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Abstract: It has been shown that, despite being consistent and in some cases efficient, maximum
pseudo-likelihood (MPL) estimation for copula models overestimates the level of dependence, espe-
cially for small samples with a low level of dependence. This is especially relevant in finance and
insurance applications when data are scarce. We show that the canonical MPL method uses the mean
of order statistics, and we propose to use the median or the mode instead. We show that the MPL
estimators proposed are consistent and asymptotically normal. In a simulation study, we compare the
finite sample performance of the proposed estimators with that of the original MPL and the inversion
method estimators based on Kendall’s tau and Spearman’s rho. In our results, the modified MPL
estimators, especially the one based on the mode of the order statistics, have a better finite sample
performance both in terms of bias and mean square error. An application to general insurance data
shows that the level of dependence estimated between different products can vary substantially with
the estimation method used.

Keywords: copula model; finite sample properties; general insurance; rank statistics; relative
efficiency; semiparametric estimation

1. Introduction

Copula models are widely used in insurance and finance for pricing, hedging, and
risk management, as well as in health sciences, hydrology, and other applied sciences; see
e.g., Chen and Guo (2019); Czado (2019); Joe (2014); Kularatne et al. (2021); McNeil et al.
(2015). Such wide applicability has triggered important contributions both in probabilistic
and statistical aspects of copula models; see Durante and Sempi (2015); Joe (2014) and
references therein. The estimation of copula model parameters from observed data appears,
at first, to be a straightforward inference exercise. However, it has, in fact, significant
pitfalls. The estimation of copula models without fully understanding the properties of the
estimators can have undesirable consequences such as, among others, the overestimation
of the dependence in the data; see the discussion in Fermanian and Scaillet (2005). One of
the difficulties is that the distribution of the univariate margins is, in principle, unknown.
Estimation procedures have been proposed to circumvent this problem, but no estimation
procedure seems to be clearly the best. In fact, Kojadinovic and Yan (2010) show that the
performance of commonly used estimation methods depends on the size of the sample
and the strength of the dependence in the data. In finance, large samples of data are often
available but the same does not happen in other applications where data are, by their nature,
limited. This is the case, for instance, if the observations naturally occur at a low frequency
or the population of interest is, by itself, small. Here, we propose new semiparametric
estimators and show that the level of dependence obtained can differ substantially in a
general insurance case where the data are available only quarterly.

Sklar’s representation theorem (Sklar 1959) characterizes a so-called copula model for a
random vector X = (X1, . . . , Xd) with multivariate distribution H by a copula function, C,
and univariate marginal cumulative distribution functions (cdfs) Fi(xi) = P(Xi ≤ xi) for
i = 1, . . . , d, as

H(x) = C[F1(x1), . . . , Fd(xd)], x ∈ Rd.
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A copula C : [0, 1]d → [0, 1] is then a multivariate distribution with standard uniform
univariate margins. If the univariate marginal cdfs are continuous, then the copula is
unique. The versatility of copula models is apparent from Sklar’s representation theorem.
By combining different distributions for the univariate margins with copula functions, a
variety of models can be easily specified. Such flexibility can have a cost when it comes to
the task of estimating the copula model from observed data.

Assuming that the univariate margins and copula all belong to absolutely continuous
families of distributions, the obvious estimation method is maximum likelihood (ML).
By default, the ML estimation of a model’s parameters is performed in one step. But,
mainly due to numerical problems, which typically arise during the optimization of a
likelihood function with several parameters and possibly multi-dimensional integrals,
a two-step maximum likelihood estimation method has been introduced, the so-called
inference functions for margins (IFM) from Joe and Xu (1996) and Joe (1997). The IFM
method consists of estimating first the parameters for each univariate margin distribution
independently, and then estimating the dependence parameters from the multivariate log-
likelihood where the univariate margins parameter estimates are held fixed. Although the
two-step IFM method can suffer from some loss of efficiency in cases of strong dependence,
it still enjoys strong asymptotic efficiency as shown by Joe (2005). A further advantage of a
two-step estimation method is that the estimation of the univariate margins parameters is
not affected by a possible misspecification of the multivariate copula model. A fundamental
challenge with the ML estimation, either the one or two-step procedure, is to ensure the
correct choice of distributions for the univariate margins. This is especially relevant if we
are particularly interested in modelling the dependence structure of the random vector.
Through a simulation study, Fermanian and Scaillet (2005) find that misspecification of
the margins may translate into a severe positive bias and high mean square errors in
the estimation of the copula parameters leading to an overestimation of the degree of
dependence in the data. An extensive simulation study from Kim et al. (2007) shows that
the one-step ML and the IFM methods are indeed nonrobust against misspecification of the
marginal distributions. Kim et al. (2007) also shows that, when the margins are unknown,
in order to avoid the consequences of misspecification, it is better to use the maximum
pseudo-likelihood (MPL) estimation procedure studied in Genest et al. (1995) and Shih and
Louis (1995). Semiparametric estimation in copula models is indeed used widely even in
nonstationary cases, for instance climate data, as is the case in Nasri et al. (2019).

For a random sample {(X1,i, . . . , Xd,i) : i = 1, . . . , n} from distribution H(x) =
Cθ[F1(x1), . . . , Fd(xd)], the MPL is a semiparametric estimation procedure consisting of
selecting the parameter θ̂ that maximizes the log pseudo-likelihood function

n

∑
i=1

log cθ

[
F̂1,n(X1,i), . . . , F̂d,n(Xd,i)

]
,

where cθ is the probability density function (pdf) of the copula family {Cθ}, and the
univariate marginal distributions F̂j,n estimator is a rescaled empirical distribution function
of the jth variable. Further asymptotic properties of the MPL estimator have been studied
in Klaassen and Wellner (1997) and Genest and Werker (2002). The finite sample properties
of the MPL estimator have been studied in Kojadinovic and Yan (2010) in a study where
they compare the MPL estimator with the two method-of-moments (MM) estimators based
on the inversion of Spearman’s rho and Kendall’s tau coefficients. The MM estimators
have been studied by Genest (1987); Genest and Rivest (1993); Oakes (1982). Kojadinovic
and Yan (2010) found that the MPL estimator performs better than the MM estimators in
terms of mean squared error, except for small and weakly dependent vectors. Using the
MM procedure as an alternative to MPL for small weakly dependent vectors is not the best
solution, as we will demonstrate in this study. Instead, we propose to modify the canonical
MPL estimator by using consistent nonparametric estimators of the univariate marginal
distributions different from that used since Genest et al. (1995).
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After deriving theoretically the consistency and asymptotic normality of the proposed
MPL estimators, we study their small sample properties via a simulation study. We
compare three alternative MPL estimators with the canonical MPL, and with the MM
estimators based on the inversion of Kendall’s tau and Spearman’s rho. We find that
changing the nonparametric estimator of the univariate margins indeed improves the finite
sample performance of the MPL estimator, in terms of bias and mean squared error, while
preserving its asymptotic properties. To confirm the large sample performance of the
estimators we evaluate their relative efficiency via simulation.

Instead of proposing to use alternative nonparametric estimators of the univariate
margins, another possibility would be to obtain a bias correction function for the canonical
MPL estimator. Such a bias correction function would depend not only on the copula
parameter and sample size, but also, importantly, on the specific copula itself. The approach
that we propose to use here has the advantage of not depending on the specific copula. A
bias reduction correction can also have the effect of increasing the variance of the estimator
and possibly the mean square error, (see e.g., Søbye et al. 2021). That does not happen with
the estimators we propose here.

Another possible approach is to estimate the multivariate model nonparametrically
using empirical copulas, the asymptotic properties of which can be found in Genest and
Segers (2010) and Segers et al. (2017). See also, e.g., Yang et al. (2020) on the nonparametric
estimation of copula regression models. Naturally, empirical copula model estimation
requires larger samples. Especially in applications where the size of the sample available
is limited, there might be enough data to estimate the univariate marginal distribution
functions nonparametrically but not enough data to estimate the empirical copula. That is
one of the reasons why the semiparametric method from Genest et al. (1995) has become
commonly used in applications.

Although we chose to compare the MPL estimators proposed here with the MM es-
timators, as in Kojadinovic and Yan (2010), other semiparametric estimators have been
introduced in the literature. Tsukahara (2005) studied two semiparametric estimation
procedures and concluded that these, overall, have a higher mean squared error when
compared with the canonical MPL estimator. Chen et al. (2006) introduced and studied
the properties of an MPL estimator where the unknown marginal density functions are
approximated by linear combinations of finite-dimensional known basis functions with
increasing complexity called sieves. They find that for weak dependence the sieve method
performs comparably to the canonical MPL in finite samples. Given these results, com-
paring the proposed estimators with the canonical MPL and the MM estimators seems an
appropriate choice.

In Section 2 of this article, we introduce the canonical MPL estimation procedure and
its statistical properties. It is our starting point, as we benchmark the MPL estimators that
we propose against the canonical MPL estimator. Section 3 motivates and proposes the
new MPL estimators. Section 4 addresses their asymptotic properties. We show that the
finite sample properties of the MPL estimators depend on the copula model in Section 5.
Section 6 summarizes the MM estimators used in the simulation study. In Section 7 we
report and discuss the results of the simulation study where we compare the small sample
performance of the six estimators. We apply our results to a case of general insurance data
in Section 8. Section 9 concludes the paper. Proofs and tables with simulation results are
given in the Appendices A and B.

2. The Canonical MPL Estimator

Given a multivariate copula model with univariate marginal absolutely continuous
distribution functions, the so-called canonical maximum pseudo-likelihood method consists
of estimating univariate marginal distributions F̂1, . . . , F̂d from the marginal empirical
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distributions, as a first step assuming that the univariate variables are independent, and
then selecting the copula parameter that maximizes the log pseudo-likelihood function,

n

∑
i=1

log cθ

[
F̂1(X1,i), . . . , F̂d(Xd,i)

]
=

n

∑
i=1

log cθ

(
Û1,i, . . . , Ûd,i

)
. (1)

In the canonical MPL estimation, the so-called pseudo-observations Ûi =
(
Û1,i, . . . , Ûd,i

)
are obtained from Xi = (X1,i, . . . , Xd,i) as

Ûi =

(
n

n + 1
F1,n(X1,i), . . . ,

n
n + 1

Fd,n(Xd,i)

)
i = 1, . . . , n, (2)

where Fj,n is the empirical cumulative distribution function Fj,n(x) = 1/n ∑n
k=1 1(Xj,k ≤ x)

for j = 1 . . . , d, and 1(A) denotes the indicator function of event A. The rescaling of the
empirical distribution function by the factor n/(n + 1) in expression (2) is made to avoid
computational problems on the boundary of [0, 1]d. The use of the empirical distribution
function to transform the margins to uniform can be traced back to Genest et al. (1995). The
large sample properties of the canonical MPL estimator were studied by Genest et al. (1995)
and Shih and Louis (1995), who showed that this estimator is consistent and asymptotically
normal, and efficient at independence. Later, Genest and Werker (2002) argue that the latter
is rather the exception than the rule and identify two cases of semiparametric efficiency.
These are the independence and the normal copula, for which the result could already be
found in Klaassen and Wellner (1997).

3. Alternative MPL Estimators

The semiparametric canonical MPL estimation procedure hinges on a nonparametric
estimator of each marginal univariate distribution Fj for j = 1, . . . , d. As introduced in
the previous section, this nonparametric estimator is the rescaled empirical distribution
function n/(n+ 1)Fj,n. Here, we motivate and propose the use of alternative nonparametric
estimators for the univariate margins in the MPL estimation procedure.

In the implementation of the canonical MPL method, for each univariate margin
j = 1, . . . , d, the pseudo-observations Ûj,1, . . . , Ûj,n, defined in (2), are calculated as

Ûj,i =
n

∑
k=1

1(Xj,k ≤ Xj,i)/(n + 1) = Rj,i/(n + 1), (3)

where Rj,i is the rank of Xj,i among Xj,1, . . . , Xj,n.
For clarification, MPL estimation presents no scalability problems. The estimators

involve ranking the multivariate observations one margin at the time. Hence, it can be
easily implemented for high dimensional data sets.

3.1. Pseudo-Observations and Moments of Order Statistics

To motivate the new estimators, first we show the relation between the pseudo-
observations Ûj,i = Rj,i/(n + 1) and order statistics. Assume that X1, X2, . . . , Xn are n-
independent and identically distributed (iid) univariate random variables. Arrange these
in ascending order of magnitude as X(1) ≤ X(2) ≤ . . . ≤ X(n), and call X(r) the rth order
statistic, for r = 1, 2, . . . , n.

