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Abstract

This paper proposes a nonparametric estimator of the spot volatility matrix with high-
frequency data. Our newly proposed Positive Definite Fourier (PDF) estimator produces
symmetric positive semi-definite estimates and is consistent with a suitable choice of the
localizing kernel. The PDF estimator is based on a modification of the Fourier estimation
method introduced by Malliavin and Mancino. The estimator has two parameters: the
frequency N, which controls the biases due to the asynchronicity effect and the market
microstructure noise effect; and the localization parameter M for the employed Gaussian
kernel. The sensitivity of the PDF estimator to the choice of these two parameters is studied
in a simulated environment. The accuracy and the ability of the estimator to produce
positive semi-definite covariance matrices are evaluated by an extensive numerical analysis,
against competing estimators present in the literature. The results of the simulations are
confirmed under different scenarios, including the dimensionality of the problem, the
asynchronicity of data, and several different specifications of the market microstructure
noise. The computational time required by the estimator and the stability of estimation are
also tested with empirical data.

Keywords: nonparametric covariance estimator; risk management; factor analysis; Fourier
analysis; positive semidefiniteness

1. Introduction
Empirical studies have pointed out the importance of evaluating distinct time vari-

ations in correlations between asset prices. In particular, several recent studies address
the efficient estimation of covariances using high-frequency data asynchronously sampled
across different assets. While the literature about the estimation of integrated covariances
has been steadily growing, it remains still sparse for the spot covariances estimation. An
early proposal to cope with spot covariances estimation using asynchronous high-frequency
data was made in Malliavin and Mancino (2009). Differently from other estimators that
pre-process data to make them synchronous (e.g., linear interpolation, piecewise-constant
previous-tick interpolation or the refresh-time procedure proposed by Barndorff-Nielsen
et al. (2011)), the Fourier estimator is based on an integration procedure that uses all the
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available data. Using all data, with no preliminary manipulation (such as pre-averaging,
see, e.g., Aït-Sahalia and Jacod (2014)), allows for directly feeding unevenly sampled re-
turns, or even asynchronous data in the multivariate case. A significant property for an
estimator of integrated or spot covariances requires the estimated covariance matrix to
be positive semi-definite. This has important consequences in several contexts, such as
the recently developed field of principal component analysis with high-frequency data
(Liu and Ngo (2017), Aït-Sahalia and Xiu (2019), Chen et al. (2020)) or the asset allocation
framework (see, e.g., Engle and Colacito (2006)). This property has sometimes been studied
for integrated covariances estimators (see, e.g., Barndorff-Nielsen and Shephard (2004),
Barndorff-Nielsen et al. (2011), Mancino et al. (2017), Park et al. (2016), Shepard and Xiu
(2017), Cui et al. (2019)). However, to the best of our knowledge, the spot covariances
estimator proposed in the present paper is the first to guarantee positive semi-definiteness
for the estimated matrix. For example, when dealing with spot volatility, Chen et al. (2020)
integrate the estimations before computing the eigenvalues of the covariance matrix; in-
stead, Bu et al. (2023) impose positive semi-definiteness by applying suitable shrinkage
techniques that effectively impose manipulation of the estimated matrix.

This work aims to propose a novel spot covariance estimator, to prove its positivity
and consistency, and to analyze its finite-sample properties in a simulated environment.
Our starting point is the spot Fourier estimator by Malliavin and Mancino (2009) (see also
Mancino et al. (2017) for several results and applications of the estimation method). The
spot Fourier estimator is defined in three steps. First, the discrete Fourier coefficients of
the asset returns are computed using all the available observations. Second, it is proven
that their convolution product leads to a consistent estimator of the Fourier coefficients
of the volatility function. Finally, the Fourier-Fejér inversion formula provides the final
spot volatility estimator. Due to a lack of symmetry in the Fejér kernel, however, the spot
Fourier estimator may fail to yield positive semi-definite estimations when the asset prices
are observed on asynchronous grids. To overcome this difficulty and ensure symmetric and
positive semi-definite estimates, this paper introduces a modified version of the Fourier
estimator, which we call the PDF estimator. Theorem 1 proves that the modified estimator
fulfills the desired property. Theorem 2 gives bounds for its asymptotic error, providing
sufficient conditions for the consistency of the estimator based on the rates of N and M
with respect to the sampling frequency.

The new estimator relies on two parameters: the cutting frequency N, and the localiz-
ing frequency M. We address the question of how to optimally choose them to minimize
the error, according to the asymptotic conditions in Theorem 2, via a simulation study. By
setting N = cNρ−α

n and M = cMρ
−β
n , where ρn is the mesh of the given sampling, and α, β

are suggested by Theorem 2, a grid of possible values of the constants cN and cM is tested
against several different model specifications for both the efficient price process and the
additive microstructure component. Concerning the parameter cM, which controls the
localization Gaussian kernel, we find that it exhibits a stable optimal value across the sce-
narios considered, necessitating only a small downward correction in the presence of noise.
A similar behavior was observed for the original Fourier estimator in Mancino et al. (2025).
Moreover, for the four models of the efficient price, we find that the difference between
close values of cN and cM is relatively small: therefore, making a slightly sub-optimal
choice causes no significant increase in the error. Finally, we evaluate the finite-sample
performance of the proposed PDF estimator by comparing its accuracy and the percentage
of its positive semi-definite estimates against those obtained using the smoothed two-scale
estimator by Mykland et al. (2019) and the local method of moments estimator by Bibinger
et al. (2019), which are both able to manage asynchronous observations. We run the com-
parison focusing on the main problems that affect the estimation of variance-covariance
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matrices from high-frequency data. First of all, we address the dimensionality problem,
by evaluating the estimates computed when the number of assets increases. Secondly,
we focus on the level of asynchronicity, considering different intensities of the Poisson
processes that drive the observation frequency. Lastly, we analyze market microstructure
noise, considering noise coming from rounding, i.i.d. noise, auto-correlated noise, noise
correlated with the efficient price process, and heteroskedastic noise. The exercise shows
that only the PDF estimator consistently produces positive semi-definite estimations in
100% of the cases (as guaranteed by the theory), while maintaining a hedge with respect to
its competitors in terms of mean square error.

The robustness of all the simulation results is confirmed by modifying the simulation
model behind the analysis; in particular, we consider: a Heston Stochastic Volatility model
(Heston (1993)), a One Factor Volatility model and a Two Factor Volatility model (Chernov
et al. (2003)), and a Rough Heston model (El Euch and Rosenbaum (2019)), and in each case
we get comparable results.

Finally, in an empirical exercise that employs trade data from twelve US firms collected
from January 2023 to December 2023, we verify the stability of the estimations to changes
in the cutting frequency N and in the location parameter M, looking at the same time at the
computational time required in such real-world cases, which turns out to be not sensible to
the choice of M.

The remainder of this work is organized as follows. Section 2 introduces the positive
semi-definite (PDF) Fourier estimator of spot covariance, and its positivity is proved.
Section 3 studies the asymptotic error of the PDF estimator with Gaussian kernel, proving
its consistency and delivering its rate of convergence both for irregular and regular sampling
schemes. Section 4 presents the simulation study, including a sensitivity analysis on the
parameters of the estimator in terms of integrated mean square error, and a comparison
against alternative estimators present in the literature, in which accuracy and ability to
produce positive semi-definite matrices are considered. Section 5 presents the study with
empirical data, while Section 6 concludes.

2. The Positive Semi-Definite Spot Covariance Estimator
Assume that the asset price is described by a d-dimensional Itô semimartingale

X = (X1, . . . , Xd)

X j
t = xj

0 +
∫ t

0
bj(s)ds +

d

∑
k=1

∫ t

0
σjk(s)dWk

s , j = 1, . . . , d

with W = (W1, . . . , Wd) a d-dimensional Brownian motion on the filtered probability space
(Ω, (Ft)t∈[0,T], P) and bj and σjk are adapted continuous processes. The d × d instantaneous
(spot) covariance matrix V(t) has entries

V j,j′(t) :=
d

∑
k=1

σjk(t)σj′k(t), for j, j′ = 1, . . . , d and t ∈ [0, T].

For simplicity of notation, we assume T = 1, without loss of generality.
We assume that the prices are observed on discrete, irregular and asynchronous

time grids
0 = tj

0 < tj
1 < · · · < tj

nj = 1 for j = 1, . . . , d.

Let ρnj = max0≤h≤nj−1 |t
j
h+1 − tj

h| and ρn = maxj=1,...,d ρnj . In the following, ∆(X j
l ) denotes

the discrete return X j
tl
− X j

tl−1
for j = 1, . . . , d and l = 1, . . . , nj.
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We start introducing the classical Fourier estimation method, in order to better clarify
the issue arising for the lack of symmetry and to understand the modification of this
estimator we propose here.
For j = 1, . . . , d, define the discrete Fourier coefficients of the log-returns as

ck(∆X j
nj) :=

nj

∑
l=1

e−2πiktj
l ∆(X j

l ),

and, for any j, j′, define an unbiased estimator of the k-th Fourier coefficient of the covari-
ance process, through the following convolution formula:1

ck(V
j,j′
n,N) :=

1
2N + 1 ∑

|h|≤N
ch(∆X j

nj)ck−h(∆X j′
nj′
). (1)

Finally, for any t ∈ (0, 1), the spot covariance estimator is defined as

V̂ j,j′
n,N,M(t) := ∑

|k|≤M

(
1 − |k|

M + 1

)
e2πiktck(V

j,j′
n,N). (2)

By means of the Dirichlet kernel DN(x) := 1
2N+1 ∑|k|≤N e2πikx, it is possible to express (1) as

ck(V
j,j′
n,N) =

1
2N + 1

nj

∑
l=1

nj′

∑
l′=1

DN(t
j
l − tj′

l′ )e
−2πiktj

l ∆(X j
l )∆(X j′

l′ ).

Therefore, the Fourier spot volatility estimator (2) can be rewritten, using two kernels, as

V j,j′
n,N,M(t) =

1
2N + 1

nj

∑
l=1

nj′

∑
l′=1

FM(t − tj′

l′ )DN(t
j
l − tj′

l′ )∆(X j
l )∆(X j′

l′ ), (3)

where FM(x) := ∑|k|≤M

(
1 − |k|

M+1

)
e2πikx is the Féjèr kernel.

The Fourier estimation method was introduced in Malliavin and Mancino (2009)
to estimate instantaneous multivariate volatilities from high-frequency observations of
diffusion processes in a non-parametric way and without any stationarity assumption.
The authors aimed at overcoming some difficulties arising from the application of the
quadratic variation formula in the commonly used realized covariation methods with
financial data. Detailed results and discussion on both statistical properties as well as
numerical implementation and empirical applications can be found in the book Mancino
et al. (2017).

