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Abstract: We obtain the upper and lower bounds for the ruin probability in the Sparre–Andersen
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1. Introduction
In actuarial science and insurance, the Sparre–Andersen risk model plays a crucial role

in stochastically modelling a company’s surplus or its available financial resources over
time. This model generalises the classical risk model that was introduced by Lundberg
(see, e.g., Asmussen and Albrecher (2010); Schmidli (2017); Rolski et al. (1999)), assuming
that the claim number process is a renewal process (see, e.g., Labbé and Sendova (2009);
Li and Garrido (2005); Temnov (2004, 2014); Willmot (2007); Asmussen and Albrecher
(2010)). This model has recently become a focal point for research. A key area of interest
is the ruin probability, which essentially means the probability of the company’s surplus
turning negative at some point. The complexity of this concept means that there is no
straightforward formula for calculating this probability. As a result, researchers are en-
gaged in developing approximations, bounds, and asymptotic formulas to better grasp
its characteristics.

In this paper, we will present both the upper and lower bounds for the ruin prob-
ability. Specifically, after a mathematical overview of the Sparre–Andersen model, we
will present the proof of certain lemmas that will assist us in establishing the proof of
the aforementioned bounds. Initially, we will focus on the upper and lower bounds in
the case where the adjustment coefficient exists, with the upper bound being a refined
version of Lundberg’s famous inequality. Moreover, these bounds serve as enhancements
to those previously given by Psarrakos and Politis (2009a). Next, we will provide bounds
for the ruin probability, using properties from aging classes for the distribution of the claim
amounts. Our work offers enhancements to the bounds proposed by Willmot et al. (2001);
Willmot (2002); Psarrakos and Politis (2009a). Finally, we will generalize the conditions
under which the bounds proposed by Chadjiconstantinidis and Xenos (2022), for the cases
where the adjustment coefficient does not exist, can be applied.

2. Model Description
Consider the Sparre–Andersen risk model for an insurance surplus process defined as

U(t) = u + ct −
Nt

∑
k=1

Yk

is the surplus at time t, where u (≥ 0) is the surplus at time t = 0 (also known as the initial
surplus) and c is the rate of premium income per unit of time. With Nt, we denote the
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number of claims in the time interval (0, t]. The individual claim amounts Yi (i = 1, 2, . . .)
are independent, identically distributed (i.i.d.) non-negative random variables with a
common distribution function (d.f.) P(t) = Pr(Y1 ≤ t), tail P̄(t) = 1 − P(t), density p(t)
and mean E(Y1) = m < ∞. The claim amounts are also independent of Nt, and the
corresponding interclaim times W1, W2, . . . are i.i.d. with common mean E(T1). Also, we
assume that c = (1 + θ)m/E(T1), where θ > 0 is the implied relative security loading.
Also, F is the distribution of the drop in the surplus given that such a drop occurs (see, e.g.,
Willmot (2002)).

Now, let T = inf{t ≥ 0 : U(t) < 0} be the time of ruin, then the ruin probability is
defined as

ψ(u) = P(T < ∞ | U(0) = u).

The probability of ruin ψ(u) satisfies the defective renewal equation (see, e.g., Willmot
and Lin (2001) and Section 3.2)

ψ(u) = ϕF(u) + ϕ
∫ u

0
ψ(u − t)dF(t), (1)

with solution
ψ(u) = ϕF(u) +

ϕ

1 − ϕ

∫ u

0
F(u − t)dH(t), (2)

where

H(u) = 1 − ψ(u) =
∞

∑
n=0

(1 − ϕ)ϕnF∗n(u)

is the probability of non-ruin, ϕ = ψ(0), 0 < ϕ < 1 and F∗n(u) = 1 − F∗n(u) is the tail of
the n-fold convolution of the ladder height distribution F associated with the risk process.

The solution to Equation (1) is given by the Pollaczek–Khintchine type formula,

ψ(u) =
∞

∑
m=1

(1 − ϕ)ϕmF∗m
(u), (3)

i.e., ψ(u) is a geometric compound tail with geometric parameter ϕ (see, e.g., Willmot and
Woo (2017)).

