) 41 98 8786 0.004693 0.995307 0.943599
32 [31, 32) 39 104 8647 0.004538 0.995462 0.939318
33 [32, 33) 39 198 8504 0.004640 0.995360 0.934959
34 [33, 34) 43 155 8267 0.005251 0.994749  0.930050
35 [34, 35) 50 200 8069 0.006274 0.993726 0.924215
36 [35, 36) 49 250 7819 0.006369 0.993631 0.918329
37 [36, 37) 55 900 7520 0.007779  0.992221 0.911185
38 [37, 38) 54 450 6565 0.008517 0.991483 0.903424
39 [38, 39) 55 1000 6061 0.009890 0.990110 0.894489
40 [39, 40) 0 5006 5006 0.000000 1.000000 0.894489

Based upon 10,479 real credit portfolios of 10 commercial banks observed over 40 years. All credits are of the
same rating class and maturity equal to 40.

Given the nature of the data, we chose to calibrate a Gompertz (1825) and Makeham
(1860) function to the cumulative estimated survival values,

Som(t) = er*Hbtrei=e") gorp > (11)

where a4, b, ¢, and d are constants.

2
The term ¢ bt

represents the Gompertz Law component and captures the exponen-
tial increase in the hazard rate with time. Parameters a and b shape the hazard rate curve

over time.
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The term c(1 — %) represents the Makeham term and is the baseline hazard rate,
accounting for constant risks not related to time. Parameters c and d control the baseline
hazard rate and its influence over time.

In our case, the calibrated values, optimized using gradient-based methods, gave values

a = —0.000043044

b = —6.820428518109184 x 102
¢ = 0.00021662

d = 0.138564 .

The coefficient a reflects a quadratic term, suggesting a decreasing survival probability as
time progresses. b is effectively negligible, while ¢ and d end up governing the baseline
and exponential growth. Figure 3 represents the calibration versus the estimated values,
showing a very good fit.

1 o-eo-eo-0-o
oo.....
o—p.
L
e

0.98 b
0.96 .
0.94 'y
0.92
09

0.88
123 456 7 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

® Estimated Calibrated

Figure 3. Estimated versus Calibrated Survival Probabilities.

4.1. Hazard Functions

We can use the calibrated survival function above to derive other key variables.
From Equation (2), we can obtain the hazard values from our Gompertz—Makeham
survival function:

)
hom(t) = *glog[SGM(f)]/ (12)
hem(t) = 0.000086088¢ + 6.820428518109184 x 10723 4 2.999564228 x 1020138564

which represent the calibrated instantaneous rate of occurrence of default on a loan at
each age or time point. In the context of a loan portfolio, the hazard value indicates the
probability that a borrower defaults on their loan within a specific age or time interval
([t, t + dt[), given that they have survived up to that point (¢).

Figure 4 represents the hazard function corresponding to a Gompertz-Makeham
fitting to the survival function. As the age or time interval increases, the hazard value also
rises. The increasing hazard values imply that the likelihood of experiencing default tends
to grow as time progresses.
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0.01
0.008
0.006
0.004
0.002

0
12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 4. Hazard function.

4.2. Default Probabilities

The probability density of default defined in (6). f(t) is related to the hazard function
and the survival function by the following:

fom(t) = hom(t)Sem(t).

Simplifying from (2), we obtain fcar(t) = —S;),(t), where ” denotes the derivative.
Finally, given the previous calibration, we get

fom(t) = 1.00021664346381 (0.0000860881‘ +3.001573368 x 107° - 2138564 1 ¢ 820428518109184 x 10*23) X

X exp (—0.000043044 12 — 6.820428518109184 x 102> t — 0.00021662 - e0-138564f).

Figure 5 shows the calibrated density of defaults. Figure 6 compares probabilities
of default from the calibrated model against the estimated probabilities of default from
Table 1. It shows that although the fit is not perfect, its closeness to the 45-degree line
attest the quality of our calibration, along with the Brier Score for the calibration curve
of 3.64241333364887 x10~° , indicating very low mean squared differences (Brier 1950;
Steyerberg et al. 2010).

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0
123 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 5. Probability density of default.
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0.004

0.003
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0.001

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 6. QQ-plot between estimated versus calibrated probabilities of default.

Given the density of defaults, the actual number of defaults can be obtained, provided
that we also establish a framework for the number of loans at risk at each moment in
time, N(t). Accurately defining defaults at risk requires accounting for right censoring
and properly integrating attrition effects. That is, calibrating the estimated number of
loans at risk, n; from Table 1, is crucial to model the number of default occurrences at each
time interval.