The asymptotic properties of the Fourier spot volatility estimator (2) have been studied
in Malliavin and Mancino (2009) (in the absence of noise) and in Mancino et al. (2025) (in
the presence of noise). However, while the positivity of the Fourier estimator of the
integrated covariance matrix is shown and debated also in Mancino et al. (2017), the spot
covariance estimator may fail in producing symmetric positive semi-definite estimations,

being FM(t − tj
l)DN(t

j
l − tj′

l′ ) not symmetric in j, j′ and could lead to complex eigenvalues
in V̂K,S (t). In addition, simple symmetrizations such as (V̂ j,j′ + V̂ j′ ,j)/2 are not guaranteed
to be positive-definite, possibly with negative eigenvalues.

In this paper, we propose the following estimator of spot covariance, which overcomes
the issue of positivite semidefiniteness of the Fourier estimator (3).

Definition 1. Let K be a finite subset of Z, S := {S(k) ⊂finite Z2 : k ∈ K, (s, s′) ∈ S(k) =⇒
s + s′ = k}, and c be a complex function on K; we define the estimator for Vj,j′(t) as
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V̂ j,j′

K,S (t) =
nj

∑
l=1

nj′

∑
l′=1

∑
k∈K

c(k)e2πikt ∑
(s,s′)∈S

e−2πistj
l e2πis′tj′

l′ ∆(X j
l )∆(X j′

l′ ). (4)

Remark 1. If we take K = {0,±1,±2, . . . ,±M} for some positive integer M and
S(k) = {(s, s′)|s + s′ = k, s = 0,±1,±2, . . . ,±N} for some positive integer N, and

c(k) =
(

1 − |k|
M + 1

)
1

2N + 1
,

we obtain

V̂ j,j′

K,S (t) =
M

∑
k=−M

(
1 − |k|

M + 1

)
e2πikt

N

∑
s=−N

nj

∑
l=1

nj′

∑
l′=1

e−2πistj
l e2πi(k−s)tj′

l′ ∆(X j
l )∆(X j′

l′ ). (5)

The estimator (5) can be expressed as follows

V̂ j,j′

K,S (t) =
1

2N + 1

nj

∑
l=1

nj′

∑
l′=1

FM(t − tj
l)DN(t

j
l − tj′

l′ )∆(X j
l )∆(X j′

l′ ). (6)

Therefore, with a suitable choice of function c(·), the estimator (4) coincides with the Fourier
spot covariance estimator (3) introduced by Malliavin and Mancino (2009).

The main theoretical result of this work concerns the positive semi-definiteness of the
proposed estimator (4) under suitable hypothesis and is stated in the following theorem.

Theorem 1. Let N and M be positive integers. Suppose that K = {0,±1,±2, . . . ,±2N}, cM(k)
is a positive semi-definite function on K and

S(k) =

{(−N + k + v, N − v) : v = 0, . . . , 2N − k} 0 ≤ k ≤ 2N

{(N + k − v,−N + v) : v = 0, . . . , 2N + k} −2N ≤ k < 0.

Then, V̂K,S (t) defined in (4) is symmetric and positive semi-definite.

The proof of Theorem 1 is reported in the Appendix A.
Moreover, it emerges that V̂K,S (t) can be rewritten as

V̂ j,j′
N,M(t) =

1
2N + 1

nj

∑
l=1

nj′

∑
l′=1

N

∑
u=−N

N

∑
u′=−N

cM(u − u′)e2πiu(t−tj
l)e−2πiu′(t−tj′

l′ )∆(X j
l )∆(X j′

l′ ), (7)

for two assets j and j′ and t ∈ [0, 1], where cM(k) is still a positive semi-definite function.2

We call the class of the estimators parameterized by the positive semi-definite function cM

the positive semi-definite Fourier (PDF) estimator.
By Bochner’s theorem, we know that, for each positive semi-definite function cM,

there exists a bounded measure µM on R such that

cM(x) =
∫

R
e2πiyxµM(dy).
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Therefore, we may also rewrite the PDF estimator (7) using the measure µM instead of the
positive semi-definite function cM(k), and obtain

V̂ j,j′
N,M(t) =

1
2N + 1

nj

∑
l=1

nj′

∑
l′=1

∫
R

DN(t − tj
l + y)DN(t − tj′

l′ + y)µM(dy)∆(X j
l )∆(X j′

l′ ). (8)

Thus, we can also say that the PDF estimators are parameterized by a measure µM.
In the next Section, we prove the consistency of the estimator (7) (equivalently, (8)).

3. Asymptotic Properties of the PDF Estimator with Gaussian Kernel
In this section, we consider the case where µM is the Gaussian kernel, or more precisely,

µM(dy) =

√
M
2π

e−
My2

2 dy,

which is equivalent to

cM(x) = e−
2π2x2

M .

While the parameter N controls the microstructure noise effect, as it will appear in the
intensive simulation study carried on in the next Section, the parameter M controls the
localizing kernel and the estimation error. As we will see, it is needed N, M → ∞ as
ρn → 0 with appropriate rates. We will call the estimator Gaussian PDF estimator, or GPDF
for short.

In this section, we give an estimate of the error V j,j′ − V̂ j,j′
N,M of the GPDF estimator

under the following assumptions.
For simplicity, we consider d = 2. Moreover, it is not restrictive to assume that the

drift b ≡ 0 for the efficient price process3.
Further, assume that

(A) the volatility processes V j,j′ , j, j′ = 1, 2 satisfy

∥V∥∞ := max
j,j′

(E[ sup
t∈[0,2π]

|∑
j,j′

|V j,j′(t)|2])1/2 < ∞

and σj := (σ
j
1, σ

j
2), j = 1, 2 are all twice Malliavin differentiable and

C∇ := max
j,j′

E[ sup
s,u,v∈[0,2π]

|σj′(v)∇v(σ
j′(u)∇sV j,j(u))|] < ∞,

where ∇ denotes the Malliavin derivative. Further, we assume that V j,j′ , j, j′ = 1, 2 are
κ-Hölder continuous for some κ ∈ (0, 1) in the sense that

∑
k∈Z

|k|2κE[|(FV j,j′)(k)|2] =: Cκ < ∞, (9)

where (FV j,j′)(k) is the k-th Fourier coefficient of V j,j′ , i.e.,

(FV j,j′)(k) =
∫ 1

0
V j,j′(s)e−2πiksds.

Remark 2. The Malliavin differentiability assumption for the volatility process is not restrictive, as
it is satisfied by most relevant stochastic volatility models, e.g., Heston model, and also by rough
volatility models, see Clement and Gloter (2011); Alòs and Ewald (2008); Inahama (2014). Thus,
our result applies to all those models. As far as it concerns volatility jumps, they are not ruled
out by the Malliavin differentiability but it is required here that the volatility process is Hölder-
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continuous. In fact, if the volatility process V j,j′(t) has a fixed time of discontinuity t, then the
Fourier-Fejér inversion formula gives that (6) converges to (V j,j′(t−) + V j,j′(t))/2 for a fixed time
of discontinuity and V j,j′(t) for any continuity time.

Theorem 2.

(i) Under the assumption (A), for any j, j′ = 1, 2 the L2-error between V j,j′ and the estimator

V̂ j,j′
N,M is estimated as

E
[∫ 1

0
(V j,j′(t)− V̂ j,j′

N,M(t))2dt
]
≤ π2∥V∥2

∞ρ2
nN2

√
M
2π

+ (4C∇ + 2∥V∥2
∞)
(

4π2ρ2
nN2 + (2N + 1)−1

)√ M
2π

+ 2Cκ

(
(2N)−2κ +

(
2π2

M

)κ
)

.

(10)

(ii) In the case of synchronous and regular sampling, when tj
k = k/n for k = 0, 1, · · · , n, j = 1, 2,

Equation (10) is improved as

E
[∫ 1

0
(V j,j′(t)− V̂ j,j′

N,M(t))2dt
]
≤ π2∥V∥2

∞ρ2
n

√
M
2π

(
M

4π2 + 1
)

+ (4C∇ + 2∥V∥2
∞)(2N + 1)−1

√
M
2π

+ 2Cκ

(
(2N)−2κ +

(
2π2

M

)κ
)

.

(11)

(iii) Consequently, for the general sampling scheme, if4 N ≍ ρ−α
n and M ≍ ρ

−β
n , the consistency

is attained if

0 < β <
4
3

,
β

2
< α < −1

4
β + 1 (12)

and

E
[∫ 1

0
(V j,j′(t)− V̂ j,j′

N,M(t))2dt
]1/2

= O
(

ρ
min(1−α− β

4 , α
2 −

β
4 , κβ

2 )
n

)
.

Further, the best rate is given as

max
0<β< 4

3 , β
2 <α<− 1

4 β+1
min(1 − α − β

4
,

α

2
− β

4
,

κβ

2
) =

2κ

6κ + 3
,

where the maximum is attained when α = 2/3 and β = 4/(6κ + 3).
(iv) In the case of synchronous and regular sampling, when tj

k = k/n for k = 0, 1, · · · , n, j = 1, 2,
the consistency is attained if

α >
β

2
, 0 < β <

4
3

(13)

and

E
[∫ 1

0
(V j,j′(t)− V̂ j,j′

N,M(t))2dt
]1/2

= O
(

n−min( α
2 −

β
4 ,1− 3

4 β, κβ
2 )
)

.
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The best rate is given as

max
α>

β
2 ,0<β< 4

3

min(
α

2
− β

4
, 1 − 3

4
β,

κβ

2
) =

2κ

2κ + 3
,

where the maximum is attained when β = 4/(2κ + 3) and α > β
2 .

A proof of Theorem 2 will be given in Appendix B.

Remark 3. In Theorem 2, when κ = 1/2, the best rate under the general sampling scheme is 1/6
and under synchronous and equally spaced sampling, it is 1/4.

4. Simulation Study
4.1. Simulation Settings

In this section we present an extensive numerical simulated study. The aim of this
study is twofold: first in Section 4.2 we analyze the sensitivity of the estimator to the choice
of parameters N and M and, with an unfeasible optimization, we find their optimal choices
in different scenarios, having as a guide the theoretical results established in the previous
section. Secondly, in Section 4.3 we evaluate the accuracy of the proposed GPDF estimator
and its ability to produce symmetric and positive semi-definite estimations in a comparison
with two alternative estimators that are present in the literature.

To give robustness to the results of our study, in the following analysis we con-
sider many different simulation scenarios, focusing on both the two components of high-
frequency financial data: the efficient price and the additive noise component given by
market microstructure, so that the observed price X̃ is

X̃ j
t = X j

t + η
j
t , j = 1, . . . , d, (14)

with η being the noise component.
In particular, for the efficient price process we consider the following specifications:

• the Heston stochastic volatility model, by Heston (1993);
• the One Factor stochastic volatility model (SVF1);
• the Two Factor stochastic volatility model (SVF2), by Chernov et al. (2003);
• the Rough Heston model (RH), by El Euch and Rosenbaum (2019);

while for the additive microstructure noise we take into account the following cases:

• no noise case;
• noise coming from rounding;
• i.i.d. noise;
• autocorrelated noise;
• general noise auto-correlated and dependent of the efficient price process.

