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Abstract: Population events such as natural disasters, pandemics, extreme weather, and wars might
cause jumps that have an immediate impact on mortality rates. The recent COVID-19 pandemic
has demonstrated that these events should not be treated as nonrepetitive exogenous interventions.
Therefore, mortality models incorporating jump effects are particularly important to capture the
adverse mortality shocks. The mortality models with jumps, which we consider in this study, differ
in terms of the duration of the jumps–transitory or permanent–the frequency of the jumps, and
the size of the jumps. To illustrate the effect of the jumps, we also consider benchmark mortality
models without jump effects, such as the Lee-Carter model, Renshaw and Haberman model and
Cairns-Blake-Dowd model. We discuss the performance of all the models by analysing their ability to
capture the mortality deterioration caused by COVID-19. We use data from different countries to
simulate the mortality rates for the pandemic and post-pandemic years and examine their accuracy
in forecasting the mortality jumps due to the pandemic. Moreover, we also examine the jump-free
and jump models in terms of their impact on insurance pricing, specifically term annuity and life
insurance present values calibrated for both pre- and post-COVID data.

Keywords: COVID-19; mortality modelling; mortality jump models; renewal process; insurance
pricing

1. Introduction

In an aging world, the accurate modelling of human mortality becomes crucial due
to demographic transitions, catastrophic events, healthcare advancements, and societal
shifts. Mortality models examine the factors influencing life expectancy, enabling pension
plans, insurers, and actuaries to make informed decisions regarding healthcare planning,
pension systems, and societal well-being. Since the early 1990s, researchers have developed
numerous stochastic models to capture and quantify the patterns of human mortality over
time. These models include the Lee–Carter model, its extensions and alternatives (Brouhns
et al. 2002; Lee and Carter 1992; Renshaw and Haberman 2006), the P-splines model (Currie
et al. 2004), and the Cairns–Blake–Dowd model (Cairns et al. 2006, 2007).

However, recent decades have witnessed significant changes in mortality rates in many
countries. Generally, there has been an improving trend, but for some, the last 10 to 20 years
have seen either a slowdown or even a reversal of some of these improvements, further
disrupted by the COVID pandemic (Cairns 2023). Catastrophic events, such as COVID-19,
are referred to as mortality risks, and they may cause sudden increases in mortality rates
over certain periods of time, while these events are infrequent, their occurrences could lead
to numerous death claims and mortality jumps on the mortality curve.

Particularly, COVID-19 has highlighted the crucial consequences of these catastrophic
events and emphasised the importance of preparing for future outbreaks. Hence, it is
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essential to incorporate mortality jumps in the modelling process. Although many mortality
models without jump effects exist, only a few have been developed that consider mortality
jump effects with a focus on the time series properties of mortality. These include Chen and
Cox (2009), Cox et al. (2006), Deng et al. (2012), and Özen and Şahin (2020), which differ in
terms of the duration of the jumps–transitory or permanent–frequency of the jumps, and
size of the jumps.

To provide a comprehensive overview, Regis and Jevtic (2022) also present a review
of single and multi-population continuous time mortality models with and without jumps.
Specifically, they focus on multi-population mortality models with jumps since these
models are needed to describe the heterogeneous impact of mortality shocks across cohorts
of individuals. An example of a discrete time two-population model with jump effects can
be found in Özen and Şahin (2021).

Acknowledging the dynamic nature of global mortality trends and the significant
impact of events like the COVID-19 pandemic, this study aims to assess the efficacy of
mortality models. We aim to compare and discuss the performance of mortality mod-
els, both with and without jump effects, analysing their ability to capture the mortality
deterioration caused by COVID-19. The mortality models without jump effects include
the Lee–Carter model, Renshaw and Haberman model, and Cairns–Blake–Dowd model.
In contrast, the Lee–Carter model with permanent jump effects, transitory jump effects,
exponential transitory jumps, and renewal process effects are employed as the mortality
models with jump effects. We utilise mortality data from various countries obtained from
the Human Mortality Database (2023) (HMD). Given that COVID-19 is a potential cause
for a jump in the mortality curve, our primary objective is to identify the mortality models
that can accurately forecast COVID deaths from 2020 onward. To achieve this, we initially
fit the models to the pre-COVID data and forecasted the pandemic and post-pandemic
years. We compared the performance of the models considering both in-sample and out-
of-sample forecasting, analysed the estimated parameters, and focused specifically on the
time-dependent parameter in which the explicit jumps were added for the mortality jump
models discussed.

Furthermore, we present the valuation of mortality-related insurance products, such as
term life annuity and life insurance, using both the jump-free and jump models calibrated
for pre- and post-COVID data.

The remainder of this paper is structured as follows: Section 2 describes the mortality
models utilised in this study. Section 3 presents the results and compares the models in
terms of model parameters, model fits, in-sample, and out-of-sample forecasts. Section 4
provides the impact of the pre- and post-COVID calibration of the jump-free and jump mod-
els on the valuation of mortality-related insurance products. Finally, Section 5 introduces
new directions of research and concludes the paper.

2. Mortality Models

This section introduces the mortality models considered in this study. To provide a
comprehensive analysis of mortality jump models and their performance in forecasting
COVID-19 deaths, we compare them with the Lee and Carter (1992) (LC) model with
random walk, which serves as the benchmark model. Additionally, we include the Renshaw
and Haberman (2003) (RH) model as a representative of age-period-cohort (APC) models
and the Cairns et al. (2006) (CBD) model as the two-factor mortality model.

2.1. The Lee–Carter Model

The Lee–Carter model describes the logarithm of central death rates as follows:

ln(mx,t) = αx + βxκt (1)

Here, αx represents the average of ln mx,t over time t, κt captures the long-term im-
provements of mortality, and bx measures the age sensitivity of mortality as κt changes.
The model parameters are estimated using a two-stage singular value decomposition. To
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ensure a unique solution for the parameters, the estimation method requires the following
identifiability constraints:

∑
x

βx = 1 and ∑
t

κt = 0.

The estimation process involves two stages. Firstly, the singular value decomposition
method is applied to the ln(mx,t)− αx matrix to obtain the estimates of βx and κt. In the
second stage, given the αx and βx, the κt parameters are re-estimated. This step ensures
equality between the actual sum of deaths at time t and the implied sum of deaths at time t.

Dt = ∑
x
(Px,t exp(αx + βxκt))

where Dt gives the actual sum of deaths at time t, and Px,t is the population in age group x
at time t.

In this paper, following Brouhns et al. (2002) and using the StMoMo R Package (Villegas
et al. 2018), we employ the MLE method to estimate the parameters. We fit the Lee–Carter
model assuming a Poisson distribution of the number of deaths, using the log link function
to target the force of mortality µx,t. Hence, the predictor ηx,t is given by the following:

ηx,t = αx + βxκt

We adopted the notation from Villegas et al. (2018). In the original Lee–Carter model,
the κt parameters are modelled using a random walk with drift, as in Equation (2):

κt+1 = κt + µ + σZt+1 (2)

where Zt+1 has a standard normal distribution.
The Lee–Carter model with a random walk κt is considered as a benchmark model in

this paper.

2.2. Renshaw and Haberman Model

As a second model, we use the age-period-cohort model proposed by Renshaw and
Haberman (2003), which is an extension of the Lee–Carter model.

ηx,t = αx + βxκt + γt−x (3)

Here, γt−x represents the cohort effect. Mortality projections for this model are
obtained by forecasting the time series of the estimated κt and γt−x as univariate ARIMA
processes under the assumption of independence between the period and cohort effects.