One of the primary results in the study of ruin probabilities is Lundberg inequality,
namely:

ψ(u) ≤ e−Ru,

where R is called the adjustment coefficient and is defined as the unique positive solution
of the following equation ∫ ∞

0
eRxdF(x) =

1
ϕ

. (4)

The last equation is known as the Lundberg condition, and integrating by parts the
above gives ∫ ∞

0
eRxF(x)dx =

1 − ϕ

ϕR
. (5)

Another key result is the Cramer–Lundberg asymptotic formula:

lim
u→∞

eRuψ(u) = C,

where
C =

1 − ϕ

ϕR
∫ ∞

0 xeRxdF(x)
.

There are numerous distributions which do not satisfy (4) (see Cai and Garrido (1998);
Chadjiconstantinidis and Xenos (2022)). For this case Dickson (1994) considered a truncating
version of (4), i.e., suppose that for any given t ≥ 0, there exists a constant Rϕ(t) ≥ 0,
such that
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∫ t

0
exRϕ(t)dF(x) =

1
ϕ

.

In actuarial risk theory, a key variable of interest introduced by Gerber et al. (1987), is
the deficit at ruin, with distribution defined as

H(u, y) = P(|U(T)| ≤ y, T < ∞|U(0) = u).

It is a defective distribution function with a right tail:

H(u, y) = ψ(u)− H(u, y).

This satisfies the following defective renewal equation

H(u, y) = ϕF(u + y) + ϕ
∫ u

0
H(u − t, y)dF(t), (6)

with solution
H(u, y) = ϕF(u + y) +

ϕ

1 − ϕ

∫ u

0
F(u + y − t)dH(t).

3. Definitions, Notation and Preliminary Results
This section outlines all the mathematical tools we will use in subsequent sections to

introduce new bounds for the ruin probability in the Sparre–Andersen risk model.

3.1. Definitions and Notation
We denote by h(u) the quantity

h(u) = ψ(u)− e−Ru, u ≥ 0. (7)

We also define

G(u) = 1 − G(u) =

∫ u
0 eRtdF(t)∫ ∞
0 eRtdF(t)

= ϕ
∫ u

0
eRtdF(t), u ≥ 0. (8)

and the function Λu(y)

Λu(y) =
ϕ

1 − ϕ
(ψ(u + y)− ψ(u)ψ(y)), u, y ≥ 0, (9)

that serves as a critical component in the proof of Proposition 2.
And lastly, for convenience in algebraic manipulation, we define

ξ(u) = ϕF(u)− e−RuG(u), u ≥ 0. (10)

3.2. Convolutions and Renewal Equation
For two integrable functions f , g their convolution f ∗ g is defined by

( f ∗ g)(t) =
∫ t

0
f (t − x)g(x)dx,

while for two distribution functions F, G the convolution F ∗ G is defined by (F ∗ G)(t) =∫ t
0 F(t− x)dG(x). In either case, the symbol f ∗(k) (F(k)) denotes the kth convolution product

of f (resp., F) by itself.
Generally, an equation with the following form

Z(t) = z(t) + ϕ
∫ t

0
Z(t − x)dF(x),
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for 0 < ϕ < 1 is called a defective renewal type equation and is known to have the following
unique solution (see, e.g., Willmot and Lin (2001) for a detailed discussion of the solution
of the defective renewal equation)

Z(t) = z(t) +
1

1 − ϕ

∫ t

0
z(t − x)dU(x), (11)

where

U(x) =
∞

∑
k=0

ϕkF∗k(x).

3.3. Aging Classes
This section introduces the aging classes that we will utilize in Section 4.2 (see, e.g.,

Willmot and Lin (2001)). Each aging class contains distributions characterised by particular
failure rate properties. These classes have been developed within the field of reliability
theory and survival analysis to analyze respective lifespans. Furthermore, these classes
are applied in actuarial science and insurance, aiding in the modelling of claim amounts
and the number of claims. The classes used here include IFR (DFR), NBU (NWU) and
NBUC (NWUC).

The d.f. F(y) is said to be decreasing (increasing) failure rate or DFR (IFR) if
F̄(x + y)/F̄(y) is nondecreasing (nonincreasing) in y for fixed x ≥ 0, i.e., if F̄(y) is log-
convex (log-concave). Also, if F(y) is absolutely continuous, then DFR (IFR) is equivalent
to λ(y) nonincreasing (nondecreasing) in y, where λ(y) = f (y)/F(y).

A d.f. F(y) is called new worse (better) than used or NWU (NBU) if

F̄(x + y) ≥ (≤)F̄(x)F̄(y), for all x, y ≥ 0.