Since in the different cases where noise is present we analyze, respectively, 2, 4, 3, 4, different
parameterizations, in our simulated analysis we study a total of 56 different scenarios.

For simplicity of the computations, through Sections 4.2 and 4.3, all the simulated
analysis is conducted on the interval [0, 1]; for that reason, and in the light of Section 3, we
use the GPDF estimator (7) given by

V̂ j,j′
N,M(t) =

1
2N + 1

nj

∑
l=1

nj′

∑
l′=1

N

∑
u=−N

N

∑
u′=−N

e−
2π2(u−u′)2

M e2πiu(t−tj
l)e−2πiu′(t−tj′

l′ )∆(X j
l )∆(X j′

l′ ). (15)
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where not stated otherwise, the simulations consist of K = 5000 daily trajectories, consider-
ing a trading day of length 6.5 h, and are carried out on an equally spaced grid of width 2 s.
To introduce asynchronicity in the data, observations are drawn from a Poisson process
with an average of one observation every 10 s. Moreover, where not explicitly stated, the
correlation between Brownian motions driving the efficient processes of different assets,
following Bibinger et al. (2019), is fixed to mimic the median estimated realized correlation
of the Nasdaq components, i.e.,〈

W j, Wi
〉
= 0.312, j, i = 1, . . . , d j ̸= i.

In Sections 4.1.1 and 4.1.2, we define the models used for the efficient price process
and the microstructure noise. As a robustness check, additional unreported simulations
have been carried out under slightly different choices for the parameters of the reference
models, with results analogous to those reported in Section 4.3.

4.1.1. Efficient Price Process
Heston Model

The Heston stochastic volatility model by Heston (1993) is possibly the most widely
used stochastic volatility model in the high-frequency econometric literature. It takes
the form dX j

t = (µ − (σ
j
t )

2/2)dt + σ
j
t dW j

t

d(σj
t )

2 = γ(θ − (σ
j
t )

2)dt + νσ
j
t dZj

t ,

with
〈
W j, Zj〉 = λ to account for the leverage effect. The parameters are set to be

(µ, γ, θ, ν, λ) = (0.05/252, 5/252, 0.1, 0.5/252,−0.5),

that is the same choice made by Zu and Boswijk (2014); Mancino et al. (2017) and Figueroa-
López and Wu (2022).

Factor Volatility Models

Factor volatility models have been long used in the literature; see, for example, Huang
and Tauchen (2005). First, we consider the One-Factor Stochastic Volatility model (SV1F) of
the form 

dX j
t = µdt + σ

j
t dW j

t

σ
j
t = eβ0+β1τ

j
t

dτ
j
t = ατ

j
t + dZj

t

for j = 1, . . . , d, with
〈
W j, Zj〉 = λ , and

〈
Zj, Zj′

〉
= 0 for j ̸= j′. The simulation is carried

out using as parameters

(µ, β1, α, β0, λ) = (0.03, 0.125,−0.025, β1/(2α),−0.3),

which are the parameters used also in Zu and Boswijk (2014); Mancino et al. (2017); Figueroa-
López and Wu (2022) and Mancino et al. (2024).

Second, we consider the Two-Factor Stochastic Volatility model (SV2F), proposed by
Chernov et al. (2003), which is able to reproduce higher values of volatility of volatility. It
takes the form
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
dX j

t = µdt + s-exp[β0 + β1τ
j,1
t + β2τ

j,2
t ]dW j

t

dτ
j,1
t = α1τ

j,1
t + dZj,1

t

dτ
j,2
t = α2τ

j,2
t + (1 + βvτ

j,2
t )dZj,2

t

for j = 1, . . . , d, with
〈
W j, Zj,1〉 = 〈W j, Zj,2〉 = λ , and

〈
Zj,i, Zj′ ,i′

〉
= 0 for j ̸= j′ and i ̸= i′,

i, i′ = 1, 2. For the parameters involved, our choice is to use

(µ, β0, β1, β2, βv, α1, α2, λ) = (0.03,−1.1, 0.04, 0.3,−0.003,−0.6, 0.25).

Rough Volatility

Starting with the seminal paper by Gatheral et al. (2018), a new strand of financial
econometric literature has grown considering dynamics of the volatility process that are
not driven by a standard Brownian motion but instead are driven by a fractional Brow-
nian motion, with Hurst index H < 0.5, which corresponds to the cases where κ < 0.5.
Theorem 2 states that the proposed PDF estimator is consistent even in the presence of
rough volatility.

Rough volatility may also be modeled using the stochastic Volterra equation, as in the
rough Heston model studied by El Euch and Rosenbaum (2019) and which we intend to
use in this study.X j

t = X j
0 +

∫ t
0 X j

tsσ
j
sdW j

s

(σ
j
t )

2 = (σ
j
0)

2 +
∫ t

0 K(t − s)
(
(θ − γ(σ

j
s)

2)ds + νσ
j
sdZj

s

)
,

with
〈
W j, Zj〉 = λ and K(t) = CtH− 1

2 for H ∈
(

0, 1
2

)
and constant C. In order to simulate

the rough Heston model we apply the discrete-time Euler-type scheme studied in Richard
et al. (2023), referring in particular to Equation (14) thereof. The parameters of the model are
set to ensure that in the exercise the simulated volatility process does not exhibits negative
values, and in particular they take values:

(θ, γ, ν, λ, H) = (0.2, 0.3, 0.2,−0.7, 0.1),

where the choice for the Hurst parameters is driven by the empirical evidence present in
the literature; see, e.g., Gatheral et al. (2018).

4.1.2. Market Microstructure Noise Specifications

It is a known fact (see, e.g., Bandi and Russell (2008)) that high-frequency data are
contaminated by the so-called market microstructure noise. In particular, the observed
price is the sum of the efficient price and the noise component. The origin of noise is linked
to specific characteristics of the microstructure of financial markets, such as bid-ask spread,
rounding, strategic trading (see, e.g., Hasbrouck (2007)), and several models specifications
for the noise have been proposed in the literature of high-frequency financial econometrics.

Noise Coming from Rounding

In the presence of rounding the observed price process has the following form:

X̃ j
t = log([exp(X j

t)/r]r),

where X denotes the efficient price process.
We consider two levels of rounding, corresponding to r = 1 or 5 cents, which are the

most used in financial markets.
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Noise i.i.d.

The most widely used characterization of noise is to consider it an i.i.d. additive
component, as in (14), with mean equal to zero and given constant variance

η ∼ i.i.d. E[η j
i ] = 0, E[(η j

i )
2] = var(∆X j

10sec)σ
2
η , ∀i, j

where X j
10sec denotes the regularly spaced series obtained by subsampling the originally

simulated series every 10 s.
Here, as can often be found in the literature, we specify a Gaussian distribution for the

noise. We consider four values for the variance of the noise component: σ2
η = 1, 1.5, 2, 2.5.

Autocorrelated Noise

Here autocorrelation is introduced in the noise component, while keeping the additive
form of Equation (14). In particular, it is modeled through an Ornstein–Uhlenbeck (OU)
process defined as

dη
j
t = −θηη

j
tdt + σηdEj

t,

where E is a standard Brownian motion independent of W. Three different levels of
autocorrelation are considered, using θη = 0.2, 0.3, 0.4. σ2

η is set to obtain a level of variance
comparable to the second case in the previous scenario.

General Noise Correlated with the Efficient Price Process

In the final noise scenario, we opt for the general structure used in Jacod et al. (2019),
which allows for both autocorrelation and dependence on the price process. For j ∈ {1, 2}
and i = 0, 1, . . . , nj, using the simplified notation η

j
i := η

j

tj
i

, the latter reads as

η
j
i = ψ

j
i χ

j
i ,

where χi satisfies

χ
j
i = Zj

i +
L

∑
l=1

g(1 + g) . . . (l − 1 + g)
l!

Zj
i−l , g ∈ (−0.5, 0.5), Zj

i ∼i.i.d. N (0, z), (16)

and ψi is sampled from

dψj(t) = u(h(t)− ψj(t))dt + vdW j
t , h(t) = 1 + w cos

(
2π

T
t
)

, (17)

with W1 and W2 being the Brownian motions driving the dynamics of the efficient prices
p1 and p2.

This last model attempts to replicate the slow-decaying autocorrelation in the noise
process empirically observed by Jacod et al. (2017), while accounting for the possible
dependence between noise and the efficient price component, as observed, for example, by
Hansen and Lunde (2006). This formulation still includes an OU dynamics in Equation (17),
but modified to also account for heteroskedasticity in the noise, reproducing in particular a
U-shaped pattern for the volatility of the noise, given by the deterministic component h.

For the simulation of the noise, we use the following parameter selection:

(z, L, u, v) = (var(∆X j
10sec) · 2.5, 100, 10, 0.5),

with the four possible cases obtained coupling g = 0.3, 0.45 and w = 0.3, 0.9.
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In a last, unreported, exercise, we also add a rounding of 1 cent to this simulation
scheme, without significant changes in the results.

4.2. Selection of Parameters N and M

In this section we want to evaluate the sensitivity of the estimator to the choice of the
parameter N and M appearing in the definition of the GPDF estimator. The performance
of the estimator for each couple of parameters is evaluated over the entire time interval,
across K simulated independent trajectories. In all the following analyses, the path of the
spot variance is reconstructed on a regular grid of width 30 min.

In the optimization study, following the results of Theorem 2, we specify the cutting
frequency N and the localization parameter M in terms of ρn, using the fact that Nρα

n ∼ cN

and Mρ
β
n ∼ cM, for a suitable choice of α and β, depending on the κ-Hölder continuity of

the simulated volatility process5. In particular, we optimize over a grid defined by

cN = 0.5, 1, 3, 5, 7, 9

and
cM = 0.5, 1, 2, 3, 4, 5.

For each scenario, in a setting with d = 2, on the defined grid of values for the couple
(cN , cM), we look at the estimation error of variance V̂1,1 and covariance V̂1,2, using in
particular the integrated mean squared error

MISEj = K−1
K

∑
k=1

∫ 1

0
(V̂1,j − V1,j)2dt, j = 1, 2

and choosing as optimal the pair that minimizes

0.1 · MISE1 + 0.9 · MISE2,

where a higher weight is given to the estimation of the covariance, being the dominant
component of a generic variance–covariance matrix with d2 − d covariance terms.6

Table 1 shows the optimal couple of cN and cM for each scenario. The first result we
notice is that the optimal value for cM is pretty stable across the models considered in the
analysis for the efficient price process. When the data are affected by noise, the optimal
cN is reduced, coherently with known results for the other Fourier-type estimators of both
integrated and spot volatility, see, e.g., Mancino et al. (2017) and Mancino et al. (2024), with
a reduction that is stronger when the variance of noise is higher and in the presence of
strong autocorrelation. Concerning the parameter cM, it exhibits a more stable optimal
value in the scenario considered, with only a small downward correction needed in the
presence of noise. In this case, cM manages the localizing Gaussian kernel, but a similar
behavior was also observed for the original Fourier estimator in Mancino et al. (2024).
Moreover, for the four models of the efficient price, the difference between close values of
cN and cM is relatively small, meaning that making a slightly sub-optimal choice does not
induce a significant increase in the error. This is shown in Table 2, where the MISE2 on the
defined grid is reported for selected scenarios of under the Heston and the SVF2 model.
From Table 2 it is also clear that overall, the estimator, on the grid used for this exercise,
is more sensible to the choice of cM than to the choice of cN , with suboptimal values of
cM producing a higher increase in the estimation error w.r.t. suboptimal values of cN . The
figures for the remaining scenarios not reported in Table 2 are analogous.



