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Abstract: Optimal reinsurance problems under the risk measures, such as Value-at-Risk (VaR) and
Tail-Value-at-Risk (TVaR), have been studied in recent literature. However, losses based on VaR may
be underestimated and TVaR allows us to account better for catastrophic losses. In this paper, we
propose a new family of flexible risk measures denoted by LVaR, which is a weighted combination of
VaR and TVaR. Based on the new risk measures, we deal with the optimal reinsurance problem by
minimizing the LVaR of the total risks of an insurer when two types of constraints for reinsurer’s risk
exposure are considered. The results indicate that the two-layer reinsurance is always an optimal
reinsurance policy with both types of constraints. Also, we find that the optimal reinsurance policy
depends on the confidence level, the weight coefficient, the safety loading, the tolerance level, as well
as the relations between them. Finally, we illustrate the results by numerical examples and compare
them with the results in Lu et al.

Keywords: expected value principle; loss limit constraint; optimal reinsurance; tail-value-at-risk;
value-at-risk

1. Introduction

Reinsurance can be seen as a risk transfer that may help to reduce the risk exposure
of the insurer and, hence, to stabilize the business. More precisely, the insurer transfers
some part of risk to a reinsurance company at the expense of paying the corresponding
reinsurance premium, which reduces the potential risk. Thanks to this tool, catastrophic
risk, such as climate risks, initially hardly insurable, may become insurable by transferring
risks (see, e.g., Charpentier 2008). Naturally, the reinsurance premiums increase as the
risk transferred to a reinsurer increases. In this context, how to deal with the trade-off
between the risk retained and the premium paid to the reinsurer becomes a major issue for
an insurer.

The study of the optimal reinsurance problems can be traced back to the seminal
papers of Borch (1960) and Arrow (1963). Calculating the reinsurance premium by using
the expected value principle, Borch (1960) showed that the stop-loss reinsurance is optimal
when the objective is to minimize the variance of the insurer’s retained loss. Choosing the
same premium principle as Borch (1960), Arrow (1963) considered the optimal reinsurance
problem by maximizing expected utility of the terminal wealth of a risk-averse insurer. The
results also showed that the stop-loss reinsurance is optimal. Kaluszka (2001) extended
Borch’s result by applying the mean-variance premium principle. Arrow’s result has been
considered under other premium principles, see Young (1999) and Kaluszka (2005). For
different purposes, the optimal reinsurance problem has been studied under more intricate
optimization criteria and/or more general premium principles, see Albrecher et al. (2017)
for a survey, and some examples. When the reinsurance premium is calculated according
to the maximal possible claims principle, Kaluszka and Okolewski (2008) showed that
the limited stop-loss and the truncated stop-loss are the optimal reinsurance contracts
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by maximizing the expected utility. Guerra and Centeno (2010) considered the optimal
forms of reinsurance when the insurer seeks to maximize the adjustment coefficient of the
retained risk. Using the maximization of the expected utility of terminal wealth, Zhang and
Siu (2012) and Liang and Bayraktar (2014) studied the optimal reinsurance and investment
strategies with different market assumptions.

In the fields of finance and insurance, Value-at-Risk (VaR) and Tail-Value-at-Risk
(TVaR) are the most popular risk measures due to their merits and good properties. For this
reason, many optimal reinsurance problems under the VaR and/or the TVaR have been
studied in the literature. For instance, under the expected value premium principle, Cai
and Tan (2007) provided the optimal retention of a stop-loss reinsurance by minimizing the
VaR and the TVaR of the insurer’s total risk exposure. Cai et al. (2008) derived the optimal
reinsurance within a class of increasing convex loss functions. Cheung (2010) extended the
VaR-minimization reinsurance model in Cai et al. (2008) by considering Wang’s premium
principle. Lu et al. (2016) considered the optimal reinsurance problem under the optimality
criteria of VaR and TVaR risk measures when constraints for the reinsurer’s risk exposure
are presented. Further extensions of the optimal reinsurance problems can be found in
Balbás et al. (2009), Tan et al. (2011), and Chi and Tan (2011, 2013).

Let X denote the amount of loss initially assumed by an insurer in a given time period.
Usually, X is assumed to be a non-negative random variable defined on the probability
space (Ω,F ,P) with continuous distribution function FX(x). We further assume that
FX(x) is strictly increasing on (0,+∞) but with a possible jump at 0 with P(X = 0) = p0.
SX(x) = 1− FX(x) and fX(x) are used to denote the survival function and the density
function of X, respectively. Given a confidence level α ∈ (0, 1), the VaR and the TVaR of
the risk X are defined as