Proposition 1. Consider a random sample (X1, X2, . . . , Xn) from a univariate distribution with
continuous cdf F and the corresponding transformed vector (U1, U2, . . . , Un) where Ui = F(Xi) for
i = 1, . . . , n. If we define the function a(r) = E

[
U(r)

]
for 1 ≤ r ≤ n, then each pseudo-observation

Ûi =
Ri

n+1 , for i = 1, . . . , n, can be obtained as Ûi = a(Ri), where Ri is the rank of Xi among
X1, X2, . . . , Xn.
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The proof of Proposition 1 can be found in the Appendix A. The conclusion is that
the pseudo-observations in (3), proposed by Genest et al. (1995), can be obtained from the
expected value of the order statistics defined as a function of the rank of the corresponding
sample observations, i.e.,

(
Û1,i, . . . , Ûd,i

)
= (a(R1,i), . . . , a(Rd,i)) =

(
R1,i

n + 1
, . . . ,

Rd,i

n + 1

)
for i = 1, . . . , n, (4)

where a(r) = E
[
U(r)

]
= E

[
F(X)(r)

]
= r

n+1 , for 1 ≤ r ≤ n, and Rj,i is the rank of Xj,i within
Xj,1, . . . , Xj,n.

Note that, as we are assuming that the random variable X is continuous and its cdf
F is an increasing function, we have that the rank of Xi among X1, . . . , Xn is the same as
the rank of F(Xi) among F(X1), . . . , F(Xn). We remark here that Clayton and Cuzick (1985)
also used expected order statistics from unit exponential distributions in the estimation of
the dependence parameter of a bivariate hazards model.

At this point, it is important to recall that our goal is to improve the performance of the
canonical MPL which uses the pseudo-observations computed as in (4). With this objective
in mind, we explore the properties of the pseudo-observations in (4) inherited from the fact
that these are obtained from expected values of order statistics, and how this affects the
performance of the canonical MPL estimator.

If the random variable X has cdf F, then the distribution of the order statistics F(X)(r)
is skewed (except for r = n/2 if n is even), especially when r is closer to 1 or n. Given
that the expected value can be highly influenced by the skewness of the distribution, it
is then possible that the properties of the pseudo-observations in (4) are affected by the
skewness of F(X)(r) and consequently also the canonical MPL estimator. Figure 1 displays
the pdf of the order statistics F(X)(49) and F(X)(196) in (0.75, 1), for samples of size n = 50
and n = 200 respectively. The strong skewness of the pdf implies that the mean is further
away from the peak of the distribution than the median and, obviously, the mode. The
pseudo-observations calculated using the mean of the order statistics might suffer from
the skewness of the pdf. Hence, we propose to use the median or the mode of the order
statistics, instead of the mean, to compute the pseudo-observations, and we study their
effect on the performance of the new MPL estimators obtained from (1). From Figure 1 we
can see that the skewness of the order statistics pdf is higher for smaller samples. We will see
that, in fact, the smaller the sample, the larger the improvement of the performance of the
estimator when using the median or the mode rather than the mean of the order statistics.
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Figure 1. Graphs of the probability density function in (0.75, 1) of the order statistic F(X)(49) (on the left) and
F(X)(196) (on the right) of samples of size n = 50 and n = 200, respectively, from a uniform U(0, 1) distribution.
The vertical lines are the mean, median and mode of F(X)(·) as labeled in the legend.
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3.2. Pseudo-Observations and the Median of Order Statistics

We first propose to use the median of the rth order statistic as an alternative to using
the mean of the order statistic. If the continuous random variable X has cdf F then F(X) is
drawn from a standard uniform distribution and the median of the order statistic F(X)(r) is

med
(

F(X)(r)

)
= I[−1]

1/2 (r, n − r + 1), for 1 ≤ r ≤ n,

where Ip(a, b) =
∫ p

0 ta−1(1 − t)b−1dt/B(a, b) is the regularised incomplete beta function.
The computations can be made faster using the approximation (see Hyndman and Fan
1996; Kerman 2011) given by

med
(

F(X)(r)

)
≈

r − 1
3

n + 1
3

, for 1 ≤ r ≤ n.

Defining the function g(r) = r−1/3
n+1/3 , the corresponding pseudo-observations for the

estimation of the copula parameter via the pseudo-likelihood method are then

(Ū1,i, . . . , Ūd,i) = (g(R1,i), . . . , g(Rd,i)) =

(
R1,i − 1

3

n + 1
3

, . . . ,
Rd,i − 1

3

n + 1
3

)
, for 1 ≤ i ≤ n. (5)

We will refer to the copula parameter estimation procedure consisting of using the
pseudo-observations given by (5) in the log pseudo-likelihood function in (1) as the me-
dian MPL.

3.3. Pseudo-Observations and the Mode of Order Statistics

The second alternative we explore to compute the pseudo-observations is using the
mode of the rth order statistic from a standard uniform distribution, which is given by

mode
(

F(X)(r)

)
=

r − 1
n − 1

for 1 ≤ r ≤ n.

In this case, defining the function h(r) = r−1
n−1 , the pseudo-observations are

(
U∗

1,i, . . . , U∗
d,i

)
= (h(R1,i), . . . , h(Rd,i)) =

(
R1,i − 1
n − 1

, . . . ,
Rd,i − 1
n − 1

)
, for 1 ≤ i ≤ n. (6)

We will refer to the copula parameter estimation procedure consisting of using the
pseudo-observations given by (6) in the log pseudo-likelihood function as the mode MPL.

For the minimum and the maximum in each margin, i.e., for Xj(1) and Xj(n) (j =
1, . . . , d), it is not possible to use the mode of the corresponding order statistic as pseudo-
observations in the pseudo log-likelihood function because these would be zero and one,
respectively. In these cases, we use instead the mean of the order statistics 1/(n + 1) and
n/(n + 1) as in the canonical MPL because this is our benchmark estimator.

At this point we would like to remark the following. Instead of calculating the
pseudo-observations as the mean, median or mode of the order statistics F(X)(r), we could
consider using F(E(X(r))), F(median(X(r))) or F(mode(X(r))). If F is strictly monotonic
then F(median(X(r))) = median(F(X)(r)), which is one of the proposed estimators above.
The pseudo-observations, calculated as F(E(X(r))) or F(mode(X(r))), depend on the distri-
bution F. As we want to assume that F is unknown, we do not consider these alternatives.

3.4. Midpoint and Pseudo-Observations

In the canonical MPL estimator, the motivation to rescale the empirical distribution by
multiplying it with n/(n + 1) is justified (starting with Genest et al. 1995) due to the need
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to keep the pseudo-observations away from the boundary of the interval (0, 1). To that end,
the adjustment to the empirical distribution function Fj,n can rather be carried out using

Fj,n(x)− 1
2n

=
1
n

[
n

∑
i=1

1(Xj,i ≤ x)− 1
2

]
.

Here, the additive factor −1/(2n) ensures that the pseudo-observations are strictly in
the interval (0, 1). This approach, introduced by Hazen (1914), is popular with hydrologists
and it is also used by Joe (2014) in the process of converting sample observations to normal
scores. We include it in our study as an alternative to calculating the pseudo-observations,
which are then given by

(
Ũ1,i, . . . , Ũd,i

)
=
(

F̂1
(
X1,i

)
, . . . , F̂d

(
Xd,i

))
=

(
R1,i − 1/2

n
, . . . ,

Rd,i − 1/2
n

)
, for 1 ≤ i ≤ n. (7)

We will refer to the copula parameter estimation procedure consisting of using the
pseudo-observations given by (7) in the log pseudo-likelihood function in (1) as the mid-
point MPL.

4. Large Sample Properties of the MPL Estimators

Before moving on to the small-sample performance simulation study, we consider
the consistency and asymptotic normality of the different estimators. As already pointed
out by other authors, (e.g., Genest et al. 1995; Kojadinovic and Yan 2010), using
Ûj,i = Rj,i/(n + 1) as pseudo-observations in the log pseudo-likelihood function in (1)
corresponds to multiplying n/(n + 1) by the empirical distribution of the univariate jth
variable. Each of the estimators of the univariate marginal distribution functions Fj used
above can be written as a function of the empirical distribution estimator Fj,n for the cor-
responding variable. Given that the empirical distribution is a consistent estimator, as
an immediate consequence of the strong law of large numbers, the consistency of the
univariate cdf estimators used follows.

Genest et al. (1995) show the consistency and asymptotic normality of the canonical
MPL estimator building on the work of Ruymgaart et al. (1972). In this section, we
generalize their result for the median, mode, and midpoint MPL estimators proposed
here. For simplicity of exposition, hereafter we consider bivariate distributions Hθ(x1, x2)
with copula Cθ , real parameter θ, and continuous univariate cdfs F1 and F2, such that
Hθ(x1, x2) = Cθ [F1(x1), F2(x2)], (x1, x2) ∈ R2. The results obtained can be generalised to
the multivariate case.

The regularity conditions for the consistency and asymptotic normality of the MPL
estimators are similar to those underlying the maximum likelihood estimator. Given a
random sample {(X1i, X2i) : i = 1, . . . , n} from distribution Hθ , the MPL estimate θ̂n takes
the value that maximizes the log pseudo-likelihood function (1)

L(θ) =
n

∑
i=1

log cθ

[
F̂1(X1,i), F̂2(X2,i)

]
.

Let l(θ, u1, u2) = log[cθ(u1, u2)]. The semiparametric estimate θ̂n solves the equation

∂

∂θ
L(θ) =

n

∑
i=1

lθ
[
θ, F̂1(X1,i), F̂2(X2,i)

]
= 0, (8)

with lθ denoting the partial derivative of l with respect to θ. To derive an expression for the
semiparametric MPL estimator θ̂n we follow Genest et al. (1995) and start by expanding (8)
in a Taylor series. As a result, we obtain

1
n

∂

∂θ
L(θ)|θ=θ̂n

= 0 ≈ An − (θ̂n − θ)Bn,
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where

An =
1
n

n

∑
i=1

lθ
[
θ, F̂1(X1,i), F̂2(X2,i)

]
, Bn = − 1

n

n

∑
i=1

lθ,θ
[
θ, F̂1(X1,i), F̂2(X2,k)

]
and lθ,θ denotes the second derivative of l with respect to θ. Hence, a standardised version
of θ̂n is

n1/2(θ̂n − θ
)
≈ n1/2 An/Bn, (9)

whose large sample properties relate to those of multivariate rank statistics of the form

Rn =
1
n

n

∑
k=1

J
[
F̂1(X1,k), F̂2(X2,k)

]
,

under the following assumptions.

Assumption 1. J(u1, u2) is a continuous function from (0, 1)2 into R such that

µ = E[J{F1(X1), F2(X2)}] =
∫

J(u1, u2) dC(u1, u2)

exists.

Assumption 2. Define the function r(u) = u(1 − u), on (0, 1), let p and q be positive numbers
satisfying 1/p + 1/q = 1 and δ > 0.

(i) lθ,θ(u1, u2) ≤ M r(u1)
ar(u2)

b with M a positive constant, a = (−1 + δ)/p and b =
(−1 + δ)/q;

(ii) lθ(u1, u2) ≤ M r(u1)
ar(u2)

b with M a positive constant, a = (−0.5 + δ)/p and b =
(−0.5 + δ)/q, and lθ admits continuous partial derivatives lθ,i(u1, u2) = ∂lθ(u1, u2)/∂ui

on (0, 1)2 such that lθ,i(u1, u2) ≤ M r(u1)
di r(u2)

d3−i with d1 = a − 1 and d2 = b.

The limiting behaviour of the MPL estimators can then be summarised as follows.

Proposition 2. Under assumptions 1 and 2, each of the median, mode and midpoint MPL estimators
θ̂n is consistent and n1/2(θ̂n − θ

)
is asymptotically normal with variance

1
β2 var{lθ [θ, F1(X1), F2(X2)] + W1(X1) + W2(X2)},

where β = −E[lθ,θ{θ, F1(X1), F2(X2)}] and

Wi(Xi) =
∫

1[Fi(Xi) ≤ ui]lθ,i(θ, u1, u2)cθ(u1, u2) du1 du2,

with 1(A) denoting the indicator of A and lθ,i(θ, u1, u2) = ∂lθ(θ, u1, u2)/∂ui.

