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Abstract: Pandemic bonds can be used as an effective tool to mitigate the economic losses that
governments face during pandemics and transfer them to the global capital market. Once considered
as an “uninsurable” event, pandemic bonds caught the attention of the world with the issuance
of pandemic bonds by the World Bank in 2017. Compared to other CAT bonds, pandemic bonds
received less attention from actuaries, industry professionals, and academic researchers. Existing
research focused mainly on how to bring epidemiological parameters to the pricing mechanism
through compartmental models. In this study, we introduce the stochastic logistic growth model-
based pandemic bond pricing framework. We demonstrate the proposed model with two numerical
examples. First, we calculate what investor is willing to pay for the World Bank issued pandemic
bond while accounting for possible future pandemic, but require to have the same yield to maturity
when no pandemic is there, and without using COVID-19 data. In the second example, we calculate
the fair value of a pandemic bond with characteristics similar to the World Bank issued pandemic
bond, but using COVID-19 data. The model can be used as an alternative to epidemic compartmental
model-based pandemic bond pricing mechanisms.

Keywords: pandemic bond; stochastic logistic growth model; CAT bond; Hull–White model; Weibull
distribution; trigger events; World Bank; COVID-19; epidemic modeling

JEL Classification: G22; C63; C65; G12

1. Introduction

Catastrophic events have become more frequent in the past decade. For example, there
were 317 catastrophes around the world in 2019, up from 304 in 2018 (Swiss Re Institute
2020). For the last few decades, there has been a steady increase in insured losses caused
by natural disasters (Swiss Re Institute 2023). The growth in losses has averaged between
5–7% per year since 1992 (Swiss Re Institute 2023). From 2017 onward, the annual average
of insured losses due to natural disasters has been more than USD 110 billion, more than
double the previous 5-year average of USD 52 billion (Swiss Re Institute 2023). These
catastrophes can be categorized as manufactured and natural disasters such as earthquakes,
tornadoes, hurricanes, droughts, pandemics, etc. According to the Swiss Re Institute (Swiss
Re Institute 2020), 2019 is the year with the highest number of natural catastrophe events.
With COVID-19, once finalized, 2020 may become the year with the highest human and
financial losses due to a catastrophic event. Catastrophe bonds or CAT bonds are insurance-
linked security products issued by reinsurers, which allow them to insure assets against
catastrophic events and then transfer the risk to the capital market (Cummins 2012). CAT
bonds allow reinsurance companies to insure financial losses due to catastrophic events.
Although the frequency of these extreme events is low, the severity or size of potential losses
may be enormous. Without CAT bonds or similar risk-transferring products, reinsurance
companies may face credit risk in the event of a catastrophe.
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In its simplest form, a CAT bond works as follows: Consider a local insurance company
that has issued specific policies against a catastrophic event such as a hurricane. In the
event of an extremely devastating hurricanes such as Hurricane Katrina, a local insurance
company may face a significant number of claims, which may force it into bankruptcy.
One solution for a local insurance company is to reinsure part of claims, such as the most
extreme claims, and hence transfer a portion of its risk to a reinsurance company. However,
the reinsuerer itself may need more capital to cover these extreme claims and may not be
willing to take the risk. A reinsurer can transfer that risk from its balance sheet by issuing
CAT bonds. CAT bonds would allow the reinsurer to transfer some of these risks again to
the capital market and let investors who are willing and able to take the risk. Money from
issuing CAT bonds can be reinvested in safe investment products such as US Treasuries.
CAT bond investors would receive regular interest payments (assuming coupon bond),
and at maturity principal amount (face value) if no covered catastrophe event (triggering
event) occurred. In the event of a catastrophic event where the trigger is activated, based
on the bond contract, the investor may lose the full principal amount and all future coupon
payments or may receive a portion of the principal payment and future coupon payments
(Edesess 2015). It should be noted that reinsurers use the special purpose vehicle (SPV) to
securitize CAT bonds (Cummins 2008). These CAT bonds are fully collateralized against
the premium collected at the time of issuance and eliminate the credit risk of the reinsurer.

A pandemic is considered one form of a catastrophic event. A pandemic bond can be
defined as a bond related to an outbreak of a pandemic. Typically, if there is no pandemic, it
will work as a “normal” bond, where investors receive regular coupons and, on the maturity
date, the initial investment. If a pandemic outbreak meets the trigger conditions, investors
may lose some or all of their capital. When a pandemic occurs, the repayment of capital
investment at maturity depends on the conditions set forth in the bond prospect. For a long
time, a pandemic was considered an “uninsurable” catastrophic event. One reason for this
is the global nature of a pandemic, and its implication on the entire world. A pandemic can
generate many losses that even reinsurance companies may not be able to cover, even after
issuing CAT bonds. Therefore, it was considered that pandemic reinsurance needed “deep
pockets” of the global capital markets (Schwarcz 2021). This idea came to fruition when the
World Bank introduced its first-ever pandemic bonds in 2017 (World Bank 2017a).

2. Literature Review

The literature on CAT bond pricing is rich with many papers. Cox and Pedersen (2000)
developed a CAT bond pricing methodology using the term structure of interest rates and
the probability structure of catastrophe events. Pricing was conducted under incomplete
market settings using a representative agent pricing model. Using a contingent claim
model, Lee and Yu (2002) developed a model to price a catastrophe-linked bond. Under
this model, a stochastic interest rate process is introduced and default risk, moral hazard,
and basis risk are discussed. The article’s authors claimed the model is suitable when
pricing default-risky debt. The concept of equal utility is a typical strategy for establishing
indifferent pricing in an incomplete market environment. Under this concept, Young
(2004) determined the cost of a contingent claim by applying a stochastic interest rate to
an exponential utility function. Ma and Ma (2013) used a contingent claim model. They
derived a CAT bond pricing formula based on the CIR (Cox et al. 1985) interest rate model
while allowing aggregated losses to follow a compound nonhomogeneous Poisson process.
The trigger, interest rate process, and loss model are vital factors when pricing a CAT bond.
Ways to develop the threshold, the term structure of interest rates, and the catastrophe loss
model were discussed in Deng et al. (2020), where global drought catastrophe bonds were
priced. They modeled the number of droughts using the Poisson model and individual
loss severity using generalized Pareto distribution to estimate the probability of occurrence
of the trigger, which follows the extreme value theory.

The calibration of the bond to the actual data is one of the most important steps
in real-life applications. Härdle and Cabrera (2010) calibrated the Mexican government
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issued earthquake bonds using data from the National Institute of Seismology in Mexico.
The trigger event for these earthquake bonds was the magnitude of the earthquakes that
exceeded the predefined threshold value. Shao et al. (2017) extended the work of Ma
and Ma (2013) by introducing the Markov dependent environment to the model. With
the emergence of data science and big data in the last decade, machine learning-based
models were introduced to CAT bond pricing. Lane (2018) and Makariou et al. (2021) can be
considered pioneers in this direction. Their approach is based on random forest to calculate
the spread, which is the difference between the CAT bond yield and a non-risky bond yield.

Research on CAT bonds that use epidemics or pandemics as catastrophe events is
difficult to find in the existing literature. This situation may change with the recent COVID-
19 pandemic and the failure of the World Bank issued pandemic bonds. Fan and Mamon
(2021) developed a SIR-Vasicek-based model to evaluate pandemic bond prices. The SIR
model is used to generate the number of infected, which is used as the trigger event in the
model. The Vasicek model generates an interest rate process correlated to the SIR model.
The authors used the Monte Carlo simulation-based approach to implement the model and
price the bond. Huang et al. (2021) introduced several pandemic bond structures, such as
binary coupons and fixed principal, linear coupons and fixed principal, binary coupons
and binary principal, etc. They also discussed financial products, which can be used when a
disease becomes endemic, such as endemic swaps to cover endemic liabilities. The pricing
model was based on the equivalent martingale approach. In that study, the authors (Huang
et al. 2021) performed an empirical analysis of the pricing of coronavirus pandemic bonds
and dengue swap contracts. More recently, a detailed analysis of pandemic bonds issued
by the World Bank and its mathematical framework was carried out by Zheng and Mamon
(2023). In another recent research, dynamics between mortality and interest rates was
studied by Li et al. (2023). In that paper authors employed affine jump diffusion model to
price mortality-linked securities.

Our interest in this topic stems from how to use epidemiological parameters in triggers
of bond pricing. Many have so far focused their attention on the SIR model or variants
therein. However, stochastic logistic models have shown good prediction accuracy for the
number of deaths and the number of infected for the recent COVID-19 data (Otunuga and
Otunuga 2022; Shen 2020; Triambak et al. 2021; Wu et al. 2020). Therefore, this research uses
stochastic logistic growth model to predict epidemiological parameters. These epidemio-
logical parameters were then used as the trigger event in the bond pricing mechanism. To
our knowledge, this approach is yet to be used in pandemic bond pricing.