VaRα(X) = inf{x ∈ R : FX(x) ≥ α} (1)

and

TVaRα(X) =
1

1− α

∫ 1

α
VaRs(X)ds, (2)

respectively. For a continuous loss distribution, there are many alternative names of TVaR,
such as Expected Shortfall (ES), Conditional Tail Expectation (CTE), Average VaR (AVaR),
and Conditional VaR (CVaR). We refer to Acerbi and Tasche (2002) and Rockafellar and
Uryasev (2013) for the relationships between the various notions. It is well known that
VaR is simple and easier to interpret, but it is, in general, not subadditive and, hence, not
coherent in the sense of Artzner et al. (1999). Another major drawback of VaR is that it only
takes into account the probability of a big loss, not the size of the loss, i.e., it completely
ignores the tail loss beyond the reference VaR. As a result, the same VaRs may occur when
dealing with different extreme losses, and moreover, VaR may underestimate the losses
in practice, especially when heavy-tailed losses are incorrectly modeled with light-tailed
distributions, such as the normal distribution. By comparison with VaR, TVaR defines a
more conservative risk measure that is always subadditive. Since it is interpreted as the
arithmetic average of VaRα over all levels s ≥ α, capital reserves based on TVaR are always
larger than those based on VaR. Further discussions about the comparative advantages
of TVaR and VaR, we refer to Embrechts and Hofert (2014), McNeil et al. (2015), and
references therein.

As a generalization of VaR, the spectral risk measure has received attention in recent
years. In fact, the spectral risk measure is a weighted average of VaRα with the weight
function depending on the user’s risk-aversion, so that it could help us to link the risk
measure to the user’s attitude towards risk ((Acerbi 2002) and Dowd et al. (2008)). Another
interesting generalization of VaRα is the Lambda Value-at-Risk, which considers the depen-
dence between the level α and the amount of the loss (see, e.g., Frittelli et al. 2014; Bellini
and Peri 2022). Recall that, in the risk-management community, there is an ongoing debate
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on the advantages and disadvantages of TVaR and VaR. However, there is no evidence
for global advantage of one risk measure against the other, and the size of capital reserves
may be significantly different depending on which risk measure is used. To provide a risk
assessment between that offered by TVaR and VaR, and capture more information about
various attitudes towards risk, in this paper, we extend VaR and TVaR to a more general
family of risk measures, denoted by LVaR, which is a linear combination of VaR and TVaR.
Obviously, LVaR includes VaR and TVaR as special cases and allows us to consider VaR
and TVaR simultaneously.

As shown in the literature, once the optimization criteria and the premium prin-
ciple are determined, the optimal reinsurance problem becomes a purely mathematical
problem, which makes the analysis easier. The expected value principle is one of the
most popular premium principles both due to its transparency and simplicity (see, e.g.,
Albrecher et al. 2017), so that we assume that the reinsurance premium is calculated by this
premium principle in this paper. To determine the amount of risk retained (or the premium
paid to the reinsurer), the insurer has to make a choice among all feasible reinsurance
treaties, and a reasonable criterion for the insurer is naturally to choose the reinsurance
form which makes its total risk to be as small as possible. To this end, we revisit the optimal
reinsurance problem by using the new risk measure LVaR to quantify the total risk exposure
of the insurer.

Recently, attention has been paid to controlling reinsurer’s risk since the insurer may
be under a heavy financial burden with no limit on coverage. Throughout the paper, we will
consider two types of constraints proposed by Cummins and Mahul (2004) and Zhou et al.
(2010). The first type due to Cummins and Mahul (2004) has the ceded losses constrained to
be less than the upper limit. The second type is that the reinsurer’s loss after the payments
is limited to be less than a certain predetermined level. As mentioned above, the motivation
behind these two classes of upper limits on coverage arises from providing the insurer with
limited liability with respect to the indemnity schedule. Instead of constraining the risk of
the reinsurer, Boonen et al. (2016) established lower and upper bounds of the reinsurance
premium which ensure the benefits of reinsurance to both insurers and reinsurers. More
recently, their work has been generalized by Boonen et al. (2021) to the case where an
insurer could use more than one reinsurer to reinsure its risk, i.e., the case where there
is competition among multiple reinsurers. With similar constraints, Balbás et al. (2022)
showed that the optimal reinsurance problem may be very complex if the expected profits
of both insurers and reinsurers are required to be non-decreasing when the reinsurance
contract is signed. Here, we focus on the two types of constraints discussed in Cummins
and Mahul (2004) and Zhou et al. (2010).