The proof of Proposition 2 and necessary results are obtained in the Appendix A.
The simulation study in Section 7 illustrates this result. For the cases of multidimensional
dependence parameter or in a multivariate context, the previous results on the consistency
and asymptotic normality of the modified MPL estimators can be extended as in Genest
et al. (1995) following similar arguments.

5. Finite Sample Properties of the MPL Estimators

Consider the random sample {(X1i, X2i) : i = 1, . . . , n} of iid pairs from distribu-
tion Hθ(x1, x2). Let R = (R1, . . . , Rn) be the vector of ranks corresponding to X1 =
(X1,1, . . . , X1,n), and Q = (Q1, . . . , Qn) the vector of ranks corresponding to
X2 = (X2,1, . . . , X2,n). The mean square error of θ̂n can be derived (at least approximated)



Risks 2024, 12, 15 9 of 26

from the moments of A′
n = n An and B′

n = n Bn and relation (9). Hence, we are interested
in the properties of statistics A′

n and B′
n which are both of the form Jn = ∑n

i=1 J(Ri, Qi).
Let D = (D1, . . . , Dn) denote the inverse of R in R, the space of all permutations of

e = (1, 2, . . . , n). Define R0 = Q ◦ D, where R0 =
(

R0
1, . . . , R0

n
)
. We can then write the

statistic Jn in its dual form

Jn =
n

∑
i=1

J(i, R0
i ).

If X1 and X2 are independent then R0 has a uniform distribution in R and the
derivation of its moments is straightforward (see e.g., Hájek 1969). Proposition 3 in the
Appendix A shows how to obtain the moments of A′

n and B′
n given the distribution of

R0. But if X1 and X2 are not independent then the distribution of R0, to the best of the
author’s knowledge, is unknown. To give an idea of how different the distribution of the
R0

i is from a uniform in the non independent case, we run a simulation from a Clayton
copula with dependence parameter corresponding to a Kendall’s tau correlation of τ = 0.4
(see Joe 2014). We simulated N = 50,000 samples, each sample having n = 50 pairs of
observations from the Clayton copula. The histograms of the simulated observations of R0

i
for i = 1, 10, 20, 30, 40, 50 are displayed in Figure 2. The histograms in Figure 2 show how
the distribution of R0

i can be far from a uniform in the case of dependent samples. Given
that the finite sample properties of the MPL estimators depend on the copula family via the
unknown distribution of R0

i we proceed our investigation of the finite sample properties of
the MPL estimators with a simulation study.

Figure 2. Histograms of N = 50,000 simulated observations of R0
i for i = 1, 10, 20, 30, 40, 50.

6. Method-of-Moments Estimators

In our simulation study, we also compare the performance of the four semiparametric
MPL estimators with the method-of-moments (MM) estimators obtained from the relation
between the copula parameter and the coefficients Kendall’s tau, τ, and Spearman’s rho,
ρ; see Oakes (1982), Genest (1987), Genest and Rivest (1993). Copula parameter estimates
obtained from these rank coefficients via the MM can be referred to as inversion-method
estimates. The reason to include the two inversion-method estimators is first, because these
perform better than the canonical MPL estimator for small weakly dependent samples, and
second, to facilitate the comparison of our results with other related studies.

The MM estimation procedure is mostly used in the bivariate one-parameter copula
model case, although it may be used in the multivariate and/or multiparameter cases,
for instance, by imposing conditions on the dependence structure. In our simulation
study we restrict ourselves to the one-parameter bivariate copulas case as explained in
Section 7. Hence, consider the random sample X1, . . . , Xn from an absolutely continuous
bivariate copula model Cθ(F1, F2), where θ belongs to an open subset of R, and F1 and F2
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are continuous cdfs. Inversion-method estimators rely on a consistent estimator of a copula
moment. A consistent estimator of the copula moment Kendall’s tau is given by

τn =
4

n(n − 1) ∑
i ̸=j

1
(
X1,i ≤ X1,j

)
1
(
X2,i ≤ X2,j

)
− 1.

Given the ranks R1, . . . , Rn corresponding to X1, . . . , Xn, where Rj,i is the rank of Xj,i
among Xj,1, . . . , Xj,n for j = 1, 2, a consistent estimator of the bivariate copula moment
Spearman’s rho is

ρn =
12

n(n + 1)(n − 1)

n

∑
i=1

R1,i R2,i − 3
n + 1
n − 1

.

The copula parameter estimate, θ̂, is then obtained by inversion from the relation
between θ and τ or ρ as θ̂τ = τ−1(τn) or as θ̂ρ = ρ−1(ρn), when the functions τ and ρ are
bijections. In those cases where there is no analytic expression for the relation between
the copula parameter and τ or ρ then a numerical approximation must be used. The
consistency, asymptotic normality, and variance of θ̂τ and θ̂ρ are well documented in the
literature and we refrain from repeating it here, directing the reader to Kojadinovic and
Yan (2010) and relevant references therein.

7. The Finite Sample Performance of the Estimators

In this section, we compare the performance of the semiparametric pseudo-likelihood
estimator when calculating the pseudo-observations as in (4)–(7), and the MM Kendall’s
tau and Spearman’s rho estimators. Recall that we refer to the MPL estimators for the
copula model parameters corresponding to (4)–(7) as canonical MPL, median MPL, mode
MPL, and midpoint MPL, respectively. To compare the performance of the six estimators,
we perform a simulation study. The calculations are performed using R (R core Team 2020)
and the package copula (Hofert et al. 2020).

Given their wide applicability to finance and insurance, we consider the copula
families Clayton, Gumbel–Hougaard, Plackett, Normal, and Student-t. The Clayton family
was first written in the form of a copula by Kimeldorf and Sampson (1975). Due to its joint
lower tail dependence property, this family as been used to model the association between
inter-event times, from epidemiology to insurance. The Gumbel (1960) copula can be used
to model joint upper tail dependence, for instance, between large losses on financial assets
or insurance claims. The bivariate Plackett (1965) family is radially symmetric and has
been used as an alternative to the bivariate normal copula; see Nelsen (2006). The Normal
and Student-t copulas are often used in classic finance and insurance multivariate models.
Details on each of these copula families can be found, e.g., in Joe (2014). Without loss of
generality, we consider the case of positive dependence in the simulation study.

We use six different levels of dependence corresponding to Kendall’s tau of 0.1, 0.2,
0.3, 0.4, 0.6, and 0.8, and four sample sizes of 50, 100, 200, and 400. These choices are also
informed by the study of Kojadinovic and Yan (2010) to make it possible to benchmark
some of our results against theirs. For each level of dependence and sample size, we
simulate 5000 samples from all the copula families. Each sample is then used to estimate
the copula parameter and standard error.

For clarification, we do not study the effect of the univariate marginal distributions be-
cause these play no role on the copula MPL estimation procedure. The pseudo-observations
used in (1) to obtain the MPL estimators are adjusted ranks of each marginal observations
and do not depend on the particular distribution of each margin. The set of ranks corre-
sponding to an iid random sample (X1, . . . , Xn) from distribution F is a permutation T
from the set of all possible permutations of (1, . . . , n). If the observations are independent,
then the probability of obtaining permutation T is 1/n!, independently of the distribution
F, (see e.g., Hájek 1969).
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7.1. Results

For each copula and degree of dependence considered, we present in Tables A1–A4 (in
Appendix B) the results for sample sizes 50, 100, 200, and 400, respectively. In the tables, the
different copula models are labelled as: C for the Clayton, G for the Gumbel–Hougaard, P
for the Plackett, N for the Normal, and t for Student-t. For the six estimators, we report the
percentage relative bias (PRBθ̂ = (θ̂ − θ)/θ × 100), the empirical standard deviation of the
estimates (sθ̂), the mean of the estimated standard errors (seθ̂), and the empirical percentage
coverage (PCθ̂) of the approximate 95% confidence interval for the dependence parameter
calculated as θ̂ ± 1.96 seθ̂ . In the tables, we identify the results using a different subscript
for each estimator. The notation for the canonical MPL is θ̂c, for the median MPL is θ̂m, for
the mode MPL is θ̂M, for the midpoint MPL is θ̂∗, for the MM Kendall’s tau inversion is τ,
and for the MM Spearman’s rho inversion is ρ.

Figure 3. Plots of the percentage relative bias (PRBθ̂) obtained by simulation for the copula models
Clayton, Gumbel–Hougaard, Plackett, Normal, and Student–t for n = 50. The legend is the same for
the five plots in the figure. Up to a level of dependence of τ = 0.4, the mode MPL estimator shows
the PRBθ̂ closest to zero for the Clayton, Gumbel, and Plackett copulas. For the Normal and Student–t
copulas, the median MPL has a bias closer to zero at low dependence levels.

The results for the percentage relative bias can be visualised in Figure 3, where we
plot the PRB for n = 50. As already observed by Kojadinovic and Yan (2010), the MM
estimators have a smaller relative bias than the canonical MPL for small weakly dependent
samples, except for the Student-t, where the Spearman’s inversion method performs quite
poorly. However, the relative advantage of the MM estimators over the canonical MPL
reduces when the sample size increases (see Tables A2–A4 in Appendix B). For dependence
levels τ ≥ 0.4 the MM estimators can actually have a much larger PRB as it is the case for
the Plackett copula. The newly considered median, mode and midpoint MPL estimators
have smaller bias than the canonical MPL for weakly dependent samples (τ ≤ 0.4) across
all sample sizes. The mode and the midpoint MPL estimators have lower bias than the MM
estimators for weakly dependent samples especially for smaller samples. The differences
between the estimators in terms of bias reduce as the sample size increases. The median
MPL performs remarkably well, in terms of bias, for the Normal and Student-t copulas
across all levels of dependence.
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The values for the empirical standard deviation of the estimates are very close to the
mean of the estimated standard errors. This supports the assumptions underlying the
estimator for the asymptotic variance. The empirical percentage coverage (PC) does not
seem very different across the six estimators either. We can see that the PC tends to be
larger than the 95% level for weaker dependence (τ = 0.1) and smaller than the 95% level
for stronger dependence. From the results for the standard errors and percentage coverage
obtained from the simulations, we find no evidence to contradict the asymptotic normality
of the estimators. Overall, the results are consistent across the different copula families and
sample sizes considered here.

Table A5 contains the estimated root mean square error (RMSE) for the canonical
MPL estimator obtained for each sample size, copula, and level of dependence considered.
The RMSE increases with the level of dependence, except for the Normal and Student-t,
and decreases as the sample becomes larger. Hence, the higher RMSE for the canonical
MPL estimator is observed for small strongly dependent samples and the lower RMSE is
obtained from weakly dependent large samples. The increase in the RMSE with the level of
dependence is supported by the fact that the estimated standard errors also increase with
the strength of dependence, as shown in the PRB tables. For the Normal and Student-t
copulas the estimated standard errors and RMSE of the canonical MPL decrease with the
strength of the dependence and sample size.

Figure 4. Plots of the relative efficiency obtained by simulation for the copula models Clayton, Gumbel–Hougaard,
Plackett, Normal, and Student-t for n = 50. The legend is the same for the five plots in the figure.

In Table A5, we also report the percentage relative efficiency (PRE) calculated as
100 times the estimated RMSE of the canonical MPL divided by the estimated RMSE of
each of the other five estimators. We plot the PRE values in Figure 4 of the five estimators
in relation to the canonical MPL for sample size n = 50. We observe that the MM Kendall’s
tau- and Spearman’s rho-based estimators outperform the canonical MPL estimator for
small weakly dependent samples but this advantage vanishes when the level of dependence
becomes stronger or the sample size increases. These results are perfectly in line with the re-
sults from Kojadinovic and Yan (2010). The three semiparametric MPL estimators proposed
here outperform, in terms of MSE, both MM estimators for all levels of dependence and
sample size. Consequently, the three estimators introduced also outperform the canonical
MPL for low dependence small samples. For stronger levels of dependence, τ ≥ 0.6,
and samples larger than 100 the canonical MPL has the smallest MSE for the sample sizes
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considered. It is worth noting that, in the simulations, the proposed estimators substantially
outperform the canonical MPL for weak dependence while for stronger dependence, the
outperformance of the canonical MPL is modest. It is interesting that the MM estimators
can have a quite poor performance in terms of MSE for stronger dependence in relation to
the MPL estimators. Between the three MPL estimators introduced here, the mode MPL is
overall the best for weakly dependent samples. This is particularly clear in Figure 4.