2.3. Cairns–Blake–Dowd Model

Cairns et al. (2006) proposed a mortality model with two age-period terms with pre-
specified age-modulating parameters β

(1)
x = 1 and β

(2)
x = x − x̄, no cohort effect, and no

static age function. The CBD model is given as follows:

ηx,t = κ
(1)
t + (x − x̄)κ(2)t , (4)

where x̄ is the average age in the data. The period effects κ
(1)
t and κ

(2)
t are modelled by

using a bivariate random walk with drift to obtain mortality forecasts (Villegas et al. 2018).

2.4. Jump Effect Models as Extensions to the Lee–Carter Model

While the Lee–Carter model is inherently designed for long-term mortality analysis,
its time-varying mortality index must incorporate short-term effects to enhance the efficacy
of mortality modelling. This necessity has led to the introduction of jump effect models.
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In this section, we will present one permanent jump model and two transitory jump
models. These models are regarded as extensions of the Lee–Carter model, as they specifi-
cally address the time-varying parameter κt and incorporate explicit jump effects.

Although our study primarily focuses on jump extensions of the Lee–Carter model, it
is important to note the recent literature on extensions of the CBD and RH (APC) models to
include jumps. Venter (2022) proposes an ’event jump model’ as an extension to the RH
model, introducing a proportional jump to mortality rates that varies by year and represents
a constant percentage increase across ages and cohorts. In this model, higher-mortality
groups experience the most significant increases in the number of deaths, although all
groups are affected. Each year is assigned a jump factor, but these may be negligibly small
for normal years. The paper fits mortality curves across age, cohort, and time parameters
using regularized smoothing splines, with fit quality assessed using cross-validation criteria.
In two more recent papers, Richards (2023) and Schnürch et al. (2022), the APC and CBD
model have been adapted to include COVID jumps along with the others. Richards (2023)
focuses on the robustification of forecasts for different types of mortality models, including
the CBD model. They identify outliers in the residuals, co-estimate outlier effects with other
parameters to remove bias and distortion from the forecasts caused by mortality shocks,
providing a robust starting point for projections. On the other hand, Schnürch et al. (2022)
induce a log-parallel shift to the CBD model, calibrate the time-dependent parameters by
linear regression, and obtain forecasts via a two-dimensional random walk with drift for
five-group age ranges starting at 60.

2.4.1. κt with Permanent Jump Effect

Cox et al. (2006) proposed a mortality model with permanent jump effects, combining
geometric Brownian motion and a compound Poisson process. However, we consider the
model in a discrete-time setting, following Chen and Cox (2009), for the consistency of
model comparisons.

Therefore, let Nt denote the number of jumps occurring in year t. For simplicity, it is
assumed that there is at most one jump event in each year, with the probability of a jump
being p; that is, as follows:

N =

{
1, with probability p,
0, with probability 1 − p.

The jump severity variable, Y, is identically and independently distributed normal
variables with mean m and standard deviation s. Moreover, Y and N are independent.

As in Chen and Cox (2009), the evolution of the mortality index κt with permanent
jump effects can be written as follows:

κt+1 =

{
κt + µ − pm + σZt+1, if Nt+1 = 0,
κt + µ − pm + σZt+1 + Yt+1, if Nt+1 = 1,

(5)

where µ and σ are constants, and Zt is a standard normal random variable that is indepen-
dent of Y and N.

2.4.2. κt with Transitory Jump Effect

In the permanent jump model, if a jump event occurs in year t + 1, the size of the jump
Yt+1 is incorporated into the mortality factor κt+1, and this jump effect persists indefinitely.
However, many of these jumps are attributed to short-term catastrophic events, resulting
in a transient impact on the mortality curve. Therefore, mortality models with transitory
jump effects are deemed more suitable for modelling extreme mortality risks.

We consider the transitory jump effects as proposed by Chen and Cox (2009). In their
model, the mortality factor is modelled as follows:
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{
κ̃t+1 = κ̃t + µ + σZt+1

κt+1 = κ̃t+1 + Yt+1Nt+1
(6)

where κ̃t denotes the jump-free mortality factor, and κt is the actual mortality factor includ-
ing jumps.

Equation (6) indicates that extreme mortality events only have an impact on κt+1, not
on κ̃t+1. Therefore, if a mortality jump occurs in a given year, it will revert to the normal
mortality level shortly thereafter.

2.4.3. κt with Exponential Transitory Jumps and Renewal Process Effect

The model with exponential jumps and a renewal process is proposed by Özen and
Şahin (2020). The originality of the model lies in employing the renewal process instead of
the Poisson process. In the Poisson process, waiting times between mortality jumps are
constant, meaning that the occurrence of previous catastrophic events has no impact on the
likelihood of the next event. To incorporate the history of events, one approach is to consider
the renewal process, featuring a time-varying hazard function reflecting the waiting times
between catastrophic events. An increasing hazard function indicates longer waiting times
between events than a decreasing hazard function. In these models, waiting times between
catastrophic events are no longer constant; however, the occurrence of at least one event
(versus none) up to time t influences the probability of another event’s arrival in t + ∆t by
the time-varying hazard function. Hence, by employing the renewal process, we aim to
integrate the history of catastrophic events into the mortality modelling process.

In the proposed model, the mortality factor is modelled as follows:

κt = κ0 +

(
µ − 1

2
σ2 − δθ

)
t + σZt +

Nt

∑
i=1

Yi (7)

where Zt is standard Brownian motion, and Nt is a renewal process with parameters α
and β. The expected value of the process would give the expected frequency of the jumps.
Here, Yi denotes a sequence of independent and identically distributed exponential random
variables representing the size of the jumps with parameter η. The terms δ and θ denote
the expected value of the jump size and the jump frequency, respectively.

In the renewal process, to calculate jump probabilities, we need to specify the distri-
bution of the inter-arrival times between mortality jumps. Therefore, we must first detect
the mortality jumps on the mortality curve. This is achieved by employing the method
proposed by Chen and Liu (1993) to identify outliers in the mortality index. The outlier
detection approach classifies the outliers into four categories based on their impacts on
the time series. In this study, we focus on the additive outliers since they have one short
and immediate effect on the time series (Chen and Cox 2009). After performing the outlier
detection process and obtaining the additive outliers on the mortality curve, as in Li and
Chan (2005), we consider the events as outliers that are greater than the critical value of
C = 2.5. Thereafter, we need to specify the inter-arrival times between these events. The
years of detected outliers and their test statistics are shown in Table 1. Subsequently, we
determine the distributions of the inter-arrival times of jumps to make predictions for
future expected frequencies of outliers (for model details, refer to Özen and Şahin 2020).

However, this process requires a decent sample size for distribution fitting. The
detected outliers are given in Table 1, showing seven outliers for Spain, Sweden, and
Switzerland, five for Denmark, three for the UK, and two for Japan. This indicates that the
size of the data to fit a distribution for inter-arrival times is six for three countries in the
best case. It is still too few to fit a distribution properly.



Risks 2024, 12, 53 6 of 24

Table 1. The years of the detected outliers and the time series models of the mortality indices for the
countries (up to 2019).