Many researchers have discussed the existence of optimal reinsurance contracts. How-
ever, closed-form expressions of the optimal risk transferred to the reinsurer and the
resulting total risk of the insurer have not been provided. Furthermore, the study of the op-
timal reinsurance problems under the VaR and the TVaR is generally discussed separately,
which ignores the situation where one may consider both VaR and TVaR simultaneously.
Thus, inspired by Lu et al. (2016), we derive the optimal transferred risk in closed-form, but
the most important distinction is that we seek to deal with the optimal reinsurance problem
under the LVaR, while Lu et al. (2016) considered this problem under the VaR and the TVaR
separately. To sum up, the main contributions of the present paper are as follows. First, we
introduce a new family of risk measures LVaR to capture more information about various
attitudes towards risk and to enable us to consider VaR and TVaR simultaneously. Second,
by minimizing LVaR of the insurer’s total risk and using the expected value principle, we
identify optimal reinsurance contracts when the reinsurer’s risk exposure is constrained.
It appears that the two-layer reinsurance is always an optimal reinsurance policy which
shows the stability of optimality results when switching from VaR and TVaR to LVaR.
Moreover, we show that the solutions of optimal reinsurance model in Lu et al. (2016) can
be unified and generalized by using the LVaR. In addition, the optimal quantity of ceded
losses depends on the confidence level α, the weight coefficient ω, the safety loading θ, the
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tolerance level L (or K), as well as the relations between them. For the insurer, our results
provide explicit expressions of the optimal reinsurance contract which may help to foster
the intuition and comprehension of the consequences of setting up a reinsurance contract.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries,
define a new family of risk measures, and describe the setup of the proposed reinsurance
models. Section 3 states the main results and is structured as follows. Section 3.1 studies
the optimal reinsurance problem under the new risk measures optimality criterion by
considering the first type of constraint. Section 3.2 studies the same problem in Section 3.1
with the second type of constraint. Section 4 illustrates the results in Section 3 by numerical
examples and also compares them with the results in Lu et al. (2016). Section 5 concludes
our study. All proofs are given in the Appendix A.

2. Preliminaries
2.1. A New Risk Measure

Recall that, from the definitions in (1) and (2), the VaR measures the minimum loss,
so that a disadvantage when using VaR is that catastrophic losses can be underestimated.
Since the TVaR measures average losses in the most adverse cases rather than just the
minimum loss, naturally, losses based on TVaR are much larger than those based on VaR.
Therefore, our objective is to propose a new family of risk measures which provides a
risk assessment that lies somewhere between those offered by the VaR and the TVaR. The
new family of risk measures, named LVaR, is defined as a linear combination of VaR and
TVaR, and is helpful in providing risk managers with more flexible tools. We now formally
define LVaR.

Definition 1. The LVaR of a random variable X at a confidence level α ∈ (0, 1) is defined as

LVaRα(X) = ω · TVaRα(X) + (1−ω) ·VaRα(X),

where ω ∈ [0, 1] is the weight coefficient.

Remark 1. Obviously, the LVaR risk measures include VaR and TVaR as special cases by setting
ω = 0 and ω = 1, respectively. Moreover, we can easily check that VaRα(X) ≤ LVaRα(X) ≤
TVaRα(X).

Remark 2. Note that different perspectives will lead to different weight coefficients. For example,
a more pessimistic insurer may prefer the larger ω. As a consequence, the choice of the weight
coefficient ω can be complicated in practice, and hence is not addressed here.

2.2. Optimal Reinsurance Model

Under a typical reinsurance arrangement, let I(X) be the part of loss transferred from
the insurer to a reinsurer which we refer to as the ceded loss function. As usual in the
reinsurance policy, we assume that the ceded loss function I(X) satisfies the following
properties: (1) I(0) = 0 and I(x) is an increasing function, and (2) I(x2)− I(x1) ≤ x2 − x1
for any 0 ≤ x1 ≤ x2. It is easy to check that these conditions imply that 0 ≤ I(x) ≤ x
for any x ≥ 0. In the sequel, we will denote by F the set of all ceded loss functions
satisfying conditions (1) and (2). Associated with the ceded loss function I(X), we denote
RI(X) = X− I(X) as the retained loss of the insurer. As an exchange of the undertaking
risk, the insurer should pay a reinsurance premium to the reinsurer. Here, we assume that
the reinsurance premium is determined by the common expectation premium principle
and expressed as

ΠI(X) = (1 + θ)E[I(X)],

where θ > 0 is the safety loading factor. Consequently, the total risk exposure of the insurer
in the presence of reinsurance, denoted by TI(X), is the sum of the retained loss and the
reinsurance premium, i.e.,
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TI(X) = RI(X) + ΠI(X).

The objective of this paper is, by minimizing the new risk measure LVaR, to con-
sider the optimal reinsurance problem when the constraints for the reinsurer’s risk ex-
posure are presented. Two types of constraints due to Cummins and Mahul (2004) and
Zhou et al. (2010) are considered. Specifically, we are interested in seeking an optimal
reinsurance policy over the following two sets of ceded loss functions:

• F 1 = {I(x) ∈ F |I(x) ≤ L};
• F 2 = {I(x) ∈ F |I(x)−ΠI(X) ≤ K}.

For I ∈ F i, i = 1, 2, LVaRα(TI(X)) can be seen as a function of I(X), and it suggests
the amount of assets required to protect against adverse outcomes of the total risk TI(X).
For a fixed confidence level, a prudent risk management generally requires LVaRα(TI(X))
to be as small as possible. This allows us to determine the optimal ceded loss function
by minimizing LVaRα(TI(X)) in the above classes of ceded loss functions. Our optimal
reinsurance model can be formulated as follows:

LVaR optimization criterion

LVaRα(TI∗(X)) = min
I∈F i
{LVaRα(TI(X))}, (3)

where i = 1, 2, and I∗ is the resulting optimal ceded loss function.
We conclude this section by introducing the following notations:

δ = 1 + θ − ω

1− α
, θ∗ =

θ

1 + θ
.