3. The World Bank Issued Pandemic Bond

Given the historical importance of the pandemic bond issued by the World Bank, this
section summarizes some key features of that bond. In June 2017, the World Bank issued the
first pandemic bond, shifting risk from developing nations to financial markets, to provide
financial assistance during a pandemic through the Pandemic Emergency Financing Facility
(PEF) (Reuters 2017; World Bank 2017a). The 2014 West African Ebola crisis revealed how
difficult it is to raise money from the world community to stop the epidemic, which is
where PEF comes in (World Bank 2017a). The purpose of raising funds in this manner was
to pay for the epidemic response in nations that qualify (Shinh 2021). Only members of
the International Development Association (IDA) are eligible for PEF insurance window
funding (World Bank 2017a). IDA is defined as an institution of the World Bank Group
and one of the largest and most effective platforms to help the world’s lowest-income
countries to eliminate extreme poverty. Countries that receive funds through PEF need not
be repaid (World Bank 2019). Grants are mainly targeted at low-income countries with a
high risk of debt distress. A steering committee including Japan and Germany as voting
members was in charge of running the PEF, while both the World Bank and the World
Health Organization(WHO) were non-voting members (World Bank 2020).

The PEF provided financing through the “cash window” and the “insurance window”.
The cash window provided financial support to developing countries when certain diseases
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do not meet the criteria for the activation of the pandemic bond and not eligible for financing
through the insurance window (World Bank 2018). The targeted level of funding for the
cash window was between USD 50 and USD 100 million (World Bank 2018). The initial
funding for the cash window came from Germany and was accessible starting in 2018
(World Bank 2017a). As for the bonds and swaps included in the insurance window, Japan
and Germany cover the window’s premiums, providing PEF with insurance against the
possibility of pandemics in developing countries (Reuters 2017). The insurance window
was designed to provide coverage up to USD 500 million by issuing bonds and swaps
(World Bank 2018). With the cooperation of several top reinsurers like Swiss Re, Munich
Re, and GC securities, the World Bank Treasury created bonds and derivatives for the PEF
insurance window (World Bank 2017a).

Under the insurance window, the World Bank issued two types of catastrophe-linked
capital at-risk bonds with a total value of USD 320 million (World Bank 2017b) on 7 July
2017 with the maturity date of 15 July 2020 (World Bank 2017a). Class A offers coupons
that are 6.5 percent higher than the 6-month US LIBOR rate and provides coverage for
USD 225 million in pandemic insurance (World Bank 2017b). Class A covered influenza
and coronavirus (World Bank 2017a). Class B contained higher risk than class A, which
included five viruses, including coronavirus, filovirus, and Crimean Congo, which are
most likely to start a pandemic. Class B provided USD 95 million in insurance with an
11.1 percent coupon rate above the 6-month US LIBOR (Shinh 2021; World Bank 2017a).
Both class A and class B included coronavirus. The World Bank and donor nations each
contributed money to the coupon payments.

Detailed information about the triggering event is given in the World Bank-issued
bond prospectus (World Bank 2017b). For example, under the class A coronavirus payout
conditions, seven conditions were to be met. Some of these conditions were that the total
confirmed death for eligible periods should be greater than 2500, the growth rate defined in
the prospectus must be positive, and the rolling confirmed case amount must be more than
250 (World Bank 2017b). Some other conditions related to the trigger event are, that at least
12 weeks should have elapsed from the outbreak’s beginning for the period to last, which
also refers to the lasting period, at least 20% of all cases must be verified, which refers to
the confirmation ratio and cross-border spread with at least 20 deaths (World Bank 2020).
Data from the WHO reports are used as the official source to determine whether the trigger
is activated or not. AIR Worldwide Corporation acted as the event calculation agent for
these bonds (World Bank 2017b).

The first pandemic to occur after the issuance of this bond was COVID-19. This
epidemic satisfied all predetermined levels for each factor on 17 April 2020 (three months
before the maturity of the bonds), thus triggering the payout to developing countries (Shinh
2021). Therefore, individual investors who bought bonds lost most of their investments and
future issuance of World Bank pandemic bonds may not attract investors as previously.

4. The Future of Pandemic Bonds

Is there any future to pandemic bonds? The purpose of pandemic bonds is to raise
capital in advance of a potential pandemic. Therefore, the future of pandemic bonds largely
depends on the perceived success of these instruments in addressing their intended purpose
and how effectively they were triggered during actual pandemics. They were designed
to quickly provide much-needed funding during an outbreak. The main criticism of the
World Bank issued pandemic bond was the complexity of the trigger event (Financial Times
2023). According to the Financial Times, when WHO declared COVID-19 as a pandemic
event on 11 March 2020, it took almost 14 weeks to release funds and developing countries
received their disbursements on 15 May 2020 (Financial Times 2023). Given how fast the
virus spread, two months is too long to wait to obtain funding to combat the disease.

Hence, it is crucial to streamline the trigger mechanisms of pandemic bonds to guar-
antee their prompt response during a crises. Simultaneously, it is important to inform
investors adequately. Just as timing the market is futile, attempting to predict specific viral
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or bacterial outbreaks is likewise ineffective (Financial Times 2023). However, if investors
maintain a steady investment approach, they could achieve long-term gains. Similar to
the concept of a diversified stock portfolio, if the market presents a variety of pandemic
bonds associated with different viruses, it could potentially attract future investors to the
pandemic bond market.

5. Materials and Methods
5.1. Proposed CAT Bond

We propose the following CAT bond: A coupon bond is issued by the government
to mitigate any financial losses arising from a pandemic or epidemic caused by certain
viruses or bacteria within that country. The triggering event of this CAT bond would be an
epidemiological parameter such as the numbers of infections, hospitalizations, deaths, or
a similar appropriate event that exceeds the given threshold value. For example, it could
be the number of deaths within the first three months that exceeds 0.1% of the population
size. Once the triggering event occurs, we assume that the payment of future coupons and
the redemption amount will be stopped, and the government will withdraw money from
the collateral account to cover financial losses. If no triggering event occurs the principal
amount will be returned to investors at maturity. We assume there cannot be more than
one pandemic during the bond term and no pandemic at the time of the issue.

When pricing CAT bonds, one needs to know the trigger, the dynamics of the interest
rate process, and the payout structure (Deng et al. 2020). As we mentioned earlier, the
triggering event is crucial for pricing. There are different types of triggers: indemnity,
index, and hybrid triggers (Cummins 2012). Index triggers can be divided into industry
loss, modeled loss, and parametric indices. In our proposed model, the trigger comes under
the parametric index category.

5.2. Trigger
5.2.1. Trigger of World Bank Issued Pandemic Bond

First, we want to state three of seven trigger events for the World Bank-issued class A
pandemic bond under coronavirus conditions. This would give some understanding and
justification for the trigger event we chose in this research. A detailed analysis of trigger
conditions can be found in Zheng and Mamon (2023). According to the World Bank (World
Bank 2017b), the following criteria must be met with others (not listed here) for the trigger
to be activated and generate 100% loss of the principal amount to the investor.

1. Total confirmed deaths should be greater than or equal to 2500.
2. The rolling total case (RTCt) amount must be greater than or equal to 250.
3. The growth rate(GRt) must be positive.

The rolling total case amount at day t was calculated (World Bank 2017b) using

RTCt =

{
TCAt − TCAt−84, t > 84
0, otherwise.

(1)

Here, TCAt stands for total case amount on day t, which is cumulative total cases. The
growth rate was calculated (World Bank 2017b) using following equation:

GRt = µt − 1.533set where, (2)

st =

√
∑5

i=1(NCRCi − µt)2

4
(3)

set =
st√

5
(4)

µt =
1
5

5

∑
i=1

NCRCi. (5)
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Here, NCRCi stands for new case amount rate of change and is calculated using Table 1.

Table 1. World Bank growth rate schedule when relevant virus is not flu (World Bank 2017b).

i NCRCi

1 ln((TCAt − TCAt−14)/(TCAt−14 − TCAt−28))

2 ln((TCAt−14 − TCAt−28)/(TCAt−28 − TCAt−42))

3 ln((TCAt−28 − TCAt−42)/(TCAt−42 − TCAt−56))

4 ln((TCAt−42 − TCAt−56)/(TCAt−56 − TCAt−70))

5 ln((TCAt−56 − TCAt−70)/(TCAt−70 − TCAt−84))

From the table, it is clear that at least 28 days need to be passed from the beginning of
the epidemic to use it. Until then, the World Bank defined the growth rate as undefined
and deemed it as zero (World Bank 2017b). From these three conditions, it is clear that one
should pay more attention to modeling the total number of cases(death or infected); thus
the stochastic logistic model becomes a good candidate.