Risks 2025, 13, 197 13 of 30

Table 1. Optimal couple of cN , cM in the considered grid across the different models for volatility
and microstructure noise.

Heston SVF1 SVF2 RH

No noise

5, 1 5, 1 5, 1 5, 1

r Noise from rounding

0.01 5, 1 5, 1 5, 1 5, 1
0.05 5, 1 5, 1 5, 1 5, 1

ση I.i.d. noise

1 3, 0.5 3, 0.5 3, 0.5 3, 0.5
1.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5
2 3, 0.5 3, 0.5 3, 0.5 3, 0.5

2.5 1, 0.5 1, 0.5 1, 0.5 1, 0.5

θ Auto-correlated noise

0.2 1, 0.5 1, 0.5 1, 0.5 1, 0.5
0.3 1, 0.5 1, 0.5 1, 0.5 1, 0.5
0.4 3, 0.5 3, 0.5 3, 0.5 3, 0.5

g, w General noise

0.3, 0.3 3, 0.5 3, 0.5 3, 0.5 3, 0.5
0.3, 0.9 3, 0.5 3, 0.5 1, 0.5 1, 0.5

0.45, 0.3 1, 0.5 1, 0.5 1, 0.5 1, 0.5
0.45, 0.9 1, 0.5 1, 0.5 1, 0.5 1, 0.5

Table 2. MISE2 in estimating covariance over the considered grid, for selected scenarios.

Heston—No noise

cN/cM 0.5 1 2 3 4 5

0.5 3.068 · 10−4 4.370 · 10−4 6.193 · 10−4 7.539 · 10−4 8.646 · 10−4 9.510 · 10−4

1 1.539 · 10−4 2.124 · 10−4 2.971 · 10−4 3.619 · 10−4 4.164 · 10−4 4.331 · 10−4

3 5.172 · 10−5 7.101 · 10−5 1.002 · 10−4 1.232 · 10−4 1.427 · 10−4 1.553 · 10−4

5 3.985 · 10−5 5.238 · 10−5 7.081 · 10−5 8.488 · 10−5 9.660 · 10−5 1.023 · 10−4

7 4.657 · 10−5 5.541 · 10−5 6.846 · 10−5 7.847 · 10−5 8.687 · 10−5 9.636 · 10−5

9 5.732 · 10−5 6.524 · 10−5 6.989 · 10−5 8.874 · 10−5 9.113 · 10−5 9.995 · 10−5

Heston—I.i.d. noise ση = 2.5

cN/cM 0.5 1 2 3 4 5

0.5 3.215 · 10−4 4.562 · 10−4 6.456 · 10−4 7.856 · 10−4 9.006 · 10−4 9.228 · 10−4

1 1.046 · 10−4 1.509 · 10−4 2.173 · 10−4 2.676 · 10−4 3.096 · 10−4 3.261 · 10−4

3 1.543 · 10−4 2.125 · 10−4 2.968 · 10−4 3.613 · 10−4 4.159 · 10−4 4.365 · 10−4

5 1.768 · 10−4 2.408 · 10−4 3.349 · 10−4 4.073 · 10−4 4.683 · 10−4 4.883 · 10−4

7 2.506 · 10−4 3.286 · 10−4 4.447 · 10−4 5.347 · 10−4 6.115 · 10−4 6.510 · 10−4

9 2.732 · 10−4 3.682 · 10−4 4.770 · 10−4 5.618 · 10−4 6.663 · 10−4 6.798 · 10−4

SVF2—No noise

cN/cM 0.5 1 2 3 4 5

0.5 8.197 · 10−4 1.234 · 10−3 1.855 · 10−3 2.328 · 10−3 2.723 · 10−3 2.982 · 10−4

1 4.804 · 10−4 6.877 · 10−4 9.867 · 10−4 1.212 · 10−3 1.403 · 10−3 1.633 · 10−4

3 2.392 · 10−4 3.066 · 10−4 4.066 · 10−4 4.826 · 10−4 5.462 · 10−4 5.701 · 10−4

5 1.860 · 10−4 2.161 · 10−4 2.639 · 10−4 3.020 · 10−4 3.354 · 10−4 3.411 · 10−4
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Table 2. Cont.

7 2.068 · 10−4 2.183 · 10−4 2.449 · 10−4 2.699 · 10−4 2.931 · 10−4 3.028 · 10−4

9 2.236 · 10−4 2.421 · 10−4 2.563 · 10−4 2.784 · 10−4 2.988 · 10−4 3.295 · 10−4

SVF2—I.i.d. noise ση = 2.5

cN/cM 0.5 1 2 3 4 5

0.5 8.616 · 10−4 1.311 · 10−3 1.974 · 10−3 2.473 · 10−3 2.884 · 10−3 3.115 · 10−3

1 4.529 · 10−4 6.001 · 10−4 8.176 · 10−4 9.825 · 10−4 1.117 · 10−3 1.228 · 10−3

3 5.701 · 10−4 8.084 · 10−4 1.144 · 10−3 1.394 · 10−3 1.604 · 10−3 1.773 · 10−4

5 6.232 · 10−4 8.579 · 10−4 1.163 · 10−3 1.377 · 10−3 1.553 · 10−3 1.640 · 10−3

7 6.173 · 10−4 8.607 · 10−4 1.254 · 10−3 1.574 · 10−3 1.849 · 10−3 1.930 · 10−3

9 6.454 · 10−4 8.773 · 10−4 1.296 · 10−3 1.602 · 10−3 1.890 · 10−3 1.981 · 10−3

4.3. Performance Comparison

After having analyzed the sensibility of our estimator to the choice of N and M, in
this section we replicate the extensive simulation study adopted in Section 4.2 to evaluate
the accuracy of the proposed PDF estimator in comparison with the one of two competing
estimators that are present in the literature. Focusing on the estimators consistent in the
presence of asynchronous observations contaminated by microstructure noise, we consider
the following.

• The Gaussian positive definite Fourier estimator proposed in this work (GPDF);
• the smoothed two-scale spot estimator, by Mykland et al. (2019) (STS);
• the local method of moments spot estimators, by Bibinger et al. (2019) (LMM).

The kernel-based estimator proposed by Bu et al. (2023), while it may be extended to
manage irregular and asynchronous observations, relies on specifically tuned shrinkage
techniques to impose positive semi-definiteness of the estimation and is therefore not
considered in this analysis.

The analysis is carried out considering a maximum of d = 40 assets, and the per-
formances of each estimator are evaluated according to the mean integrated square error
(MISE) and its relative counterpart (RMISE), defined as

MISE = (Kd2)−1
K

∑
k=1

∫ 1

0

d

∑
j,i=1

(V̂ij
k (t)− Vij

k (t))
2dt,

RMISE = (Kd2)−1
K

∑
k=1

∫ 1

0

d

∑
j,i=1

(V̂ij
k (t)− Vij

k (t))
2/Vij

k (t)
2dt.

Unreported results show that using a different loss function, in particular the Frobenius
norm, the Euclidean norm, or the l − 1 norm of the difference between the estimated and the
real spot volatility matrix, does not affect the rankings that emerge from Tables 3–8. Most
importantly, in this analysis we pay particular attention to the percentage of symmetric
positive semi-definite (spsd) variance–covariance matrix that each estimator is able to
produce in the different scenarios.

For the LMM estimator, we use the parameters that were found to be optimal in
the numerical analysis by Bibinger et al. (2019), while for the STS estimator we choose
the parameters in a neighborhood of the one used by Chen et al. (2020), minimizing the
mean square error obtained on auxiliary simulations. In the following, when not explicitly
stated otherwise, the results are meant to be achieve under the Heston specification for the
efficient price process.
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4.3.1. Absence of Noise

In Sections 4.3.1 and 4.3.2, we report the results of the comparison, in terms of MISE
and percentage of spsd estimates produced by the three competing estimators, when the
efficient price process follows the Heston model. In this setting, the results in terms of
RMISE are analogous. We begin considering noise-free data and we focus on two major
features of high-frequency covariance matrix estimation: the dimensionality of the matrix
and the asynchronicity of observations.

Table 3 shows the results for increasing values of d. In this simulated exercise, the
modified Fourier estimator performs the best in terms of MSE, for any dimension of the
volatility matrix. The effectiveness of the STS estimator to produce positive semi-definite
estimations seems to decrease as the number of assets increases, in particular with d > 20,
while the other two estimators both produce 100% of spsd matrices, with a slight derease
for the LMM estimator observed for d = 40. For the important role that it plays in
estimating variance–covariance matrices and for the influence that it has on the positivity
of the estimation, dimensionality will always be taken into consideration in the remaining
analysis. For simplicity of exposition, the dimensions considered in the following are
limited to d = 5, 10, 15, 20.

Table 3. Accuracy (MISE) and % of spsd matrix produced by each estimator, when the dimension d
of V increases.

Estimator MISE % SPSD MISE % SPSD

d = 2 d = 20

GPDF 6.773 · 10−5 100% 5.395 · 10−5 100%
LMM 2.563 · 10−4 100% 1.133 · 10−4 100%
STS 2.240 · 10−4 100% 2.156 · 10−4 88.60%

d = 5 d = 25

GPDF 5.670 · 10−5 100% 5.258 · 10−5 100%
LMM 1.495 · 10−4 100% 9.659 · 10−5 100%
STS 2.201 · 10−4 100% 2.138 · 10−4 66.22%

d = 10 d = 30

GPDF 5.316 · 10−5 100% 5.142 · 10−5 100%
LMM 1.215 · 10−4 100% 9.604 · 10−5 100%
STS 2.022 · 10−4 100% 2.006 · 10−4 9.87%

d = 15 d = 40

GPDF 5.299 · 10−5 100% 5.223 · 10−5 100%
LMM 9.977 · 10−4 100% 9.501 · 10−5 99.54%
STS 2.019 · 10−4 95.43% 1.994 · 10−4 3.02%

In the no-noise setting, we also address the issue of different levels of asynchronicity
in the data. To do so, we examine the changes in the performance of the three estimators
as the average time between two consecutive observations increases. In particular, we
extract the observations from the simulated trajectories according to homogeneous Poisson
processes that produce on average one observation every 15, 20, and 30 s. Table 4 shows that,
still maintaining an edge in terms of MISE with respect to the competitors, the proposed
estimator is the only one that is able to produce spsd estimations in 100% of the cases,
while both the STS and the LMM estimator can fail with increased frequency when the
asynchronicity increases, even though the impact of this kind of changes seems to be quite
small in terms of percentage of positive estimation obtained. It also seems that the accuracy
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of all the estimators decreases with higher values of ∆̄t; this is of course in line with the fact
that the consistency of these estimators is an asymptotic property.