3. Main Results
3.1. Optimal Reinsurance under the Constraint of F 1

In this section, we will solve (3) under the constraint F 1:

LVaRα(TI∗(X)) = min
I∈F 1
{LVaRα(TI(X))}. (4)

First, note that both VaR and TVaR are translation invariant and

VaRα(g(X)) = g(VaRα(X)) (5)

for any increasing and continuous function g (see McNeil et al. (2015) and Theorem 1 in
Dhaene et al. (2002)). Thus,

VaRα(TI(X)) = VaRα(RI(X) + ΠI(X))

= VaRα(RI(X)) + ΠI(X)

= RI(VaRα(X)) + ΠI(X)

= VaRα(X)− I(VaRα(X)) + (1 + θ)E[I(X)]. (6)

Moreover, by noticing that TVaRα(X) = VaRα(X) +

∫ ∞
VaRα(X) SX(x)dx

1−α , we can obtain that

TVaRα(TI(X))

= TVaRα(RI(X) + ΠI(X))

= TVaRα(RI(X)) + ΠI(X)

= E[RI(X)|RI(X) > VaRα(RI(X))] + ΠI(X)

= E[RI(X)−VaRα(RI(X))|RI(X) > VaRα(RI(X))] + VaRα(RI(X)) + ΠI(X)

=

∫ ∞
VaRα(RI(X))[RI(x)−VaRα(RI(X))]dFRI(X)(x)

P(RI(X) > VaRα(RI(X)))
+ VaRα(RI(X)) + ΠI(X)
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=
1

1− α
E
[
(RI(x)−VaRα(RI(X)))+

]
+ VaRα(X)− I(VaRα(X)) + (1 + θ)E[I(X)]. (7)

By applying (5) again, we have

E
[
(RI(x)−VaRα(RI(X)))+

]
= E

[
(X− I(X)−VaRα(X) + I(VaRα(X)))+

]
= E

[
(X− I(X)−VaRα(X) + I(VaRα(X)))+

(
I{X≥VaRα(X)}+ I{X<VaRα(X)}

)]
= E

[
(X− I(X)−VaRα(X) + I(VaRα(X))) · I{X≥VaRα(X)}

]
= E

[
(X−VaRα(X)) · I{X≥VaRα(X)}

]
−E

[
(I(X)− I(VaRα(X))) · I{X≥VaRα(X)}

]
= E

[
(X−VaRα(X))+

]
−
∫ ∞

VaRα(X)
I(x)− I(VaRα(X))dFX(x)

= E
[
(X−VaRα(X))+

]
−
∫ ∞

VaRα(X)
I(x)dFX(x) + (1− α)I(VaRα(X)). (8)

Substituting (8) into (7), we obtain

TVaRα(TI(X)) =
1

1− α
E
[
(X−VaRα(X))+

]
+ VaRα(X)− 1

1− α

∫ ∞

VaRα(X)
I(x)dFX(x) + (1 + θ)E[I(X)]. (9)

Therefore, we have from (6) and (9) that

LVaRα(TI(X)) = ω · TVaRα(TI(X)) + (1−ω) ·VaRα(TI(X))

= ωΨ(α) + VaRα(X)− (1−ω)I(VaRα(X))

+(1 + θ)E[I(X)]− ω

1− α

∫ ∞

VaRα(X)
I(x)dFX(x), (10)

or equivalently,

LVaRα(TI(X)) = ωΨ(α) + VaRα(X)− (1−ω)I(VaRα(X))

+(1 + θ)
∫ VaRα(X)

0
I(x)dFX(x) + δ

∫ ∞

VaRα(X)
I(x)dFX(x), (11)

where Ψ(α)
∆
= 1

1−α E
[
(X−VaRα(X))+

]
.

To proceed, define

D1
∆
= {(a, b) | 0 ≤ a ≤ VaRα(X) ≤ b, b− a ≤ L}, (12)

G1
∆
= {g(x; a, b) | g(x; a, b) = (x− a)+ − (x− b)+, x ≥ 0, (a, b) ∈ D1}. (13)

We can easily verify that G1 ⊂ F1.

Lemma 2. For any confidence level α ∈ (p0, 1) and I(x) ∈ F1, there always exists a function
g(x; a, b) ∈ G1 such that LVaRα

(
Tg(X)

)
≤ LVaRα(TI(X)).