5.2.2. Trigger of Our Model

Typically, the trigger for a pandemic bond payout is based on the size, the growth
and other epidemiological characteristics of the outbreak. The World Bank used size and
growth in trigger event, as larger outbreaks require more resources to combat them. These
resources may include medical supplies, healthcare personnel, contact tracing, logistical
support, and public education campaigns. When an outbreak reaches a certain size, the
agency issuing the pandemic bond may want to stop paying coupon payments to investors
and use the principal amount to combat the outbreak. The size of an outbreak also gives an
indication of the potential for a health crisis to destabilize regional or global economies and
social systems. The size of an outbreak can be measured using several methods, with the
number of deaths and infected individuals being the most obvious and easily measurable.
The growth rate of an outbreak indicates how quickly a disease spreads, which is crucial
for planning and implementing response measures. High growth rates can be a sign of
high infectivity or a lack of effective control measures, both of which would require more
resources. Both size and growth metrics can provide an objective, measurable trigger for
bond payouts, reducing ambiguity and potential disputes between the agency issuing the
bonds and the investors. However, using these triggers has limitations, such as delays in
accurate reporting or data collection, especially in the early stages of an outbreak. Diseases
with different characteristics may not fit neatly into predetermined criteria, and hence the
trigger may have to differentiate based on which virus family caused the outbreak.

In this research, we assumed that the trigger event for our model is based on the
size and the growth of the outbreak. More specifically, the trigger is activated by the
following criteria:

1. The seven-day moving average(MA) for daily new death, maD(t), should exceed θD
before the bond maturity time T AND

2. At the time when the seven-day moving average for the daily new death, maD(t),
exceeds θD, the seven-day moving average for the daily new infection, maI(t), should
exceed θI AND

3. When seven-day average for the daily new death exceeds θD and the seven-day
average for the daily new infection exceeds θI , the growth rate, GR(t), need to be
positive. The outbreak growth rate is defined using the following equation.

GR(t) = maI(t)− 1.533seI(t) (6)
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where maI(t) stands for the average of daily new infection cases for the past seven
days, and seI(t) stands for the standard deviation of new infection cases for the past
seven days.

Selection of the threshold values of θD and θI would be based on the types of viruses
covered by the bond, historical figures as well as expert opinion, country profile, charac-
teristics of the society, etc. In essence, it would be a subjective decision for bond issuing
agency. For example, a country which may not want to adhere to strict pandemic control
measures such as quarantine, travel restrictions may want to set θI and θD at a higher
level to compensate for lax regulations. Another example would be the World Bank issued
pandemic bonds, where they used at least 5000 confirmed cases within a rolling 42-day
period as part of trigger event for flu virus. (Why 5000? Why a 42-day period? These
numbers essentially become subjective decisions.)

When calculating the seven-day moving average for the number of death or infections,
we used a simple moving average. Instead, one can use other moving averages, such as
exponential moving averages. This paper uses the stochastic logistic growth model to
model the total number of infected and the total number of deaths. From these models, we
calculate seven-day moving averages for the number of deaths and the number of infected.
Under the above conditions, the trigger time can be defined as

τ = inf{ t | (maD(t) > θD) ∧ (maI(t) > θI) ∧ (GR(t) > 0)} . (7)

5.3. Interest Rate Process

We use the Hull–White, one-factor short rate model (Hull and White 1990) to capture
the interest rate process over time. The one factor Hull–White model is an arbitrage free
model, which allows one to calibrate the model to current term structure. On the other
hand, the popular Vasicek model cannot be calibrated to the current term structure, hence
there may be arbitrage opportunities. Assume that the financial market is arbitrage-free
and modeled on filtered probability space (Ω1,G(1)t ,P1). Following (Kladívko and Rusỳ
2023), let c be the calibration time, P(t, T) is the price of a zero coupon bond at time t
which matures at time T, f (c, t, T) denotes the forward rate observed at time c for future
time period [t, T], f (c, t) is instantaneous forward rate for time period [t, t + δt] observed
at time c, and r(c) = limt→c+ f (c, t) is the short rate, or interest rate for infinitesimally
small time period [c, c + δt] at time c. The continuously compounded yield rate at time t
for a zero coupon bond that matures at time T is given by y(t, T) = − 1

T−t ln P(t, T). The
yield curve at time t is then defined as the set { y(t, T)|t ≤ T} or in other words, the set
of yield rates at time t for different maturity times T. Similarly, the forward rate f (c, t, T)
is given by f (c, t, T) = − 1

T−t ln
(

P(c,T)
P(c,t)

)
, and the instantaneous forward rate is given by

f (c, t) = − ∂ ln P(c,t)
∂t . The short rate process is modeled using the Hull–White model (Hull

and White 1993). The model is defined as

drc(t) = (θc(t)− αrc(t))dt + σdB(t), c ≤ t (8)

Here, c is the calibration time, drc(t) is the change in the short-term interest rates, θ(t)
is a deterministic term structure parameter chosen such that the model fits to the initial
term structure, α is the mean reversion rate, σ for the volatility, and B(t) is the standard
Brownian motion under the risk neutral probability measure P1. The explicit solution to
the model is given by (see Appendix A and B in Kladívko and Rusỳ (2023)). For given α, σ
values, θc(t) at calibration time c given by

θc(t) =
∂ f M(c, t)

∂t
+ α f M(c, t) +

σ2

2α

(
1− e−2α(t−c)) (9)
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where f M(c, t) is the instantaneous forward rate observed at time c. The price of a zero
coupon bond at time t, which pays USD 1 at maturity time T under the short term rate
process (rc(t))t∈R+

given as

Pc(t, T) = EP1

[
e−
∫ T

t rc(s)ds | G(1)t

]
. (10)

Here, P1 is a risk-neutral pricing measure, and (rc(t))t∈R+
is a G(1)t -adapted process. The

price of a zero coupon bond at time t is given by (Hull 2014),

Pc(t, T) = exp
(

Ac(t, T)− B(t, T)rc(t)
)

where (11)

B(t, T) =
1− e−α(T−t)

α
, (12)

Ac(t, T) = − f M(c, t, T)(T − t) + B(t, T) f M(c, t)− B(t, T)2 σ2

4α

(
1− e−2α(t−c)) (13)

Here, − f M(c, t, T)(T − t) = ln PM(c, T) − ln PM(c, t), where PM(c, t) stands for market
observable zero coupon bond price at time c which mature at time t. In this study, we plan
to use Equation (11) to generate evolution of pandemic bond prices over time. Observe
that at time t = c, the market prices and model prices coincide. That is Pc(c, T) = PM(c, T)
(Kladívko and Rusỳ 2023). However, as time pass by, for t > c the model predicted bond
price Pc(t, T) deviate from the market observable bond price PM(t, T).

Calibration vs. MLE Estimation of Parameters of Hull–White Model

The calibration of the Hull–White model to the current term structure involves mini-
mizing predicted and observed prices of either caplets, swaps, or swaptions with respect to
mean reversion, α, volatility, and σ parameters(Gurrieri et al. 2009). Calibrating methods
do not depend on historical time series of data, instead it uses cross-sectional market data
at the calibration time (at a single time point). On the other hand, the maximum likelihood
estimation method (Kladívko and Rusỳ 2023) uses historical time series data to estimate
the mean reversion rate and the volatility. Kladívko and Rusý (Kladívko and Rusỳ 2023)
noticed that MLE-based volatility estimation may understate the real volatility. Another
disadvantage of estimation methods is the possibility of arbitrage on the issuance day since
the prices on that day are not caliber to market prices.

5.4. Payout Structure

In this section, we provide details on the payout structure of the pandemic bond. We
consider the pandemic bond as a coupon bond with n coupon payments Fr1, Fr2, · · · , Frn
at times t1, t2, · · · tn. The coupon amount may depend on the floating rate, but the number
of coupons and the time of the coupon payments are fixed. The payout structure of this
bond is given below.

C =

{
∑n

i=1 Fri + M, τ ≥ T

∑m
i=1 Fri, tm < τ < tm+1 ≤ T

(14)

where C is the payout, M is the redemption amount, T is the term of the bond tn = T, and
τ is the time when the trigger occurred. There are two possible outcomes: the trigger is
activated or not. If the trigger is activated during the term of the bond, the bondholder
will receive the coupon payment up to that time and will have to let go of future coupon
payments and the redemption amount M. If the trigger is not activated, then the bondholder
will receive all coupon payments and the promised full payment, M at maturity.
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5.5. Pricing Model

The CAT bond market is generally considered incomplete (Braun 2012), implying that
not every contingent claim state of a CAT bond can be replicated using a portfolio of other
securities in the market. In other words, catastrophic risk cannot be perfectly hedged using
other securities in the market (Cox et al. 2000; Cox and Pedersen 2000). Since the CAT bond
market is not complete, the second fundamental theorem of mathematical finance implies
that there are no unique risk-neutral measures in it (see theorem 1.2 in Privault (2013)).
In this article, we assumed that the market is arbitrage-free. Then the first fundamental
theorem of mathematical finance implies that the market is arbitrage-free if and only if it
admits at least one equivalent risk-neutral measure (see theorem 1.2 in Privault (2013)).
Since the CAT bond market is incomplete and we assumed it is arbitrage-free, we concluded
that the CAT bond market has more than one risk neutral measure. Thus, there is no unique
pricing theory for CAT bonds. Since there is no unique pricing theory for CAT bonds in
an incomplete market, in order to generate price for a pandemic bond, we assume the
pandemic bond price should be the discounted expected value (see Section 4 in Cox and
Pedersen (2000)). Thus, we need probability distribution for the pandemic risk.