Another class is the new worse (better) than used in convex ordering or NWUC
(NBUC) class. The d.f. F(y) is NWUC (NBUC) if

F̄e(x + y) ≥ (≤)F̄e(y)F̄(x),

for all x, y ≥ 0 and Fe(x) = 1/µ
∫ x

0 F(t)dt is the equilibrium distribution of F.

3.4. Preliminary Results
This section introduces four Lemmas and a Proposition, which are crucial for the proof

of the bounds for the ruin probability. In the following result, we present a renewal-type
equation for the difference h(u) = ψ(u)− e−Ru.

Lemma 1. The function h(u) satisfies the following renewal equation

h(u) = ϕF(u)− e−RuG(u) + ϕ
∫ u

0
h(u − x)dF(x), u ≥ 0. (12)

Proof. Substituting (7) and (8) into (1) we have:

h(u) + e−Ru = ϕF(u) + e−RuG(u) + ϕ
∫ u

0
h(u − x)dF(x),

and after a re-arranging of the terms, the proof is completed.

Lemma 2. For any u ≥ 0, it holds that

G(u) +
1

1 − ϕ

∫ u

0
eRtG(u − t)dH(t) = 1.

Proof. Using (11), we see that the solution of (12) is given by
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h(u) = ϕF(u)− e−RuG(u) +
1

1 − ϕ

∫ u

0+

(
ϕF(u − t)− e−R(u−t)G(u − t)

)
dH(t). (13)

Equation (13) gives

h(u) = ϕF(u)− e−RuG(u) +
ϕ

1 − ϕ

∫ u

0+
F(u − t)dH(t)− e−Ru

1 − ϕ

∫ u

0+
eRtG(u − t)dH(t).

Inserting (2) into the above we obtain

h(u) = ψ(u)− e−RuG(u)− e−Ru

1 − ϕ

∫ u

0+
eRtG(u − t)dH(t).

Because of (7), the above equation could be written as

−e−Ru = −e−RuG(u)− e−Ru

1 − ϕ

∫ u

0+
eRtG(u − t)dH(t).

Dividing by −e−Ru, completes the proof.

Lemma 3. For u ≥ 0, ξ(u) ≤ 0 and it is an increasing function of u.

Proof. The first derivative of (10) gives

d
du

ξ(u) = −ϕ f (u)−
(
−Re−RuG(u)− e−RuϕeRu f (u)

)
= Re−RuG(u) ≥ 0,

which means that ξ(0) = ϕ − 1 ≤ ξ(u) ≤ limu→∞ ξ(u) = 0, and that completes
the proof.

Lemma 4. If the d.f. F is NWU (NBU), then

g(u) := ϕ2F(u)− ϕF(u) + ϕ2Re−Ru
∫ ∞

u
eRzF(z)dz ≥ (≤)0.

Proof. If the d.f. F is NWU (NBU), then it holds F(u + y) ≥ (≤)F(u)F(y), therefore,

ϕ2R
∫ ∞

0
eRy(F(u + y)− F(u)F(y)

)
dy ≥ (≤)0. (14)

The integral on the left side could be written with the help of (5) as follows∫ ∞

0
eRy(F(u + y)− F(u)F(y)

)
dy = e−Ru

∫ ∞

u
eRzF(z)dz − 1 − ϕ

ϕR
F(u)

= e−Ru
∫ ∞

u
eRzF(z)dz − F(u)

ϕR
+

F(u)
R

, (15)

and the proof is completed by inserting the above into (14).

Proposition 1. In the Sparre–Andersen risk model we have that

i. If the claim amount d.f. P is DFR, then the function eRuψ(u) is nonincreasing in u.
ii. For any u ≥ 0, it holds that∫ ∞

0
eRyH(u, y)dy =

1
R

(
e−Ru − ψ(u)

)
. (16)
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iii. For any u ≥ 0, it holds that

e−Ru − 1 − ϕ

1 − ϕ + ϕF(u)
≤ ψ(u) ≤ e−Ru − ϕRe−Ru

∫ ∞

u
eRyF(y)dy. (17)

iv. Let u ≥ 0. Then for y ≥ 0 the function Λu in (9) satisfies the defective renewal equation

Λu(y) = ϕH(u, y) + ϕ
∫ y

0
Λu(y − t)dF(t), (18)

with solution
Λu(y) =

ϕ

1 − ϕ

∫ y

0
H(u, y − t)dH(t).

Proof. See Psarrakos and Politis (2009a).