Remark 3. By Lemma 2, (4) reduces to the following optimal problem:

LVaRα

(
Tg∗(X)

)
= min

g∈G1

{
LVaRα

(
Tg(X)

)}
. (14)

Theorem 1. For any confidence level α ∈ (p0, 1), the following results hold according to the sign
of δ.
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(i) For the case of δ < 0, let a0 be the solution of the equation

1− (1 + θ)SX(a) + δSX(a + L) = 0

with respect to a.

(a) If VaRα(X)− L ≤ a0, the minimum of LVaRα(TI(X)) is attained at I∗(x) = (x− a0)+
− (x− (a0 + L))+ and

min
I∈F1
{LVaRα(TI(X))} = ωΨ(α) + a0 + (1 + θ)

∫ VaRα(X)

a0

SX(x)dx + δ
∫ a0+L

VaRα(X)
SX(x)dx;

(b) If VaRα(X) − L > a0, the minimum of LVaRα(TI(X)) is attained at
I∗(x) = (x− (VaRα(X)− L))+ − (x−VaRα(X))+ and

min
I∈F1
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X)− L + (1 + θ)

∫ VaRα(X)

VaRα(X)−L
SX(x)dx.

(ii) For the case of δ = 0,

(a) If VaRα(X) − L ≤ VaRθ∗(X), the minimum of LVaRα(TI(X)) is attained at
I∗(x) = (x−VaRθ∗(X))+ − (x− r)+ with r ∈ [VaRα(X), VaRθ∗(X) + L] and

min
I∈F1
{LVaRα(TI(X))} = ωΨ(α) + VaRθ∗(X) + (1 + θ)

∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx;

(b) If VaRα(X) − L > VaRθ∗(X), the minimum of LVaRα(TI(X)) is attained at
I∗(x) = (x− (VaRα(X)− L))+ − (x−VaRα(X))+ and

min
I∈F1
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X)− L + (1 + θ)

∫ VaRα(X)

VaRα(X)−L
SX(x)dx.

(iii) For the case of δ > 0,

(a) If α ≤ θ∗, the minimum of LVaRα(TI(X)) is attained at I∗(x) = 0 and

min
I∈F1
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X);

(b) If α > θ∗ and VaRα(X)− L ≤ VaRθ∗(X), the minimum of LVaRα(TI(X)) is attained
at I∗(x) = (x−VaRθ∗(X))+ − (x−VaRα(X))+ and

min
I∈F1
{LVaRα(TI(X))} = ωΨ(α) + VaRθ∗(X) + (1 + θ)

∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx;

(c) If α > θ∗ and VaRα(X)− L > VaRθ∗(X), the minimum of LVaRα(TI(X)) is attained
at I∗(x) = (x− (VaRα(X)− L))+ − (x−VaRα(X))+ and

min
I∈F1
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X)− L + (1 + θ)

∫ VaRα(X)

VaRα(X)−L
SX(x)dx.

Remark 4. For δ > 0, the optimal ceded loss function of the three cases can be rewritten in an
unified form

I∗(x) = (x− r)+ − (x−VaRα(X))+,

where r = max{VaRα(X)− L, min{VaRα(X), VaRθ∗(X)}}. If the safety loading factor θ is large
enough, the optimal ceded loss function is I∗(x) = 0, which means that the insurer purchases
no reinsurance.
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3.2. Optimal Reinsurance under the Constraint of F 2

In this section, we solve (3) under the constraint of F 2:

LVaRα(TI∗(X)) = min
I∈F 2
{LVaRα(TI(X))}. (15)

First, we introduce the following notations:

ψ(a, b) ∆
= b− a− (1 + θ)

∫ b

a
SX(x)dx, (16)

D2
∆
= {(a, b) | 0 ≤ a ≤ VaRα(X), b ≥ a, ψ(a, b) ≤ K}, (17)

G2
∆
= {g(x; a, b) | g(x; a, b) = (x− a)+ − (x− b)+, x ≥ 0, (a, b) ∈ D2}. (18)

We can easily verify that G2 ⊂ F2.
Before solving (15), we discuss properties of ψ(a, b) needed for future analysis. For

any a1 ∈ R, taking the partial derivative of ψ(a1, b) with respect to b, we have

∂ψ(a1, b)
∂b

= 1− (1 + θ)SX(b)

so that

b S VaRθ∗(X)⇔ ∂ψ(a1, b)
∂b

S 0. (19)

From (19), we see that φ(a1, b) is convex with respect to b.
For g(X; a1, b) ∈ G2, we have g(X; a1, b) ≤ X, which implies that E g(X; a1, b) ≤ E[X].

Noting that E[g(X; a1, b)] =
∫ b

a1
SX(x)dx, we have from (17) that

ψ(a1, b) ≥ b− a1 − (1 + θ)E[X].

Moreover, as b→ ∞, we have

b− a1 − (1 + θ)E[X]→ ∞

and

ψ(a1, b)→ ∞.

It is obvious that ψ(a1, a1) = 0 by the definition of ψ(a, b). Thus, by the continuity and
convexity of ψ(a1, b) with respect to b, there exists a unique b1 > max{a1, VaRθ∗(X)} such
that ψ(a1, b1) = K and ψ(a1, b) ≤ K for b ∈ [a1, b1].