Finally, we estimate the asymptotic relative efficiency of the median MPL, mode
MPL and midpoint MPL in relation to the canonical MPL estimator. The asymptotic
percentage relative efficiency for each estimator is calculated as the estimated variance
of the canonical MPL estimate, divided by the estimated variance of the MPL estimate
given by the method being compared with, multiplied by 100. The estimates are obtained
from a pseudo-randomly generated sample of size n = 100,000. The results, presented in
Table A6, confirm that the three proposed MPL estimators and the canonical MPL estimator
are asymptotically equally efficient.

8. Application to General Insurance Loss Ratios

In our application, we show the impact of using different MPL estimators while
modelling the dependence between general insurance business classes, which is relevant
for pricing, reserving and regulatory capital. We apply our results to loss ratios net of
reinsurance from three insurance classes: houseowners/householders, domestic motor
vehicles, and commercial motor vehicles. The data have been downloaded from the
Australian Prudential Regulation Authority (APRA) (https://www.apra.gov.au/, accessed
on 20 December 2023) general insurance statistics website. The historical loss ratios are
available only from September 2010 until March 2023, comprising a sample of n = 51
quarterly observations per insurance class.

Common factors underlying the risks covered under these three insurance classes,
like weather conditions for instance, suggest the presence of dependence between the loss
ratios. The Pearson’s linear correlation between houseowners/householders (house) and
domestic motor vehicle (dom-motor) loss ratios is 0.318, between house and commercial
motor vehicle (com-motor) is 0.172 and between dom-motor and com-motor is 0.696. To
select a copula model, we use the goodness-of-fit test from Genest et al. (2009) implemented
in the R package copula. Although net of reinsurance, there might still be signs of upper
joint tail dependence in the loss ratios. Indeed, a 180◦ rotated Clayton copula fitted to the
loss ratios of house and dom-motor gives a p-value of 51%, compared with 23% from fitting
a Gumbel copula, 10% from a Student-t copula and 9% from a normal copula. In panel
A of Table 1, we list the estimates obtained from fitting a rotated Clayton model to house
and dom-motor using the different MPL and MM estimators. For benchmarking, we also
list the Kendall’s tau, τ = θ/(2 + θ), and upper tail dependence, λU = 2−1/θ , implied by
the copula parameter estimates from the different methods. The mode MPL estimation
produces the lowest copula parameter estimate and the lowest standard error, while the
corresponding canonical MPL estimates are the largest among the MPL estimators. The
MM estimators produce the largest copula estimates and standard errors. This agrees with
the results we obtained for the finite sample performance of the estimators in Section 7.1.
For a Clayton copula with τ = 0.2, we observed that the mode MPL has the lowest PRB
and standard error indicating that the mode MPL should give the least upward biased
estimate of dependence. Comparing the results from the different estimators, note that the
Kendall’s tau implied by the copula estimates ranges from 18% to 34% while the upper tail
dependence ranges from 20% to 50%. Depending on the volume of earned premiums of
these insurance classes on a particular insurance company, such variability will potentially
have a significant financial impact on the calculation of reserves and regulatory capital of
the firm.

https://www.apra.gov.au/
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Table 1. Estimates obtained by the different MPL and MM estimators for the copula models fitted to
the houseowners/householders, domestic motor vehicle, and commercial motor vehicle loss ratios.

Canonical Median Mode Midpoint Kendall Spearman

Panel A: houseowners/householders and domestic motor vehicle

θ̂ 0.635 0.560 0.427 0.519 0.971 1.010
s.e 0.278 0.259 0.224 0.248 0.336 0.323
τ̃ 0.241 0.219 0.176 0.206 0.326 0.335

λ̃U 0.335 0.290 0.197 0.263 0.489 0.503

Panel B: houseowners/householders and commercial motor vehicle

θ̂ 0.290 0.245 0.191 0.221 0.387 0.367
s.e 0.228 0.216 0.193 0.210 0.280 0.262
τ̃ 0.126 0.109 0.087 0.099 0.162 0.155

λ̃U 0.091 0.059 0.026 0.043 0.167 0.151

Panel C: domestic motor vehicle and commercial motor vehicle

θ̂ 1.740 1.683 1.569 1.652 1.917 1.796
s.e 0.201 0.186 0.173 0.177 0.279 0.264
τ̃ 0.425 0.405 0.362 0.394 0.478 0.443

λ̃U 0.510 0.490 0.444 0.478 0.564 0.529

For the case of house and com-motor loss ratios, with an even lower linear correlation
of 0.172, the goodness-of-fit test from Genest et al. (2009) ranks first the 180◦ rotated Clayton
copula model with a p-value of 75%, followed by a Gumbel copula with 9.4%, a normal
copula with 3.6% and a Student-t copula with a 2.5% p-value. The results are consistent
with the previous observations; see panel B in Table 1. The mode MPL produces the lowest
overall estimate for the copula parameter and standard error, and the canonical MPL gives
the highest estimates among the MPL estimators. The MM estimates are the highest across
all the estimation methods. The implied Kendall’s tau varies now between 8.7% and 16.2%,
while the upper tail dependence parameter ranges from 2.6% to 16.7%.

Finally, we consider the pair with the highest linear correlation among the named
insurance classes reported in the APRA data: domestic motor vehicle and commercial motor
vehicle. These two insurance classes have a sample linear correlation of 69.6% between
the corresponding loss ratios. In this case, the Gumbel copula model ranks first with a
goodness-of-fit test p-value of 98%. It is not surprising that a textbook three dimensional
model, as a multivariate Gumbel or Clayton copulas for instance, does not have enough
flexibility to accommodate real data as it is the case here. For the Gumbel copula model
with parameter θ, Kendall’s tau is given by τ = 1 − 1/θ and the upper tail dependence
parameter is λU = 2 − 21/θ ; see Joe (2014). The results from fitting a Gumbel copula model
to com-motor and dom-motor, reported in panel C of Table 1, are coherent with those
obtained for the previous two pairs of loss ratios. The mode MPL parameter estimate and
standard error are the lowest across all the estimation methods, the canonical MPL has the
largest estimates among the MPL estimators and the MM estimates are the largest overall.
Nevertheless, the differences between the estimates are much smaller than in the previous
two lower dependence cases, as we can see from the implied Kendall’s tau and upper tail
coefficient estimates. The Kendall’s tau ranges between 36.2% and 47.8% and the upper tail
coefficient varies from 44.4% and 56.4%.

From the three cases considered in this application, we observe that the variation of the
estimates from the different MPL estimators increases as the dependence level decreases.
The mode MPL has consistently the lowest parameter estimate and standard error. At a
lower dependence level, the implied Kendall’s tau obtained by the MM estimators is almost
double that obtained from the mode MPL. This study based on empirical data confirms
what we would expect to observe according to the results we obtained in Section 7.1 for the
finite sample performance of the estimators.
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9. Conclusions

Kim et al. (2007) and Fermanian and Scaillet (2005) found that misspecification of the
margins leads to non robust estimation of the dependence structure in a copula model with
overestimation of the degree of dependence. Later, Kojadinovic and Yan (2010) found that
overestimation of the degree of dependence can happen even when the unknown margins
are estimated non-parametrically, especially for small weakly dependent samples.

We show here that the pseudo-observations used in the canonical MPL estimation
method (Genest et al. 1995) can be seen as expected values of the order statistics and propose
new estimators based on the corresponding median and mode instead. We derive the
theoretical asymptotic properties of the new MPL estimators. Our simulation study shows
that using the mode of the order statistics instead of the mean when calculating the pseudo-
observations can reduce the overestimation of the level of dependence, outperforming the
canonical MPL and the inversion methods’ Kendall’s tau and Spearman’s rho in terms of
mean squared error for weakly dependent samples. For larger, strongly dependent samples,
the canonical MPL still outperforms the proposed modified MPL estimators. Hence, within
the conditions considered, our study shows that it is preferable to use the MPL estimator
where the pseudo-observations are calculated as the mode of the order statistics rather than
the mean.

In applications, data might naturally only be available in small samples. This is the
case in our empirical study of quarterly general insurance loss ratios. Our application
illustrates that the mode MPL estimator gives lower levels of dependence with smaller
standard errors. The Kendall’s tau coefficient implied from the different estimators varies
by up to more than 80%, showing the importance of understanding well the performance
of the different estimators.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Proof. Let F(r)(x), for r = 1, 2, . . . , n, denote the cdf of the rth order statistic X(r). It is well
known, (see e.g., David and Nagaraja 2003), that

F(r)(x) =
n

∑
i=r

(
n
i

)
F(x)i[1 − F(x)]n−i.

If we assume that Xi is continuous, denoting the pdf of X(r) by f(r)(x) we have that

f(r)(x) =
1

B(r, n − r + 1)
F(x)r−1[1 − F(x)]n−r f (x),

where f (x) = F′(x) is the pdf of Xi and B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt, for a > 0 and b > 0,
is the beta function.

Given that the cdf of Xi, for i = 1, . . . , n, is F, the random sample (F(X1), F(X2), . . . , F(Xn))
= (U1, . . . , Un) is drawn from a standard uniform distribution U(0, 1). Hence, the pdf of
the rth order statistic F(X)(r) = U(r) has the expression

f(r)(u) =
1

B(r, n − r + 1)
ur−1(1 − u)n−r u ∈ (0, 1),

https://www.apra.gov.au/
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and belongs to the family of beta distributions. The mean of the rth order statistic for a
random sample from a standard uniform U(0, 1) distribution is then

E
[

F(X)(r)

]
= E

[
U(r)

]
=

r
r + (n − r + 1)

=
r

n + 1
.

Defining the function a(r) = E
[
U(r)

]
, for 1 ≤ r ≤ n, gives the result.

Appendix A.2. Proof of Proposition 2

Consider a continuous bivariate distribution F(x1, x2) with copula C(u1, u2) and
marginals F1(x1) and F2(x2) such that F(x1, x2) = C[F1(x1), F2(x2)].

Definition A1. For a random sample
{
(X1,k, X2,k) : k = 1, . . . , n

}
, define the following rescaled

versions of the empirical distribution for j = 1, 2:

(a) F̂j,n(x) = (n + 1)−1 ∑n
k=1 1

(
Xj,k ≤ x

)
for x ∈ R,

(b) F̄j,n(x) = (n + 1/3)−1
[
∑n

k=1 1
(

Xj,k ≤ x
)
− 1/3

]
for x ∈ R,

(c) F∗
j,n(x) = (n − 1)−1

[
∑n

k=1 1
(

Xj,k ≤ x
)
− 1
]

for x ∈ (a, b) and F∗
j,n(x) = F̂j,n(x) for

x ∈ R\(a, b), with a = min{Xk,1, . . . , Xk,n} and b = max{Xk,1, . . . , Xk,n},

(d) F̃j,n(x) = n−1
[
∑n

k=1 1
(

Xj,k ≤ x
)
− 1/2

]
for x ∈ R.

Let F̂j(xj) for j = 1, 2 denote any of the rescaled empirical distributions in Defini-
tion (A1). In order to proof Proposition 2 we first introduce two results concerning the
asymptotic behaviour of statistics of the form

Rn = n−1
n

∑
k=1

J
[
F̂1(X1,k), F̂2(X2,k)

]
,

where J(u1, u2) is a continuous function from (0, 1)2 into R such that

µ = E[J{F1(X1), F2(X2)}] =
∫

J(u1, u2) dC(u1, u2)

exists. Define the function r(u) = u(1 − u), on (0, 1), let p and q be positive numbers
satisfying 1/p + 1/q = 1 and δ > 0.

Proposition A1. If J(u1, u2) ≤ M r(u1)
ar(u2)

b with M a positive constant, a = (−1 + δ)/p
and b = (−1 + δ)/q, then Rn → µ almost surely.

First, note that all the rescaled empirical distribution functions (b), (c), and (d) in
Definition (A1) are functions of the rescaled empirical distribution (a). The proof of
Proposition (A1) can then be obtained following an argument similar to the one used
by Genest et al. (1995) to prove their Proposition A1.

Proposition A2. If J(u1, u2) ≤ M r(u1)
ar(u2)

b with M a positive constant, a = (−0.5 + δ)/p
and b = (−0.5+ δ)/q, and if J admits continuous partial derivatives Ji(u1, u2) = ∂J(u1, u2)/∂ui

on (0, 1)2 such that Ji(u1, u2) ≤ M r(u1)
di r(u2)

d3−i with d1 = a − 1 and d2 = b, then
n1/2(Rn − µ) →d N

(
0, σ2), with

σ2 = var

{
J[F1(X1), F2(X2)] +

2

∑
i=1

∫
1(Xi ≤ xi)Ji[F1(X1), F2(X2)] dF(X1, X2)

}
.