4. Bounds for the Ruin Probability
4.1. Improvements of Lundberg’s Upper Bound of Ruin Probability

We assume throughout this section that F is light-tailed so that R exists. Psarrakos
and Politis (2009a) provide a two-sided bound, given in (17), for the ruin probability. The
upper bound is an improvement over Lundberg’s upper bound. In the following result, we
improve the lower and upper bounds given in (17).

Proposition 2. For every k = 1, 2, 3, · · · and u ≥ 0 it holds that
i. a lower bound for the ruin probability is given by

ψ(u) ≥ e−Ru + ξ(u) +
k−1

∑
j=1

ϕj(ξ ∗ f ∗j)(u)− ϕk(1 − ϕ)

1 − ϕ + ϕF(u)
(F ∗ f ∗k−1)(u).

ii. an upper bound for the ruin probability is given by

ψ(u) ≤ e−Ru − ϕR

(
1 +

k

∑
j=1

ϕjF∗j(u)

)
e−Ru

∫ ∞

u
eRtF(t)dt.

Proof.
i. Inserting (7) into the lower bound of (17) we obtain

h(u) ≥ − 1 − ϕ

1 − ϕ + ϕF(u)
,

and then (12) gives

h(u) ≥ ϕF(u)− e−RuG(u)− ϕ
∫ u

0

1 − ϕ

1 − ϕ + ϕF(u − x)
dF(x)

≥ ϕF(u)− e−RuG(u)− ϕ(1 − ϕ)

1 − ϕ + ϕF(u)
F(u).

In view of (10) the above inequality is written as follows

h(u) ≥ ξ(u)− ϕ(1 − ϕ)

1 − ϕ + ϕF(u)
F(u). (19)
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Inserting the above inequality into (12) we have

h(u) ≥ ξ(u) + ϕ
∫ u

0

(
ξ(u − x)− ϕ(1 − ϕ)

1 − ϕ + ϕF(u − x)
F(u − x)

)
dF(x)

≥ ξ(u) + ϕ
∫ u

0
ξ(u − x)dF(x)− ϕ2(1 − ϕ)

1 − ϕ + ϕF(u)

∫ u

0
F(u − x)dF(x)

= ξ(u) + ϕ(ξ ∗ f )(u)− ϕ2(1 − ϕ)

1 − ϕ + ϕF(u)
(F ∗ f )(u), (20)

and after repeating the same process k times (for k ≥ 1) we obtain

h(u) ≥ ξ(u) +
k−1

∑
j=1

ϕj(ξ ∗ f ∗j)(u)− ϕk(1 − ϕ)

1 − ϕ + ϕF(u)
(F ∗ f ∗k−1)(u),

and the proof is completed.
ii. From (18) we obtain

Λu(y) ≥ ϕH(u, y).

Inserting the inequality above into (18), yields

Λu(y) ≥ ϕH(u, y) + ϕ2
∫ y

0
H(u, y − t)dF(t)

≥ ϕH(u, y) + ϕ2H(u, y)
∫ y

0
dF(t)

= ϕH(u, y)(1 + ϕF(y)).

By reinserting the above inequality into (18) we derive

Λu(y) ≥ ϕH(u, y) + ϕ
∫ y

0
ϕH(u, y − t)(1 + ϕF(y − t))dF(t)

≥ ϕH(u, y) + ϕ2H(u, y)
∫ y

0
(1 + ϕF(y − t))dF(t)

= ϕH(u, y) + ϕ2H(u, y)
(

F(y) + ϕ
∫ y

0
F(y − t)dF(t)

)
= ϕH(u, y)

(
1 + ϕF(y) + ϕ2F∗2(y)

)
.

Repeating the same process k times (for k ≥ 1) we have

Λu(y) ≥ ϕH(u, y)
(

1 + ϕF(y) + ϕ2F∗2(y) + ϕ3F∗3(y) + · · · ϕkF∗k(y)
)

= ϕH(u, y)

(
1 +

k

∑
j=1

ϕjF∗j(y)

)
.

By inserting the above into (9) and rearranging the terms we obtain

H(u, y) ≤ ψ(u + y)− ψ(u)ψ(y)

(1 − ϕ)
(

1 + ∑k
j=1 ϕjF∗j(y)

) , (21)

where F∗j(y) =
∫ y

0 F∗(j−1)(y − t)dF(t).
From (21) we have

(1 − ϕ)

(
1 +

k

∑
j=1

ϕjF∗j(y)

)
H(u, y) ≤ ψ(u + y)− ψ(u)ψ(y).
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Multiplying by eRu yields that

(1 − ϕ)

(
1 +

k

∑
j=1

ϕjF∗j(y)

)
eRuH(u, y) ≤ eRu(ψ(u + y)− ψ(u)ψ(y)).