For any a ∈ R, let β(a) be the unique solution to the equation ψ(a, b) = K with
b ∈ (max{a, VaRθ∗(X)}, ∞). For b > a, taking the derivatives with respect to a on both
sides of the equation ψ(a, b) = K entails

b′ = β′(a) =
1− (1 + θ)SX(a)
1− (1 + θ)SX(b)

.

Furthermore, we can verify that 1− (1 + θ)SX(b) > 0 when b = β(a) > VaRθ∗(X). Thus,

a S VaRθ∗(X)↔ β′(a) S 0,

which implies that β(a) is convex with respect to a. Therefore, the set D2 can be rewritten as

D0
∆
= {(a, b) | 0 ≤ a ≤ VaRα(X), a ≤ b ≤ β(a)}. (20)



Risks 2023, 11, 125 9 of 26

Lemma 3. For any confidence level α ∈ (p0, 1) and I(x) ∈ F2, there always exists a function
g(x; a, b) ∈ G2 such that LVaRα

(
Tg(X)

)
≤ LVaRα(TI(X)).

Remark 5. By Lemma 3, we can solve (15) by considering the following optimal problem:

LVaRα

(
Tg∗(X)

)
= min

g∈G2

{
LVaRα

(
Tg(X)

)}
. (21)

To facilitate subsequent analysis, let b∗0 = β(VaRθ∗(X)), that is, let b∗0 be the unique
solution to

b−VaRθ∗(X)− (1 + θ)
∫ b

VaRθ∗ (X)
SX(x)dx = K

subjected to b > VaRθ∗(X). Differentiating both sides with respect to K yields

∂b
∂K

=
1

1− (1 + θ)SX(b)
> 0,

which implies that b is increasing with respect to K. If b∗0 < VaRα(X), the equation
β(a) = VaRα(X) must have two solutions in (−∞, VaRα(X)], denoted by a∗0 and a∗1 with
a∗0 < a∗1 . Furthermore, let b∗1 = β(VaRα(X)), then b∗1 > VaRα(X).

Theorem 2. For any confidence level α ∈ (p0, 1), the optimal decision in (15) for the insurer is
given as follows according to the sign of δ.

(i) For the case of δ < 0,

(a) If b∗0 ≥ VaRα(X), the minimum of LVaRα(TI(X)) is attained at I∗(x) = (x−VaRθ∗(X))+
− (x− b∗0)+ and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α)− K + h(b∗0),

where h(b) ∆
= b− ω

1−α

∫ b
VaRα(X) SX(x)dx;

(b) If b∗0 < VaRα(X), the minimum of LVaRα(TI(X)) is attained at I∗(x) = (x− r)+ −
(x− β(r))+ with r ∈

[
max

{
0, a∗0

}
, a∗1
]
, and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X)− K.

(ii) For the case of δ = 0,

(a) If α = θ∗, the minimum of LVaRα(TI(X)) is attained at I∗(x) = (x−VaRα(X))+ −
(x− r)+ for any r ∈

[
VaRα(X), b∗1

]
, and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X);

(b) If α > θ∗ and b∗0 ≥ VaRα(X), the minimum of LVaRα(TI(X)) is attained at
I∗(x) = (x−VaRθ∗(X))+ − (x− r)+ for any r ∈ [VaRθ∗(X), b∗0 ], and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α) + VaRθ∗(X) + (1 + θ)

∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx;

(c) If α > θ∗ and b∗0 < VaRα(X), the minimum of LVaRα(TI(X)) is attained at
I∗(x) = (x− r)+ − (x− β(r))+ with r ∈

[
max

{
0, a∗0

}
, a∗1
]
, and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X)− K.
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(iii) For the case of δ > 0,

(a) If α ≤ θ∗, the minimum of LVaRα(TI(X)) is attained at I∗(x) = 0 and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X);

(b) If α > θ∗ and b∗0 ≥ VaRα(X), the minimum of LVaRα(TI(X)) is attained at
I∗(x) = (x−VaRθ∗(X))+ − (x−VaRα(X))+, and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α) + VaRθ∗(X) + (1 + θ)

∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx;

(c) If α > θ∗ and b∗0 < VaRα(X), the minimum of LVaRα(TI(X)) is attained at
I∗(x) = (x− r)+ − (x− β(r))+ with r ∈

[
max

{
0, a∗0

}
, a∗1
]
, and

min
I∈F2
{LVaRα(TI(X))} = ωΨ(α) + VaRα(X)− K.

Remark 6. Theorem 2 shows that for δ > 0 larger safety loading factor θ leads to no reinsurance.
Otherwise, the two layer reinsurance is optimal.

4. Numerical Illustrations

In this section, we present some examples to illustrate the results relying on
Theorems 1 and 2. We also compare them with the results in Lu et al. (2016) by setting
different confidence levels and different weight coefficients.