Table 4. Accuracy and % of spsd matrix produced by each estimator, when the average time between
consecutive observations ∆̄t changes.

Estimator MISE % SPSD MISE % SPSD MISE % SPSD

d = 5, ∆̄t = 15 d = 5, ∆̄t = 20 d = 5, ∆̄t = 30

GPDF 6.314 · 10−5 100% 7.798 · 10−5 100% 9.723 · 10−5 100%
LMM 1.610 · 10−4 100% 1.885 · 10−4 100% 2.503 · 10−4 99.54%
STS 2.426 · 10−4 100% 2.603 · 10−4 100% 2.686 · 10−4 100%

d = 10, ∆̄t = 15 d = 10, ∆̄t = 20 d = 10, ∆̄t = 30

GPDF 6.397 · 10−5 100% 7.339 · 10−5 100% 9.188 · 10−5 100%
LMM 1.956 · 10−4 100% 1.882 · 10−4 100% 1.975 · 10−4 98.58%
STS 2.303 · 10−4 100% 2.344 · 10−4 100% 2.395 · 10−4 100%

d = 15, ∆̄t = 15 d = 15, ∆̄t = 20 d = 15, ∆̄t = 30

GPDF 6.322 · 10−5 100% 7.451 · 10−5 100% 9.169 · 10−5 100%
LMM 1.717 · 10−4 100% 1.445 · 10−4 98.05% 1.918 · 10−4 97.68%
STS 2.285 · 10−4 99.90% 2.310 · 10−4 99.15% 2.383 · 10−4 98.54 %

d = 20, ∆̄t = 15 d = 20, ∆̄t = 20 d = 20, ∆̄t = 30

GPDF 6.325 · 10−5 100% 7.258 · 10−5 100% 9.224 · 10−5 100%
LMM 1.651 · 10−4 99.83% 1.322 · 10−4 90.18% 1.782 · 10−4 96.67%
STS 2.213 · 10−4 91.45% 2.289 · 10−5 88.01% 2.330 · 10−4 82.66 %

4.3.2. Data Contaminated by Microstructure Noise

In this Section we run our comparison considering the noise specification described in
Section 4.1.2. It is useful to note that the LMM estimator entails an explicit noise correction,
and the STS estimator relies on pre-averaging of the observed data on a synchronous and
equally spaced grid. For the proposed GPDF estimator instead, in line with the original
Fourier estimator of spot volatility, there is no need to manipulate the data or correct the
estimator to manage the presence of noise, but it is sufficient to cut the frequency N, as
shown in Section 4.2.

Table 5 shows that the presence of rounding does not appear to significantly affect the
accuracy of the estimators and the positive semi-definiteness of the estimations. This effect
may be due to the scheme adopted to simulate irregularly sampled data, that implies a
sub-sampling with respect to the rounded simulated series, reducing the intensity of this
source of noise, whose only impact is to slightly decrease the percentage of spsd estimation
for the STS estimator.

Table 5. Accuracy and % of spsd matrix produced by each estimator, when a rounding of 1 or 5 cents
is present.

Estimator MISE % SPSD MISE % SPSD

d = 5, r = 0.01 d = 5, r = 0.05

GPDF 5.583 · 10−5 100% 5.587 · 10−5 100%
LMM 1.638 · 10−4 100% 1.641 · 10−4 100%
STS 2.188 · 10−4 100% 2.188 · 10−4 100%

d = 10, r = 0.01 d = 10, r = 0.05

GPDF 5.376 · 10−5 100% 5.377 · 10−5 100%
LMM 1.094 · 10−4 100% 1.095 · 10−4 100%
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Table 5. Cont.

Estimator MISE % SPSD MISE % SPSD

STS 2.022 · 10−4 100% 2.023 · 10−4 100%

d = 15, r = 0.01 d = 15, r = 0.05

GPDF 5.284 · 10−5 100% 5.284 · 10−5 100%
LMM 1.111 · 10−4 100% 1.113 · 10−4 100%
STS 1.998 · 10−4 99.97% 1.997 · 10−4 99.85%

d = 20, r = 0.01 d = 20, r = 0.05

GPDF 5.203 · 10−5 100% 5.204 · 10−5 100%
LMM 1.011 · 10−4 100% 1.011 · 10−4 100%
STS 1.902 · 10−4 97.66% 1.902 · 10−4 97.03%

Table 6 shows that i.i.d. noise, especially with high noise variance σ2
η , is able to

negatively affect the ability of the STS and, marginally, of the LMM estimators to pro-
duce spsd estimations, with a stronger impact as the dimension of the estimated matrix
grows. Also, the accuracy of all the estimators deteriorates with higher noise, with the
GPDF confirmed as the top performer also in this scenario, but with reduced differences
in accuracy among the three estimators. Since i.i.d. noise, from a market microstruc-
ture perspective, is usually linked to the presence bid-ask spread as modeled, e.g., as
in Roll (1984), and being the bid-ask spread usually related to the liquidity of an asset, the
ability of managing this kind of noise may be regarded as the ability to estimate correctly
covariance also for illiquid assets.

Table 6. Accuracy and % of spsd matrix produced by each estimator, when the data is contaminated
by i.i.d. noise.

Estimator MISE % SPSD MISE % SPSD MISE % SPSD MISE % SPSD

d = 5, ση = 1 d = 5, ση = 1.5 d = 5, ση = 2 d = 5, ση = 2.5

GPDF 8.229 · 10−5 100% 8.242 · 10−5 100% 1.350 · 10−4 100% 2.054 · 10−4 100%
LMM 1.485 · 10−4 100% 1.588 · 10−4 100% 1.727 · 10−4 100% 1.991 · 10−4 100%
STS 2.478 · 10−4 100% 2.567 · 10−4 100% 2.910 · 10−4 100% 3.361 · 10−4 97.25%

d = 10, ση = 1 d = 10, ση = 1.5 d = 10, ση = 2 d = 10, ση = 2.5

GPDF 6.922 · 10−5 100% 7.901 · 10−5 100% 1.503 · 10−4 100% 1.889 · 10−4 100%
LMM 1.320 · 10−4 100% 1.191 · 10−4 100% 1.583 · 10−4 100% 2.198 · 10−4 99.25%
STS 2.236 · 10−4 98.85% 2.369 · 10−4 98.25% 2.610 · 10−4 86.47% 3.028 · 10−4 55.67%

d = 15, ση = 1 d = 15, ση = 1.5 d = 15, ση = 2 d = 15, ση = 2.5

GPDF 6.873 · 10−5 100% 7.588 · 10−5 100% 1.474 · 10−4 100% 1.801 · 10−4 100%
LMM 1.225 · 10−4 100% 1.348 · 10−4 100% 1.920 · 10−4 100% 1.955 · 10−4 98.42%
STS 2.042 · 10−4 97.43% 2.187 · 10−4 76.01% 2.738 · 10−4 28.10% 3.008 · 10−4 20.13%

d = 20, ση = 1 d = 20, ση = 1.5 d = 20, ση = 2 d = 20, ση = 2.5

GPDF 6.468 · 10−5 100% 7.622 · 10−5 100% 1.497 · 10−4 100% 1.628 · 10−4 100%
LMM 1.008 · 10−4 100% 1.581 · 10−4 97.83% 1.621 · 10−4 96.26% 2.044 · 10−4 92.10%
STS 2.250 · 10−4 65.27% 2.390 · 10−4 15.17% 2.503 · 10−4 6.27% 2.817 · 10−4 0.0%

Table 7 shows that autocorrelated noise is again able to significantly effect the ability
of the STS estimators to produce spsd matrices, in particular with low values of θη , while
the LMM estimator seems to be only slightly affected. Low values of θη , i.e., higher values
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of autocorrelation in the noise process, reduce the accuracy of the three competitors, while
maintaining their ranking substantially unchanged.

Table 7. Accuracy and % of spsd matrix produced by each estimator, when the data is contaminated
by autocorrelated noise.

Estimator MISE % SPSD MISE % SPSD MISE % SPSD

d = 5, θη = 0.2 d = 5, θη = 0.3 d = 5, θη = 0.4

GPDF 2.093 · 10−4 100% 1.956 · 10−4 100% 1.743 · 10−4 100%
LMM 2.187 · 10−4 100% 2.632 · 10−4 100% 2.693 · 10−4 100%
STS 4.134 · 10−4 90.47% 3.026 · 10−4 98.98% 2.945 · 10−4 97.23%

d = 10, θη = 0.2 d = 10, θη = 0.3 d = 10, θη = 0.4

GPDF 1.887 · 10−4 100% 1.810 · 10−4 100% 1.752 · 10−4 100%
LMM 2.789 · 10−4 100% 2.863 · 10−4 98.94% 1.953 · 10−4 100%
STS 3.934 · 10−4 22.71% 3.007 · 10−4 65.58% 2.666 · 10−4 85.43%

d = 15, θη = 0.2 d = 15, θη = 0.3 d = 15, θη = 0.4

GPDF 1.755 · 10−4 100% 1.721 · 10−4 100% 1.599 · 10−4 100%
LMM 2.662 · 10−4 100% 2.659 · 10−4 93.44% 1.781 · 10−4 95.90%
STS 3.728 · 10−4 2.01% 3.001 · 10−4 6.25% 2.789 · 10−4 20.99%

d = 20, θη = 0.2 d = 20, θη = 0.3 d = 20, θη = 0.4

GPDF 1.743 · 10−4 100% 1.657 · 10−4 100% 1.580 · 10−4 100%
LMM 2.514 · 10−4 93.87% 2.501 · 10−4 93.48% 1.751 · 10−4 93.60%
STS 3.899 · 10−4 1.02% 2.921 · 10−4 2.03% 2.700 · 10−4 2.58%

Table 8 shows the results for the last specification of noise that we consider, that
is, with general noise allowing for auto-covariance, correlation with the efficient price
and time-varying noise variance. Our results show that, in this setting, both the LMM
and the STS estimators may have difficulties in reaching satisfactory percentages of spsd
estimations, depending on the intensity of the microstructure component. We confirm
once again the ability of the GPDF estimator to produce variance–covariance matrix with
the desired property, and with relatively low estimation error. at the same time, we still
find that increasing the dimensionality of the estimation exercise hinders the ability of
traditional estimators to produce spsd matrices.

Table 8. Accuracy and % of spsd matrix produced by each estimator, when the data is contaminated
by the general noise process.