Taking the limit for u → ∞ we obtain

(1 − ϕ)

(
1 +

k

∑
j=1

ϕjF∗j(y)

)
lim

u→∞
eRuH(u, y) ≤ lim

u→∞
eRu(ψ(u + y)− ψ(u)ψ(y)). (22)

Willmot (2002) shows that

lim
u→∞

eRu H(u, y) =

∫ ∞
0 eRtF(t + y)dt∫ ∞

0 teRtdF(t)
. (23)

Psarrakos and Politis (2009a) show that

lim
u→∞

eRu(ψ(u + y)− ψ(u)ψ(y)) =

∫ ∞
0 eRyF(y)dy∫ ∞
0 yeRydF(y)

(
e−Ry − ψ(y)

)
. (24)

Inserting (23) and (24) into (22) we obtain

(1 − ϕ)

(
1 +

k

∑
j=1

ϕjF∗j(y)

)
e−Ry

∫ ∞

y
eRtF(t)dt ≤

∫ ∞

0
eRyF(y)dy

(
e−Ry − ψ(y)

)
.

In view of (5) and by rearranging the terms the proof is completed.

Example 1. Suppose that the d.f. F is an exponential distribution with density

f (x) = 3e−3x, x ≥ 0

and the distribution of the inter-claim times is also an exponential distribution with density

k(t) = 3e−3t, t ≥ 0.

In this case, the associated moment generating functions are identical and given by

M f (r) =
∫ ∞

0
eRx f (x)dx =

3
3 − r

=
∫ ∞

0
eRtk(t)dt = Mk(r).

Assuming c = 2, the solution of the equation Mk(−cr)MF(r) = 1 gives R = 1.5, which is
the adjustment coefficient, and then (4) gives ϕ = 0.5. The probability of ruin for our example is
ψ(u) = 0.5e−1.5u and h(u) = ψ(u)− e−Ru = −0.5e−1.5u.

In Figure 1 we illustrate the actual value of the quantity h(u) = ψ(u)− e−Ru (solid line) and
the performance of the bounds given by (19) (dashed line) and (20) (dot-dashed line), finally with
dotted line we present the lower bound in (17) obtained by Psarrakos and Politis (2009a).
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Figure 1. Bounds for the quantity h(u) when f (x) = 3e−3x and k(t) = 3e−3t.

4.2. Bounds for the Ruin Probability under Aging Properties
For the rest of this section, let us assume that F is light-tailed, so that R exists.
Willmot et al. (2001) show if the d.f. F is NWUC (NBUC), then

ψ(u) ≤ (≥)ϕe−Ru =: ψW(u). (25)

□
In the next result, we improve the bound given in (25), under the assumption of NWU

(NBU) ladder heights. NWU (NBU) class is a subclass of NWUC (NBUC).

Proposition 3. If the d.f. F is NWU (NBU), then

ψ(u) ≤ (≥)ϕe−Ru − g(u)− ϕ3R
∫ ∞

0
eRyK(u, y)dy =: ψL(u), (26)

with
K(u, y) =

∫ u

0

(
F(u − t + y)− F(u − t)F(y)

)
dF(t). (27)

Proof. By Psarrakos (2008), we know that if the labber height d.f. F is NWU (NBU) then a
lower (upper) bound for the tail of the deficit H(u, y) is

H(u, y) ≥ (≤)F(y)ψ(u) + ϕF(u + y)− ϕF(u)F(y).

Inserting the above inequality into (6) and applying (1) we obtain

H(u, y) ≥ (≤)F(y)ψ(u) + ϕF(u + y)− ϕF(u)F(y) + ϕ2K(u, y).

Inserting the above inequality into (16), we have

1
R

(
e−Ru − ψ(u)

)
=
∫ ∞

0
eRyH(u, y)dy

≥ (≤)ψ(u)
∫ ∞

0
eRyF(y)dy + ϕ

∫ ∞

0
eRy(F(u + y)− F(u)F(y)

)
dy

+ ϕ2
∫ ∞

0
eRyK(u, y)dy.