5.6. Probability Distribution for the Pandemic Risk

We assume that the pandemic-related variables are modeled on a filtered probability
space (Ω2,G(2)t ,P2). Following Fan and Mamon (2021), let H denote the occurrence of a
pandemic event during the term of the bond, given that there is no pandemic at bond issue
and C is the event of trigger being activated. Then, by the law of total probability, we have

P2(C) = P2(C|H)P2(H) + P2(C|H′)P2(H′)

P2(C′) = P2(C′|H)P2(H) + P2(C′|H′)P2(H′). (15)

Here, P2 is the probability measure for the structure of the pandemic risk. If there is
no pandemic, we assume that it is not possible to activate the trigger. Thus, in reality,
P2(C|H′) = 0. Given the random nature of the pandemic, many assumed that the time
between pandemic events is exponentially distributed (or contain memory-less properties).
However, a strong argument against this view was made by Bickis (Bickis et al. 2007) and
assumed that the inter-pandemic times follows the Weibull distribution with the following
probability density function (Klugman et al. 2012):

f (x) =
τ(x/θ)τ exp{−(x/θ)τ}

x
, x ≥ 0. (16)

We also use this assumption in our analysis. The other assumptions made in that
article (Bickis et al. 2007), where pandemic is a renewal process and interpandemic time,
are i.i.d. random variables valid in our analysis, too. The parameters of the Weibull
distribution, τ and θ, will be estimated using the maximum likelihood method. Let X
denote the inter-pandemic time random variable, t0 denote the year of the last pandemic,
s0 is the current year (pandemic bond issue year), and T denote the term of the bond. Then,
given that there is no pandemic at the time of the bond issue, the probability of pandemic
during the bond term is given by

P2(H) =
P2(X > s0 − t0)− P2(X > s0 + T − t0)

P2(X > s0 − t0)
. (17)

Similar to Fan and Mamon (2021), the probability of trigger activation given a pan-
demic, P2(C|H), is calculated through simulation techniques.

5.7. Pandemic Bond Price

We have introduced two probability models so far, one for the financial market and
the other one for the pandemic risk. To obtain the price of the bond under pandemic risk,
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define full sample space to be the product space Ω = Ω1×Ω2. Then one can use the model
developed by Cox (see Section 5 in Cox and Pedersen (2000) for details). Let (Ω,Ft,P) be
the full model, where Ft is the joint filtration generated by G1,G2, and P is the probability
measure. One of the key assumptions in this probability space is the independence between
economic events and pandemic events. Therefore, for a given the event ω = (ω1, ω2) ∈ Ω,
we have P(ω) = P1(ω1)P2(ω2). Next, it can be shown that there exists an equivalent
probability measure Q, under which the price of future cash flows can be computed as
discounted expected values (see Theorem 5.1 in Cox and Pedersen (2000)). Therefore, the
price of the proposed pandemic bond price at time 0, which matures at time T, can be
written as

P(0, T) = EQ
[ n

∑
i=1

Frie−
∫ ti

0 r(s)ds + Me−
∫ T

0 r(s)ds | Ft

]
Q
(

τ > T
)

+ EQ
[ m

∑
i=1

Frie−
∫ ti

0 r(s)ds | Ft

]
Q
(

τ < T
)

. (18)

Here, Fri denotes the ith coupon payment, tm < τ < tm+1 ≤ T, and tn = T. Also

Q
(

τ > T
)

is the probability that under the probability measure Q, the trigger is not

activated before the maturity of the bond. This expectation can be further reduced and can
be taken under P1, the risk-neutral measure for the financial market, with the assumption
that cash flows from the pandemic bond depend only on the pandemic-related variables,
which is true for the pandemic bond discussed in this article (see Remark 5.5 in Cox and
Pedersen (2000)).

6. Stochastic Logistic Growth Model
The Model

The classical logistic growth model by Verhulst (1838) describes the growth of a
population by the following ODE:

dN(t)
dt

= gN(t)
(
1− N(t)

K
)
. (19)

Here, N(t) is the size of the population at time t, K is the carrying capacity of the envi-
ronment, and g is the growth rate. The growth rate g under this model is considered as a
constant. The solution to Equation (19) is well known and is given by

N(t) =
N0K exp(gt)

(K− N0) + N0 exp(gt)
=

K
1 + a exp(−gt)

, (20)

where N(0) = N0, a =
(K−N0

N0

)
. However, the growth rate g can be considered as a function

of time t and affected by environmental noise (Khodabin et al. 2012; Liu and Wang 2013).
Thus, we can replace

g→ g(t) + σN(t)W(t), (21)

where W(t) = dB(t)
dt and B(t) is a standard Brownian motion, σ2

N(t) is a nonrandom function
that represents the intensity of white noise, and g(t) is a nonrandom function. Furthermore,
g(t) and σN(t) are bounded and continuous functions on [0, ∞). With this modification,
we obtain a stochastic non-autonomous logistic equation with initial conditions defined as

dN(t) = N(t)
(

1− N(t)
K

)(
g(t)dt + σN(t)dB(t)

)
, N(0) = N0. (22)
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Using the Ito calculus, the solution to the above equation is given below (Liu and Wang 2013):

N(t) =
K

1 +
(

K
N0
− 1
)

exp
(
−
∫ t

0

(
g(s)− 0.5σ2

N(s)−
σ2

N(s)N(s)
K

)
ds−

∫ t
0 σN(s)dB(s)

) . (23)

It is well known that the two equilibrium points of Equation (19) are 0 and K, with 0
being the unstable equilibrium and K being the stable equilibrium. According to Liu and
Wang (2013), if 0 < N0 < K, then the stability of two equilibrium points of Equation (22)
(see Theorem 1, Liu and Wang (2013)) given by following:

1. The zero solution is globally asymptotically stable almost surely if

lim
t→∞

sup t−1
∫ t

0
g(s)− 0.5σ2

N(s)ds < 0. (24)

2. The positive equilibrium solution K is globally asymptotically stable almost surely if

lim
t→∞

inf t−1
∫ t

0
g(s)− 0.5σ2

N(s)ds > 0. (25)

If the drift term and the volatility terms are constant, that means g(t) = g and
σN(t) = σN , then Equation (22) would reduce to

dN(t) = N(t)
(

1− N(t)
K

)(
gdt + σNdB(t)

)
, N(0) = N0. (26)

This is the model we plan to use to model the number of infected and the number of
deaths in this research. We used the stochastic logistic growth model given in Equation (26)
to model N(t), which represents either the number of infected or the number of deaths
per given period under the context. Thus, the number of infected, I(t), and the number of
deaths, D(t), would be modeled using

dI(t) = I(t)
(

1− I(t)
KI

)(
gIdt + σIdBI(t)

)
, I(0) = I0 (27)

dD(t) = D(t)
(

1− D(t)
KD

)(
gDdt + σDdBD(t)

)
, D(0) = D0. (28)

where gI and gD are constant growth rates for the number of infected and deaths, σI and σD
are constant volatility of the respective growth rates. We assumed BI and BD are correlated
standard Brownian motions with following dynamics:

dBI(t) = dW1(t), (29)

dBD(t) = ρ12dW1(t) +
√

1− ρ2
12dW2(t), (30)

here W1(t), W2(t) stands for independent standard Brownian motions. The correlation
coefficient ρ12 measures the correlation between the number of infected and death.

7. Numerical Simulation 1

In this section, we estimate the price that an investor would be willing to pay for the
pandemic bond issued by the World Bank, considering the effects of a pandemic under the
proposed model. We assume that the investor is a price taker, that is, they cannot dictate
the price of the pandemic bond in the market. However, the investor is aware of their
desired yield to maturity and aims to calculate the price of the bond they are willing to pay
under pandemic conditions that would still yield the same return. This approach differs
from calculating the fair price of the bond as the investor establishes the desired yield rate
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at the rate they would receive if no pandemic were to occur and does not consider future
movement of interest rates for discounting purposes. The R code related to this simulation
can be found in Manathunga (2023).

To simulate the price, we need details about the pandemic bond, probability of the
pandemic event, and if the pandemic occurs, then the probability of the trigger being
activated. Observe that we do not need interest rate process for discounting, since we set
discounting rate to be yield to maturity, however, we need interest rate process to predict
future 6 month USD LIBOR rates. Table 2 gives the details of the class A pandemic bond
issued by the World Bank (World Bank 2017a).