From Figure 7 we see the number of loans at risk in our portfolio does not need more
than a polynomial fit. So we use

Npoi (£) = —0.0124 x #* 4 0.07716% — 16.7* + 102t + 10600. (13)
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Figure 7. Number of loans at risk—estimated versus calibrated.

To obtain the number of defaults we use Equation (7) to get

dom(t) = Nyl (1) fom(t). (14)

Figure 8 displays the estimated number of defaults, g;, from Table 1, alongside the
calibrated function dgp(t).

As we proceed with the analysis, it is important to exercise caution when interpreting
results near maturity, given this potential underestimation.
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Figure 8. Number of defaults—estimated versus calibrated.

In practical applications, on the one at hand, we may need to be able to simulate the
number of defaults per time interval I; = [t;_1,t;]. By now we already have all ingredients
and we are only missing a distribution for the number of defaults, which we can take as a
non-homogeneous Poisson process, where the default intensity varies over time:

At 1, t;)ke A1)
P(d; = k) = (tj1 f)k!e . k=0,..., +oo (15)

where

i
Al t) :/t, R(t)S(EN(£)dt .

The Poisson distribution is a natural choice for modeling defaults within a survival
analysis framework, particularly when defaults are viewed as rare, discrete events occurring
over time. In this context, the number of defaults in a given interval can be modeled as a
Poisson process, with the mean linked directly to the default intensity (hazard rate) and the
number of loans at risk.

This approach is especially suitable when default intensities are known or can be
estimated from historical data, allowing the Poisson mean to reflect time-varying risk.

Assuming the survival function, hazard rates and the number of loans at risk are
approximately constant in each interval I; = [t; 1, t;], we get

A(tj1,) = h(tj—1)S(tj—1)N(tj—1)(t — tj-1) . (16)

In our case we use Sgpm, hgm, and Ny, from Equations (11), (12), and (13), respectively.

Figure 9 displays 10 simulated paths of the number of defaults, generated using our
calibrated functions. For each time interval I; = [t;_1,j], the cumulative intensity A, is
computed as in Equation (16), and default counts are drawn using the inverse of the Poisson
probability function defined in Equation (15).

It is interesting to note that the simulations not only capture the tendency for the num-
ber of defaults to increase as maturity approaches, but also reveal a rise in the volatility of
potential defaults. This increase in variability stems from the uncertainty of results—larger
default numbers naturally lead to greater fluctuations. These findings further confirm that
the use of the Poisson distribution is appropriate.
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Figure 9. Simulated number of defaults.

4.3. Loss Given Default

Although our empirical data lacks direct information on losses given a default, a com-
prehensive credit risk assessment requires this crucial insight.

For simplicity, we assume an homogeneous portfolio, where all 10,479 loans share
the same notional value of 25,000 monetary units (m.u.). The portfolios is, thus, worth
261,975,000 m.u. initially. Furthermore, we estimate the average loss given default to be
40% of the notional, amounting to 10,000 m.u. per loan.

We assume a 40% loss on average , but different scenarios in terms of the functional
form of our loss function, I(t), over time:

1. Decreasing: I(t) = (M —t) x 500 .

2. Increasing then Decreasing: I(t) =t x 975 for t < 20, [(t) = (M —t) x 975 for t > 20.
3. Constant: I(f) = 10,000.

4. Increasing: I(t) = t x 500.

Scenario 1 recognizes that as maturity approaches, previous payments remain in-
tact, reducing potential losses over time. Naturally, losses diminish as the loan nears
completion—in the extreme case, when only one final payment is due, the loss is minimal.
The multiplication by 500 ensures that the average loss remains at 10,000 m.u., maintaining
comparability across different loss functions.

Scenario 2 considers a more complex pattern, where losses initially increase before
declining as the credit matures.

Scenario 3 assumes a naive approach, where a default at any point in time consistently
results in a fixed loss of 10,000 m.u., regardless of when it occurs.

Finally, Scenario 4 explores an opposite trend, modeling steadily increasing losses
over time.

While scenarios 2 and 4 may lack direct economic interpretability, their inclusion
allows us to examine diverse possibilities in the absence of a confirmed empirical loss given
default process. Figure 10 shows the four scenarios under consideration.

In reality, loss given default (LGD) is likely to follow a non-linear pattern, and we only
observe discrete data points that should be calibrated using a non-linear function. The cali-
brated function can then serve as the foundation for computing the loss process and key risk
measures. In this analysis, however, we apply the previously defined scenarios” functions.

It is important to note that the above approach provides LGD as a function of time
but does not yield the aggregated loss process. The latter depends on the actual number of
defaults at each point in time from the previous section.
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In the next section, we bring all these elements together to construct a comprehensive
view of the loss dynamics.