Then by (5) and (15), we derive that

1
R

(
e−Ru − ψ(u)

)
≥ (≤)

1 − ϕ

ϕR
ψ(u)− F(u)

R
+

ϕF(u)
R

+ ϕe−Ru
∫ ∞

u
eRzF(z)dz

+ ϕ2
∫ ∞

0
eRyK(u, y)dy.

Solving by ψ(u) we obtain the upper (lower) bound in (26).
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Another bound for the probability of ruin ψ(u), under the assumption of NWUC
(NBUC) ladder heights, is given by Psarrakos and Politis (2009a), namely:

ψ(u) ≤ (≥)ϕe−Ru − ϕ2e−Ru
∫ ∞

u
eRzdF(z) + ϕF(u) =: ψP(u). (28)

The bound given by (26) is a refinement of the bound (28) of Psarrakos and Politis
(2009a). Indeed, the integral into (28) could be written as follows:∫ ∞

u
eRzdF(z) = −[eRzF(z)]∞u + R

∫ ∞

u
eRzF(z)dz

= eRuF(u) + R
∫ ∞

u
eRzF(z)dz.

Inserting the above into (28) and assuming NWU (NBU) ladder heights we have

ψP(u) = ϕe−Ru − g(u) ≥ (≤)ϕe−Ru − g(u)− ϕ3R
∫ ∞

0
eRyK(u, y)dy.

Example 2. Suppose that the claim amount distribution is a mixture of exponential distributions
with density

p(x) =
1
5

e−x +
12
5

e−3x,

and the distribution of inter-claim times is an Erlang(2,2) distribution with density

k(t) = 4te−2t.

We also assume c = 0.5. In this case, the density of F is

f (x) = e−3x
(

1.53088 + 0.489707e2x
)

,

while
R = 0.128305,

ψ(u) = 0.022519e−2.02621u + 0.890824e−0.128305u.

Because of (26) and (28) we note that our proposed bounds perform better than the one given
by Willmot et al. (2001); Psarrakos and Politis (2009a) only when g(u) + ϕ3R

∫ ∞
0 K(u, y)dy ≥ 0.

In Lemma 4, we prove that the sign of the function g(u) is linked with NWU (NBU) ladder heights.
The mixture of exponential is always DFR (Willmot and Lin (2001, p. 10)), so we expect g(u) ≥ 0
for t ≥ 0. Also, from (27) we expect K(u, y) ≥ 0 for u, y ≥ 0.

In Figure 2 we depict the quantity g(u) + ϕ3R
∫ ∞

0 eRyK(u, y)dy.

1 2 3 4 5 6

0.002

0.004

0.006

0.008

0.010

0.012

Figure 2. The quantity g(u) + ϕ3R
∫ ∞

0 eRyK(u, y)dy under NWU ladder heights.

In the following Table 1 we present the values of the ruin probability ψ(u) and we compare it
against ψP(u) and ψL(u).
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Table 1. Bounds for the ruin probability, ψ(u), when p(x) = e−x/5 + 12e−3x/5 and k(t) = 4te−2t.

ψ(u) ψP(u) ψL(u)

t = 0 0.913343 0.913343 0.913343
t = 0.25 0.876272 0.887963 0.876517
t = 0.5 0.843646 0.848396 0.844936

t = 0.75 0.814023 0.821708 0.816955
t = 1 0.786524 0.796565 0.791305

t = 1.5 0.735945 0.748913 0.744057
t = 3 0.606265 0.620477 0.618556
t = 5 0.469011 0.480722 0.480331

Example 3. Let us consider the case where the claim amount distribution is a mixture of exponential
distributions with density

p(x) =
1
5

e−x +
12
5

e−3x,

and the d.f. P of the inter-claim times is a Pareto distribution with density

k(t) =
2

(1 + t)3 .

We also assume c = 2. In this case, we have

R = 0.782835,

ϕ = 0.499146

and
ψ(u) = 0.228102e−1.91939u + 0.271044e−0.782835u.

In Figure 3 we illustrate the actual value of the quantity h(u) = ψ(u)− e−Ru (solid line) and
the performance of the bounds given by (19) (dashed line) and with the dotted line we present the
lower bound in (17) obtained by Psarrakos and Politis (2009a).

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.8

-0.6

-0.4

-0.2

Figure 3. Bounds for the quantity h(u) when p(x) = e−x/5 + 12e−3x/5 and k(t) = 2/(1 + t)3.