Table 2. World Bank class A pandemic bond parameters.

Face Value Settl. Date Maturity Date Issue Price Bond Coupon Day Count Coupon Payment Dates

USD 225M 7 July 2017 15 July 2020 100% 6 month USD LIBOR +6.50% Actual/360
15th day of each month
including 15 August 2017
to 15 July 2020

Now we want to find out how much the investor is willing to pay for this bond on the
day of the settlement (7 July 2017) given that the investor still wants same yield which they
would receive if there is no pandemic, but now want to account the pandemic into pricing
under our proposed model.

7.1. Bond Coupons

Bond coupons are based on 6-month USD LIBOR. The World Bank used the reset date
of 6-month LIBOR rates as the interest payment dates of January and July of each year.
But in this study we assumed that rates are reset at each coupon payment date. These are
floating rates, and hence, other than the first coupon payment, remaining coupon amounts
are unknown. We used the Hull–White one-factor short rate model described in Section 5.3
to predict 6M USD LIBOR rates. We used the already implemented Hull–White one factor
model in R (Lee 2021), calibrated it for our purposes, and predicted 6M USD LIBOR rates.
The steps of our approach are as follows:

1. Model Calibration: In order to calibrate the Hull–White one-factor model, both the
term structure of spot rates and implied volatilities are required. Unlike some other
interest rate models, which uses historical series data to calculate parameters, the
Hull–White model utilizes cross-sectional data from a single point in time Kladívko
and Rusỳ (2023) to calibrate the model. For our calibration, we utilized LIBOR spot
rates with various tenors (1D, 1W, 1M, 2M, 3M, and 6M) on July 7, 2017, as well as
ICE Swap rates with tenors (1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y, and 15Y) to obtain
the full term structure of interest rates for that date ICE Benchmark Administration
(2023). Normally, implied volatilities for 7 July 2017 would be obtained using interest
rate derivatives such as swaptions. However, since we lack access to these data, we
derived historical volatilities from forward rate curves constructed using daily ICE
Swap rate curves from 14 August 2014 to 7 July 2017. These historical volatilities were
used in place of implied volatilities. The parameter α in Equation (8) was established
as 0.0001, based on the values in Table 5 for 2014, 2015, and 2016 in Kladívko and
Rusỳ (2023).

2. Simulation: Post-calibration, the model is employed to simulate short rates (instan-
taneous interest rates at specific points in time) 5000 times within the designated
time interval. Our focus lies on the 6-month USD LIBOR rates. For each simulated
short rate path, we can obtain the short rate values for the subsequent 6 months and
compute the average rate during that period. This average rate can be called as the
approximated 6M USD LIBOR rate for that particular date within that path. Since we
possess 5000 such rates for that date (derived from 5000 sample paths), we once again
calculate the average. This average is considered as the 6M USD LIBOR rate for that
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date, utilized for subsequent computations. When simulating paths, we assumed that
an year is 252 days (trading days) and used 126 days for 6 months.

The simulated Hull–White short-rate curves are given in Figure 1. Since the Hull–
White model uses normal distribution, negative rates are possible.

Figure 1. Simulated short rates using the Hull–White Model.

The predicted 6M USD LIBOR curve on 7 July 2017 and later observed real 6M USD
LIBOR curve are given in Figure 2. The prediction was made on 7 July 2017 based on the
Hull–White model.

Figure 2. Observed (black) for 7 July 2017–15 July 2020 vs. predicted (blue) on 7 July 2017 6M USD
LIBOR rates.

Once 6M USD LIBOR rates are obtained, nth coupon of the bond, Frn, can be calculated
as follows:

Frn = 225M×
(

rn−1 + 6.5%
100

)
×
(

dn

360

)
(31)
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where 225M is the face value, rn−1 is the predicted 6M USD LIBOR rates on (n − 1)th
coupon date, 6.5% is the spread, and dn is the actual number of days between (n− 1)th
and nth coupon payment dates. The issue price of World Bank pandemic bond is 100%.
Additionally, the 6M USD LIBOR rate on 7 July 2017 was 1.46544%. Therefore, investors
knew the amount of first coupon payment (to be paid on 15 August 2017) at issue (on 7
July 2017). Only uncertainties were what would be the remaining future coupon payment
amount (based on future 6M LIBOR rates) and whether the trigger of the bond will be
activated or not before the maturity. These two uncertainties were evaluated by each
investor according to their own risk preferences. The exact coupon amount, exact LIBOR
rates used for that calculation and the exact coupon payment date for the World Bank
pandemic bond are not easy to find. We requested these data from the World Bank and are
yet to receive exact values. Therefore, based on the bond prospect, we created a Table 3,
which contains the most likely coupon payment dates, most likely real 6M LIBOR rates used
(based on daily 6M LIBOR rates provided by ICE Benchmark Administration (2023)) to
calculate the coupon payment, most likely real coupon payment amount, predicted LIBOR
rates(under the Hull–White model on 7 July 2017), and the predicted coupon amount.

If we assume the bond will not be triggered, then based on the predicted future
coupon payments in Table 3, we can calculate the yield to maturity for this bond using
Equation (32).

225M =
36

∑
n=1

Frn

(1 + y)
tn

360
+

225M

(1 + y)
1104
360

(32)

There are 36 coupon payments dates between 7 July 2017 and 15 July 2020 starting 15
August 2017 and 1104 days including the start date. Here, the first coupon payment
amount Fr1 on 15 August 2017 is known at the purchase date (7 July 2017 ), the remaining
coupons, { Frn} 36

n=2 are unknown and should be calculated using Equation (31), y is the
effective annual yield to maturity, and tn is the number of days between 7 July 2017 and
the nth coupon payment date. The first coupon payment can be calculated as

Fr1 = 225M×
(

1.46544 + 6.5
100

)
× 39

360
≈ 1.94M

The World bank use the actual/360 system, and there are 39 days in between 7 July 2017
and 15 August 2017 including the start date. The yield rate calculated using the predicted
coupon amounts given in Table 3 and Equation (32) is 8.6734%. This yield rate can be
considered as the investor’s expected annual return rate (or internal rate of return) for
this investment. We also calculated what would have been realized if no COVID-19 had
occurred and if investors received all coupon payments based on real 6M LIBOR rates. This
value is 8.8978%. We would like to mention that these two yield rates are very close, which
validate the simulation of the 6M LIBOR curve based on the Hull–White model.

Next we calculate what the investor is willing to pay for the bond, if the investor still
expects the same annual return rate, but accounts the pandemic into the pricing through
our proposed model. Calculation of this value is a little bit different from the bond price
given in Equation (18). In that equation, the discounting process is based on the short rate
models. But here the discounting factor is fixed, since the investor knows the required
yield rate as y, which we calculated as 8.6734%. Therefore, this price is not the fair value of
the pandemic bond, but the price that the investor is willing to pay to match to have same
return rate for pandemic bonds when no pandemic occur. The pricing formula is still close
to Equation (18).
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Table 3. Most likely real coupon paid date, real coupon amounts, referenced LIBOR rates, predicted
LIBOR rates, and the predicted coupon amount without COVID-19 effect.

Date Real 6M.LIBOR Real.Coupon
(USD Million)

Predicted
6M.LIBOR

Pred.Coupon
(USD Million)

2017-07-07 1.40000 NA NA NA

1 2017-08-15 1.45333 1.941576 1.514160 1.941576

2 2017-09-15 1.47111 1.540958 1.541704 1.552743

3 2017-10-16 1.53316 1.544403 1.547542 1.558080

4 2017-11-15 1.61810 1.506217 1.534158 1.508914

5 2017-12-15 1.77443 1.522144 1.501944 1.506405

6 2018-01-15 1.89875 1.603171 1.481613 1.550377

7 2018-02-15 2.09644 1.627258 1.519304 1.546438

8 2018-03-15 2.34175 1.504377 1.556905 1.403378

9 2018-04-16 2.50313 1.768350 1.598791 1.611381

10 2018-05-15 2.49250 1.631817 1.644671 1.467906

11 2018-06-15 2.50375 1.742297 1.700423 1.578030

12 2018-07-16 2.51850 1.744477 1.751601 1.588832

13 2018-08-15 2.51063 1.690969 1.783887 1.547175

14 2018-09-17 2.57075 1.858442 1.815619 1.708552

15 2018-10-15 2.65375 1.587381 1.844416 1.455233

16 2018-11-15 2.86019 1.773539 1.877727 1.616731

17 2018-12-17 2.90463 1.872038 1.909304 1.675545

18 2019-01-15 2.84581 1.704589 1.931655 1.524186

19 2019-02-15 2.75375 1.810751 1.950721 1.633633

20 2019-03-15 2.67175 1.619406 1.966666 1.478876

21 2019-04-15 2.63763 1.777027 1.982977 1.640417

22 2019-05-15 2.55088 1.713306 1.996944 1.590558

23 2019-06-17 2.30875 1.866744 2.012034 1.752495

24 2019-07-15 2.21713 1.541531 2.027451 1.489606

25 2019-08-15 2.01400 1.688944 2.054883 1.652194

26 2019-09-16 2.07800 1.702800 2.080081 1.710977

27 2019-10-15 1.97725 1.554763 2.105046 1.555140

28 2019-11-15 1.91850 1.642467 2.132781 1.667228

29 2019-12-16 1.89338 1.631084 2.157987 1.672601

30 2020-01-15 1.86500 1.573759 2.176524 1.623373

31 2020-02-17 1.72488 1.725281 2.189160 1.789533

32 2020-03-16 0.84375 1.439354 2.199016 1.520603

33 2020-04-15 1.15013 1.376953 2.207977 1.631066

34 2020-05-15 0.65900 1.434399 2.216058 1.632746

35 2020-06-15 0.43088 1.387056 2.223039 1.688736

36 2020-07-15 NA 1.299540 NA 1.635570

2017-07-07 real yield (no COVID): 8.8978% pred. yield (no COVID): 8.6734%
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E[ Bond Price] = E[Bond Price|Trigger]P(Trigger)