Denmark Time Series Model ARIMA(1,1,0) MAPE 46.14
(1900–2019)

Years 1909 1921 1977 2011 2019

Japan Time Series Model ARIMA(0,2,2) MAPE 90.97
(1947–2019)

Years 1949 1957

Spain Time Series Model ARIMA(1,1,0) MAPE 44.82
(1908–2019)

Years 1918 1919 1942 1952 1958 1972 2016

Sweden Time Series Model ARIMA(1,0,0) MAPE 49.91
(1908–2019)

Years 1917 1919 1920 1921 2003 2018 2019

Switzerland Time Series Model ARIMA(1,1,0) MAPE 38.75
(1912–2019)

Years 1918 1919 1921 1923 1950 1964 2016

UK Time Series Model ARIMA(1,1,2) MAPE 48.16
(1922–2019)

Years 1931 1942 1944

The literature on the distribution of the inter arrival times suggests lognormal, Weibull,
and gamma distributions (McShane et al. 2008). Due to the small number of jumps and
hence inter-arrival times, we consider the distributions proposed by the existing literature
and compare the log-likelihoods and BICs of the overall model for each distribution. Then,
we choose the distribution for the inter-arrival times that provides the best fit for each
country. Therefore, the analysis reveals that the distributions of inter-arrival times are
lognormal for Denmark and Switzerland and Weibull for Japan, Spain, Sweden, and
the UK.

Based on the specified distribution, convolution methods are used to obtain the jump
frequencies in the renewal process. Let P(n) be the probability of n jumps occurring in the
given time. Moreover, F(t) and f (t) are the distribution and density functions of the inter-
arrival times between jumps. Then, the jump probabilities are obtained by P(0) = 1 − F(t)
and P(n) =

∫ t
0 Pn−1(t − s) f (s)ds (for more details, see Özen and Şahin 2020).

Table 1 presents the years of the detected outliers for Denmark, Japan, Spain, Sweden,
Switzerland, and the UK after fitting time series models to the obtained κt values using the
Lee–Carter model. It is crucial to note that the detected years are subject to change due to
the fitted time series model. We selected the best-fitting models, which are outlined in the
table. The provided years for outliers, hence, mortality jump years, are determined based
on the residuals from the given time series models. Notably, for Japan, those two jumps
coincide with the Fukui earthquake (1948) and Isahaya flood (1957); for Spain, we observed
seven jumps—1918–1919 represents the Spanish flu, and 1942 represents the Civil War.
Likewise, for Sweden and Switzerland, we observed seven jumps—1918–1919 represents
the Spanish flu. In the case of the UK, three jumps are observed, with 1944 representing
World War II. Table 1 also presents the mean absolute percentage errors (MAPE) for each
country. As demonstrated in the next section, κt over time for Japan during the fitted
period is notably smooth compared to the other countries, suggesting minimal indications
of jumps in the mortality index.

In Table A1, we utilised all available up-to-date data for six countries to observe and
compare the number of jumps and jump years in pre- and post-COVID periods. For Spain,
Sweden, Switzerland, and the UK, the COVID pandemic caused statistically significant
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jumps based on the outlier analysis discussed above. The inclusion of the COVID years
either increased the number of observed jumps or changed the observed jump years while
keeping the number of jumps the same for the time index parameter.

3. Results and Discussion

This section presents results from different models for each country to compare and
discuss their fits to the historical data and the performance of the models for forecasting
COVID-19 deaths from 2020 onward.

3.1. Model Comparisons
3.1.1. Parameter Estimation Process

It is useful to provide an explanation of the estimation process using the jump models
considered in this study. As described in Chen and Cox (2009) and Özen and Şahin (2020),
the estimation procedure involves multiple stages. First, the Lee–Carter model is fitted
to the data by assuming a Poisson distribution for total death counts in year t. Using the
maximum likelihood method, we estimate the parameters for the Lee–Carter model. We
used the R StMoMo package (Villegas et al. 2018) with a log link function to estimate the Lee–
Carter parameters. Once κt is estimated, we take the values as a time series and fit the jump
processes introduced in three different jump models. For the discretised permanent jump
and the transitory jump models, the parameters associated with the jump effects and the
random walk with drift are estimated using the method of conditional maximum likelihood.
For the transitory jump model with a renewal process and exponential jumps, we used
specified distributions for inter-arrival times and then applied the convolution method
to obtain the jump frequencies in the renewal process using the conditional maximum
likelihood method. We do not re-estimate αx and βx in any of these processes after the κt is
modelled using jump processes. The original Lee–Carter αx and βx estimates have been
used for all forecasts and diagnostic checks throughout.

Moreover, in none of these jump models has the age pattern of mortality jumps
been considered. Jumps vary by time and are the same for all ages, which may not be
realistic for some catastrophic events. However, the multiple-stage estimation process
described above is convenient and less complicated under these circumstances. On the
other hand, as discussed in Liu and Li (2015), all relevant parameters can be estimated in
a single estimation algorithm, as suggested by Haberman and Renshaw (2012) in Route
II methodology. Considering the structures of the jump models discussed above, this
approach is beyond the scope of this paper.

3.1.2. Fitted κt Parameters

Firstly, we present the κt parameters obtained from the fitted LC model for each
country and proceed to compare these estimates with those derived from the following
three distinct jump models: κt with a permanent jump, κt with a transitory jump, and κt
with a renewal process.

Figure 1 visually represents the comparison, highlighting that the κt parameters
obtained from the transitory jump models exhibit a closer alignment with the original LC
parameters across all examined countries. This observation is also supported by the MAPE
values presented in Table 2.

The utilisation of jump models is particularly insightful, as they contribute to the
production of smoother κt trajectories by explicitly incorporating jumps in the mortality
time index. A smoother trajectory that closely mirrors the LC parameter is indicative of a
superior fit.

As demonstrated in Figure 1, the permanent jump model consistently and notably
underestimates the time-dependent parameters in Spain, while frequently overestimating
κt for Denmark, Sweden, Switzerland, and the UK in comparison to the LC parameter.
In contrast, both transitory jump models yield more accurate fits. The renewal process
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utilising the exponential jump model is particularly noteworthy, as it generates trajectories
that closely correspond to the LC parameter across all six countries.
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Figure 1. κt Parameters for LC and mortality jump models for different countries.
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Table 2. Estimated MAPE values for κt parameters for six countries (up to 2019).

Country Permanent Jumps Transitory Jumps Transitory Jumps & Renewal Process

Denmark 1.4054 1.0077 0.3170

Japan 2.0522 2.7480 1.8036

Spain 3.0178 1.1210 0.4981

Sweden 0.9383 2.6750 0.7685

Switzerland 0.6871 0.2040 0.2951

The UK 0.9079 0.3451 0.5801

It is crucial to acknowledge that, in the case of Japan, the limited number of jumps
during the considered period complicates the applicability of any of the jump models.
Consequently, none of the models appear to be ideal for this specific scenario. This obser-
vation highlights the intricate challenges inherent in mortality jump modelling, especially
in situations where jump occurrences are sparse and jump sizes are relatively small.

3.1.3. Bayes Information Criterion

The Bayes information criterion (BIC) serves as a means to compare models and
discern which one better fits the data. A key aspect of BIC is its ability to compare models
that are not necessarily nested.

The BIC for mortality models is defined as follows:

BIC = l(ϕ̂)− 1
2

υ log N (8)

Here, ϕ denotes the parameter vector, and ϕ̂ stands for its maximum likelihood
estimate. In this context, l(ϕ̂) represents the maximum likelihood, N is the number of
observations, and υ is the number of parameters estimated from the mortality models
(Cairns et al. 2007).