In the first two examples, we consider that X follows from an exponential distribution
or a normal distribution. Both examples show that under the optimal reinsurance policy
larger weight coefficients lead to less ceded losses (or fewer reinsurance premiums), and,
hence, the total risks measured by the LVaRs lie somewhere between that measured by
the VaR and the TVaR. As a new family of risk measures, LVaR provides flexible risk
assessments. For example, the conservative insurer may prefer the larger weight coefficient
in practice. Additionally, most risk managers would argue that the heavy-tailed distribution
is riskier than the light-tailed distribution since larger losses are more likely to occur when
the distribution is heavy-tailed. Therefore, we consider cases of heavy-tailed distributions
presented in Examples 3–5. From tables given later, we can conclude that the absolute values
of the difference between VaRα(TI∗(X)) and TVaRα(TI∗(X)) for heavy-tailed distributions
are larger than those for light-tailed distributions. Moreover, the higher confidence level
leads to the larger absolute value of the difference. In such cases, the new family of
flexible risk measures LVaR permits risk managers to seek an equilibrium between different
demands better. Also, we can see that for cases of heavy-tailed distributions the optimal
ceded losses are larger, in other words, the insurer needs to hold less losses and pay more
to the reinsurer for larger ceded losses.

Example 1. We assume that X is an exponential random variable with survival function
SX(x) = e−0.01x. The optimal reinsurance strategy under risk measures with both types of con-
straints are given in Tables 1 and 2 by setting θ = 3, L = 120, and K = 160, where the risk measure
ρ represents VaR, LVaR, and TVaR. ρα(TI∗(X)) denotes the risk under the optimal reinsurance
strategy I∗(x) and given confidence level α.

Example 2. Suppose that X ∼ N(40, 100). The optimal reinsurance solutions under risk measures
with both types of constraints are given in Tables 3 and 4 by setting θ = 4, L = 100, and K = 120,
where the risk measure ρ represents VaR, LVaR, and TVaR. ρα(TI∗(X)) denotes the risk under the
optimal reinsurance strategy I∗(x) and given confidence level α.

Example 3. Suppose that X follows Pareto distribution with F(x) = 1−
( x

σ

)−1/γ, 0 < σ ≤ x.
For γ = 1/3, σ = 120, the optimal reinsurance solutions under risk measures with both types
of constraints are given in Tables 5 and 6 by setting θ = 4, L = 100, and K = 140, where the
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risk measure ρ represents VaR, LVaR, and TVaR. ρα(TI∗(X)) denotes the risk under the optimal
reinsurance strategy I∗(x) and given confidence level α.

Example 4. We suppose that X follows Fréchet distribution F(x) = exp
{
−
(

x−µ
σ

)−1/γ
}

with

µ = 5, γ = 1/3, and σ = 50. The optimal reinsurance solutions under risk measures with both
types of constraints are given in Tables 7 and 8 by setting θ = 3, L = 100, and K = 120, where the
risk measure ρ represents VaR, LVaR, and TVaR. ρα(TI∗(X)) denotes the risk under the optimal
reinsurance strategy I∗(x) and given confidence level α.

Example 5. We suppose that X has Burr distribution F(x) = 1−
(

η+x−ρα

η

)1/ρ
with α = 1,

ρ = 3, and η = 40. The optimal reinsurance solutions under risk measures with both types of
constraints are given in Tables 9 and 10 by setting θ = 4, L = 120 and K = 160, where the
risk measure ρ represents VaR, LVaR, and TVaR. ρα(TI∗(X)) denotes the risk under the optimal
reinsurance strategy I∗(x) and given confidence level α.

Table 1. Optimal solutions under different risk measures with the constraint of F1 under the settings
that X ∼ F(x) = 1− e−0.01x, x > 0, θ = 3, and L = 120.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 198.629 (x− 138.629)+ − (x− 230.259)+
LVaR(ω = 0.2) 218.629 (x− 138.629)+ − (x− 230.259)+

0.90 LVaR(ω = 0.5) 245.889 (x− 145.889)+ − (x− 265.889)+
LVaR(ω = 0.8) 264.958 (x− 164.958)+ − (x− 284.958)+
TVaR 275.909 (x− 175.909)+ − (x− 295.909)+

VaR 225.976 (x− 179.573)+ − (x− 299.573)+
LVaR(ω = 0.2) 245.976 (x− 179.573)+ − (x− 299.573)+

0.95 LVaR(ω = 0.5) 275.976 (x− 179.573)+ − (x− 299.573)+
LVaR(ω = 0.8) 303.003 (x− 203.003)+ − (x− 323.003)+
TVaR 317.692 (x− 217.692)+ − (x− 337.692)+

VaR 258.497 (x− 230.656)+ − (x− 350.656)+
LVaR(ω = 0.2) 278.497 (x− 230.656)+ − (x− 350.656)+