+ E[Bond Price| No Trigger]P(No Trigger)

= E
[ m

∑
n=1

Frn

(1 + y)
tn

360
|Trigger

]
P(Trigger)

+ E
[

M

(1 + y)
t36
360

+
36

∑
n=1

Frn

(1 + y)
tn

360
| No Trigger

]
P(No Trigger)

= E
[ m

∑
n=1

Frn

(1 + y)
tn

360
|C
]
P2(C)

+ E
[

M

(1 + y)
t36
360

+
36

∑
n=1

Frn

(1 + y)
tn

360
|C′
]
P2(C′), (33)

where Frn denotes the nth coupon amount, m denotes the number of coupons to be received
if trigger event occur (uncertain), tn denotes number of days between 7 July 2017 and nth
coupon payment date, M denotes redemption amount, events C, C′,P2(C), and P2(C′) are
defined and calculated in Equation (15). The net present value (NPV) of the investment
under various interest rates given in Figure 3. NPV is a good indicator to determine
whether one should invest in that project or not. Figure 3 shows that if the required yield
rate is less than 8.67% (from Table 3), then the net present value of entire future cashflows
is positive. Given that the effective interest rate in the market was less than 2% at the time
(during 2017), this is a very attractive investment for any investor.

Figure 3. Predicted NPV of the World Bank pandemic bond assuming no pandemic during the
bond term.

7.2. Probability of a Pandemic Event

In order to obtain the probability of the occurrence of a pandemic event during the
bond term, given that there was no pandemic at the time of issue, we used historical data.
Thirteen pandemics were reported in Patterson (1986). These pandemics occurred in the
following years: 1729, 1732, 1781, 1788, 1830, 1833, 1836, 1889, 1899, 1918, 1957, 1968, and
1977 (see Table 5.1 in Patterson (1986)). We can also add well-known SARS (2003) (World
Health Organization 2015), H1N1 Swine Flu (2009), and West African Ebola (2014), to
this list. We cannot add COVID-19 (2019), since we are pricing a bond on 7 July 2017.
We use the first recorded year as the beginning year of the pandemic in our calculation.
Therefore, the interpandemic time can be listed as 3, 49, 7, 42, 3, 3, 53, 10, 19, 39, 11, 9, 26, 3,
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and 5. The bond we discuss in this section is issued in the year 2017. Thus, we have three
years of censored observation from 2014 (from Ebola) to 2017, which we denoted as 3+. We
calculate the parameters of the Weibull distribution using Equation (16) and the maximum
likelihood estimation method. We used the R package Rfast2 (R Core Team 2022) and the
function censWeibull.mle for this purpose. The calculated parameters are τ = 1.0578, and
θ = 19.4242. The QQ plot for the fitted distribution vs data is given in Figure 4. The QQ
plot shows that the Weibull distribution fits to the data set somewhat closely. The p-value of
the Kolmogorov–Smirnov test is 0.524, which indicates that there is no difference between
the empirical data distribution and the fitted Weibull distribution.

Figure 4. The QQ plot for data vs the fitted Weibull distribution.

Next we calculate the probability of a pandemic during the bond term from Equation (17),

P(H) =
P2(X > 2017− 2014)− P2(X > 2017 + 3− 2014)

P2(X > 2017− 2014)
= 0.1393 and (34)

P(H′) = 1− P(H) = 0.8607. (35)

At this point one may ask what would be the predicted probability, if the exponential
distribution is used instead of the Weibull distribution. We fitted the exponential distribu-
tion to the data set using the maximum likelihood method for comparison purposes. The
KS statistics is 0.6407 indicating that the exponential distribution fits well to the data same
as the Weibull distribution. The predicted probability was 0.1461 compared to 0.1393 above.
Therefore, if exponential distribution is used, it would result in lower bond price than when
used by the Weibull distribution. Although both distributions fit well to inter-pandemic
time, predict somewhat closer probability of pandemic, we continue with the Weibull
distribution, mainly due to novelty in application.

7.3. Trigger Event

We have defined the trigger event as the seven-day moving average for daily new
death, maD(t) exceeding θD, the seven-day running average for the daily number of
infected, maI(t), exceeding θI and the infection growth rate, and GR(t) being positive
before the maturity of the bond. All events should occur at the same time t to activate
the trigger. The number of infected and number of deaths simulated using the stochastic
logistic growth model. Once we have the cumulative number of infections and deaths
from the logistic model, we can calculate maD(t), maI(t), and GR(t). Based on the World
Bank operation manual and the bond prospectus (World Bank 2017b, 2018), we used the
following as our threshold values in this research.

θI = 5000 infections per seven day, and θD = 2500 deaths per seven day (36)
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The bond, we are trying to price is issued on 7 July 2017. COVID-19 had not yet occurred,
and most investors may not have suspected a pandemic within the next three years.
Therefore, we will price the bond under past four influenza pandemic scenarios, and
calculate the average price. These are 1918-“Spanish flu”, 1957-“Asian flu”, 1968-“Hong
Kong flu”, and 2009-“Swine flu”. In order to use the model described above in each
scenario, one needs I(0), D(0), KI , KD, gI , gD, σI , and σD. We will use the following table to
estimate these parameters.

Data for first four columns of this table was obtained from World Health Organization
(2013). The reproduction number,R0, measures “the average number of secondary cases of
disease caused by a single infected individual over his or her infectious period” (Cori et al.
2013). If R0 < 1, it is expected that the outbreak will subdue very soon and conversely, if
R0 > 1, then the outbreak may grow relatively quickly and become an epidemic. The case
fatality rate (CFR) in the context of an epidemic refers to the proportion of deaths among
individuals who have been diagnosed with the disease. It is calculated by dividing the number
of deaths caused by the disease by the number of confirmed cases and multiplying the result
by 100 to express it as a percentage. The CFR for the 1918, 1957, and 1968 pandemics was
obtained from (Li et al. 2008). CFR for the 2009 pandemic was obtained from (Nishiura 2010).
The references for the average infectious period are from (Bajardi et al. 2011; Jackson et al.
2010; Mills et al. 2004; Vynnycky and Edmunds 2008). The connection between the growth
rate, g, used in the logistic model, and the number of reproductions,R0, was investigated in
(Ma 2020). Under SIR compartment model, the relationship can be written as,

g = γ(R0 − 1). (37)

Here, 1/γ is the average infectious period. We use Equation (37) to calculate the growth rates
in the seventh column of Table 4. The last column was calculated using the columns “Case
Fatality Rate” and “Estimated Total Death”. Before we continue, we would like to emphasize
the difficulty in obtaining reliable data for a historic pandemic. Therefore, it is possible that the
data represented in Table 4 may overestimate or underestimate the true values. For example,
Table 4 indicate that the maximum total infection for the 1918 Spanish flu pandemic should be
around 2000 M, but the world population at that time was close to 1800 M.

In each scenario, the carrying capacity for deaths and infections KD, KI is set using
values in the columns “Estimated total death” and “Estimated total infection” (either lower
bound or upper bound) of Table 4. The initial number of infections for I(0), D(0) set at
1. Since there is no reproduction number defined for deaths, we used the same growth
rate for gI and gD. Volatility terms, σI , σD are set ad hoc, which can be based on historical
records or expert opinion. The correlation coefficient between the number of infected and
death is set at 0.5. The algorithm to calculate the price of the bond under the 2009 H1N1
Influenza pandemic scenario is given in Algorithm 1.

Table 4. Characteristics of the past four influenza pandemics.