4.4. Loss Process

To determine the evolution of the loss process, L(t), over time, we need two ingre-
dients: (i) the number of defaults over time, dgp(t) (from Equation (6)), and (ii) the loss
given default over time, /() (as defined in the previous section),

L(t) = dem(t) x I(t) .

Figure 11 shows the loss process, L(t), associated with the four scenarios for loss given
default, and assuming the calibrated function for d¢ys as in Figure 8.
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Figure 11. Loss processes.

Notice that the change in the pattern of LGD leads to very different loss processes.
When LGD is considered constant (Scenario 3), of course the loss function inherits the
shape of the number of defaults dgp (). When LGD decreases with the age of the loan
(Scenario 1), we see the loss process starts by increasing, but from approximately age 20
onwards, it actually decreases, despite the fact that the number of defaults increase over
time. Scenarios 2 and 4 are less realistic, but the point here is to show the evolution of losses
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over time and to show they are determined by both default probability and LGD, and one
should not neglect modeling LGD for proper modeling of credit risk.

4.5. Computing Risk Measures

The classical approach to risk measurement involves estimating standard credit risk
metrics based on the distribution of the four loss processes under consideration. Figure 12
displays the histograms of the loss processes associated with these four scenarios (from
Figure 11). Table 2 presents the corresponding values for Value at Risk (VaR) and Expected
Shortfall (ES) for each scenario.

Both VaR and ES vary considerably depending on the assumed LGD scenario. Notably,
the most realistic case—Scenario 1—yields values less than half of those obtained under
a constant LGD assumption (Scenario 3), providing a strong incentive to model LGD
accurately for reliable credit risk assessment.

Both the histograms and the risk measures presented thus far, however, do not account
for the time structure of the loans” age—that is, they reflect losses aggregated on an annual
basis without considering the specific timing within the loans’ lifetimes. As a result, these
measures are associated with annual losses, independently of ages of the loans.

From the discussions throughout the paper, it is evident that the risk profile of a loan
aged 1-year is not the same as that of a loan with, for example, 20-years. The primary
purpose of employing survival analysis is in fact to explicitly incorporate the timing and
duration aspects into the risk assessment. Fortunately, we have all the necessary tools to
compute risk measures that are adapted to the varying ages of the different loans.

Scenario 1 Scenario 2
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Figure 12. Loss histograms.



Risks 2025, 13, 155 16 of 22
Table 2. Risk measures: VaR and ES.
Scenario 1 Scenario 2 Scenario 3 Scenario 4
VaR
95% 216,647.65 422,462.92 528,868.31 981,093.91
99% 217,283.22 423,702.27 536,135.02 1,035,259.28
ES
95% 217,260.50 423,657.97 536,130.62 1,032,050.98
99% 217,355.16 423,842.57 536,148.96 1,045,418.92

To generate Figure 12, we used the calibrated function d)s(t) shown in Figure 8. Now,
we perform simulations similar to those illustrated in Figure 9, but instead of 10 paths,
we consider 10,000 paths. Each simulation path multiplies the four possible LGD profiles
depicted in Figure 11.

Thus, for each scenario in terms of LGD, we obtain 10,000 possible loss outcomes at
each loan age. This approach enables us to obtain the distribution of losses per age of loan
and compute the associated VaR and ES, providing a much deeper understanding of the
risk profile of our loan portfolio.

Having the densities, we can obtain VaR and ES which are age-specific statistics that
differ according to the loans’ age. Table 3 presents the numerical results for VaR and
ES, while Figure 13 provides a visual illustration of the 95% VaR and ES across different
scenarios. The figure clearly shows how both risk measures vary with the age of the
loans, reflecting the influence of the underlying LGD profiles depicted in Figure 11. It also
highlights how this age-sensitive approach delivers a far more rigorous and informative
view than traditional, static risk metrics.

Figure 14 presents the density functions of losses obtained from the simulations
across different scenarios and loan ages. Because the scales of the graphs differ, direct
comparisons are not straightforward. Nonetheless, one clear pattern emerges: across all
scenarios, the loss densities change with loan age, highlighting the dynamic nature of the
risk profile over time. Note that losses under Scenario 1 exhibit the lowest values, whereas
Scenario 4 shows the highest. This contrast directly reflects the structure of the underlying
loss processes shown in Figure 11.
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VaR (dashed) and ES (full) lines. Scenario 1 (orange), Scenario 2 (gray), Scenario 3 (yellow), Scenario 4 (blue).