Risks 2024, 12, 15 17 of 26

The proof of Proposition (A2) can be obtained by using the rescaled empirical distri-
butions in Definition (A1) (b), (c), and (d) in the proof of Theorem 2.1 of Ruymgaart et al.
(1972).

Now to proof Proposition 2. we apply proposition (A1) taking J equal to lθ,θ to obtain
that Bn → β almost sure. Then, taking J equal to lθ in Proposition (A2), we obtain that
n1/2 An →d N (0, σ2) with

σ2 = var

{
lθ [θ, F1(X1), F2(X2)] +

2

∑
i=1

Wi(Xi)

}
,

giving the asymptotic results of Proposition 2.

Appendix A.3. Proposition 3

Proposition 3. Consider the set of iid pairs of continuous random variables {(X1k, X2k) : k =
1, . . . , n} from distribution Hθ and the function f(r) from {1, . . . , n} to (0, 1). Then,

E
(

A′
n
)
=

n

∑
i=1

n

∑
k=1

lθ(θ, f (i), f (k)) P
(

R0
i = k

)
,

var
(

A′
n
)
=

n

∑
i=1

n

∑
k=1

[
lθ(θ, f (i), f (k))− l̄θ(i)

]2P
(

R0
i = k

)
+∑ ∑

i ̸=j
∑ ∑

k ̸=h

[
lθ(θ, f (i), f (k))− l̄θ(i)

][
lθ(θ, f (j), f (h))− l̄θ(j)

]
P
(

R0
i = k, R0

j = h
)

,

cov
(

A′
n, B′

n
)
= −

n

∑
i=1

n

∑
j=1

∑ ∑
k ̸=h

[
lθ(θ, f (i), f (k))− l̄θ(i)

][
lθ,θ(θ, f (j), f (h))− l̄θ,θ(j)

]
P
(

R0
i = k, R0

j = h
)

,

with l̄θ(i) = ∑n
k=1 lθ(θ, f (i), f (k))P

(
R0

i = k
)

and l̄θ,θ(j) = ∑n
k=1 lθ,θ(θ, f (j), f (k))P

(
R0

j = k
)

.

The expected value and variance of B′
n are obtained in a similar way by replacing lθ

and l̄θ with lθ,θ and l̄θ,θ , respectively. The poof can be easily obtained from the definitions
of expected value, variance, and covariance of a discrete random variable.

Appendix B. Simulation Results

Table A1. Percentage relative bias (PRB), empirical standard deviation of the estimates (s), mean of
the estimated standard errors (se), and empirical percentage coverage (PC) of the approximate 95%
confidence interval for the dependence parameter. Estimates based on 5000 pseudo-random samples
of size n = 50.

τ Cθ θ PRBθ̂c sθ̂c seθ̂c PCθ̂c PRBθ̂m sθ̂m seθ̂m PCθ̂m PRBθ̂M sθ̂M seθ̂M PCθ̂M

0.1 C 0.22 37.8 0.232 0.240 97.4 24.5 0.213 0.224 98.2 15.1 0.200 0.211 98.9
G 1.11 3.6 0.125 0.134 98.1 2.3 0.117 0.128 98.6 1.3 0.108 0.122 99.0
P 1.56 11.9 0.799 0.770 92.1 10.1 0.767 0.744 92.1 7.4 0.721 0.701 91.7
N 0.16 8.8 0.157 0.155 91.3 1.8 0.147 0.149 92.6 −4.9 0.139 0.142 93.7
t 0.16 6.2 0.173 0.166 91.2 0.5 0.165 0.168 93.6 −5.1 0.156 0.164 94.6

0.2 C 0.50 23.7 0.298 0.289 94.6 13.6 0.284 0.273 94.4 5.4 0.267 0.267 93.6
G 1.25 4.5 0.164 0.164 94.6 2.5 0.156 0.159 93.5 0.8 0.145 0.155 92.9
P 2.48 12.1 1.226 1.192 92.8 9.2 1.171 1.148 92.2 5.1 1.095 1.079 91.1
N 0.31 6.5 0.142 0.138 90.0 0.5 0.137 0.136 91.7 −5.4 0.132 0.133 93.1
t 0.31 4.8 0.157 0.152 90.9 −0.3 0.152 0.155 93.2 −5.2 0.146 0.154 94.6
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Table A1. Cont.

τ Cθ θ PRBθ̂c sθ̂c seθ̂c PCθ̂c PRBθ̂m sθ̂m seθ̂m PCθ̂m PRBθ̂M sθ̂M seθ̂M PCθ̂M

0.3 C 0.86 16.5 0.367 0.361 94.7 8.6 0.355 0.343 93.3 1.4 0.337 0.346 92.4
G 1.43 5.1 0.205 0.203 94.3 2.6 0.195 0.197 93.2 0.3 0.184 0.196 92.9
P 3.99 11.6 1.901 1.852 93.0 7.9 1.809 1.780 92.3 2.7 1.69 1.677 90.5
N 0.45 6.8 0.121 0.115 88.3 2.2 0.121 0.116 91.0 −2.8 0.12 0.119 93.1
t 0.45 3.4 0.135 0.131 90.1 −0.8 0.134 0.136 92.8 −5 0.132 0.139 94.5

0.4 C 1.33 11.8 0.463 0.464 94.5 5.3 0.451 0.442 93.0 −1.0 0.433 0.457 91.9
G 1.67 5.7 0.249 0.252 94.7 2.8 0.238 0.246 93.8 0.0 0.226 0.248 93.4
P 6.58 10.5 3.030 2.940 92.7 6.1 2.875 2.821 91.7 0.3 2.693 2.666 90.0
N 0.59 4.6 0.092 0.092 89.0 1.3 0.094 0.095 91.6 −2.5 0.096 0.101 94.7
t 0.59 2.3 0.11 0.107 90.1 −0.9 0.111 0.112 92.9 −4.3 0.112 0.119 94.8

0.6 C 3.00 3.7 0.796 0.854 94.5 −0.8 0.784 0.840 92.0 −5.9 0.759 0.879 92.1
G 2.50 4.4 0.413 0.424 94.9 1.0 0.398 0.415 93.5 −2.4 0.383 0.427 92.8
P 21.13 5.4 8.914 8.792 92.5 0.2 8.406 8.359 90.6 −5.4 8.033 7.995 87.5
N 0.81 0.8 0.051 0.051 90.9 −0.7 0.054 0.054 93.6 −2.4 0.057 0.06 95.9
t 0.81 0.1 0.058 0.059 91.7 −1.5 0.061 0.063 94.6 −3.2 0.065 0.071 96.6

0.8 C 8.00 −3.9 1.803 2.354 94.5 −7.9 1.799 2.366 93.4 −11.3 1.741 2.517 93.3
G 5.00 −0.2 0.871 1.014 95.0 −3.8 0.853 0.993 92.0 −7.3 0.814 1.063 92.2
P 115 −8.0 42.733 45.820 87.8 −13 40.557 43.225 84.6 −15.9 40.121 42.529 82.1
N 0.95 −0.5 0.015 0.02 98.5 −0.9 0.017 0.021 98.9 −1.4 0.018 0.025 99.3
t 0.95 −0.6 0.018 0.021 97.7 −0.9 0.02 0.022 98.1 −1.5 0.021 0.026 98.9

τ Cθ θ PRBθ̂∗ sθ̂∗ seθ̂∗ PCθ̂∗ PRBτ sτ seτ PCτ PRBρ sρ seρ PCρ

0.1 C 0.22 14.9 0.203 0.213 98.5 20.8 0.231 0.246 99.0 19.2 0.228 0.242 99.2
G 1.11 1.4 0.111 0.126 98.7 1.9 0.117 0.126 98.8 1.8 0.115 0.120 98.8
P 1.56 9.2 0.751 0.730 91.9 10.7 0.787 0.756 91.8 10.4 0.784 0.736 91.6
N 0.16 −2.5 0.141 0.145 93.3 −2.1 0.148 0.147 93.2 −3.2 0.146 0.142 92.8
t 0.16 −3.2 0.159 0.171 94.6 −1.5 0.162 0.160 93.4 −9.4 0.149 0.159 95.1

0.2 C 0.50 6.8 0.274 0.261 93.5 9.0 0.311 0.306 94.0 7.5 0.308 0.308 94.3
G 1.25 1.2 0.150 0.158 92.3 1.9 0.158 0.156 94.2 1.6 0.156 0.149 93.4
P 2.48 7.8 1.144 1.125 91.8 11.1 1.247 1.200 91.9 10.5 1.257 1.179 91.7
N 0.31 −3.2 0.134 0.134 92.6 −2.7 0.141 0.137 92.8 −3.7 0.139 0.134 92.5
t 0.31 −3.6 0.148 0.159 94.5 −1.6 0.151 0.150 93.3 −9.2 0.142 0.149 94.9

0.3 C 0.86 3.1 0.348 0.329 91.8 6.2 0.394 0.382 93.7 4.6 0.392 0.394 94.0
G 1.43 1.0 0.189 0.196 92.1 1.8 0.201 0.196 94.3 1.4 0.200 0.186 92.4
P 3.99 6.0 1.762 1.743 91.7 11.7 2.028 1.931 92.4 10.9 2.088 1.931 91.4
N 0.45 −0.9 0.119 0.117 91.9 −0.3 0.127 0.121 92.4 −1.4 0.126 0.119 92.3
t 0.45 −3.7 0.132 0.139 94.3 −1.7 0.136 0.134 93.1 −8.7 0.130 0.134 94.7

0.4 C 1.33 0.9 0.446 0.427 90.5 5.6 0.507 0.485 93.5 3.8 0.504 0.515 94.2
G 1.67 0.9 0.231 0.245 92.7 2.5 0.251 0.250 94.6 1.8 0.249 0.233 93.1
P 6.58 3.9 2.793 2.758 91.3 12.1 3.394 3.214 92.1 11.2 3.577 3.272 90.9
N 0.59 −1.0 0.094 0.097 92.9 −0.2 0.102 0.102 92.8 −1.2 0.102 0.101 93.0
t 0.59 −3.2 0.111 0.117 94.4 −1.3 0.115 0.114 92.8 −7.5 0.115 0.114 94.2

0.6 C 3.00 −3.8 0.785 0.839 89.6 4.9 0.901 0.848 93.0 2.0 0.900 1.002 95.0
G 2.50 −1.2 0.389 0.420 92.2 2.7 0.444 0.436 95.0 0.8 0.441 0.395 91.4
P 21.13 −2.7 8.114 8.132 89.3 14.4 11.534 10.745 92.9 13.5 13.100 11.758 90.0
N 0.81 −1.7 0.055 0.056 94.7 −0.5 0.059 0.058 92.4 −1.5 0.059 0.059 93.9
t 0.81 −2.7 0.064 0.066 95.6 −0.9 0.066 0.065 92.4 −4.9 0.073 0.065 94.0

0.8 C 8.00 −9.1 1.814 2.372 92.5 5.6 2.165 2.002 93.2 −1.0 2.046 3.380 96.6
G 5.00 −6.1 0.848 1.00 90.1 3.4 0.999 1.067 96.1 −2.3 0.916 1.112 92.2
P 115 −16.0 39.213 41.761 82.3 18.8 72.894 66.481 93.1 20.0 90.796 104.475 89.2
N 0.95 −1.2 0.018 0.023 98.7 −0.2 0.017 0.019 94.8 −0.9 0.019 0.026 99.8
t 0.95 −1.3 0.021 0.024 98.2 −0.3 0.021 0.021 93.6 −2.1 0.028 0.021 92.8
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Table A2. Percentage relative bias (PRB), empirical standard deviation of the estimates (s), mean of
the estimated standard errors (se), and empirical percentage coverage (PC) of the approximate 95%
confidence interval for the dependence parameter. Estimates based on 5000 pseudo-random samples
of size n = 100.