Year Virus Type

Estimated
Reproduc-

tion Number
(R0)

Estimated
Total Death

Case Fatality
Rate (%)

Average
Infectious

Period (1/γ)

Growth Rate
for Infection

(gI)

Estimated
Total

Infections

1918 H1N1 1.2–3.0 20–50 M 2.5 4.1 days 0.049–0.488 800–2000 M

1957 H2N1 1.5 1–4 M 0.1–0.4 4 days 0.125 1000 M

1968 H3N2 1.3–1.6 1–4 M 0.1–0.4 4 days 0.075–0.150 1000 M

2009 H1N1 1.1–1.8 0.1–0.4 M 0.048 2.5 days 0.040–0.320 208–833 M
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Algorithm 1 The algorithm to calculate bond price under the 2009 H1N1 Influenza
pandemic scenario

Require: Predicted bond coupon payments Frn . see Section 7.1 and Table 3
Require: Investors expected annual return rate y (calculated as 8.2837% ) . see

Equation (32)
I(0)← 1
D(0)← 1
KI ← 833M . see Table 4
KD ← 0.4M . see Table 4
gI ← 0.320 . see Table 4
gD ← gI . we set both rates to be same, since it is not possible to calculate gD without
real data
σI , σD ← 0.1 . we set both rates to be same
dt← 1 . time step of the simulation is set to 1 day
N ← 1104 . Number of steps. This is the number of days between 7 July 2017–15 July
2020.
θI ← 5000 . This is the trigger for number of infected
θD ← 2500 . This is the trigger for number of death
ρ← 0.5 . I(t) and D(t) are correlated stochastic processes. See Equation (29)
M← 5000 . Number of simulation paths
Trigger ← 0 . Number of triggered events
Time← {} . The time, triggering event occurred, place holder
BondValuePartial ← {} . Price of the pandemic bond(triggered), place holder
BVf ull ← 225M . the price of the bond investor willing to pay if no pandemic occur.
This is the selling price of World Bank pandemic bond
P(H)← 0.1393 . probability of Pandemic. See Equation (34)
for i = 1 to M do

Simulate solution to stochastic differential equations with time step size dt and
number of steps N.

dI(t) = I(t)
(

1− I(t)
KI

)(
gIdt + σIdBI(t)

)
,

dD(t) = D(t)
(

1− D(t)
KD

)(
gDdt + σDdBD(t)

)
,

dBI(t) = dW1(t),

dBD(t) = ρdW1(t) +
√

1− ρ2dW2(t)

Solution paths are I(t) and D(t)
Calculate daily increments using max(0, I(t)− I(t− 1)) and max(0, D(t)−D(t− 1))
Starting day 7 to day 1104, calculate past seven day average for daily new infections

and deaths.
Seven day average paths are maI(t), maD(t) . see Section 5.2.2
Calculate standard deviation of past seven day daily new infections
Calculate growth rate GR(t) . see Equation (6)
if (maD(t) > θD)&(maI(t) > θI)&(GR(t) > 0) then

Trigger ← Trigger + 1
Time < −Append(Time, t) . Add time of the trigger event to the set
BVpartial ← Bond Value based on coupons paid until time t . see Equation (33)
BondValuePartial ← Append(BondValuePartial, BVpartial)

end if
end for
E[BondPrice|Trigger]← average of values in BondValuePartial set
E[BondPrice|NoTrigger]← BVf ull
P(C)← (Trigger/M)P(H) . P(H) from above. See Equation (15)
P(C′)← 1− P(C)
BondPrice← E[BondPrice|Trigger]P(C) + E[BondPrice|NoTrigger]P(C′)
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The algorithm was implemented in R and can be found in the Manathunga (2023). The
graphs of the simulated paths under 2009 H1N1 influenza pandemic is given in Figure 5.

Figure 5. A total of 5000 simulated paths of number of infected and deaths under 2009 H1N1 pandemic.

We simulated 5000 sample paths for each of above mentioned pandemic scenarios and
calculated bond price. We used the parameters listed in Algorithm 1, except for KI , KD and
gI . The parameters used, the calculated bond value, and the probability of trigger being
activated are given in Table 5.

Table 5. The World Bank issued pandemic bond, priced under each historic pandemic if required
yield rate is 8.6734%.

Scenario Spanish Flu (1918) Asian Flu (1957) HongKong Flu (1968) Swine Flu (2009)

KI 2000 M 1000 M 1000 M 833 M

KD 50 M 4 M 4 M 0.4 M

gI 0.049 0.125 0.075 0.04

Bond Price 195.5866 194.2548 194.8468 201.4460 M

P(C) 0.1392 0.1393 0.1391 0.1132

Average price: 196.5335

According to the data presented in Table 5, it can be observed that in order to achieve
the same yield rate as one would receive under a no pandemic scenario, investors should
have paid USD 196.53 million instead of USD 225 million. One of the key parameters we
set in the Algorithm 1 is the volatility parameter σI and σD. We investigate the behavior of
volatility and bond price under the 2009 H1N1 pandemic. We assume that the investor still
requires the yield of 8.6734%, use the coupon payments predicted in Table 3 and account
pandemic through the logistic growth model. The parameters used in the simulation are
the same as the parameters in Table 5 and Algorithm 1 except for σI , σD.

Table 6 suggests that as the volatility of the number of deaths and the number of
infected increases, the probability of activation of the trigger becomes smaller. Hence the
bond price come close to the no-trigger price of the bond (USD 225M).
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Table 6. The bond price movement against volatility terms.

σI , σD 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

Bond.Price 195.70 198.92 203.54 207.80 212.93 220.20 224.46 224.99 225.00 225.00
Prob.Trigger 0.14 0.12 0.10 0.08 0.06 0.02 0.00 0.00 0.00 0.00

8. Numerical Simulation 2

In this section, we calculate the fair price of a three year coupon bond under our model.
To simulate the price, we need parameters for the pandemic bond, the interest rate model,
the probability of the pandemic event, and if the pandemic occurs, then the probability of
the trigger being activated. The R code for this simulation can be found in Manathunga
(2023). The major differences of this numerical example and the previous example are
the following:

1. The investor want to know the fair price based on future interest rate movements,
opposed to setting fixed required yield rate.

2. Some model parameters are calibrated using COVID-19 data. Most other past pan-
demics do not have day to day records of number of infections, death, etc. But
COVID-19 may be the first pandemic where humans were able to record day-to-day
statistics. Therefore, the model can be calibrated using daily data instead of using
aggregate numbers.

8.1. Bond Parameters

We assume that the bond was issued on 7 January 2023, for a three-year term. We also
assume that there is no pandemic at the moment (assuming COVID-19 is in endemic stage
now). The bond pays floating coupons at a rate of 6 month USD LIBOR + 6.5%. We also
assume that LIBOR rate reset dates are coupon payment dates. If a pandemic occurs before
the maturity date and the trigger is activated, then the investor will lose the full principal
amount and the remaining coupons. We also assume that the investor will use COVID-19
data and the model proposed in this article to calculate the price of the bond. The chosen
values of the bond parameter for this demonstration are given in Table 7.

Table 7. Bond parameters for numerical simulation 2.

Parameter Value

Settle Date 6 January 2023

Maturity Date 15 January 2026

Term 3 years

M USD 225M

Coupons 6 month USD LIBOR + 6.5%

Payment Date 15th day of each month including 15 February 2023
to 15 January 2026

Day convention Actual/360

Hull–White Model Calibrated to 6 January 2023

Stochastic-logistic growth model Calibrated using COVID-19 data

θI 5000

θD 2500

8.2. Interest Rate Model Parameters

Next, we generate 5000 sample paths of interest rates under the Hull–White short rate
model to simulate 6M LIBOR rates and discount factors. The process of calibrating the
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model and the calculating bond coupons is similar to what we explained in the previous
example. The model is calibrated to 6 January 2023 market data. In order to calculate the
price of the bond considering the future evolution of interest rates under the Hull–White
model, it is necessary to have discount rates. This is different from the previous example,
where we used a fixed yield rate to discount cash flows. The simulated discount rate paths,
the average discount rate curve and the predicted 6M USD LIBOR rate curve are given in
Figure 6.

Figure 6. (Left) Simulated discount rate curves in black and average discount rate curve in blue.
(Right) Predicted 6M USD LIBOR rates.

8.3. Calculating Probability of a Pandemic Event and Estimating Parameters for I(t) and D(t)

To calculate the probability of a pandemic event, we used the same approach as earlier.
But now we can add 2019 COVID as an pandemic event and 4+ censored observation (from
2019 to 2023) in to the data set used in Section 7.2. The new data set (inter arrival times
between pandemics) is: 3, 49, 7, 42, 3, 3, 53, 10, 19, 39, 11, 9, 26, 3, 5, 5, and 4+. The new
probability of a pandemic, P(H), is given in Table 8. With COVID-19, the probability of
another pandemic in the next three years increased from 0.1393 to 0.1468. Next, we need
values for I(0), D(0), KI , KD, gI , gD, σI , and σD. Several model parameters were calibrated
using historical COVID-19 data for the United States. Data were obtained from an R
package named COVID-19 (Guidotti and Ardia 2020). The number of infections and the
number of deaths due to COVID-19 in the US are given in Figure 7 which was obtained
using Mathematica Wolfram Research, Inc. (2023).