Figure 13. 95% VaR and ES for the 4 LGD Scenarios, as a function of loan age.
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Figure 14. Loss histograms per loan age for each scenario.
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Table 3. VaR and ES per loans’ age, for each loss scenario.
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Age VaR 95 ES 95 VaR 99 ES 99 VaR 95 ES 95 VaR 99 ES 99 VaR 95 ES 95 VaR 99 ES 99 VaR 95 ES 95 VaR 99 ES 99
1 58,500 78,000 78,000 78,500 2925 2925 2925 2925 30,000 30,500 40,000 40,500 1500 2000 2050 2150
2 95,000 114,000 114,000 114,500 9750 9750 9750 9750 50,000 60,000 60,500 70,000 5000 6000 6500 7000
3 111,925 129,500 129,500 129,550 17,696 17,843 17,843 20,475 60,500 70,000 72,500 75,000 9075 10,500 11,000 12,500
4 126,000 166,500 162,180 180,000 27,300 27,300 27,300 28,080 70,000 92,500 90,100 100,000 14,000 18,500 18,020 20,000
5 157,500 179,375 175,175 192,500 43,875 43,875 43,875 44,363 90,000 102,500 100,100 110,000 22,500 25,625 25,025 27,500
6 153,000 178,500 170,340 204,000 52,650 52,650 52,650 52,650 90,000 105,000 100,200 120,000 27,000 31,500 30,060 36,000
7 214,500 239,250 231,165 247,500 88,725 88,725 88,725 88,725 130,000 145,000 140,100 150,000 45,500 50,750 49,035 52,500
8 192,000 216,000 224,000 255,000 93,600 93,600 93,600 94,380 120,000 135,000 140,000 145,000 48,000 54,000 56,000 57,500
9 202,275 232,500 232,965 279,000 114,514 114,953 114,953 122,850 130,500 150,000 150,300 180,000 58,725 67,500 67,635 81,000
10 225,000 240,000 245,000 250,000 146,250 146,250 146,250 146,250 150,000 160,000 165,000 170,000 75,000 80,000 80,000 90,000
11 232,000 253,750 246,790 275,500 171,600 171,600 171,600 171,600 160,000 175,000 170,200 190,000 88,000 96,250 93,610 104,500
12 252,000 266,000 266,500 266,750 210,600 210,600 210,600 211,770 180,000 190,000 195,000 200,000 108,000 114,000 123,000 150,000
13 243,000 265,500 270,000 275,000 228,150 228,150 228,150 228,150 180,000 196,667 200,000 240,000 117,000 127,833 130,000 160,000
14 273,650 299,000 286,650 351,000 287,333 288,015 288,015 300,300 210,500 230,000 220,500 270,000 147,350 161,000 154,350 189,000
15 263,125 285,000 287,625 300,000 307,856 308,588 308,588 321,750 210,500 228,000 230,100 240,000 157,875 171,000 172,575 180,000
16 288,000 324,000 336,120 348,000 374,400 374,400 374,400 375,960 240,000 270,000 280,100 290,000 192,000 216,000 224,080 232,000
17 276,000 296,125 299,000 305,000 397,800 397,800 397,800 397,800 240,000 257,500 260,000 270,000 204,000 218,875 221,000 235,000
18 264,000 302,500 308,110 319,000 421,200 421,200 421,200 424,710 240,000 275,000 280,100 290,000 216,000 247,500 252,090 261,000
19 294,525 317,100 325,605 336,000 519,626 520,553 520,553 537,225 280,500 302,000 310,100 320,000 266,475 286,900 294,595 304,000
20 290,000 315,000 310,400 350,000 565,500 565,500 565,500 567,450 290,000 315,000 310,400 350,000 290,000 315,000 310,400 350,000
21 285,475 317,300 323,190 342,000 556,676 539,078 539,078 557,603 300,500 334,000 340,200 360,000 315,525 350,700 357,210 378,000
22 279,000 301,500 297,090 306,000 544,050 544,050 544,050 544,050 310,000 335,000 330,100 340,000 341,000 368,500 363,110 374,000
23 280,500 312,375 298,180 365,500 546,975 546,975 546,975 546,975 330,000 367,500 350,800 430,000 379,500 422,625 403,420 494,500
24 288,000 300,000 304,000 335,000 561,600 561,600 561,600 563,160 360,000 375,000 380,000 390,000 432,000 450,000 456,000 500,000
25 285,000 296,250 292,575 300,000 555,750 555,750 555,750 555,750 380,000 395,000 390,100 400,000 475,000 493,750 487,625 500,000
26 280,000 294,000 294,070 301,000 546,000 546,000 546,000 547,365 400,000 420,000 420,100 430,000 520,000 546,000 546,130 559,000
27 266,825 289,900 292,760 318,500 520,309 519,675 508,268 508,268 410,500 446,000 450,400 490,000 554,175 602,100 608,040 661,500
28 258,000 285,000 294,120 306,000 503,100 503,100 503,100 504,270 430,000 475,000 490,200 510,000 602,000 665,000 686,280 714,000
29 258,775 275,000 280,665 297,000 504,611 505,148 505,148 514,800 470,500 500,000 510,300 540,000 682,225 725,000 739,935 783,000
30 240,000 261,250 260,100 270,000 468,000 468,000 468,000 470,925 480,000 522,500 520,200 540,000 720,000 783,750 780,300 810,000
31 229,500 243,000 238,725 261,000 447,525 447,525 447,525 448,403 510,000 540,000 530,500 580,000 790,500 837,000 822,275 899,000
32 216,000 223,000 220,120 232,000 421,200 421,200 414,180 421,200 540,000 557,500 550,300 580,000 864,000 892,000 880,480 928,000
33 196,175 208,600 210,070 217,000 382,541 382,883 382,883 390,390 560,500 596,000 600,200 620,000 924,825 983,400 990,330 1,023,000
34 171,000 182,000 177,180 195,000 333,450 333,450 328,185 333,450 570,000 606,667 590,600 650,000 969,000 1,031,333 1,004,020 1,105,000
35 147,625 155,500 150,275 177,500 287,869 288,113 283,238 288,113 590,500 622,000 601,100 710,000 1,033,375 1,088,500 1,051,925 1,242,500
36 120,000 122,667 122,020 124,000 234,000 234,000 234,000 234,000 600,000 613,333 610,100 620,000 1,080,000 1,104,000 1,098,180 1,116,000
37 94,575 98,700 99,045 103,500 184,421 184,568 184,568 187,493 630,500 658,000 660,300 690,000 1,166,425 1,217,300 1,221,555 1,276,500
38 59,000 62,500 62,050 67,000 115,050 115,050 115,050 115,245 590,000 625,000 620,500 670,000 1,121,000 1,187,500 1,178,950 1,273,000
39 30,500 33,000 34,000 34,000 59,475 59,475 59,475 59,475 610,000 660,000 680,000 690,000 1,189,500 1,287,000 1,326,000 1,357,000
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By explicitly accounting for loan age, this methodology reveals how credit risk evolves
over time—something standard measures often obscure. Even when using familiar statistics
like VaR and ES, the results differ meaningfully across loan age cohorts, underscoring the
value of a dynamic perspective for risk assessment and portfolio management.