Estimator MISE % SPSD MISE % SPSD MISE % SPSD MISE % SPSD

d = 5, g = 0.3, w = 0.3 d = 5, g = 0.3, w = 0.9 d = 5, g = 0.45, w = 0.3 d = 5, g = 0.45, w = 0.9

GPDF 2.543 · 10−4 100% 2.521 · 10−4 100% 2.845 · 10−4 100% 2.981 · 10−4 100%
LMM 2.701 · 10−4 100% 2.695 · 10−4 99.52% 3.103 · 10−4 100% 3.499 · 10−4 99.40%
STS 2.919 · 10−4 99.87% 3.184 · 10−4 99.00% 4.396 · 10−4 99.83% 4.716 · 10−4 98.51%

d = 10, g = 0.3, w = 0.3 d = 10, g = 0.3, w = 0.9 d = 10, g = 0.45, w = 0.3 d = 5, g = 0.45, w = 0.9

GPDF 1.762 · 10−4 100% 2.123 · 10−4 100% 2.458 · 10−4 100% 2.702 · 10−4 100%
LMM 2.198 · 10−4 99.76% 2.707 · 10−4 97.17% 2.660 · 10−4 97.89% 3.543 · 10−4 91.06%
STS 2.702 · 10−4 99.26% 3.005 · 10−4 79.58% 3.722 · 10−4 90.36% 4.601 · 10−4 77.10%

d = 15, g = 0.3, w = 0.3 d = 15, g = 0.3, w = 0.9 d = 15, g = 0.45, w = 0.3 d = 5, g = 0.45, w = 0.9

GPDF 1.508 · 10−4 100% 1.702 · 10−4 100% 2.344 · 10−4 100% 2.523 · 10−4 100%
LMM 1.891 · 10−4 98.04% 3.085 · 10−4 87.25% 2.622 · 10−4 90.93% 3.582 · 10−4 81.48%
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Table 8. Cont.

Estimator MISE % SPSD MISE % SPSD MISE % SPSD MISE % SPSD

STS 2.671 · 10−4 50.90% 2.901 · 10−4 47.12% 3.600 · 10−4 39.94% 4.543 · 10−4 40.23%

d = 20, g = 0.3, w = 0.3 d = 20, g = 0.3, w = 0.9 d = 20, g = 0.45, w = 0.3 d = 5, g = 0.45, w = 0.9

GPDF 1.305 · 10−4 100% 1.587 · 10−4 100% 2.317 · 10−4 100% 2.458 · 10−4 100%
LMM 2.674 · 10−4 96.15% 2.991 · 10−4 81.34% 2.956 · 10−4 85.17% 3.478 · 10−4 78.63%
STS 2.667 · 10−4 8.21% 2.901 · 10−4 21.94% 3.478 · 10−4 3.77% 4.293 · 10−4 16.42%

4.4. Alternative Volatility Models

In the previous Sections the comparison results have been obtained in the case when
the simulated efficient price process is an Heston model. Even though the error produced
by the three estimators may be different changing the simulation model behind our analysis,
and in particular the differences in MISE between the GPDF and the LMM estimators are
reduced when using the SVF2 or the Rough Heston model, the results are substantially
confirmed: the positive semi-definite Fourier estimator remain the only one able to con-
sistently produce positive semi-definite estimations, and is the best performer in terms of
MSE in almost any scenario. Table 9 shows the percentage of psd estimations obtained
under the alternative volatility models, in absence of microstructure noise, together with
the ranking of the estimators in terms of MISE. We can see that, in this exercise, it seems
that, moving to the SV1F, to the SV2F or Rough Heston, does not influence significantly the
ability of the estimators of producing positive matrices. Also the ranking of the estimators
is essentially unaffected. More extensive results about the alternative models, showing
the percentage of spsd estimations in the cases with rounding, i.i.d. and general noise, are
reported in Appendix C. It is worth noting, as a final consideration, that the results in terms
or RMISE are analogous, and always see the GPDF estimator having a competitive edge.

Table 9. The % of psd matrix produced by each estimator, when the efficient price process is produced
by alternative models.

SVF1 SVF2 Rough H.

Estimator MISE % SPSD MISE % SPSD MISE % SPSD

d = 2

GPDF 2.433 · 10−5 100% 2.441 · 10−3 100% 4.575 · 10−3 100%
LMM 6.799 · 10−5 100% 4.663 · 10−3 100% 6.020 · 10−3 100%
STS 9.345 · 10−5 100% 6.217 · 10−3 100% 6.995 · 10−3 100%

d = 5

GPDF 1.805 · 10−5 100% 1.496 · 10−3 100% 2.421 · 10−3 100%
LMM 4.022 · 10−5 100% 2.036 · 10−5 100% 3.640 · 10−3 100%
STS 7.002 · 10−5 100% 3.391 · 10−3 100% 4.473 · 10−3 100%

d = 10

GPDF 1.756 · 10−5 100% 6.802 · 10−4 100% 1.588 · 10−3 100%
LMM 3.670 · 10−5 100% 1.215 · 10−3 100% 2.036 · 10−3 99.98%
STS 7.287 · 10−5 100% 1.902 · 10−3 100% 3.654 · 10−3 99.95%

d = 15

GPDF 1.699 · 10−5 100% 5.185 · 10−4 100% 1.403 · 10−3 100%
LMM 3.476 · 10−5 100% 9.004 · 10−4 100% 1.890 · 10−3 99.64%
STS 6.995 · 10−5 100% 1.634 · 10−3 99.92% 3.338 · 10−3 99.74%
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Table 9. Cont.

SVF1 SVF2 Rough H.

Estimator MISE % SPSD MISE % SPSD MISE % SPSD

d = 20

GPDF 1.781 · 10−5 100% 4.561 · 10−4 100% 1.241 · 10−3 100%
LMM 3.286 · 10−5 100% 8.639 · 10−4 99.76% 1.703 · 10−3 99.55%
STS 6.994 · 10−5 99.56% 1.464 · 10−3 96.85% 3.263 · 10−3 98.23%

5. Empirical Study
In this section, we aim at using historical market data to comment, in a realistic

case of use, on the usability of the proposed GPDF estimator in real world applications,
complementing the analysis of the theoretical properties and finite sample performance
that was carried out in the previous sections. In particular, we focus on two topics at same
time: first, the stability of the estimation in the region of parameters identified as optimal
in Section 4.2, since a clear identification of the appropriate scenario for noise might be
challenging; second the speed of execution of the computation, in relation to the choice of
N and M.

The exercise is carried out on a selection of 12 firms traded on the NYSE, coming from
a variety of business sectors. In particular we consider: Accenture (ACN), American Tower
corporation (AMT), The Boeing Company (BA), ConocoPhillips (COP), General Electric
Company (GE), The Goldman Sachs Group (GS), Eli Lilly and Company (LLY), McDonald’s
Corporation (MCD), NextEra Energy (NEE), Netflix (NFLX), Nike (NKE) and Walmart
(WMT). The stocks, although all of them are from large companies, may exhibits different
liquidity profiles, thus creating a mixture of different specification of noise that might be
better captured in the most general form defined in Section 4.1.2. The selected stocks are
recorded at the trade frequency for the time horizon of one year, from January 2023 to
December 2023. Similar to the approach used in the previous sections, the volatility matrix
is estimated every 30 min for each of the 248 full trading days of the sample.

In Section 4.2, the optimal choice for cM in the presence of noise is consistently 0.5,
while the value of cN that minimize the MISE appears to lay in the range between 1 and 3,
thus we perform the estimation exercise focusing on cN ∈ {1, 2, 3} and cM ∈ {0.5, 1},
where cM=1 is added to evaluate the impact of moving to a different cM on the compu-
tational time and the impact of shifting to more sub-optimal parameterizations on the
estimation itself. Table 10 shows the results of this analysis. In particular, for each couple of
selected (cN , cM), it reports the computational time in seconds7 (computed as the average
time needed to estimate the trajectory of the volatility matrix in one day on the defined
time grid) and the average relative distance between the estimation and the baseline case
of cN = 3 and cM = 0.5, when the estimation is computed in the middle of the trading day
(i.e., in t = 0.5 for t ∈ [0, 1]) and the relative distance is defined as the ratio between the
Euclidean norm of the difference between the two estimations and the Euclidean norm of
the baseline case:

demp =
K

∑
k=1

||V̂0.5,k − V̂0.5,k
base ||

||V̂0.5,k
base ||

,

with K being the number of days in the sample.
Overall, the distance in estimation seems to be relatively close and, in most cases,

it is smaller or comparable to the relative difference observed in the simulation exercise
between the MISE of the GPDF and the ones of the alternative competitors. This confirms
that, in the region identified in the simulation study (and even for worsen values of cM),
the estimations appears to be sufficiently stable even when applied to empirical data.
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Table 10. Average computational time (in seconds) for estimation of volatility paths for different
couple of (cN , cM) and relative distance to baseline case (cN = 3, cM = 0.5).

(cN , cM) (1, 0.5) (2, 0.5) (3, 0.5) (1, 1) (2, 1) (3, 1)

avg. comp. time 1.0552 2.113 3.1014 1.0666 2.3161 3.6283
demp 0.2674 0.1298 0 0.3966 0.3404 0.3124

6. Conclusions
In the present paper, a modified version of the classical Fourier estimator for spot

covariance by Malliavin and Mancino (2009) has been proposed to overcome the difficulty of
obtaining symmetric and positive semi-definite estimation of the spot variance-covariance
matrix. We showed that the proposed estimator is positive semi-definite and consistent
with a suitable choice of the tuning parameters N, M. To the best of our knowledge, this is
the first non-parametric estimator of the spot covariance that guarantees the positiveness.
Based on the theoretical results obtained, a numerical study has been carried out to evaluate
the optimal choice of the parameters in a variety of settings. The optimal couple seems
to be quite stable, and, as usual for the class of the Fourier estimators, in the presence of
asynchronicity and noisy data, the parameter N should be reduced with respect to the
optimal no-noise case, which is the Nyquist frequency. Moreover, a thorough simulation
study has been carried out to evaluate the accuracy of the estimator and its actual ability
in producing psd estimations. Comparing the results with the ones of two alternative
estimators present in the literature, the STS and the LMM estimators, we found out that the
proposed PDF estimator usually outperforms the competitors in terms of mean square error
and is the only one that, in this study, was able to always produce psd estimations. The
simulation analysis was focused on many challenging aspects of high-frequency covariance
estimations, such as the dimensionality of the problem, the degree of asynchronicity
between assets and the presence of multiple specifications of market microstructure noise.
The robustness of our results are confirmed using alternative data generating processes.
The empirical exercise demonstrates the applicability of the method using real-world data.
Therefore, we believe that the PDF estimator of spot covariance may be more competitive
in terms of empirical applications due to its properties.
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Appendix A. Proof of Theorem 1
Let aj for j = 1, 2, 3 be arbitrary functions on Z, from the definitions of K and S(k) we

notice that:

∑
k∈K

∑
(s,s′)∈S(k)

a1(k)a2(s)a3(s′)

=
2N

∑
k=0

2N−k

∑
v=0

a1(k)a2(−N + k + v)a3(N − v) +
−1

∑
k=−2N

2N+k

∑
v=0

a1(k)a2(N + k − v)a3(−N + v) =: A + B.
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For the first term we have

A =
2N

∑
k=0

N

∑
u=k−N

a1(k)a2(k − u)a3(u)

=
N

∑
u=−N

u+N

∑
k=0

a1(k)a2(k − u)a3(u)

=
N

∑
u=−N

N

∑
u′=−N

a1(u + u′)a2(u′)a3(u),

where we set u = N − v in the first line, changed the order of the summations in the second
line, and put u′ = k − u. Similarly, using the convention that ∑−1

u=0 = 0, for the second term
we have

B =
−1

∑
k=−2N

N+k

∑
u=−N

a1(k)a2(k − u)a3(u)

=
N

∑
u=−N

−1

∑
k=u−N

a1(k)a2(k − u)a3(u)

=
N

∑
u=−N

−u−1

∑
u′=−N

a1(u + u′)a2(u′)a3(u).