To determine which jump effect better fits the mortality data, we initiate the compari-
son by examining the mortality time indices (for estimated κts), parameter estimations, and
BIC values obtained for those κts in Table 3. Subsequently, we extend our comparison to
encompass all jump-free and jump models, evaluating their overall BIC values (not limited
to κts alone) as presented in Table 4. It is noteworthy that a higher BIC value indicates a
better fit.

Table 3 presents a comparative analysis between the Lee–Carter with random walk
(LC-RW) model and three jump models, all fitted to the κt parameters derived from the
benchmark LC model and its derivatives. Among these models, the two transitory jump
models exhibit superior fits, as evidenced by their lower BIC values, in contrast to both the
LC-RW (except Japan for one of the models) and permanent jump model. It is essential to
note that while the differences in BIC values may seem substantial, a more dependable basis
for comparing the performance of the models is provided by the mean absolute percentage
errors (MAPE), which is discussed in the following subsection. In Table A2, we utilised
all available up-to-date data for six countries to observe changes in model parameters
and in-sample fits for pre- and post-COVID periods. The results indicate that although
including COVID data changed the parameters, the performance of the models did not
change significantly.

On the other hand, Table 4 offers a more detailed comparison among three jump-free
models, namely, LC-RW, RH, and CBD, and three jump models derived from the LC model.
This comparison is facilitated by presenting the overall model BICs and MAPEs. Given
the diverse structures of the models, the BIC values appear quite distinct. However, it is
evident that, in general, and particularly with transitory jump models, the jump models
consistently outperform the benchmark jump-free models.
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Table 3. Estimated model parameters for six countries (up to 2019).

Country LC-RW Permanent Jumps Transitory Jumps Transitory Jumps &
Renewal Process

Denmark µ = −1.9014 p = 0.6704 p = 0.8484 µ = −0.2016
(1900–2019) σ = 3.6579 µ = −0.2999 µ = −0.2492 σ = 0.0066

σ = 0.4500 σ = 0.0005 α = 0.4062
m = −5.3217 m = −2.2926 β = 0.4095

s = 1.6999 s = 3.4992 η = 1.6920
BIC = −327.96 BIC = −442.84 BIC = −310.67 BIC = −52.49

Japan µ = −3.4238 p = 0.2668 p = 0.5781 µ = −0.6840
(1947–2019) σ = 3.4061 µ = −0.7998 µ = −0.8549 σ = 0.0162

σ = 0.4549 σ = 0.3548 α = 7.53763
m = −4.9992 m = −2.6991 β = 8.23064

s = 0.6998 s = 1.0999 η = 0.29636
BIC = −194.69 BIC = −524.00 BIC = −253.92 BIC = −114.70

Spain µ = −2.4130 p = 0.3239 p = 0.4921 µ = −0.7110
(1908–2019) σ = 5.1468 µ = −0.4499 µ = −0.8001 σ = 0.0926

σ = 0.7549 σ = 0.3999 α = 1.9484
m = −2.4999 m = −0.6500 β = 1.4574

s = 0.8999 s = 0.0549 η = 0.2959
BIC = −344.09 BIC = −1193.27 BIC = −337.24 BIC = −227.74

Sweden µ = −2.670 p = 0.6000 p = 0.7538 µ = −0.7452
(1908–2019) σ = 5.1981 µ = −0.6994 µ = −0.7000 σ = 0.0185

σ = 0.5500 σ = 0.1330 α = 1.9716
m = 0.7211 m = −1.9999 β = 1.9802
s = 6.2341 s = 2.9406 η = 0.4699

BIC = −345.18 BIC = -366.61 BIC = −254.07 BIC = −181.07

Switzerland µ = −2.2020 p = 0.7128 p = 0.5078 µ = −0.6593
(1912–2019) σ = 5.7835 µ = −0.7996 µ = −0.6499 σ = 0.2663

σ = 0.3499 σ = 0.2997 α = 0.6202
m = −3.1989 m = −1.0999 β = 0.7061

s = 1.4999 s = 0.4499 η = 0.5949
BIC = −344.30 BIC = −933.11 BIC = −251.97 BIC = −216.12

The UK µ = −2.1735 p = 0.5326 p = 0.7839 µ = −0.8811
(1922–2019) σ = 4.3416 µ = −0.7997 µ = −0.7500 σ = 0.0363

σ = 0.5499 σ = 0.1179 α = 1.9436
m = −0.9996 m = −1.3999 β = 1.8884

s = 0.7000 s = 2.2849 η = 0.4961
BIC = −282.35 BIC = −1329.75 BIC = −202.59 BIC = −160.36

Table 4. BIC and MAPE Values of all models for six countries (up to 2019).

Country LC-RW RH CBD Permanent
Jumps

Transitory
Jumps

Transitory Jumps &
Renewal Process

Denmark
(1900–2019)

BIC −2,507,517 −12,625,099 −1,438,469 −201,649.80 −153,532.60 −87,829.99
MAPE 62.88 83.54 48.58 23.83 20.12 14.45

Japan
(1947–2019)

BIC −9,185,253 −123,725,040 −8,915,135 −3,577,544 −1,416,897 −1,316,616
MAPE 39.12 107.58 39.48 29.58 27.62 25.57

Spain
(1908–2019)

BIC −30,767,472 −81,396,057 −16,432,829 −3,162,232 −1,661,928 −1,503,534
MAPE 70.20 85.77 67.91 29.65 28.57 17.90
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Table 4. Cont.

Country LC-RW RH CBD Permanent
Jumps

Transitory
Jumps

Transitory Jumps &
Renewal Process

Sweden
(1908–2019)

BIC −4,805,222 −23,712,707 −1,462,889 −198,654.20 −185,479.60 −130,953.20
MAPE 68.71 96.72 37.17 21.75 20.58 14.40

Switzerland
(1912–2019)

BIC −5,164,856 −23,625,717 −1,099,357 −178,031 −106,925.90 −83,879.52
MAPE 73.32 240.19 40.09 26.55 16.86 12.82

The UK
(1922–2019)

BIC −21,466,019 −223,085,156 −9,488,580 −1,255,758 −487,732.40 −413,783.10
MAPE 60.82 102.76 36.01 27.44 14.35 13.85

3.1.4. Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error (MAPE) stands out as a widely used metric
for assessing prediction accuracy in mortality modelling. Its formulation is given by
the following:

MAPEi =
1
Ni

∑
x,t

∣∣∣∣ m̂x,i,t − mx,i,t

mx,i,t

∣∣∣∣
In this equation, Ni represents the number of observations in each population, calcu-

lated as the product of the number of ages and the number of years. Here, m̂x,i,t denotes
the estimated number of deaths, while mx,i,t represents the observed number of deaths for
a specific time (t), age (x), and population (i).

We employ MAPE to assess the in-sample prediction performance of the models.
Initially, we consider all ages in Table 4 as model MAPEs. Subsequently, we present graphs
for specific ages (20, 40, 60, and 80) to observe age-specific variations, focusing exclusively
on jump models for different countries in Figures A1–A6 in Appendix C. These graphs share
a common y-scale, facilitating the comparison of different models and their effectiveness in
capturing mortality deterioration across various countries.

Contrary to the BIC values, the overall MAPE values in Table 4 present a much closer
scale when comparing jump-free and jump models. However, the RH model stands out by
producing relatively distinct and higher MAPEs compared to the others. Consistently lower
MAPEs obtained from the jump models indicate better fits for the listed countries, with
transitory jump models—particularly the renewal process model—exhibiting superior fits.