5. Managerial and Policy Implications

The survival analysis framework developed in this study carries significant practical
implications for financial institutions and regulators, particularly in emerging markets
where data limitations and dynamic risk profiles present unique challenges. For bank
management, this approach enables dynamic risk monitoring through age-dependent
metrics like VaR and ES, which evolve over a loan’s life cycle. For instance, in the case of
the Angolan banks we analyzed, our results show that the 95% VaR for Scenario 1 increases
from 58,500 monetary units in Year 1 to 209,095 close to maturity, underscoring the need
for progressive capital allocation and early interventions for aging portfolios.

For pricing and provisioning decisions, the Gompertz-Makeham hazard function
reveals how default risk escalates over time. This insight allows banks to adjust credit
spreads for longer-term loans and front-load loss provisions. The framework’s adaptability
to portfolio-specific data also supports targeted risk mitigation, such as restructuring
high-risk cohorts before hazards peak.

From a regulatory perspective, this methodology directly supports Basel IRB compli-
ance by providing time-to-default probabilities and age-sensitive LGD estimates. Central
banks in emerging markets could adopt it as a standardized approach for institutions lack-
ing ML capabilities, as advocated by recent studies on interpretable models. The model’s
extendibility to macroeconomic variables further enables regulators to stress-test portfolios
under commodity price shocks or GDP contractions, informing countercyclical capital
buffer policies.

However, broader implementation requires the addressing of two systemic gaps. First,
the lack of LGD data in emerging markets remains a critical limitation, as our scenarios
demonstrate VaR estimates vary by 110% across LGD assumptions. Second, the Poisson
distribution may underestimate tail risk in volatile economies, suggesting a need for
hybrid approaches. Policymakers can mitigate these gaps by incentivizing shared credit
registries and standardizing loan age data collection, building on initiatives like the EU’s
AnaCredit system.

6. Conclusions

This paper demonstrates how survival analysis offers a robust, interpretable alternative
to traditional credit risk models, particularly for emerging markets operating under the
Basel IRB framework.