Thus we see that

∑
k∈K

∑
(s,s′)∈S(k)

a1(k)a2(s)a3(s′) =
N

∑
u=−N

N

∑
u′=−N

a1(u + u′)a2(u′)a3(u).

When a1(k) = c(k)e2πikt, a2(s) = e−2πistj′ l′ and a3(s′) = e−2πistj
l , using the change of

variable u− → −u′, we obtain

V̂ j,j′
N (τ) =

nj

∑
l=1

nj′

∑
l′=1

N

∑
u=−N

N

∑
u′=−N

c(u − u′)e2πiu(τ−tj
l)e−2πiu′(τ−tj′

l′ )∆(X j
l )∆(X j′

l′ ).

Then, for x ∈ Cd

∑
j,j′

V̂ j,j′
N (τ)xjxj′

=
N

∑
u=−N

N

∑
u′=−N

(
d

∑
j=1

xj

nj

∑
l=1

e2πiu(τ−tj
l)∆X j

l

) d

∑
j′=1

xj

nj′

∑
l′=1

e−2πiu′(τ−tj′
l′ )∆X j′

l′


=

N

∑
u=−N

N

∑
u′=−N

f (u) f (u′) ≥ 0.

with f (u) =: ∑d
j=1 xj ∑

nj
l=1 e2πiu(τ−tj

l)∆X j
l . The proof is complete.

Appendix B. Proof of Theorem 2
For simplicity let j = 1, j′ = 2. By introducing the notation

φ
j
n(s) =

nj−1

∑
k=0

tj
k1

[tj
k ,tj

k+1)
(s), s ∈ [0, 1),
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we can rewrite V̂1,2
N,M

V̂1,2
N,M(t) =

1
2N + 1

∫
R

∫ 1

0
DN(t − φ1

n(s) + y)dX1
s

∫ 1

0
DN(t − φ2

n(u) + y)dX2
u µM(dy)

=
1

2N + 1

∫
R

∫ 1

0
DN(t − φ1

n(s) + y)DN(t − φ2
n(s) + y)V1,2(s)ds µM(dy)

+
1

2N + 1

∫
R

∫ 1

0

∫ s

0
DN(t − φ1

n(u) + y)DN(t − φ2
n(s) + y)dX1

udX2
s µM(dy)

+
1

2N + 1

∫
R

∫ 1

0

∫ s

0
DN(t − φ2

n(u) + y)DN(t − φ1
n(s) + y)dX2

udX1
s µM(dy).

We put

I(t) :=

1
2N + 1

∫
R

∫ 1

0

(
DN(t − φ1

n(s) + y)DN(t − φ2
n(s) + y)− DN(t − s + y)2

)
V1,2(s)dsµM(dy)

I I(t) :=

1
2N + 1

∫
R

∫ 1

0

∫ s

0
DN(t − φ1

n(u) + y)DN(t − φ2
n(s) + y)dX1

udX2
s µM(dy)

+
1

2N + 1

∫
R

∫ 1

0

∫ s

0
DN(t − φ1

n(s) + y)DN(t − φ2
n(u) + y)dX2

udX1
s µM(dy)

and

I I I(t) :=
1

2N + 1

∫ 1

0

∫
R

DN(t − s + y)2µM(dy)V1,2(s) ds − V1,2(t)

=
∫

R

∫ 1

0
F2N(t − s + y)(V1,2(s)− V1,2(t)) ds µM(dy),

where F2N is the Fejér kernel defined in Remark 1. Then,

V1,2(t)− V̂1,2
N (t) = I(t) + I I(t) + I I I(t).

The following L2-estimates of I(t), I I(t), and I I I(t) are true for any µM so far as 0 <

cM(k) < 1, which is true for the Gaussian case.

Lemma A1. We have

E
∫ 1

0
(I(t))2dt ≤ π2∥V∥2

∞ρ2
nN2 ∑

|k|≤2N
|cM(k)|2, (A1)

and, in the synchronous and regular case, when φ1
n ≡ φ2

n,

E
∫ 1

0
(I(t))2dt ≤ π2∥V∥2

∞ρ2
n ∑
|k|≤2N

|cM(k)|2k2. (A2)
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Proof. Since∫ 1

0
(I(t))2dt =

1
(2N + 1)2

∫
[0,1]3

dtdsdu
∫

R
µM(dy)

∫
R

µM(dy′)V1,2(s)V1,2(u)

× (DN(t − φ1
n(s) + y)DN(t − φ2

n(s) + y)− DN(t − s + y)2)

× (DN(t − φ1
n(u) + y′)DN(t − φ2

n(u) + y′)− DN(t − u + y′)2)

=
1

(2N + 1)2 ∑
−N≤k1,k2,k3,k4≤N

∫
R

e2πi(k1+k2)yµM(dy)
∫

R
e2πi(k3+k4)y′µM(dy′)

×
∫ 1

0
e2πi(k1+k2+k3+k4)tdt

∫ 1

0
(e−2πik1 φ1

n(s)−2πik2 φ2
n(s) − e−2πi(k1+k2)s)V1,2(s)ds

×
∫ 1

0
(e−2πik3 φ1

n(u)−2πik2 φ2
n(u) − e−2πi(k3+k4)u)V1,2(u)du,

we obtain (A1) once we establish

E
∫ 1

0
(e−2πik1 φ1

n(s)−2πik2 φ2
n(s) − e−2πi(k1+k2)s)V1,2(s)ds ≤ π∥V∥∞(|k1|+ |k2|)ρn. (A3)

To prove Equation (A3), we first observe that

|
∫ 1

0
(e−2πik1 φ1

n(s)−2πik2 φ2
n(s) − e−2πi(k1+k2)s)V1,2(s)ds|

≤ sup
t∈[0,1]

|V1,2(t)|
∫ 1

0
|1 − e2πi(k1(s−φ1

n(s))+ik2(s−φ2
n(s))|ds,

and ∫ 1

0
|1 − e2πi(k1(s−φ1

n(s))+ik2(s−φ2
n(s))|ds

≤ 2π
∫ 1

0
|k1(s − φ1

n(s)) + k2(s − φ2
n(s))|ds

≤ 2π|k1|
∫ 1

0
|s − φ1

n(s)|ds + 2π|k2|
∫ 1

0
|s − φ2

n(s)|ds.

Then, (A3) holds since

∫ 1

0
|s − φ

j
n(s)|ds =

nj−1

∑
k=0

∫ tj
k+1

tj
k

(s − tj
k)ds =

1
2

nj−1

∑
k=0

(tj
k+1 − tj

k)
2

≤
ρ(nj)

2

nj−1

∑
k=0

(tj
k+1 − tj

k) ≤
ρn

2

(A4)

for j = 1, 2.
For (A2), we just need

∫ 1

0
|1 − e2πi(k1(s−φ1

n(s))+ik2(s−φ2
n(s))|ds

≤ 2π|k1 + k2|
∫ 1

0
|s − φ1

n(s)|ds.
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Lemma A2. For the general case, it holds

E
∫ 1

0
(I I(t))2dt ≤ (4C∇ + 2∥V∥2

∞)
(

4π2ρ2
nN2 + (2N + 1)−1

)
∑

|k|≤2N
cM(k)2, (A5)

and, when tj
k = k/n for k = 0, 1, · · · , n, j = 1, 2,

∫ 1

0
E(I I(t))2dt ≤ 4C∇ + 2∥V∥2

∞
2N + 1 ∑

|k|≤N
cM(k)2. (A6)

Proof. We first show that

E[(I I(t))2] ≤ 4C∇ + 2∥V∥2
∞

(2N + 1)2

∫
[0,1]2

(G(s, u))2ds du, (A7)

where

G(s, u) ≡ G1,2(s, u) :=
∫

R
µM(dy)DN(t − φ1

n(s) + y)DN(t − φ2
n(u) + y).

Let

Aj,j′ :=
∫

R

∫ 1

0

∫ s

0
DN(t − φ

j
n(u) + y)DN(t − φ

j′
n (s) + y)dX j

udX j′
s µM(dy)

for j, j′ ∈ {1, 2}, so that

|I I(t)|2 =
1

(2N + 1)2 |A
1,2 + A2,1|2 ≤ 2

(2N + 1)2 (|A
1,2|2 + |A2,1|2).

Then, we have

E[|Aj,j′ |2]

=
∫

R2
µ⊗2

M (dydy′)
∫ 1

0
(DN(t − φ

j
n(s) + y)DN(t − φ

j
n(s) + y′)

× E
[

V j,j(s)
∫ s

0
DN(t − φ

j′
n (u) + y)dX j′

u

∫ s

0
DN(t − φ

j′
n (u) + y′)dX j′

u

]
ds

=
∫ 1

0

∫ s

0
(Gj,j′(s, u))2E[V j,j(s)V j′ ,j′(u)]duds

+
∫

R2
µ⊗2

M (dydy′)
( ∫ 1

0
(DN(t − φ

j
n(s) + y)DN(t − φ

j
n(s) + y′)

× E
[

V j,j(s)
∫ s

0

∫ u

0

(
DN(t − φ

j′
n (u) + y)DN(t − φ

j′
n (v) + y′)

+ DN(t − φ
j′
n (u) + y′)DN(t − φ

j′
n (v) + y)

)
dX j′

v dX j′
u

]
ds
)

.