Furthermore, the MAPE results illustrated in Figures A1–A6 in Appendix C indicate
that better fits, characterised by lower MAPE values and reduced volatilities, are observed
as ages increase for almost all countries and all three models. Notable differences emerge
between the models, with the two transitory jump models consistently demonstrating
superior fits and yielding the lowest MAPE values across all countries and ages, except
for Japan.

The model incorporating an exponential jump with the renewal process consistently
provides the lowest MAPE for all countries and ages, with the same exception, Japan,
despite the volatilities observed in the graphs. Additionally, for Japan, the LC-RW model
exhibits a slightly better fit as age advances, a detail not clearly depicted in the graphs.
This observation aligns with the κt parameter graphs in the preceding section for Japan,
where the time series graph appears notably smoother, suggesting fewer significant jumps
compared to other countries discussed in this paper. Essentially, this implies that when
there are no jumps or jumps with relatively small magnitudes, regardless of their frequency,
jump-free models tend to outperform models with jumps.
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3.1.5. Forecasts

Tables 5–10 present forecasts for the COVID and post-COVID years, including quan-
tiles and ranges derived from 100,000 simulations for the number of deaths for age 75,
serving as an example for six countries. The models, encompassing both jump-free and
explicit jump models, were fitted up to 2019, the last pre-COVID year, and are compared
in forecasting the number of deaths for the COVID and post-COVID years based on data
availability from the HMD website. The forecast quantiles, represented by colours, indicate
the intervals within which the observed number of deaths fall. The final columns of the
tables present the forecast ranges, with bold ones indicating the smallest range for that
specific year.

Table 5. Comparison of number of deaths in Denmark for age 75.

Country Fitting
Years

Estimation
Years

Number of
Deaths Models Quantiles

0% 25% 50% 75% 100% Range
(Max–Min)

Denmark 1908–2019 2019 1626 LC-RW
2020 1706 1621.18 1744.51 1767.26 1789.93 1918.09 296.91
2021 1694 1695.29 1824.26 1848.04 1871.75 2005.77 310.48
2022 1810 1671.20 1798.33 1821.78 1845.14 1977.26 306.07

RH Model
2020 1706 1566.56 1668.90 1691.56 1715.90 1796.69 230.12
2021 1694 1586.52 1715.75 1752.28 1787.91 1911.63 325.12
2022 1810 1501.65 1643.75 1687.70 1729.13 1883.70 382.05

CBD
Model

2020 1706 1450.23 1778.39 1848.16 1925.84 2285.08 834.85
2021 1694 1356.64 1841.02 1947.10 2056.25 2648.28 1291.65
2022 1810 1266.58 1803.29 1927.64 2066.76 3051.36 1784.78

Permanent
Jump

2020 1706 1701.90 1760.59 1776.49 1812.32 1833.70 131.80
2021 1694 1794.54 1856.43 1873.19 1910.97 1933.52 138.97
2022 1810 1783.79 1845.31 1861.97 1899.52 1921.94 138.14

Transitory
Jump

2020 1706 1631.42 1744.15 1768.56 1782.46 1902.55 271.14
2021 1694 1703.46 1821.17 1846.66 1861.17 1986.57 283.11
2022 1810 1676.76 1792.62 1817.71 1831.99 1955.43 278.67

Transitory
Jump &
Renewal
Process

2020 1706 1660.49 1786.18 1798.32 1813.64 1973.36 312.87
2021 1694 1769.20 1903.11 1916.05 1932.36 2102.55 333.35
2022 1810 1776.99 1911.50 1924.49 1940.88 2111.82 334.82

Table 6. Comparison of number of deaths in Japan for age 75.

Country Fitting
Years

Estimation
Years

Number of
Deaths Models Quantiles

0% 25% 50% 75% 100% Range
(Max–Min)

Japan 1908–2019 2019 29,155
LC-RW

2020 24,872 21,699.04 24,043.47 24,483.26 24,923.81 27,456.24 5757.20
2021 21,721 19,085.54 21,147.60 21,534.42 21,921.90 24,149.32 5063.78

RH Model
2020 24,872 24,294.98 24,690.13 24,775.16 24,865.60 25,158.96 863.98
2021 21,721 23,598.63 24,420.09 24,699.85 24,964.62 25,369.29 1770.66

CBD
Model

2020 24,872 24,681.36 27,674.07 28,495.50 29,401.69 32,135.47 7454.11
2021 21,721 21,094.40 24,446.49 25,595.23 26,712.20 31,410.11 10,315.71

Permanent
Jump

2020 24,872 23,673.72 24,540.85 25,208.52 25,287.34 25,603.97 1930.25
2021 21,721 21,256.45 22,035.03 22,634.53 22,705.30 22,989.60 1733.15

Transitory
Jump

2020 24,872 23,598.63 24,420.09 24,699.85 24,964.62 25,369.29 1770.66
2021 21,721 20,921.00 21,649.25 21,897.27 22,132.00 22,490.74 1569.74

Transitory
Jump &
Renewal
Process

2020 24,872 18,610.96 24,552.99 25,010.20 25,477.16 33,364.09 14,753.13
2021 21,721 16,724.19 22,063.81 22,474.66 22,894.29 29,981.65 13,257.46
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Table 7. Comparison of number of deaths in Spain for age 75.

Country Fitting
Years

Estimation
Years

Number of
Deaths Models Quantiles

0% 25% 50% 75% 100% Range
(Max–Min)

Spain 1908–2019 2019 8036
LC-RW

2020 9662 6492.15 7530.46 7730.47 7932.42 9123.90 2631.75
2021 8868 6478.52 7514.65 7714.23 7915.76 9104.74 2626.22

RH Model
2020 9662 6990.11 8089.89 8318.55 8551.43 9759.31 2769.20
2021 8868 6582.57 7926.64 8246.59 8565.35 10,468.82 3886.25

CBD
Model

2020 9662 7263.43 9490.06 10,044.10 10,653.01 13,502.91 6239.48
2021 8868 6347.46 9403.35 10,195.60 11,066.72 16,026.08 9678.62

Permanent
Jump

2020 9662 7480.59 7791.20 7865.86 7907.20 8067.95 587.36
2021 8868 7575.63 7890.18 7965.79 8007.66 8170.45 594.82

Transitory
Jump

2020 9662 7674.47 7783.17 7804.81 7826.34 7915.62 241.16
2021 8868 7732.77 7842.30 7864.11 7885.80 7975.76 243.00

Transitory
Jump &
Renewal
Process

2020 9662 6983.00 7740.11 7792.54 7823.82 8630.57 1647.57
2021 8868 7012.47 7772.77 7825.42 7856.83 8666.99 1654.52

Table 8. Comparison of number of deaths in Sweden for age 75.