The proposed approach is grounded in survival analysis and centers on the calibration
of key functions, such as the survival function and the number of loans at risk over time. It
assumes a Poisson distribution for the number of defaults. We apply this methodology to a
real dataset from 10 Angolan banks, comprising 10,479 loans. Based on this information,
we fully characterize the probability of default—one of the core components of the IRB
framework. Additionally, we simulate default paths conditional on the age of each loan.

Unfortunately, the dataset does not include information on loss given default (LGD),
another essential element of the IRB framework, nor does it allow for holdout validation.
To address the loss limitation, we explore several LGD scenarios and demonstrate that
in shaping the final loss distribution and standard risk metrics—such as Value at Risk (VaR)
and Expected Shortfall (ES)—the LGD profile is at least as influential as the default profile.
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While LGD data was unavailable in our case, such information is typically accessible to
banks through historical experience, making its calibration feasible in practice.

Building on the strengths of the survival-based approach, we also propose calculating
risk measures conditional on loan age. These age-dependent metrics offer significantly
more insight than traditional aggregated risk statistics. Our results reveal that loss densities
vary meaningfully with loan age—an aspect that should not be overlooked, especially since
such conditional information can be easily derived through simple simulations. To the best
of our knowledge, this is the first study to compute VaR and ES as functions of loan age in
the context of credit risk evaluation.

Throughout our application, we calibrated functional forms for key variables—such
as the survival function and the number of loans at risk—to reflect the structure of our
dataset. These calibrations achieved a strong empirical fit, though other datasets may
require alternative specifications to accommodate different portfolio characteristics or risk
dynamics. For modeling defaults, we relied on the Poisson distribution, a widely used and
intuitive choice for count data. However, alternative distributions—such as the Negative
Binomial or Binomial—may be more suitable in contexts where default counts exhibit
greater variability or are constrained by the number of exposures.

Future research could focus on obtaining and incorporating empirical data on LGD,
which would improve the calibration of loss distributions and enhance the accuracy of as-
sociated risk measures like VaR and ES. Moreover, integrating macroeconomic or borrower-
specific covariates into the survival and LGD models could capture additional risk drivers
and improve predictive power. Finally, linking the model’s outputs to capital planning
and stress testing processes would increase its practical relevance for both regulatory
compliance and strategic risk management.

Author Contributions: Conceptualization, FL.D., M.L.E. and R M.G.; methodology, FL.D., M.L.E.
and RM.G.; software, EL.D. and RM.G,; validation, M.L.E. and RM.G.; formal analysis, EL.D.,
M.L.E. and RM.G,; investigation, EL.D., M.L.E. and RM.G; resources, FL.D., M.L.E. and RM.G.;
data curation, FL.D.; writing—original draft preparation, RM.G.; writing—review and editing,
R.M.G,; visualization, FEL.D. and R.M.G.; supervision, M.L.E. and RM.G.; project administration,
R.M.G,; funding acquisition, M.L.E. and R.M.G. All authors have read and agreed to the published
version of the manuscript.

Funding: MLE work was partially supported by national resources through the FCT—Fundacéo
para a Ciéncia e a Tecnologia, LP., under the scope of the project UIDB/00297 /2020 and project
UIDP/00297/2020. RMG work was partially supported by FCT, I.P.,, the Portuguese national funding
agency for science, research and technology, under the Project UID06522.

Data Availability Statement: The empirical data used in this study was collected from 10 Angolan
banks and is fully disclosed on Table 1. All remaining data is simulated using the methods described.

Conflicts of Interest: The views expressed in this paper are those of the authors and do not necessarily
reflect those of the Banco Nacional de Angola; this study was conducted solely for academic purposes.
The authors also declare no other conflicts of interest.

Abdalla, Hemn Barzan, Yulia Kumar, Jose Marchena, Stephany Guzman, Ardalan Awlla, Mehdi Gheisari, and Maryam Cheraghy. 2025.

The future of artificial intelligence in the face of data scarcity. Computers, Materials & Continua 84: 1-27. [CrossRef]

Baesens, Bart, Tony Van Gestel, Maria Stepanova, Dirk Van den Poel, and Jan Vanthienen. 2005. Neural network survival analysis for

personal loan data. Journal of the Operational Research Society 56: 1089-98. [CrossRef]

Banasik, John, Jonathan N. Crook, and Lyn C. Thomas. 1999. Not if but when will borrowers default. Journal of the Operational Research
Society 50: 1185-90. [CrossRef]

BCBS. 2011. Basel III: A Global Regulatory Framework for More Resilient Banks and Banking Systems Revised Version June 2011. Basel: Basel
Committee on Banking Supervision.


http://doi.org/10.32604/cmc.2025.063551
http://dx.doi.org/10.1057/palgrave.jors.2601990
http://dx.doi.org/10.1057/palgrave.jors.2600851

Risks 2025, 13, 155 21 0f22

BIS. 2006. Basel II: International Convergence of Capital Measurement and Capital Standards: A Revised Framework-Comprehensive
Version.