τ Cθ θ PRBθ̂c sθ̂c seθ̂c PCθ̂c PRBθ̂m sθ̂m seθ̂m PCθ̂m PRBθ̂M sθ̂M seθ̂M PCθ̂M

0.1 C 0.22 22.2 0.160 0.155 95.8 14.2 0.151 0.148 96.3 7.1 0.143 0.142 96.2
G 1.11 2.1 0.085 0.087 97.2 1.3 0.082 0.085 97.6 0.5 0.077 0.082 97.5
P 1.56 6.5 0.520 0.507 94.0 5.8 0.509 0.498 93.9 4.5 0.492 0.482 93.6
N 0.16 4.5 0.104 0.105 94.1 0.4 0.100 0.102 94.5 −4.4 0.096 0.098 94.7
t 0.16 5.2 0.118 0.116 92.9 1.6 0.114 0.117 94.3 −2.7 0.11 0.116 95.1

0.2 C 0.50 13.8 0.196 0.190 94.1 7.7 0.190 0.183 94.2 1.5 0.181 0.182 93.8
G 1.25 2.7 0.110 0.109 94.3 1.5 0.107 0.107 94.1 0.3 0.102 0.106 93.8
P 2.48 6.6 0.804 0.786 94.1 5.3 0.786 0.771 93.8 3.1 0.757 0.744 93.1
N 0.31 2.4 0.094 0.095 93.1 −1.1 0.092 0.093 94.1 −5.3 0.090 0.092 94.5
t 0.31 3.6 0.108 0.107 92.7 0.4 0.106 0.108 93.9 −3.4 0.103 0.109 95.2

0.3 C 0.86 9.2 0.243 0.240 94.8 4.3 0.238 0.232 93.4 −0.9 0.230 0.237 92.8
G 1.43 3.1 0.138 0.135 94.0 1.6 0.134 0.133 93.7 0.02 0.128 0.134 93.6
P 3.99 6.2 1.243 1.222 94.2 4.5 1.213 1.198 93.8 1.7 1.166 1.157 92.8
N 0.45 4.1 0.085 0.079 90.8 1.4 0.085 0.079 92.3 −2.1 0.084 0.082 94.1
t 0.45 2.5 0.094 0.092 92.1 −0.1 0.094 0.095 93.7 −3.3 0.093 0.097 95.0

0.4 C 1.33 6.5 0.309 0.310 94.2 2.6 0.305 0.299 92.9 −1.9 0.298 0.312 92.5
G 1.67 3.2 0.170 0.169 94.3 1.6 0.166 0.166 94.2 −0.3 0.160 0.168 94.0
P 6.58 5.5 1.971 1.941 94.1 3.4 1.920 1.901 93.5 0.2 1.845 1.838 92.3
N 0.59 2.6 0.065 0.065 91.3 0.6 0.065 0.066 93.3 −1.9 0.066 0.069 95.2
t 0.59 1.7 0.077 0.076 91.5 −0.3 0.078 0.078 93.5 −2.8 0.079 0.082 95.2

0.6 C 3.00 1.8 0.528 0.561 94.7 −0.8 0.524 0.556 93.1 −4.3 0.514 0.595 93.3
G 2.50 2.6 0.282 0.283 94.5 0.5 0.276 0.280 93.9 −1.8 0.268 0.288 93.3
P 21.1 2.6 5.797 5.799 93.7 0.1 5.618 5.654 92.8 −3.6 5.414 5.473 91.0
N 0.81 0.5 0.036 0.035 91.8 −0.4 0.037 0.036 93.7 −1.6 0.039 0.039 95.6
t 0.81 0.1 0.041 0.041 92.7 −0.8 0.043 0.043 94.1 −2 0.045 0.046 96.0

0.8 C 8.00 −3.4 1.198 1.533 95.6 −5.4 1.199 1.587 94.9 −8.1 1.176 1.742 95.1
G 5.00 −0.3 0.591 0.658 95.2 −2.5 0.583 0.660 93.9 −5.1 0.569 0.710 93.7
P 115 −6.0 27.836 29.825 90.5 −8.9 26.916 28.828 88.5 −11.7 26.386 28.279 85.9
N 0.95 −0.3 0.010 0.012 98.0 −0.5 0.011 0.013 98.2 −0.8 0.011 0.015 98.6
t 0.81 0.1 0.041 0.041 92.7 −0.8 0.043 0.043 94.1 −2.0 0.045 0.046 95.9

τ Cθ θ PRBθ̂∗ sθ̂∗ seθ̂∗ PCθ̂∗ PRBτ sτ seτ PCτ PRBρ sρ seρ PCρ

0.1 C 0.22 8.5 0.146 0.143 95.6 12.8 0.167 0.171 97.9 11.9 0.165 0.169 98.2
G 1.11 0.7 0.079 0.084 97.5 1.1 0.085 0.086 98.2 1.1 0.083 0.083 98.6
P 1.56 5.4 0.504 0.493 93.8 5.7 0.513 0.503 93.8 5.8 0.515 0.498 93.6
N 0.16 −2.2 0.097 0.099 94.6 −2.1 0.103 0.103 94.3 −2.5 0.102 0.101 94.2
t 0.16 −0.7 0.112 0.119 95 0.4 0.113 0.113 93.6 −7.3 0.105 0.113 95.6

0.2 C 0.50 3.5 0.186 0.178 93.1 5.5 0.212 0.212 94.9 4.6 0.211 0.213 94.9
G 1.25 0.8 0.104 0.107 93.6 1.1 0.110 0.107 94.5 0.9 0.110 0.105 93.7
P 2.48 4.7 0.777 0.763 93.5 5.9 0.816 0.800 93.5 5.7 0.825 0.797 93.6
N 0.31 −3.4 0.091 0.093 94.3 −2.8 0.096 0.097 94.3 −3.3 0.096 0.095 94.2
t 0.31 −1.6 0.104 0.11 94.7 −0.4 0.106 0.106 93.8 −7.7 0.100 0.106 95.5

0.3 C 0.86 1.0 0.235 0.225 92.2 3.5 0.264 0.265 94.4 2.6 0.266 0.271 94.9
G 1.43 0.7 0.131 0.133 93.3 1.2 0.138 0.134 94.3 1.0 0.140 0.133 92.8
P 3.99 3.7 1.198 1.185 93.5 6.0 1.302 1.279 94.4 5.7 1.348 1.305 93.7
N 0.45 −0.4 0.084 0.081 93.1 0.0 0.088 0.085 93.5 −0.6 0.089 0.084 93.3
t 0.45 −1.8 0.093 0.097 94.5 −0.5 0.095 0.094 93.4 −7.2 0.092 0.094 94.9
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Table A2. Cont.

τ Cθ θ PRBθ̂∗ sθ̂∗ seθ̂∗ PCθ̂∗ PRBτ sτ seτ PCτ PRBρ sρ seρ PCρ

0.4 C 1.33 −0.0 0.303 0.290 91.2 3.4 0.341 0.337 94.8 2.4 0.343 0.351 95.5
G 1.67 0.5 0.163 0.166 93.7 1.4 0.173 0.170 94.5 1.1 0.174 0.165 94.3
P 6.58 2.4 1.894 1.881 93.2 6.2 2.166 2.128 94.1 5.8 2.290 2.214 93.6
N 0.59 −0.8 0.066 0.067 94.0 −0.2 0.071 0.071 94.1 −0.8 0.072 0.071 94.3
t 0.59 −1.7 0.078 0.08 94.6 −0.4 0.08 0.079 92.9 −6.2 0.081 0.079 94.4

0.6 C 3.00 −2.6 0.525 0.559 91.8 2.9 0.596 0.588 94.1 1.5 0.617 0.657 95.3
G 2.50 −0.7 0.273 0.283 93.3 1.6 0.295 0.293 94.5 0.7 0.301 0.283 92.4
P 21.1 −1.3 5.520 5.577 92.3 7.1 7.168 7.028 94.4 6.9 8.341 7.85 93.0
N 0.81 −0.9 0.038 0.037 94.4 −0.3 0.04 0.039 93.3 −0.8 0.042 0.04 94.3
t 0.81 −1.5 0.044 0.044 94.9 −0.3 0.045 0.044 92.8 −4.1 0.051 0.044 91.9

0.8 C 8.00 −6.7 1.209 1.626 94.6 2.7 1.417 1.361 93.8 −0.3 1.451 1.871 97.2
G 5.00 −3.9 0.581 0.682 93.3 1.8 0.652 0.679 95.7 −1.0 0.655 0.642 93.5
P 115 −10.6 26.36 28.271 86.7 8.4 42.741 41.63 94.4 10.9 59.905 54.611 92.6
N 0.95 −0.7 0.011 0.014 98.3 −0.1 0.011 0.012 95.1 −0.5 0.012 0.014 98.3
t 0.81 −1.5 0.044 0.044 94.9 −0.3 0.045 0.044 92.8 −4.1 0.051 0.044 91.9

Table A3. Percentage relative bias (PRB), empirical standard deviation of the estimates (s), mean of
the estimated standard errors (se), and empirical percentage coverage (PC) of the approximate 95%
confidence interval for the dependence parameter. Estimates based on 5000 pseudo-random samples
of size n = 200.

τ θ θ PRBθ̂c sθ̂c seθ̂c PCθ̂c PRBθ̂m sθ̂m seθ̂m PCθ̂m PRBθ̂M sθ̂M seθ̂M PCθ̂M

0.1 C 0.22 9.2 0.106 0.103 94.1 4.5 0.102 0.100 94.0 −0.4 0.098 0.097 93.5
G 1.11 1.0 0.056 0.058 95.1 0.5 0.055 0.058 94.8 0.02 0.053 0.056 94.5
P 1.56 2.1 0.345 0.340 94.0 1.8 0.342 0.337 94.0 1.2 0.336 0.332 93.8
N 0.16 3.0 0.072 0.072 94.7 0.6 0.07 0.071 94.9 −2.6 0.068 0.069 94.8
t 0.16 2.6 0.081 0.081 94.3 0.5 0.08 0.082 94.9 −2.4 0.077 0.082 95.8

0.2 C 0.50 6.6 0.133 0.129 94.2 2.9 0.131 0.126 93.9 −1.2 0.127 0.126 93.4
G 1.25 1.3 0.072 0.074 95.4 0.6 0.071 0.073 95.2 −0.1 0.069 0.073 94.8
P 2.48 2.1 0.533 0.528 94.1 1.5 0.528 0.523 94.0 0.4 0.517 0.513 93.5
N 0.31 1.3 0.064 0.066 95.2 −0.8 0.063 0.065 95.2 −3.5 0.062 0.065 95.1
t 0.31 2.0 0.075 0.075 93.9 0.1 0.074 0.076 94.7 −2.4 0.073 0.077 95.6

0.3 C 0.86 4.1 0.169 0.165 94.0 1.2 0.167 0.161 92.9 −2.3 0.164 0.164 92.6
G 1.43 1.5 0.090 0.092 95.2 0.7 0.088 0.092 95.2 −0.3 0.086 0.092 94.9
P 3.99 1.9 0.828 0.822 94.6 1.1 0.818 0.814 94.2 −0.3 0.801 0.799 93.5
N 0.45 2.8 0.06 0.056 92.2 1.2 0.06 0.056 93.1 −0.9 0.06 0.057 93.8
t 0.45 1.4 0.065 0.065 93.6 −0.2 0.065 0.067 94.7 −2.3 0.065 0.068 95.8

0.4 C 1.33 2.8 0.216 0.212 93.8 0.5 0.214 0.207 92.8 −2.5 0.212 0.214 92.4
G 1.67 1.5 0.113 0.115 95.3 0.5 0.111 0.114 95.0 −0.7 0.109 0.115 95.0
P 6.58 1.6 1.313 1.308 94.8 0.6 1.296 1.294 94.3 −1.1 1.267 1.27 93.6
N 0.59 1.4 0.046 0.046 93.5 0.2 0.046 0.046 94.5 −1.5 0.046 0.048 95.4
t 0.59 0.9 0.054 0.054 93.1 −0.3 0.054 0.055 94.6 −1.9 0.055 0.057 95.7

0.6 C 3.00 0.0 0.373 0.379 94.4 −1.5 0.372 0.375 92.8 −3.7 0.368 0.401 93.2
G 2.50 1.1 0.188 0.193 95.0 −0.01 0.186 0.192 94.5 −1.5 0.183 0.196 94.3
P 21.13 0.2 3.898 3.916 94.4 −1.0 3.837 3.866 93.8 −3.1 3.745 3.79 92.5
N 0.81 0.4 0.026 0.025 92.7 −0.2 0.026 0.025 93.5 −0.9 0.027 0.026 94.3
t 0.81 0.1 0.029 0.029 93.2 −0.5 0.03 0.029 94.3 −1.2 0.031 0.031 95.8

0.8 C 8.00 −2.9 0.845 1.001 95.2 −4.1 0.845 1.048 94.9 −5.8 0.835 1.175 95.2
G 5.00 −0.4 0.402 0.438 95.6 −1.7 0.399 0.443 95.0 −3.4 0.393 0.476 94.1
P 115 −4.3 19.454 20.246 92.2 −5.9 19.091 19.878 90.9 −7.9 18.728 19.531 89.0
N 0.95 −0.1 0.007 0.008 96.9 −0.3 0.007 0.008 97.2 −0.5 0.008 0.009 97.7
t 0.95 −0.2 0.008 0.009 96.2 −0.3 0.008 0.009 96.6 −0.5 0.009 0.01 97.4
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Table A3. Cont.