Country Fitting
Years

Estimation
Years

Number of
Deaths Models Quantiles

0% 25% 50% 75% 100% Range
(Max–Min)

Sweden 1908–2019 2019 2333
LC-RW

2020 2565 2292.49 2533.12 2578.19 2623.31 2882.30 589.81
2021 2474 2292.79 2533.46 2578.53 2623.66 2882.68 589.89
2022 2363 2266.27 2504.15 2548.71 2593.31 2849.34 583.07

RH Model
2020 2565 2281.03 2331.33 2344.34 2358.40 2406.55 125.52
2021 2474 2252.26 2316.40 2334.74 2354.90 2427.10 174.83
2022 2363 2171.52 2245.50 2267.20 2288.41 2370.01 198.49

CBD
Model

2020 2565 2302.35 2688.60 2769.43 2857.39 3255.75 953.40
2021 2474 2115.58 2672.46 2788.39 2905.83 3515.22 1399.64
2022 2363 2015.34 2630.63 2768.92 2921.12 3964.05 1399.64

Permanent
Jump

2020 2565 2284.33 2580.00 2593.84 2619.82 2946.18 661.85
2021 2474 2302.68 2600.73 2614.67 2640.86 2969.85 667.17
2022 2363 2294.03 2590.95 2604.84 2630.93 2958.68 664.66

Transitory
Jump

2020 2565 2418.95 2556.07 2588.30 2599.30 2728.74 309.79
2021 2474 2420.08 2557.27 2589.51 2600.52 2730.02 309.94
2022 2363 2392.89 2528.54 2560.41 2571.30 2699.34 306.45

Transitory
Jump &
Renewal
Process

2020 2565 2429.93 2582.63 2592.95 2599.76 2754.19 324.26
2021 2474 2442.43 2595.91 2606.29 2613.13 2768.36 325.93
2022 2363 2426.27 2578.74 2589.05 2595.85 2750.05 323.78
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Table 9. Comparison of number of deaths in Switzerland for age 75.

Country Fitting
Years

Estimation
Years

Number of
Deaths Models Quantiles

0% 25% 50% 75% 100% Range
(Max–Min)

Switzerland 1908–2019 2019 1436
LC-RW

2020 1607 1334.22 1583.49 1632.14 1681.47 1976.30 642.10
2021 1540 1351.00 1603.41 1652.68 1702.63 2001.17 650.20
2022 1571 1340.45 1590.88 1639.76 1689.32 1985.53 645.10

RH Model
2020 1607 1346.29 1425.05 1447.22 1468.09 1559.83 213.50
2021 1540 1308.42 1418.55 1446.46 1476.90 1612.00 303.60
2022 1571 1291.43 1426.18 1464.13 1500.61 1678.52 387.10

CBD
Model

2020 1607 1441.97 1699.35 1755.47 1814.77 2093.26 651.30
2021 1540 1336.12 1715.81 1794.80 1877.06 2305.43 969.30
2022 1571 1287.48 1700.38 1795.57 1899.35 2626.87 1339.40

Permanent
Jump

2020 1607 1561.12 1630.64 1648.38 1675.00 1717.65 156.50
2021 1540 1597.92 1669.08 1687.23 1714.46 1758.14 160.20
2022 1571 1602.64 1674.01 1692.21 1719.53 1763.33 160.70

Transitory
Jump

2020 1607 1611.28 1637.60 1646.44 1651.73 1668.10 56.82
2021 1540 1644.18 1671.03 1680.05 1685.45 1702.16 57.98
2022 1571 1643.94 1670.80 1679.81 1685.22 1701.91 57.97

Transitory
Jump &
Renewal
Process

2020 1607 1460.02 1636.64 1648.65 1659.09 1831.28 371.26
2021 1540 1492.68 1673.24 1685.52 1696.20 1872.24 379.56
2022 1571 1495.32 1676.20 1688.50 1699.20 1875.55 380.23

Table 10. Comparison of number of deaths in the UK for age 75.

Country Fitting
Years

Estimation
Years

Number of
Deaths Models Quantiles

0% 25% 50% 75% 100% Range
(Max–Min)

UK 1908–2019 2019 14,170
LC-RW

2020 15,992 13,686.88 15,158.56 15,434.55 15,711.00 17,299.71 3612.80
2021 15,549 13,237.87 14,661.27 14,928.21 15,195.58 16,732.18 3494.30

RH Model
2020 15,992 13,241.54 13,596.61 13,673.88 13,750.68 14,134.80 893.30
2021 15,549 12,585.80 13,003.17 13,110.20 13,212.98 13,675.61 1089.80

CBD
Model

2020 15,992 13,533.46 15,975.05 16,515.76 17,098.27 19,717.18 6183.70
2021 15,549 12,018.17 15,377.84 16,117.66 16,900.17 20,921.38 8903.20

Permanent
Jump

2020 15,992 15,190.85 15,508.81 15,574.37 15,625.62 15,885.62 694.80
2021 15,549 14,816.62 15,126.75 15,190.70 15,240.69 15,494.28 677.70

Transitory
Jump

2020 15,992 14,557.63 15,334.88 15,511.35 15,576.93 16,327.32 1769.70
2021 15,549 14,108.89 14,862.19 15,033.22 15,096.78 15,824.03 1715.10

Transitory
Jump &
Renewal
Process

2020 15,992 14,443.32 15,452.89 15,523.14 15,567.87 16,596.26 2152.90
2021 15,549 14,037.59 15,018.80 15,087.08 15,130.56 16,130.06 2092.50

In Table 5, only the CBD model forecasts COVID deaths for all three years from 2020
to 2022 for Denmark, with much higher uncertainty as indicated by the ranges, which are
from four to six times larger compared to the other models. The LC-RW model captures
the number of deaths for 2020 in the first quantile, along with the CBD and all three jump
models, while the RH provides true forecasts for deaths at age 75 in the third quantile.
Comparing to the observed values in Denmark, the jump models accurately forecast the
number of deaths for 2020 and 2022 with relatively small uncertainty given as the range in
the final column. The permanent jump model provides the most accurate forecasts.

For Japan, in Table 6, all six models provide forecasts with varying degrees of un-
certainty. Permanent jump and transitory jump models offer smaller forecast intervals
compared to the other models whilst the RH model only forecast 2020 correctly with the
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highest certainty. The transitory jump model with the renewal process presents a less
accurate fit, consistent with its structure, which requires the distribution of the inter-arrival
times, a challenge when only two observations are available. It is important to note that
the number of deaths in 2019 for age 75 is higher than the COVID and post-COVID years,
and thus death rates. The CBD model provides the second largest ranges after the renewal
process model.

In Table 7, only RH and CBD models capture the high jump in the first COVID year
(2020) in Spain, however, with greater uncertainty. All jump models, but particularly the
transitory jump model, present much narrower ranges, which also prevents them from
capturing the significant jump in Spain.

For Sweden, in Table 8, except for the RH model, which only forecasts 2022 correctly,
all other models forecast COVID deaths within the provided ranges for at least the first
two years (2020 and 2021). Particularly, the transitory jump models offered more accurate
forecasts with smaller ranges.

Table 9 shows that the transitory jump model with renewal process forecast the number
of deaths for all years by providing the smallest forecast ranges for Switzerland.

In the UK (Table 10), there is a notable jump in the number of deaths due to COVID
compared to 2019, and two transitory jump models provide the correct death rates with
more accuracy compared to the LC-RW and the CBD models, which also included the true
forecasts in their ranges. Moreover, the RH model did not forecast the death rates correctly
in the provided forecast ranges.

Those results do not change significantly for other ages, such as age 60, while all six
models perform differently for different countries, jump models outperform the jump-free
models in forecasting COVID deaths by providing more accurate forecasts in 60% of the
cases. Upon examining the RH model, which has provided the most accurate forecast for
the remaining 33%, we could draw a conclusion about the shortcomings of the jump models
under consideration as missing age/cohort-specific jump effects. One common feature of
the jump models discussed in this paper is that those models assume that the distribution
of the jump effects and general mortality improvements across ages are identical. However,
this assumption is not supported by the historical data as explained below, considering
the heterogeneous effect of catastrophic events on the mortality curve. In order to address
this limitation, Liu and Li (2015) introduced two transitory jump models, which capture
the age pattern of mortality jumps by extending the transitory jump model proposed by
Chen and Cox (2009). Their study also showed that the age pattern of mortality jumps
has a significant impact on the estimated CAT bond prices. Whilst this extension can be
considered for the transitory jump model with a renewal process, it is not straightforward
due to the differing structure of the κt jump process compared to the process proposed
by Chen and Cox (2009). This will be discussed further in conclusion section as a future
study direction.