By the Malliavin integration by parts formula,

E[V j,j(s)
∫ s

0

∫ u

0
DN(t − φ

j′
n (u) + y)DN(t − φ

j′
n (v) + y′)dX j′

v dX j′
u ]

=
∫ s

0
DN(t − φ

j′
n (u) + y)E[σj′(u)∇sV j,j(u)

∫ u

0
DN(t − φ

j′
n (v) + y′)dX j′

v ]du

=
∫ s

0
DN(t − φ

j′
n (u) + y)

∫ u

0
E[σj′(v)∇v(σ

j′(u)∇sV j,j(u))]DN(t − φ
j′
n (v) + y′)dvdu.
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Then applying Malliavin integration by parts formula again, we see that

∫ 1

0
ds
∫

R2
µ⊗2

M (dydy′)(DN(t − φ
j
n(s) + y)DN(t − φ

j
n(s) + y′)

E[V j,j(s)
∫ s

0

∫ u

0

(
DN(t − φ

j′
n (u) + y)DN(t − φ

j′
n (v) + y′)

+ DN(t − φ
j′
n (u) + y′)DN(t − φ

j′
n (v) + y)

)
dX j′

v dX j′
u ]

= 2
∫ 1

0

∫ s

0

∫ u

0
Gj,j′(s, u)Gj,j′(s, v)E[σj′(v)∇v(σ

j′(u)∇sV j,j(u))]dvduds

≤ 2C∇

∫ 1

0

∫ s

0

∫ u

0
|Gj,j′(s, u)Gj,j′(s, v)|dvduds

≤ C∇

∫
[0,1]2

(Gj,j′(s, u))2duds.

Thus we obtain (A7).
We proceed to prove (A5) and (A6). Observe that∫

[0,2π]3
(G(s, u))2dudsdt

=
∫
[0,2π]2

dsdu
∫

R2
µ⊗2

M (dydy′)

∑
−N≤k1,k2,k3,k4≤N

e2πi(k1+k2+k3+k4)te−2πi(k1+k2)φ1
n(s)−2πi(k3+k4)φ2

n(u)e2πi(k1+k3)y+2π(k2+k4)y′

= ∑
−N≤k1,k2,k3,k4≤N

k1+k2+k3+k4=0

cM(k1 + k3)cM(k2 + k4)
∫ 1

0
e−2πi(k1+k2)(φ1

n(s)−s)ds
∫ 1

0
e−2πi(k3+k4)(φ2

n(s)−s)ds.

(A8)

When tk ≡ k/n, we have

∫ 1

0
e2πikφ(s)ds =

1
n

n−1

∑
l=0

e
2πilk

n = 1{k=0},

hence we obtain (A6). For the general case, we have

∫ 2π

0
e2πikφ(s)ds =

∫ 1

0
(e2πikφ(s) − e2πiks)ds +

∫ 1

0
e2πiksds

=
∫ 1

0
(e2πikφ(s) − e2πiks)ds + 1{k=0}.

By (A4), we obtain (A5).

Lemma A3.

E
∫ 1

0
(I I I(t))2dt ≤ 2Cκ

(
(2N)−2κ + sup

0<|k|≤2N

(
1 − cM(k)

|k|2

)κ
)

. (A9)

Proof. We first note that

1
2π

∫ 2π

0
(I I I(t))2dt

= ∑
|k|>2N

|(FV)(k)|2 + ∑
−2N≤k≤2N

(
1 − (1 − |k|

2N + 1
)cM(k)

)2

|(FV)(k)|2,
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and

∑
|k|>2N

|(FV)(k)|2 ≤ (2N)−κ ∑
|k|>2N

|k|2κ |(FV)(k)|2. (A10)

On the other hand, since 0 < cM(k) < 1,

0 < 1 − (1 − |k|
2N + 1

)cM(k) < 1,

we have (
1 − (1 − |k|

2N + 1
)cM(k)

)2

≤ 2(1 − cM(k))2 + 2(
|k|

2N + 1
cM(k))2

≤ 2(1 − cM(k))κ + 2
(
|k|cM(k)
2N + 1

)2κ

,

and therefore we have

∑
−2N≤k≤2N

(
1 − (1 − |k|

2N + 1
)cM(k)

)2

|(FV)(k)|2

≤ 2

(
sup

0<|k|≤2N

(
1 − cM(k)

|k|2

)κ

+ (2N + 1)−2κ

)
∑

−2N≤k≤2N
|k|2α|(FV)(k)|2.

(A11)

Combining (A10) and (A11), we get (A9) by the assumption (9).

Now we are ready to prove Theorem 2

Proof of Theorem 2. First we prove (i) and (ii). We now set

cM(k) = e−
2π2k2

M .

Then,

∑
|k|≤2N

|cM(k)|2 ≤ 2
2N

∑
k=1

∫ k

k−1
e−

2π2x2
M dx =

∫
R

e−
2π2x

M dx =

√
M
2π

and

∑
|k|≤2N

|cM(k)|2k2 ≤ 2
2N

∑
l=0

∫ l+1

l
(x + 1)2e−

2π2x2
M dx

=
∫

R
(x + 1)2e−

2π2x2
M dx =

√
M
2π

(
M

4π2 + 1
)

.

Further, we have

1 − cM(k)
|k|2 =

1 − e−
2π2k2

M

|k|2 ≤ 2π2

M

so that

sup
0<|k|≤2N

(
1 − cM(k)

|k|2

)κ

≤
(

2π2

M

)κ

.
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We prove now (iii) and (iv). If N ≍ ρ−α
n and M ≍ ρ

−β
n , we have

ρ2
nN2

√
M
2π

≍ ρ
2−2α− β

2
n ,

(2N + 1)−1

√
M
2π

≍ ρ
α− β

2
n ,

2Cκ(2N)−2κ ≍ ρ2κα
n . 2Cκ

(
2π2

M

)κ

≍ ρ
κβ
n ,

and

ρ2
n

√
M
2π

(
M
4

+ π2
)
≍ n2− 3β

2 .

Finally, in order to attain the consistency of the proposed estimator under the general
sampling scheme, we need to assume

2 − 2α − β

2
> 0, α >

β

2
, α > 0, β > 0,

which is equivalent to the condition (12). In such a case κβ < 2κα.
When the sampling is synchronous and regularly spaced, the necessary condition for

consistency clearly becomes (13).

Appendix C. Additional Results of Comparison for Alternative Models

Table A1. The % of psd matrix produced by each estimator, when the efficient price process is
produced by alternative models, in presence of i.i.d. noise.

Estimator SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH

d = 5, ση = 1 d = 5, ση = 1.5 d = 5, ση = 2 d = 5, ση = 2.5

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 100% 100% 100% 100% 99.92% 99.53% 97.12% 94.18% 95.06%
STS 100% 100% 100% 100% 100% 100% 100% 99.76% 99.62% 98.53% 96.64% 98.01%

d = 10, ση = 1 d = 10, ση = 1.5 d = 10, ση = 2 d = 10, ση = 2.5

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 100% 99.84% 100% 100% 99.58% 99.13% 95.33 90.27% 86.01% 86.83%
STS 99.68% 99.93% 99.95% 98.82% 98.71% 98.55% 87.86% 89.35% 88.16% 55.23% 49.79% 59.43%

d = 15, ση = 1 d = 15, ση = 1.5 d = 15, ση = 2 d = 15, ση = 2.5

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 99.98% 99.97% 99.74% 99.63% 99.15% 98.02% 98.31% 78.15% 10.71% 76.37%
STS 96.69% 99.35% 96.93% 76.07% 72.45% 75.91% 34.70% 29.01% 28.72% 6.95% 7.44% 8.26%

d = 20, ση = 1 d = 20, ση = 1.5 d = 20, ση = 2 d = 20, ση = 2.5

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 100% 99.99% 99.94% 98.38% 99.07% 97.21% 95.80% 95.99% 66.13% 62.74% 64.50%
STS 64.78% 67.24% 65.87% 12.89% 12.45% 16.93% 4.33% 2.47% 0.98% 0.0% 0.0% 0.0%
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Table A2. The % of psd matrix produced by each estimator, when the efficient price process is
produced by alternative models, in presence of general noise.

Estimator SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH SV1F SV2F RH

d = 5, g = 0.3, w = 0.3 d = 5, g = 0.3, w = 0.9 d = 5, g = 0.45, w = 0.3 d = 5, g = 0.45, w = 0.9

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 99.98% 99.84% 98.43% 98.21% 98.02% 93.21% 90.42% 90.16% 99.86% 98.41% 97.62%
STS 99.01% 99.73% 99.61% 98.23% 98.11% 99.04% 99.16% 99.73% 99.88% 98.90% 98.75% 99.00%

d = 10, g = 0.3, w = 0.3 d = 10, g = 0.3, w = 0.9 d = 10, g = 0.45, w = 0.3 d = 10, g = 0.45, w = 0.9

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 99.56% 99.58% 95.86% 95.92% 96.02% 79.20% 80.11% 81.56% 91.25% 89.37% 90.84%
STS 92.80% 93.04% 93.52% 79.23% 73.21% 80.01% 90.93% 89.15% 89.37% 76.41% 74.86% 77.75%

d = 15, g = 0.3, w = 0.3 d = 15, g = 0.3, w = 0.9 d = 15, g = 0.45, w = 0.3 d = 15, g = 0.45, w = 0.9

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 100% 98.12% 99.03% 85.48% 88.23% 90.03% 68.21% 67.39% 68.98% 80.16% 77.56% 81.43%
STS 51.67% 45.47% 50.93% 45.88% 43.92% 45.78% 39.66% 35.31% 37.40% 79.65% 38.04% 39.61%

d = 20, g = 0.3, w = 0.3 d = 20, g = 0.3, w = 0.9 d = 20, g = 0.45, w = 0.3 d = 20, g = 0.45, w = 0.9

PDF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LMM 99.98% 96.15% 98.78% 84.38% 81.51% 85.00% 53.11% 52.05% 55.15% 75.82% 74.83% 72.68%
STS 8.99% 7.15% 8.01% 21.67% 21.42% 12.89% 4.57% 3.66% 3.01% 75.43% 14.38% 15.02%

Notes
1 Hereafter, we accept abuse of notation by denoting the estimator V̂ j,j′

nj ,nj′ ,N,M(t) as V̂ j,j′
n,N,M(t).

2 Here the notation V̂ j,j′
N,M(t) highlights the dependence on the two parameters N, M.

3 The fact that the drift does not contribute to the asymptotics can be proved analogously as in Malliavin and Mancino (2009).
4 Here an ≍ bn means both lim supn→∞ an/bn and lim supn→∞ bn/an are finite.
5 Since all the simulations are conducted under irregularly-spaced and asynchronous observations, we follow point (iii) of

Theorem 2. Moreover, for the the Heston, the SVF1 and the SVF2 models the Hölder parameter is κ = 1
2 , while the Rough Heston

model it depends on the chosen Hurst exponent.
6 Note that, according with Theorem 1, the semi-definite positiveness of the proposed estimator is granted when the optimal

cutting frequency N is the same for each spot volatility-covariance entries estimates.
7 Computations are performed using a machine with 2.30 GHz clock speed Intel i7-11800H, 16 GB RAM on Arch Linux kernel

6.14.10-arch1-1 with MATLAB R2024a update 6.
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