In the following Table 2 we present the values of the ruin probability ψ(u) and we compare it
against ψP(u) and ψL(u).
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Table 2. Bounds for the ruin probability, ψ(u), when p(x) = e−x/5+ 12e−3x/5 and k(t) = 2/(1+ t)3.

ψ(u) ψL(u) ψP(u)

t = 0 0.499146 0.499146 0.499146
t = 0.25 0.364034 0.364711 0.370720
t = 0.5 0.270618 0.273886 0.287773

t = 0.75 0.204748 0.211491 0.229919
t = 1 0.157358 0.167263 0.186931

t = 1.5 0.096582 0.109944 0.126778
t = 3 0.026608 0.035826 0.041236
t = 5 0.0054247 0.008172 0.009088

In what follows, we present an upper bound for the probability of ruin ψ(u) under
the condition that the ladder height d.f. F is IFR.

Proposition 4. If the d.f. F is IFR, then

ψ(u) ≤ ϕF(u)
ϕF(u) + (1 − ϕ)H∞(u)

e−Ru.

Proof. Let the ladder height d.f. F be IFR, then by Willmot (2002, Corollary 3.2) it holds that

H(u, y) ≥ F(u + y)
F(u)

ψ(u).

Inserting the above into (16) we obtain

e−Ru − ψ(u) ≥ ψ(u)
F(u)

R
∫ ∞

0
eRyF(u + y)dy.

Willmot (2002) proves that limt→∞ Hu(y) = H∞(y), where

H∞(y) =
ϕR

1 − ϕ

∫ ∞

0
eRxF(x + y)dx. (29)

In view of (29) the above inequality could be written as

e−Ru − ψ(u) ≥ ψ(u)
F(u)

1 − ϕ

ϕ
H∞(u).

After some algebra and solving by ψ(u) completes the proof.

4.3. Bounds for the Probability of Ruin When R Does Not Exist
Chadjiconstantinidis and Xenos (2022) consider the random sum St,ϕ = Xt,1 + Xt,2 +

. . . + Xt,Nt,ϕ is a d.f., where for the counting random variable Nt,ϕ it holds P(Nt,ϕ = m) =

(1 − ϕF(t))(ϕF(t))m, and Xt = X|X ≤ t is of d.f. with

Ft(u) =

{
F(u)
F(t) , 0 ≤ u ≤ t,

1, u > t.

By introducing the tail probability of the compound geometric sum St,ϕ as follows:

ψt,ϕ(u) = P(St,ϕ > u) =
∞

∑
m=1

(1 − ϕF(t))(ϕF(t))mF∗m
t (u), 0 ≤ u ≤ t,

they gave the following formula for the probability of ruin:
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ψ(u) =
(1 − ϕ)ψt,ϕ(u) + ϕF(t)

1 − ϕ + ϕF(t)
, 0 ≤ u ≤ t. (30)

For convenience, we define ϕt = ϕF(t). Chadjiconstantinidis and Xenos (2022) gave
bounds for the probability of ruin under the assumption of NBU and DFR ladder heights,
in more detail: If the d.f. F is DFR, then for any t > 0 it holds

ψ(u) ≤ (1 − ϕ)ϕte−uRϕ(u) + ϕF(t)
1 − ϕ + ϕF(t)

, 0 ≤ u ≤ t (31)

and for any u > 0

ψ(u) ≤ (1 − ϕ)ϕue−uRϕ(u) + ϕF(u)
1 − ϕ + ϕF(u)

, (32)

while for the case of NBU ladder heights, the above bounds hold with the reverse inequality.
In what follows, we improve those bounds, regarding the aging class, by employing

the bounds we introduced in Section 4.2. Specifically, under the assumption that the d.f. F
is NWU (NBU) it holds

ψ(u) ≤ (≥)ψW(u).

If F is NWU (NBU), then Ft is NWU (NBU) (see Chadjiconstantinidis and Xenos (2022))
and references therein). Applying the above inequality to ψt,ϕ(u), and by replacing ϕ and
R with ϕt = ϕF(t), Rϕ(t) we, respectively, obtain:

ψt,ϕ(u) ≤ (≥)ψt,ϕ,W(u), (33)

where
ψt,ϕ,W(u) = ϕte−Rϕ(t)u. (34)

In view of (34), (31) and (32) could be written as follows:

ψ(u) ≤
(1 − ϕ)ψt,ϕ,W(u) + ϕF(t)

1 − ϕ + ϕF(t)
, 0 ≤ u ≤ t,

and for any u > 0

ψ(u) ≤
(1 − ϕ)ψu,ϕ,W(u) + ϕF(u)

1 − ϕ + ϕF(u)
.