The mortality jump models employed in this paper were proposed to be calibrated
using a long observation period of mortality data (see, for example, Chen and Cox 2009;
Özen and Şahin 2020). On the one hand, this approach makes sense because it enables the
incorporation of several extreme events and their effects on mortality rates for different
age groups. For instance, while the Spanish flu disproportionately affected younger ages,
COVID-19 has had a more significant impact on older age groups. Additionally, wars
might influence the mortality rates of younger and middle-aged individuals, as well as
males more than females, while heatwaves might affect a wider age group and all genders.
Considering all these heterogeneous effects of extreme events on mortality curves, it seems
more reasonable to calibrate the jump models using data that includes all possible ages or
age groups, as well as a longer historical dataset.

On the other hand, the parameters of the models, which are assumed to be constant
over time and given in Table 3, are estimated based on a time invariance assumption.
However, this assumption has been proven to be incorrect for many populations over
long calibration periods in the literature (see Schnürch et al. 2023 for more details). This
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distortion in the time variance assumption, which encompasses different mortality regimes
over time, might have been reflected in the forecast performance of the jump models
in pandemic years. A reduced calibration data period could be employed to ensure the
stability of the model parameters, which is also the case for jump-free models.

4. Valuation of Mortality-Related Insurance Contracts

In this section, we calibrate the mortality models with and without jump effects for
the pre-COVID period (data up to 2019) and the post-COVID period (data up to the latest
available year in the HMD, including 2020, 2021, and 2022). Similar to Schnürch et al. (2022),
we aim to analyse the impact of the pandemic on the valuation of insurance products, such
as term life annuities and life insurance, by using forecasted mortality rates to calculate the
present values of the contracts. Since the primary aim is to observe the COVID mortality
jumps on forecasted mortality rates and their financial impact on insurance valuation, for
simplicity, we use a constant discount factor, v.

First, we consider an n-year term life immediate annuity issued to an individual aged
x at the beginning of year t. It pays an amount of 1 at the end of each year in which the
annuitant is alive. Denoting i px,t as the i-year survival probability, the present value of the
annuity is given by the following:

ax:n (t) =
n

∑
i=1

vi
i px,t (9)

=
n

∑
i=1

vs
i−1

∏
s=0

px+s,t+s ≈ vi exp
(
−

i−1

∑
s=0

ηx+s,t+s

)
.

Moreover, we calculate the present value of an n-year term life insurance issued to an
individual aged x at the beginning of year t, which pays an amount of 1 at the end of the
year if the individual dies within this year, as follows:

Ax:n (t) =
n−1

∑
i=0

vi+1
i px,t(1 − px+i,t+i) ≈

n−1

∑
i=0

vi+1 exp
(
−

i−1

∑
s=0

ηx+s,t+s

)
(1 − exp(−ηx+i,t+i)). (10)

where px,t ≈ exp(−ηx,t) is the standard approximation as in Schnürch et al. (2022).
We aim to compare the present values of the life annuities and life insurance for

mortality projections calibrated by pre- and post-COVID periods and discuss the differences
between the mortality models. For consistency with the previous section, we price a 10-year
life insurance and annuity for an individual aged 75.

Figures 2–7 show life annuities and life insurance present values along with their
95% confidence intervals. Although results vary from one country to another, there are a
few general conclusions that can be drawn. First, post-COVID calibration leads to higher
mortality forecasts, which is also evidence that the pandemic does cause a jump, and thus
higher life insurance prices along with lower life annuity prices compared to pre-COVID
calibration. However, for Japan, the results are the exact opposite. Present values for life
annuities for pre-COVID calibration are lower than post-COVID, whilst the present values
for life insurance contracts for post-COVID calibration are lower than pre-COVID. The
reason is that pre-pandemic mortality in Japan (at least for age 75) is much larger than
pandemic and post-pandemic mortality rates as presented in Table 6. Hence, the valuation
results are consistent with the mortality results in the previous section. Second, in both
insurance contracts, jump models tend to produce similar present values and more or less
form clusters in the figures, whilst the jump-free models do not present such a pattern,
although LC-RW and RH annuity and life insurance values are close to each other for half
of the cases. Third, the CBD model, as in line with the results of the previous sections,
produces larger confidence intervals for all countries since we do see the parallel lines for
lower and upper confidence levels clearly, although for the other models, they look like
one horizontal line. Furthermore, as expected, when there is a significant jump in mortality
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rates, for example, for Spain in Figure 4 and for the UK in Figure 7, the difference between
the pre- and post-COVID calibration periods in the present values of the life annuities and
life insurance is larger.

Figure 2. Present values of term life annuity and life insurance contracts using Denmark mortality data.

Figure 3. Present values of term life annuity and life insurance contracts using Japan mortality data.

Figure 4. Present values of term life annuity and life insurance contracts using Spain mortality data.
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Figure 5. Present values of term life annuity and life insurance contracts using Sweden mortality data.

Figure 6. Present values of term life annuity and life insurance contracts using Switzerland mortal-
ity data.

Figure 7. Present values of term life annuity and life insurance contracts using UK mortality data.

5. Conclusions

This paper aims to analyse the performance of mortality models with and without
jump effects in forecasting COVID-19 deaths, the impact of the pandemic on mortality rate
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forecasts, as well as insurance contract valuations, focusing on the following six countries:
Denmark, Japan, Spain, Sweden, Switzerland, and the UK. The comparison of the models
involves mortality time indices, κt, in-sample prediction performances using BIC and
MAPE, and out-of-sample forecasting performances based on the simulated forecasted
number of deaths for COVID and post-COVID years, while detailed results are discussed
throughout the paper, more comprehensive conclusions can be drawn.

One significant observation is that the fit and forecast performance of mortality models,
regardless of whether they include jump effects or not, heavily depends on the specific
country, time, and age period to which they are fitted. Despite in-sample prediction and
model fitting statistics indicating better results for jump models, the forecasting of COVID
deaths and death rates for some countries does not support this conclusion. However,
by looking at the overall accuracy of the true forecasts for all six countries, the jump
models outperform by providing the most accurate forecasts in a majority of the cases.
The RH model, having provided the most accurate forecasts for a significant portion of
the cases, might be giving insight into future improvements in mortality jump modelling,
which indicates considering the age/cohort pattern of the jumps. As mentioned in the
relevant section, there is literature on improving the permanent and transitory jump
models discussed in this paper. However, when considering the transitory jump model
with a renewal process, the extension does not seem straightforward. Since the process of
modelling the time-dependent parameter κt is different and more complex than the other
two jump models, it is not possible to add an external age/cohort jump effect on κt as in Liu
and Li (2015). A further research direction might be changing the structure of the model
and including the age pattern of mortality jumps in the renewal process setting.

Another observation on the forecasts is that the jump caused by the COVID-19 pan-
demic, if it indeed occurred, is more visible in older age groups and is reflected in the
performance of the jump models specifically designed for them. However, it is crucial to
recognise that the sensitivity of the results may vary based on factors such as altering the
age range, exploring gender-specific data, or considering a different time frame for analysis.