We set I(0) and D(0) to be 1 as earlier. KI , KD values are set to be the total number
of infected and the total number of deaths as of 31 December 2022 in USA from the data
set. Instead of using the reproduction number to calculate growth rates gI , gD, we use the
following data-driven approach. First, we calculate daily growth rates, g(t), at each time
point using the following equation.

g(t) =
N(t)− N(t− 1)

N(t− 1)
. (38)

A plot of daily growth rates for the number of infections and the number of deaths given in
Figure 8. Note that two growth rates have different maximum. Therefore, we should set
gI , gD separately instead of the same value. But this was not possible with the method we
employed in the numerical example 1.
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Figure 7. Number of infections (yellow) and deaths (blue) due to COVID-19 in USA.

Figure 8. Daily growth rates for the number of infections and the number of deaths in USA from 3
March 2020 to 31 December 2022.

So, what should be g? There is no definitive answer. But here are a few approaches
that one can use:

1. Calculate the maximum. This gives gmax
I = 0.4842 and gmax

D = 0.0385.
2. Calculate the average of nonzero growth rates. This gives gavg

I = 0.0147 and
gavg

D = 0.0004.
3. Calculate the average of growth rates up to certain date such as right before the

growth rates become close to zero. If we use first the 50 days, then g50
I = 0.2064 and

g50
D = 0.0065.

4. Fit a parametric distribution such as log normal or gamma and use statistics such as
mean or median of the fitted distribution as the growth rate.
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However, we have observed that when gI and gD are too far away from each other,
there would be a delay between the number of infection curves and the number of death
curves, which would affect the trigger event and not natural (the delay is more than the
average infectious period). Therefore, we again set both values at the same level. Volatility
terms σI , σD are calculated as standard deviations of the growth rates and set separately.
The correlation coefficient was set to 0.5 as in the previous example. At this point, one may
wonder what would be the growth rate, if we used the reproduction number,R0, and the
average infectious period to calculate it using Equation (37). The average infectious period
for COVID-19 is 5.1 days (Lauer et al. 2020) and the reproduction number of COVID-19
Liu et al. (2020) is 3.28. These values infer the growth rate of the infection to be 0.447. The
calculated bond price and parameters are given in Table 8.

Table 8. Numeric example 2: The fair value of the bond price under proposed model.

Scenario I II III

# Simulations 5000 5000 5000

KI 100.46 M 100.46 M 100.46 M

KD 1.1 M 1.1 M 1.1 M

I(0) 1 1 1

D(0) 1 1 1

gI , gD 0.4842 0.0147 0.2064

σI 0.0521 0.0522 0.1309

σD 0.0020 0.0020 0.0067

ρ 0.5 0.5 0.5

Bond Price 192.3830 205.3894 192.4687

P(C) 0.1468 0.1161 0.1468

P(H) 0.1468 0.1468 0.1468

Average price: USD 196.747 million

Finally we evaluate the bond under the parameter grid given in Table 9. Under this
approach, we consider all possible combinations of parameters. When we calculated the
price of bond given in numerical example 2, we found USD 205.3762 million as the price.
This is again close to price we received earlier (USD 196 million). Each combination was
simulated 100 times. There are 14,400 possible combinations, which resulted 1.44 million
total simulations.

Table 9. Numerical example 2: average pandemic bond price under various parameter combinations.

gI 0.1, 0.2, 0.3, 0.4

gD 0.1, 0.2, 0.3, 0.4

sI 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20

sD 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20

rho 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

# of parameter combinations 14,400

# Simulations each combination 100 times

Average bond price under this
grid USD 205.3762 million

Average probability for trigger
activation 0.0887
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9. Discussion

A pandemic is one of the most devastating disasters that can occur to humankind.
The recent COVID-19 pandemic shows that a pandemic can have a profound impact on
all aspects of human life. Pandemic bonds can be used by the government to mitigate
financial losses and rapidly fund pandemic-related activities such as vaccine programs,
buying hospital equipment, etc. Up to now, almost all pricing mechanisms of pandemic
bond studies have relied on compartmental models such as SIR or its variants, including
pandemic bonds issued by the World Bank, which used the AIR Worldwide developed
compartment model. Our study performed the following:

1. We proposed a pandemic bond pricing framework based on the stochastic logistic
model and the Hull–White interest rate model.

2. We review the details of the World Bank-issued pandemic bond.
3. We used past four influenza pandemics to price World Bank issued pandemic bond,

and hence demonstrating how to use the model when aggregate information of
past pandemics is available. Even though we used information from four pan-
demics, the example shows how to use all available past pandemic scenarios in
the modeling process.

4. We used COVID-19 data to calibrate the model parameters using a data-driven
approach and price a pandemic bond. Therefore, we demonstrate how to use the
model when detailed data are available. The purpose of using COVID-19 data is not
to claim that future pandemics would be look like COVID-19 but to demonstrate a
data-driven approach.

5. We showed how to use a parameter grid to remove any restrictions for gI , gD, σi, σD, ρ
and calculate across all possible combinations to obtain the fair price of a pan-
demic bond.

6. We calculate the price of the bond under two different scenarios. First, when an
investor knows the required yield, find the price he/she is willing to pay. Second, the
fair price of the pandemic bond under the model.

7. We created an algorithm to implement the model and made R codes and other data
sets available for future research/testing and reproducibility.

We also used the Weibull distribution to calculate the probability of a pandemic during
the bond term, thus deviating from popular memory-less distributions. We simplified some
pandemic bond trigger criteria from the World Bank and numerically demonstrated how to
implement the model, giving potential investors a more transparent pricing mechanism.
The model can be easily calibrated to any data set and the price can be obtained using
simulation techniques. The study shows that if investors considered the pandemic, then
they should have paid 196.53/225 = 87% of the issue price for the pandemic bond issued by
the World Bank instead of 100%. Even after taking COVID-19, the fair price of similar-type
bonds still close to the same price, with the exact price given as USD 196.75 million. We
also observed that when volatility of number of infection and number of death increase,
the price of bond close to the face value. Another observation coming from this model is
that when setting parameter values, expert opinion may be required. For example, the
correlation value between two stochastic processes, growth rates, and volatility of growth
terms may require some expert opinion before using in the model even though we used
past data without any corrections. This is typical in any real world scenario modeling,
where the modeler has to decide the parameter values.

We also identify some limitations in this study. First, we assumed that the interest rate
process is independent from the occurrence of pandemic event. This is not true in the real
world, as we have seen in the US stock market reaction to COVID 19 on 16 March 2020.
However, the market recovered rapidly than experts expected before inflation settled in.
Regardless of which interest rate model use, it would be hard to capture all the nitty-gritty
details of the market in the model. However, adding dependent interest rate process is
one improvement one can make to this model. Second, we assumed that the number of
infections and deaths are correlated; therefore, we did not study this relationship in full
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detail and most of the time we set the correlation coefficient arbitrarily at 0.5. In the real
world, for example, at the onset of the pandemic, due to less understanding of the disease,
there may be a very strong correlation between the number of deaths and the number of
infections. As time passes, once vaccines are available with a better understanding of patient
care, infection and death can become uncorrelated. We also assumed that if a pandemic
occurs, it happens right after the pandemic bond issuance. A better approach would be
to calculate the time to the next pandemic using the inter-pandemic time distribution (in
our case, this is the Weibull distribution). Once we know the time to the next pandemic,
from that point on, we can generate the I(t) and D(t) and check whether this would lead
to trigger activation before the bond maturity. However, given that the pandemic bond
term is typically short (three years), we can ignore the time delay. We also used constant
population growth rate and volatility terms in the stochastic logistic growth model. This
can be changed by fitting time-dependent g(t) and σN(t) functions.

10. Conclusions

CAT bonds or catastrophic bonds have emerged as a tool to hedge financial losses due
to extreme events. CAT bonds provide financial protection by transferring financial risk to
investors who are willing and able to take the risk. Investors willing to take the risk would
be rewarded with a higher return as long as no catastrophe occurs during the term of the
bond. Governments, reinsurers, and other corporations receive protection since they could
transfer the risk from their balance sheet to investors with no credit risk. With COVID,
financial losses due to pandemics became significant in many countries, thus warranting a
risk transferring mechanism. This study proposes a pricing mechanism for catastrophic
bonds for pandemics using the stochastic logistic growth model. Compared to some CAT
bonds, such as hurricanes and earthquakes, pandemic bonds have received less attention
from industry professionals, such as actuaries and academia. We hope that this research
will bring more attention to the topic.
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