Bank for International Settlements. Available online: https://www.bis.org/publ/bcbs128 htm (accessed on 1 August 2025).

Bo, Wang. 2024. The impact of macroeconomic factors on credit risk management in developing country banks: An analysis based on
basel III. Financial Engineering and Risk Management 7: 97-105. [CrossRef]

Borisov, Vadim, Tobias Leemann, Kathrin Sefiler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci. 2022. Deep neural networks
and tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems 35: 7499-519. [CrossRef]

Brier, Glenn W. 1950. Verification of forecasts expressed in terms of probability. Monthly Weather Review 78: 1-3. [CrossRef]

Charpignon, Marie-Laure, Enguerrand Horel, and Flora Tixier. 2014. Prediction of Consumer Credit Risk. Stanford: Standford University.

Crosbie, Peter, and Jeff Bohn. 2003. Modeling Default Risk: Modeling Methodology. San Francisco: KMV Corporation.

Derbali, Abdelkader. 2018. How the Default Probability Is Defined by the Creditrisk+ Model? Available online: https://hal.science/
hal-01696011v1 (accessed on 1 August 2025).

Dickson, David C. M., Mary Hardy, Mary R. Hardy, and Howard R. Waters. 2013. Actuarial Mathematics for Life Contingent Risks.
Cambridge: Cambridge University Press.

Djeundje, Viani Biatat, and Jonathan Crook. 2019. Dynamic survival models with varying coefficients for credit risks. European Journal
of Operational Research 275: 319-33. [CrossRef]

Erkkild, Rami. 2025. Interpretable machine learning for credit risk predictions. Economic Review 105: 315-20.

Fejza, Doris, Dritan Nace, and Orjada Kulla. 2022. The credit risk problem—A developing country case study. Risks 10: 146. [CrossRef]

Gompertz, Benjamin. 1825. Xxiv. on the nature of the function expressive of the law of human mortality, and on a new mode of
determining the value of life contingencies. in a letter to francis baily, esq. frs &c. Philosophical Transactions of the Royal Society of
London 115: 513-83.

Hassan, M. Kabir, Jennifer Brodmann, Blake Rayfield, and Makeen Huda. 2018. Modeling credit risk in credit unions using survival
analysis. International Journal of Bank Marketing 36: 482-95. [CrossRef]

Hernes, Marcin, Jedrzej Adaszynski, and Piotr Tutak. 2023. Credit risk modeling using interpreted xgboost. European Management
Studies 21: 46-70. [CrossRef]

Huang, Haonan, Jing Li, Chundan Zheng, Sikang Chen, Xuanyin Wang, and Xingyan Chen. 2025. Advanced default risk prediction in
small and medum-sized enterprises using large language models. Applied Sciences 15: 2733. [CrossRef]

Hurlin, Christophe, and Christophe Pérignon. 2023. Machine Learning and Irb Capital Requirements: Advantages, Risks, and Recommenda-
tions. HEC Paris. Available online: https://ideas.repec.org/p/ebg/heccah/1480.html (accessed on 1 August 2025).

Kakadiya, Rushikesh, Tarannum Khan, Anjali Diwan, and Rajesh Mahadeva. 2024. Transformer models for predicting bank loan
defaults a next-generation risk management. Paper presented at 2024 IEEE 6th International Conference on Cybernetics,
Cognition and Machine Learning Applications ICCCMLA), Hamburg, Germany, October 19-20, pp. 26-31.

Kaplan, Edward L., and Paul Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical
Association 53: 457-81. [CrossRef]

Kleinbaum, David G., and Mitchel Klein. 2012a. Survival Analysis: A Self-Learning Text. Berlin and Heidelberg: Springer.

Kleinbaum, David G., and Mitchel Klein. 2012b. Survival Analysis. Statistics for Biology and Health, 3rd ed. New York: Springer.