Considering the findings of the valuation for term life annuities and life insurance,
post-COVID calibration results in higher mortality forecasts for all countries except Japan,
indicating a pandemic-induced jump and, consequently, lower present values for life
annuities and higher present values for life insurance. Jump models exhibit similar present
values forming clusters, whereas jump-free models lack such patterns. The CBD model
consistently produces larger confidence intervals across all countries.
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Appendix A. Transitory Mortality Model with Exponential Jumps and Renewal Process

Table A1. The years of the detected outliers and test statistic values for countries (up to the year of
last available data).

Denmark Time Series Model ARIMA(1,1,0)
(1900–2022)

Year 1909 1921 1977 2011 2019

Japan Time Series Model ARIMA(0,2,2)
(1947–2021)

Year 1949 1957

Spain Time Series Model ARIMA(1,1,0)
(1908–2021)

Year 1918 1919 1942 1952 1958 2016 2020 2021

Sweden Time Series Model ARIMA(1,0,0)
(1908–2019)

Year 1917 1919 1920 1921 2003 2018 2021

Switzerland Time Series Model ARIMA(1,1,0)
(1912–2022)

Year 1918 1919 1921 1923 1964 2016 2021 2022

UK Time Series Model ARIMA(1,1,2)
(1922–2021)

Year 1931 1942 1944 2021

Appendix B. Estimated Model Parameters Including COVID Years

Table A2. Estimated model parameters for six countries (up to the year of last available data).

Country RW without
Jumps Permanent Jumps Transitory Jumps Transitory Jumps &

Renewal Process

Denmark µ = −1.8045 p = 0.7492 p = 0.8419 µ = −0.5032
(1900–2022) σ = 3.6524 µ = −0.2999 µ = −0.2999 σ = 0.0078

σ = 0.3500 σ = 0.0599 α = 2.9437
m = −5.2843 m = −1.9997 β = 2.2379

s = 1.9999 s = 3.4999 η = 0.4821
BIC = −333.57 BIC = −414.61 BIC = −319.25 BIC = −161.77
MAPE = 62.56 MAPE = 16.22 MAPE = 15.58 MAPE = 14.74

Japan µ = −3.3501 p = 0.4514 p = 0.6325 µ = −0.7498
(1947–2021) σ = 3.4295 µ = −0.6999 µ = −0.7550 σ = 0.0284

σ = 0.3549 σ = 0.3500 α = 8.4291
m = −4.9999 m = −3.8402 β = 7.4542

s = 1.6999 s = 2.1765 η = 0.2969
BIC = −198.36 BIC = −279.15 BIC = −224.42 BIC = −119.25
MAPE = 39.54 MAPE = 29.86 MAPE = 27.36 MAPE = 26.15

Spain µ = −2.2737 p = 0.4637 p = 0.4889 µ = −0.7126
(1908–2021) σ = 5.8078 µ = −0.5498 µ = −0.7500 σ = 0.0356

σ = 0.7500 σ = 0.4499 α = 1.4892
m = −2.9997 m = −0.7499 β = 1.3791

s = 1.2000 s = 0.06492 η = 0.2943
BIC = −363.86 BIC = −1111.99 BIC = −267.23 BIC = −247.34
MAPE = 72.09 MAPE = 28.75 MAPE = 23.81 MAPE = 17.34

Sweden µ = −2.1796 p = 0.6000 p = 0.8419 µ = −0.6997
(1908–2022) σ = 5.4772 µ = −0.6999 µ = −0.5883 σ = 0.0041

σ = 0.6000 σ = 0.0010 α = 0.4312
m = 0.8684 m = −1.9998 β = 0.8330
s = 6.6047 s = 3.0403 η = 0.6586

BIC = −358.00 BIC = −373.77 BIC = −257.46 BIC = −216.69
MAPE = 68.97 MAPE = 16.56 MAPE = 15.94 MAPE = 14.63

Switzerland µ = −2.1005 p = 0.6355 p = 0.5147 µ = −0.6592
(1912–2022) σ = 5.9431 µ = −0.7499 µ = −0.7500 σ = 0.1133

σ = 0.0899 σ = 0.3000 α = 0.6214
m = −3.1617 m = −1.0991 β = 0.7253

s = 1.0999 s = 0.4499 η = 0.5703
BIC = −356.85 BIC = −1733.09 BIC = −239.34 BIC = −223.75
MAPE = 73.87 MAPE = 21.81 MAPE = 14.18 MAPE = 13.06

The UK µ = −1.9556 p = 0.7651 p = 0.5916 µ = −0.7894
(1922–2021) σ = 4.7896 µ = −0.6999 µ = −0.6499 σ = 0.0041

σ = 0.3999 σ = 0.2499 α = 0.4500
m = −2.9998 m = −1.5000 β = 1.0075

s = 1.4999 s = 0.9499 η = 0.4979
BIC = −300.16 BIC = −638.11 BIC = −265.86 BIC = −236.81
MAPE = 62.13 MAPE = 34.56 MAPE = 16.13 MAPE = 13.96
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Appendix C. MAPE Values for Different Ages and Mortality Models for
Different Countries
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Figure A5. MAPE values for different ages and mortality models for Spain
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by M. C. Boado-Penas, J. Eisenberg and Ş. Şahin. Springer Actuarial Series. Cham: Springer, pp. 75–94.
Villegas, Andres M., Pietro Millossovich, and Vladimir K. Kaishev. 2018. StMoMo: Stochastic Mortality Modeling in R. Journal of

Statistical Software 84: 1–38. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/S0167-6687(02)00185-3
http://dx.doi.org/10.1111/j.1539-6975.2006.00195.x
http://dx.doi.org/10.1080/10920277.2009.10597538
http://dx.doi.org/10.1111/j.1539-6975.2009.01313.x
http://dx.doi.org/10.1111/j.1539-6975.2006.00196.x
http://dx.doi.org/10.1191/1471082X04st080oa
http://dx.doi.org/10.1111/j.1539-6975.2011.01450.x
http://dx.doi.org/10.1016/j.insmatheco.2011.11.005
https://www.mortality.org
http://dx.doi.org/10.1080/03461230510006973
http://dx.doi.org/10.1016/j.insmatheco.2015.05.005
http://dx.doi.org/10.1198/073500107000000278
http://dx.doi.org/10.1016/j.cam.2020.112829
http://dx.doi.org/10.3390/risks9020044
http://dx.doi.org/10.1016/S0167-6687(03)00138-0
http://dx.doi.org/10.1016/j.insmatheco.2005.12.001
http://dx.doi.org/10.1017/dem.2023.9
http://dx.doi.org/10.1017/S1748499522000045
http://dx.doi.org/10.18637/jss.v084.i03

	Introduction
	Mortality Models
	The Lee–Carter Model
	Renshaw and Haberman Model
	Cairns–Blake–Dowd Model
	Jump Effect Models as Extensions to the Lee–Carter Model
	t with Permanent Jump Effect
	t with Transitory Jump Effect
	t with Exponential Transitory Jumps and Renewal Process Effect


	Results and Discussion
	Model Comparisons
	Parameter Estimation Process
	Fitted t Parameters
	Bayes Information Criterion
	Mean Absolute Percentage Error (MAPE)
	Forecasts


	Valuation of Mortality-Related Insurance Contracts
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