The above bounds are expressed in terms of the ladder height d.f. F. Although these
are smoothly translated for the classical risk model in terms of the claim-size d.f. P, in the
Sparre–Andersen model, the d.f. F of the ladder heights may not be available analytically.
In this case bounds under assumptions regarding the claim-size d.f, P could be useful.

In the following result, we provide a refinement of the previously mentioned bound
assuming that the claim-size distribution P is DFR.

Proposition 5. If the d.f. P is DFR, then for any t > 0 it holds

ψ(u) ≤
(1 − ϕ)ψt,ϕ,W(u) + ϕF(t)

1 − ϕ + ϕF(t)
, 0 ≤ u ≤ t, (35)

and for any u > 0

ψ(u) ≤
(1 − ϕ)ψu,ϕ,W(u) + ϕF(u)

1 − ϕ + ϕF(u)
. (36)

Proof. Szekli (1986, Lemma 3.2) proves that if the claim-size d.f. P is DFR, then the same
holds for the ladder-height d.f. F, thus F is NWU. Inserting (33) into (30) we obtain (35). By
letting u = t in (35) we obtain (36).
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Chadjiconstantinidis and Xenos (2022) gave the following lower bound for the proba-
bility of ruin:

ψ(u) ≥ 1 − ϕ

1 − ϕn

n−1

∑
m=1

ϕmF∗m
(u) +

(
1 − 1 − ϕ

1 − ϕn

n−1

∑
m=1

ϕmF∗m
(u)

)
Vϕ,n(u),

where Vϕ,n(u) = 1 − Vϕ,n(u) (for n = 1, 2, 3, . . .) is the tail probability of a compound
geometric sum. In more detail, it holds:

Vϕ,n(u) =
∞

∑
m=1

(1 − ϕn)(ϕn)m(F∗n
)∗m(u), u ≥ 0, (37)

and for 0 ≤ u ≤ t they also prove that

Vϕ,n(u) =
ϕnF∗n

(t) + (1 − ϕn)Vt,ϕ,n(u)

1 − ϕn + ϕnF∗n
(t)

,

where

Vt,ϕ,n(u) =
∞

∑
m=1

(1 − ϕnF∗n(t))ϕn(F∗n(u))∗m.

Proposition 6. If the d.f. F is IFR, then the ratio Vϕ,n(u)/F∗n
(u) is nondecreasing.

Proof. Dividing (37) by F∗n we obtain:

Vϕ,n(u)
F∗n(u)

=
∞

∑
m=1

(1 − ϕn)(ϕn)m (F∗n
)∗m(u)

F∗n(u)
, u ≥ 0.

Barlow and Proschan (1996) prove that if F is IFR, then for n = 1, 2, 3, . . ., F∗n is
also IFR. Also, Psarrakos and Politis (2009b) prove that if a d.f. F is IFR, then for any
m ≥ 2, the quantity F∗m

(u)/F(u) is nondecreasing. Replacing F(u) with F∗n
(u) completes

the proof.

In view of (3) and (37) we note that Vϕ,1(u) = ψ(u).

4.4. Concluding Remarks
In this paper, we first introduce a renewal-type equation for the difference ψ(u)− e−Ru,

and using this result, we improve the Lundberg upper bound for the ruin probability by
offering a general two-sided bound for the ψ(u).

Next, using assumptions expressed in terms of the ladder height d.f. F, we derive
bounds for the probability of ruin, refining the ones previously obtained by Willmot et al.
(2001). These results are based on the assumption that the d.f F belongs to certain aging
classes; however, in the Sparre–Andersen model, F may not be available analytically. For
this reason, in Section 4.3, we offer bounds by making assumptions for the d.f P of the
claim size.

Someone might wonder about specific conditions needed for the d.f. F to be DFR.
Szekli (1986, Lemma 3.2), provided a sufficient condition for F to be DFR. Specifically, if the
d.f. P is DFR, then F is DFR. In the classical risk model, a weaker assumption is that if P
is IMRL, characterised by the condition that

∫ ∞
x P̄(y)dy/P̄(x) is nondecreasing for x ≥ 0,

then it follows that F is DFR (see, e.g., Willmot and Lin (2001)). In this case, the results
of Chadjiconstantinidis and Xenos (2022) that assume DFR ladder heights, hold true by
considering that the d.f. P is IMRL.
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