Kragh Jorgensen, Rasmus Rask, Faartoft Jonas Jensen, Tarec El-Galaly, Martin Begsted, Rasmus Froberg Brendum, Mikkel Runason
Simonsen, and Lasse Hjort Jakobsen. 2025. Development of time to event prediction models using federated learning. BMC
Medical Research Methodology 25: 143. [CrossRef]

Leo, Martin, Suneel Sharma, and Koilakuntla Maddulety. 2019. Machine learning in banking risk management: A literature review.
Risks 7: 29. [CrossRef]

Mahbobi, Mohammad, Salman Kimiagari, and Marriappan Vasudevan. 2023. Credit risk classification: An integrated predictive
accuracy algorithm using artificial and deep neural networks. Annals of Operations Research 330: 609-37. [CrossRef]

Makeham, William Matthew. 1860. On the law of mortality and the construction of annuity tables. Journal of the Institute of Actuaries 8:
301-10. [CrossRef]

McDonald, Ross A., Ania Matuszyk, and Lyn C. Thomas. 2010. Application of survival analysis to cash flow modelling for mortgage
products. OR Insight 23: 1-14. [CrossRef]

Micocci, Marco. 2000. MARC: An actuarial model for credit risk. Paper presented at ASTIN Colloquium 2000, Porto Cervo, Italy,
September 17-20, vol. 31.

Poudel, Ravi Prakash Sharma. 2013. Macroeconomic determinants of credit risk in nepalese banking industry. Paper presented at 21st
International Business Research Conference, Toronto, ON, Canada, June 10-11, pp. 10-11.

Rocha, Cristina, and Ana Luisa Papoila. 2009. Andlise de Sobrevivéncia. Portugal: Sociedade Portuguesa de Estatistica.

Sharma, Alok Kumar, Li-Hua Li, and Ramli Ahmad. 2022. Default risk prediction using random forest and xgboosting classifier. In
2021 International Conference on Security and Information Technologies with Al, Internet Computing and Big-data Applications. Berlin
and Heidelberg: Springer, pp. 91-101.


https://www.bis.org/publ/bcbs128.htm
http://dx.doi.org/10.23977/ferm.2024.070513
http://dx.doi.org/10.1109/TNNLS.2022.3229161
http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://hal.science/hal-01696011v1
https://hal.science/hal-01696011v1
http://dx.doi.org/10.1016/j.ejor.2018.11.029
http://dx.doi.org/10.3390/risks10080146
http://dx.doi.org/10.1108/IJBM-05-2017-0091
http://dx.doi.org/10.7172/2956-7602.101.3
http://dx.doi.org/10.3390/app15052733
https://ideas.repec.org/p/ebg/heccah/1480.html
http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.1186/s12874-025-02598-y
http://dx.doi.org/10.3390/risks7010029
http://dx.doi.org/10.1007/s10479-021-04114-z
http://dx.doi.org/10.1017/S204616580000126X
http://dx.doi.org/10.1057/ori.2009.15

Risks 2025, 13, 155 22 0f 22

Siphuma, Elekanyani , and Terence van Zyl. 2025. Enhancing credit risk assessment through transformer-based machine learning
models. In Artificial Intelligence Research. SACAIR 2024. Communications in Computer and Information Science. Edited by Aurona
Gerber, Jacques Maritz and Anban W. Pillay. Berlin and Heidelberg: Springer, vol. 2326.

Smith, Peter J. 2017. Analysis of Failure and Survival Data. Boca Raton: CRC Press.

Stepanova, Maria, and Lyn Thomas. 2002. Survival analysis methods for personal loan data. Operations Research 50: 277-89. [CrossRef]

Steyerberg, Ewout W., Andrew ]J. Vickers, Nancy R. Cook, Thomas Gerds, Mithat Gonen, Nancy Obuchowski, Michael J. Pencina, and
Michael W. Kattan. 2010. Assessing the performance of prediction models: A framework for traditional and novel measures.
Epidemiology 21: 128-38. [CrossRef] [PubMed]

Suisse Credit. 1997. Creditrisk+, A Credit Risk Management Framework. London: Credit Suisse Financial Products.

Zhang, Dongfang, Basu Bhandari, and Dennis Black. 2021. Covariate selection for mortgage default analysis using survival models.
Journal of Mathematical Finance 11: 218-33. [CrossRef]

Zokirjonov, Mukhammadsodik. 2018. Methodology of creditmetrics for credit risk assessment. International Finance and Accounting
2018: 135.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1287/opre.50.2.277.426
http://dx.doi.org/10.1097/EDE.0b013e3181c30fb2
http://www.ncbi.nlm.nih.gov/pubmed/20010215
http://dx.doi.org/10.4236/jmf.2021.112012

	Introduction
	Literature Review
	Survival Analysis
	Setup and Notation
	Censoring
	Survival Table

	Empirical Application
	Hazard Functions
	Default Probabilities
	Loss Given Default
	Loss Process
	Computing Risk Measures

	Managerial and Policy Implications
	Conclusions
	References