τ θ θ PRBθ̂∗ sθ̂∗ seθ̂∗ PCθ̂∗ PRBτ sτ seτ PCτ PRBρ sρ seρ PCρ

0.1 C 0.22 1.2 0.100 0.097 93.7 3.6 0.119 0.118 94.3 3.2 0.118 0.117 94.6
G 1.11 0.2 0.054 0.058 94.6 0.5 0.059 0.059 95.0 0.5 0.058 0.058 95.4
P 1.56 1.6 0.340 0.336 93.9 1.6 0.344 0.337 94.0 1.9 0.348 0.339 93.7
N 0.16 −0.9 0.069 0.07 95.0 −0.8 0.072 0.073 94.9 −0.9 0.072 0.072 94.9
t 0.16 −0.9 0.079 0.083 95.5 −0.2 0.079 0.08 94.8 −7.8 0.073 0.08 96.6

0.2 C 0.50 0.4 0.129 0.124 93.1 1.8 0.148 0.147 94.4 1.3 0.148 0.147 94.5
G 1.25 0.2 0.070 0.073 94.9 0.5 0.073 0.074 95.2 0.3 0.074 0.073 94.9
P 2.48 1.2 0.525 0.520 94.0 1.9 0.552 0.542 93.4 2.0 0.559 0.543 93.8
N 0.31 −2.0 0.062 0.065 95.1 −1.7 0.066 0.068 95.2 −2.0 0.066 0.067 95.2
t 0.31 −1.1 0.073 0.077 95.2 −0.3 0.074 0.075 94.5 −7.6 0.07 0.075 96.1

0.3 C 0.86 −0.7 0.166 0.157 92.0 0.8 0.185 0.184 94.5 0.4 0.188 0.188 94.6
G 1.43 0.2 0.088 0.091 94.6 0.5 0.091 0.093 95.3 0.5 0.094 0.094 94.7
P 3.99 0.7 0.813 0.810 93.9 1.9 0.876 0.860 94.3 2.1 0.917 0.889 94.0
N 0.45 0.2 0.06 0.056 93.4 0.3 0.062 0.06 94.0 0.0 0.062 0.06 94.0
t 0.45 −1.2 0.065 0.067 95.4 −0.4 0.066 0.067 94.4 −7 0.064 0.067 95.1

0.4 C 1.33 −1.0 0.214 0.202 91.6 1.0 0.240 0.234 94.1 0.6 0.245 0.242 94.5
G 1.67 −0.04 0.110 0.114 95.0 0.5 0.116 0.117 95.4 0.5 0.117 0.116 95.1
P 6.58 0.1 1.287 1.287 94.1 2.0 1.465 1.434 94.3 2.2 1.567 1.512 93.9
N 0.59 −0.6 0.046 0.047 94.9 −0.2 0.049 0.05 95.1 −0.5 0.05 0.05 94.9
t 0.59 −1.1 0.055 0.056 95.2 −0.3 0.056 0.056 94.5 −5.9 0.056 0.056 93.4

0.6 C 3.00 −2.5 0.37 0.37 91.9 0.7 0.418 0.409 93.9 0.1 0.440 0.446 94.3
G 2.50 −0.7 0.185 0.194 94.4 0.6 0.198 0.201 95.4 0.2 0.206 0.202 94.7
P 21.13 −1.7 3.805 3.841 93.4 2.6 4.842 4.723 94.6 2.7 5.701 5.397 93.1
N 0.81 −0.5 0.027 0.025 93.9 −0.1 0.028 0.027 94.1 −0.3 0.029 0.028 94.2
t 0.81 −0.9 0.03 0.03 94.7 −0.2 0.031 0.031 93.9 −3.8 0.036 0.031 86.3

0.8 C 8.00 −4.8 0.850 1.089 95.2 0.8 0.975 0.943 94.0 −0.6 1.044 1.162 95.6
G 5.00 −2.6 0.398 0.461 94.8 0.8 0.441 0.453 95.9 −0.4 0.466 0.445 92.7
P 115 −6.8 18.877 19.680 90.2 3.1 28.605 27.771 94.0 5.2 41.698 36.979 91.2
N 0.95 −0.4 0.007 0.009 97.1 0.0 0.008 0.008 95.3 −0.2 0.008 0.009 96.6
t 0.95 −0.4 0.008 0.009 96.4 −0.1 0.009 0.009 94.6 −1.3 0.012 0.009 75.2

Table A4. Percentage relative bias (PRB), empirical standard deviation of the estimates (s), mean
of the estimated standard errors (se), and empirical percentage coverage (PC) of the approximate
95% confidence interval for the dependence parameter. Estimates based on 5, 000 pseudo-random
samples of size n = 400.

τ θ θ PRBθ̂c sθ̂c seθ̂c PCθ̂c PRBθ̂m sθ̂m seθ̂m PCθ̂m PRBθ̂M sθ̂M seθ̂M PCθ̂M

0.1 C 0.22 6.2 0.072 0.071 94.6 3.4 0.070 0.069 94.5 −0.07 0.068 0.068 94.2
G 1.11 0.6 0.039 0.040 95.2 0.3 0.038 0.040 95.3 −0.01 0.037 0.039 95.2
P 1.56 1.2 0.233 0.237 95.3 1.1 0.232 0.236 95.2 0.8 0.23 0.234 95.1
N 0.16 1.2 0.049 0.05 94.8 −0.2 0.049 0.049 94.9 −2.2 0.048 0.049 94.9
t 0.16 1.6 0.057 0.057 94.6 0.3 0.056 0.057 94.9 −1.5 0.056 0.057 95.4

0.2 C 0.50 4.2 0.092 0.090 94.9 2.0 0.090 0.089 94.9 −0.9 0.089 0.089 94.5
G 1.25 0.8 0.051 0.051 94.9 0.4 0.050 0.051 95.1 −0.09 0.049 0.051 94.9
P 2.48 1.3 0.362 0.368 95.0 1.0 0.360 0.366 95.0 0.5 0.356 0.363 94.8
N 0.31 0.9 0.045 0.046 95.1 −0.3 0.044 0.046 95.2 −1.9 0.044 0.045 94.9
t 0.31 1.3 0.053 0.053 94.4 0.2 0.053 0.053 94.9 −1.4 0.052 0.054 95.2

0.3 C 0.86 2.5 0.116 0.116 94.7 0.8 0.116 0.114 94.4 −1.5 0.115 0.116 93.8
G 1.43 0.8 0.064 0.064 95.0 0.4 0.063 0.064 94.8 −0.2 0.062 0.064 94.6
P 3.99 1.3 0.565 0.574 95.1 0.9 0.562 0.571 94.9 0.1 0.556 0.566 94.8
N 0.45 1.9 0.042 0.04 92.8 0.9 0.042 0.04 93.2 −0.4 0.041 0.04 93.5
t 0.45 0.9 0.046 0.046 94.1 0.0 0.046 0.047 94.8 −1.3 0.046 0.047 95.2
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Table A4. Cont.

τ θ θ PRBθ̂c sθ̂c seθ̂c PCθ̂c PRBθ̂m sθ̂m seθ̂m PCθ̂m PRBθ̂M sθ̂M seθ̂M PCθ̂M

0.4 C 1.33 1.7 0.149 0.149 94.3 0.4 0.148 0.147 93.5 −1.5 0.147 0.150 93.6
G 1.67 0.8 0.080 0.080 94.8 0.3 0.079 0.080 94.8 −0.4 0.078 0.080 94.3
P 6.58 1.1 0.903 0.915 95.2 0.6 0.898 0.910 95.0 −0.3 0.887 0.901 94.7
N 0.59 0.6 0.032 0.032 94 −0.1 0.032 0.033 94.5 −1.1 0.033 0.033 95.2
t 0.59 0.6 0.039 0.038 94 −0.1 0.039 0.039 94.7 −1.2 0.039 0.039 95.2

0.6 C 3.00 −0.1 0.264 0.263 94.3 −1.0 0.263 0.260 93.1 −2.3 0.262 0.274 93.6
G 2.50 0.6 0.134 0.135 95.2 −0.01 0.133 0.134 95.0 −0.9 0.131 0.136 94.2
P 21.13 0.4 2.722 2.744 94.7 −0.2 2.700 2.726 94.3 −1.4 2.663 2.695 93.8
N 0.81 0.2 0.018 0.017 93.7 −0.1 0.018 0.017 94.2 −0.5 0.018 0.018 94.7
t 0.81 0.1 0.021 0.02 93.9 −0.2 0.021 0.021 94.5 −0.7 0.021 0.021 95.1

0.8 C 8.00 −1.8 0.607 0.663 94.7 −2.5 0.607 0.692 94.6 −3.5 0.603 0.772 94.9
G 5.00 −0.3 0.285 0.298 95.5 −1.0 0.283 0.301 95.0 −2.1 0.281 0.320 94.8
P 115 −2.2 13.974 14.173 93.5 −3.0 13.836 14.040 92.7 −4.3 13.651 13.865 91.4
N 0.95 −0.1 0.005 0.005 96.0 −0.2 0.005 0.005 96.1 −0.3 0.005 0.006 96.5
t 0.95 −0.1 0.006 0.006 95.8 −0.2 0.006 0.006 96.1 −0.3 0.006 0.006 96.3

τ θ θ PRBθ̂∗ sθ̂∗ seθ̂∗ PCθ̂∗ PRBτ sτ seτ PCτ PRBρ sρ seρ PCρ

0.1 C 0.22 1.4 0.069 0.068 94.4 2.7 0.082 0.083 95.6 2.5 0.081 0.082 95.6
G 1.11 0.1 0.038 0.040 95.3 0.2 0.042 0.042 94.8 0.2 0.041 0.041 94.9
P 1.56 1.0 0.232 0.236 95.2 0.8 0.232 0.235 95.3 1.1 0.236 0.238 95.3
N 0.16 −1.0 0.048 0.049 95 −0.8 0.051 0.051 94.8 −0.9 0.051 0.051 94.7
t 0.16 −0.5 0.056 0.058 95.2 −0.1 0.057 0.057 94.8 −7.7 0.052 0.057 96.1

0.2 C 0.50 0.4 0.090 0.088 94.4 1.4 0.102 0.103 95.5 1.0 0.102 0.104 95.4
G 1.25 0.1 0.050 0.051 95.0 0.3 0.052 0.052 94.8 0.1 0.052 0.052 94.9
P 2.48 0.9 0.359 0.365 94.9 1.0 0.377 0.381 94.9 1.2 0.380 0.381 95.1
N 0.31 −1.0 0.044 0.045 95.2 −0.8 0.047 0.048 95.3 −0.9 0.047 0.048 95.2
t 0.31 −0.5 0.052 0.054 95.1 −0.1 0.053 0.053 94.7 −7.3 0.05 0.053 94.8

0.3 C 0.86 −0.2 0.116 0.112 93.7 0.6 0.127 0.130 95.5 0.3 0.130 0.132 95.4
G 1.43 0.1 0.063 0.064 94.8 0.3 0.065 0.065 95.0 0.3 0.067 0.067 94.2
P 3.99 0.7 0.560 0.570 94.9 1.1 0.597 0.601 95.1 1.2 0.627 0.626 94.9
N 0.45 0.4 0.041 0.04 93.4 0.5 0.043 0.042 94.0 0.3 0.043 0.042 94.2
t 0.45 −0.6 0.046 0.047 95 −0.2 0.047 0.047 94.7 −6.7 0.046 0.047 92.5

0.4 C 1.33 −0.4 0.148 0.144 92.9 0.7 0.165 0.165 95.0 0.6 0.170 0.170 95.1
G 1.67 −0.03 0.079 0.080 94.7 0.3 0.082 0.082 95.2 0.3 0.083 0.082 94.6
P 6.58 0.4 0.895 0.908 95.0 1.0 1.004 1.004 94.6 1.2 1.073 1.064 94.6
N 0.59 −0.5 0.032 0.033 94.6 −0.3 0.035 0.035 95.2 −0.4 0.035 0.036 94.9
t 0.59 −0.6 0.039 0.039 94.9 −0.2 0.04 0.039 94.3 −5.8 0.04 0.039 88.5

0.6 C 3.00 −1.6 0.263 0.260 92.7 0.3 0.288 0.288 95.1 0.1 0.306 0.311 95.0
G 2.50 −0.4 0.132 0.135 94.6 0.3 0.139 0.140 95.5 0.1 0.144 0.144 95.3
P 21.13 −0.6 2.689 2.717 94.3 1.5 3.319 3.303 94.6 1.5 3.892 3.821 93.8
N 0.81 −0.2 0.018 0.018 94.2 0.0 0.019 0.019 94.5 −0.2 0.02 0.02 94.9
t 0.81 −0.5 0.021 0.021 94.6 −0.1 0.022 0.022 94.6 −3.6 0.025 0.022 74.7

0.8 C 8.00 −2.9 0.609 0.721 94.9 0.5 0.680 0.664 93.9 −0.07 0.740 0.779 96.0
G 5.00 −1.5 0.282 0.311 95.1 0.4 0.305 0.312 95.8 −0.3 0.329 0.322 92.2
P 115 −3.4 13.757 13.969 92.0 1.5 19.564 19.373 94.4 2.6 28.53 26.796 92.5
N 0.95 −0.2 0.005 0.006 96.2 0.0 0.005 0.005 95.3 −0.1 0.006 0.006 95.7
t 0.95 −0.2 0.006 0.006 96.1 0 0.006 0.006 94.9 −1.2 0.009 0.006 58.4
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Table A5. Estimated root mean square error (RMSE) of the canonical MPL estimator and percentage
relative efficiency (PRE) of the median MPL, mode MPL, midpoint MPL, MM Kendall’s, and MM
Spearman’s estimators in relation to the canonical MPL estimator.

τ Cθ θ n = 50 n = 100

RMSE PRE RMSE PRE

θ̂c θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗ θ̂c/τ θ̂c/ρ θ̂c θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗ θ̂c/τ θ̂c/ρ

0.1 C 0.22 0.24 125.6 148.5 143.7 109.4 113.0 0.16 117.6 134.8 128.7 97.6 99.8
G 1.11 0.13 121.5 145.8 137.3 121.4 126.3 0.08 113.6 130.0 122.7 107.0 110.2
P 1.56 0.82 109.9 126.2 115.1 104.1 105.1 0.53 104.7 113.3 107.2 103.3 102.7
N 0.16 0.16 114.0 127.6 123.5 112.9 116.2 0.104 108.3 117.4 113.4 101.3 102.9
t 0.16 0.17 111.3 123.4 119.2 115.2 133.9 0.118 107.1 115.7 111.8 108.4 125.1

0.2 C 0.50 0.32 121.1 142.9 134.8 104.2 107.1 0.20 115.1 130.5 123.8 94.7 95.7
G 1.25 0.17 119.9 142.5 132.8 118.7 121.8 0.11 113.3 128.1 121.2 108.5 108.7
P 2.48 1.26 111.9 131.0 118.4 97.6 96.6 0.82 105.9 116.2 109.0 97.9 96.1
N 0.31 0.14 109.5 115.3 114.6 103.2 105.5 0.094 104.9 107.3 107.1 95.0 95.4
t 0.31 0.16 108.3 115.4 113.2 108.8 119.2 0.108 105.4 110.0 108.2 105.0 112.0

0.3 C 0.86 0.39 118.1 136.4 127.6 97.8 100.0 0.25 112.5 123.1 117.8 92.1 91.8
G 1.43 0.21 120.0 139.2 132.1 114.6 117.0 0.14 113.5 126.7 120.9 107.8 105.0
P 3.99 1.96 113.6 133.4 121.0 88.4 84.2 1.27 106.8 117.7 110.3 91.6 85.9
N 0.45 0.13 106.8 108.1 108.9 97.6 98.8 0.087 104.9 105.6 106.1 96.7 96.3
t 0.45 0.14 103.9 104.2 104.5 100.7 100.3 0.095 102.8 102.2 102.9 100 94.6

0.4 C 1.33 0.49 114.8 127.5 120.5 91.3 93.5 0.32 109.8 115.6 112.6 87.3 86.7
G 1.67 0.26 120.7 139.2 132.3 109.3 112.5 0.17 113.4 124.5 120.0 104.5 104.3
P 6.58 3.11 114.7 133.2 122.8 79.5 72.4 2.00 107.4 118.0 111.1 82.7 74.4
N 0.59 0.09 103.9 97.8 102.2 88.4 87.7 0.067 103.0 97.4 101.5 87.8 85.2
t 0.59 0.11 99.2 93.2 95.7 91.8 80.9 0.078 99.8 94.2 97.3 94.8 77.4

0.6 C 3.00 0.80 104.8 106.3 102.7 77.4 79.3 0.53 102.3 100.0 99.9 77.6 73.6
G 2.50 0.42 114.9 121.4 119.9 90.6 93.8 0.28 109.5 113.3 111.9 94.3 92.0
P 21.13 8.99 114.3 122.7 122.1 56.8 44.9 5.82 107.4 113.4 110.9 63.2 47.3
N 0.81 0.05 90.9 72.7 80.6 75.9 69.6 0.036 94.6 79.2 87.5 82.4 75.5
t 0.81 0.06 86.8 70.5 75.3 78.2 48.5 0.041 91.4 76.5 83.2 85.7 47.3

0.8 C 8.00 1.83 93.9 87.0 87.5 68.6 80.0 1.22 92.7 83.8 86.2 73.4 71.7
G 5.00 0.87 99.3 95.2 93.2 73.9 89.0 0.59 98.0 89.6 92.7 80.6 80.9
P 115 43.7 102.2 98.2 101.7 33.1 21.8 28.7 99.2 93.7 97.5 42.8 21.9
N 0.95 0.016 73.6 51.5 57.1 87.5 60.9 0.011 80.3 57.8 66.5 87.7 65.5
t 0.95 0.019 74.9 55.2 60.1 82.1 30.8 0.012 81.5 62.2 69.5 87.8 29.4

τ Cθ θ n = 200 n = 400

RMSE PRE RMSE PRE

θ̂c θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗ θ̂c/τ θ̂c/ρ θ̂c θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗ θ̂c/τ θ̂c/ρ

0.1 C 0.22 0.10 110.4 120.9 116.3 82.7 84.1 0.07 107.0 114.5 111.2 79.6 80.7
G 1.11 0.05 107.8 117.4 112.3 95.6 98.7 0.03 104.9 110.7 107.5 89.1 92.1
P 1.56 0.35 102.1 106.1 103.2 100.8 98.5 0.23 101.1 103.1 101.6 101.6 98.0
N 0.16 0.072 104.8 110.5 107.6 98.2 98.9 0.049 102.6 105.9 104.1 94.4 94.5
t 0.16 0.081 104.1 109.6 106.7 105.3 119.3 0.057 102.5 105.7 103.9 102.3 113

0.2 C 0.50 0.13 109.0 116.6 113.2 85.9 85.7 0.09 106.3 111.3 109.1 84.7 84.2
G 1.25 0.07 107.7 115.7 111.4 101.9 101.7 0.05 105.1 109.9 107.5 97.8 98.2
P 2.48 0.54 102.6 107.3 103.9 93.5 91.2 0.36 101.4 103.9 102.0 92.4 91.0
N 0.31 0.064 102.9 103.5 103.8 92.6 92.4 0.045 101.9 102.2 102.4 90.9 90.4
t 0.31 0.075 103.1 105.8 104.5 102.8 104.1 0.053 101.9 103.4 102.9 100.9 93.9
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Table A5. Cont.

τ Cθ θ n = 200 n = 400

RMSE PRE RMSE PRE

θ̂c θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗ θ̂c/τ θ̂c/ρ θ̂c θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗ θ̂c/τ θ̂c/ρ

0.3 C 0.86 0.17 106.3 109.1 107.8 87.1 84.8 0.11 104.2 105.6 105.1 86.3 83.4
G 1.43 0.09 108.2 114.8 111.8 101.6 95.8 0.06 104.9 108.3 107.0 99.1 92.0
P 3.99 0.83 103.0 107.8 104.4 89.3 81.5 0.57 101.6 104.3 102.3 89.7 81.5
N 0.45 0.061 104.0 104.8 105.1 97.8 96.9 0.042 103.4 104.7 104.5 96.7 95.5
t 0.45 0.066 101.5 100.2 101.3 99.1 84.4 0.047 101.2 100.1 101.2 98.7 72.1

0.4 C 1.33 0.21 104.6 104.6 105.0 83.5 80.0 0.15 103.2 102.7 103.5 82.6 78.2
G 1.67 0.11 107.4 111.8 110.0 99.0 96.2 0.08 104.4 106.1 106.0 98.4 95.4
P 6.58 1.32 103.1 107.7 104.6 80.2 70.0 0.91 101.7 104.4 102.5 81.2 71.0
N 0.59 0.046 101.8 96.6 100.6 88.9 85.9 0.032 100.4 95.2 99.1 87.3 84.1
t 0.59 0.054 99.7 94.5 97.7 94.9 66.4 0.039 100.1 95.9 98.9 95.1 53.6

0.6 C 3.00 0.37 99.4 94.4 96.7 79.4 72.1 0.26 99.1 94.4 97.1 83.7 74.3
G 2.50 0.19 104.8 104.1 105.0 92.2 85.6 0.13 102.9 101.3 103.1 93.6 86.9
P 21.13 3.9 102.9 105.1 104.1 64 46.3 2.72 101.6 103.3 102.3 66.7 48.6
N 0.81 0.026 97.2 85.8 92.8 87.8 81.2 0.018 98.9 90.9 96.5 87.9 81.3
t 0.81 0.029 94.4 82.5 88.7 86.5 38.4 0.021 96.9 87.9 93.6 86.8 28.6

0.8 C 8.00 0.87 93.3 83.9 88.0 80.5 70.3 0.62 95.3 87.7 91.5 83.8 71.1
G 5.00 0.40 97.2 87.8 92.7 82.5 74.7 0.28 97.9 89.7 94.7 87.0 74.9
P 115 20.07 98.2 92.8 96.7 48.5 22.7 14.19 99.1 95.6 98.4 52.2 24.5
N 0.95 0.007 86.6 66.5 76.3 88.9 71.7 0.005 90.8 74.4 83.2 86.9 72.3
t 0.95 0.008 86.4 69.2 77.1 83.2 21.9 0.006 90.8 75.6 83.9 79.2 15.2

Table A6. Asymptotic percentage relative efficiency.

τ Cθ θ PRE for n → ∞

θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗

0.1 C 0.22 100.1 100.0 100.0
G 1.11 99.7 100.0 100.0
P 1.56 100.0 100.0 100.0
N 0.16 100.0 100.1 100.1
t 0.16 100.0 99.9 99.9

0.2 C 0.50 100.3 99.9 100.2
G 1.25 99.5 100.0 100.0
P 2.48 100.0 100.0 100.0
N 0.31 99.9 100.0 100.0
t 0.31 100.0 99.9 99.9

0.3 C 0.86 99.9 99.9 100.1
G 1.43 99.5 100.0 100.0
P 3.99 100.0 100.0 100.0
N 0.45 99.9 99.9 99.9
t 0.45 99.9 99.9 99.9

0.4 C 1.33 100.1 100.0 100.1
G 1.67 99.4 100.0 100.0
P 6.58 100.0 100.0 100.0
N 0.59 99.9 99.9 99.9
t 0.59 99.9 99.9 99.9
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Table A6. Cont.

τ Cθ θ PRE for n → ∞

θ̂c/θ̂m θ̂c/θ̂M θ̂c/θ̂∗

0.6 C 3.00 100.4 100.0 100.0
G 2.50 99.6 100.0 100.0
P 21.13 100.0 100.0 100.0
N 0.81 99.8 100.0 100.0
t 0.81 99.9 99.9 99.9

0.8 C 8.00 101.0 100.0 100.0
G 5.00 99.8 100.0 100.0
P 115 100.0 100.0 100.0
N 0.95 99.9 99.9 99.9
t 0.95 99.7 99.9 99.9
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