0.97 LVaR(ω = 0.5) 308.497 (x− 230.656)+ − (x− 350.656)+
LVaR(ω = 0.8) 338.205 (x− 238.205)+ − (x− 358.205)+
TVaR 355.218 (x− 255.218)+ − (x− 375.218)+

VaR 349.798 (x− 340.517)+ − (x− 460.517)+
LVaR(ω = 0.2) 369.798 (x− 340.517)+ − (x− 460.517)+

0.99 LVaR(ω = 0.5) 399.798 (x− 340.517)+ − (x− 460.517)+
LVaR(ω = 0.8) 429.798 (x− 340.517)+ − (x− 460.517)+
TVaR 449.392 (x− 349.392)+ − (x− 469.392)+

VaR 571.704 (x− 570.776)+ − (x− 690.776)+
LVaR(ω = 0.2) 591.703 (x− 570.776)+ − (x− 690.776)+

0.999 LVaR(ω = 0.5) 621.703 (x− 570.776)+ − (x− 690.776)+
LVaR(ω = 0.8) 651.703 (x− 570.776)+ − (x− 690.776)+
TVaR 671.698 (x− 571.699)+ − (x− 691.699)+

Table 2. Optimal solutions under different risk measures with the constraint of F2 under the settings
that X ∼ F(x) = 1− e−0.01x, x > 0, θ = 3, and K = 160.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 198.629 (x− 138.629)+ − (x− 230.259)+
LVaR(ω = 0.2) 218.629 (x− 138.629)+ − (x− 230.259)+

0.90 LVaR(ω = 0.5) 240.642 (x− 138.629)+ − (x− 390.580)+
LVaR(ω = 0.8) 246.679 (x− 138.629)+ − (x− 390.580)+
TVaR 250.704 (x− 138.629)+ − (x− 390.580)+
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Table 2. Cont.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 218.629 (x− 138.629)+ − (x− 299.573)+
LVaR(ω = 0.2) 238.629 (x− 138.629)+ − (x− r)+ with r ∈ [138.629, 390.580]

0.95 LVaR(ω = 0.5) 250.704 (x− 138.629)+ − (x− 390.580)+
LVaR(ω = 0.8) 262.779 (x− 138.629)+ − (x− 390.580)+
TVaR 270.829 (x− 138.629)+ − (x− 390.580)+

VaR 226.629 (x− 138.629)+ − (x− 350.656)+
LVaR(ω = 0.2) 243.996 (x− 138.629)+ − (x− 390.580)+

0.97 LVaR(ω = 0.5) 264.121 (x− 138.629)+ − (x− 390.580)+
LVaR(ω = 0.8) 284.246 (x− 138.629)+ − (x− 390.580)+
TVaR 297.663 (x− 138.629)+ − (x− 390.580)+

VaR 300.517 (x− r)+ − (x− β(r))+ with r ∈ [42.186, 280.255] and β(r) ∈ [390.580, 460.517]
LVaR(ω = 0.2) 320.517 (x− r)+ − (x− β(r))+ with r ∈ [42.186, 280.255] and β(r) ∈ [390.580, 460.517]

0.99 LVaR(ω = 0.5) 350.517 (x− r)+ − (x− β(r))+ with r ∈ [42.186, 280.255] and β(r) ∈ [390.580, 460.517]
LVaR(ω = 0.8) 380.517 (x− r)+ − (x− β(r))+ with r ∈ [42.186, 280.255] and β(r) ∈ [390.580, 460.517]
TVaR 400.517 (x− r)+ − (x− β(r))+ with r ∈ [42.186, 280.255] and β(r) ∈ [390.580, 460.517]

VaR 530.776 (x− r)+ − (x− β(r))+ with r ∈ [0, 529.162] and β(r) ∈ [390.580, 690.776]
LVaR(ω = 0.2) 550.775 (x− r)+ − (x− β(r))+ with r ∈ [0, 529.162] and β(r) ∈ [390.580, 690.776]

0.999 LVaR(ω = 0.5) 580.775 (x− r)+ − (x− β(r))+ with r ∈ [0, 529.162] and β(r) ∈ [390.580, 690.776]
LVaR(ω = 0.8) 610.775 (x− r)+ − (x− β(r))+ with r ∈ [0, 529.162] and β(r) ∈ [390.580, 690.776]
TVaR 630.774 (x− r)+ − (x− β(r))+ with r ∈ [0, 529.162] and β(r) ∈ [390.580, 690.776]

Table 3. Optimal solutions under different risk measures with the constraint of F1 under the settings
that X ∼ N (40, 100), θ = 4, and L = 100.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 156.309 (x− 124.162)+ − (x− 168.155)+
LVaR(ω = 0.2) 165.778 (x− 124.162)+ − (x− 168.155)+

0.90 LVaR(ω = 0.5) 179.981 (x− 124.162)+ − (x− r)+ with r ∈ [168.155, 224.162]
LVaR(ω = 0.8) 183.531 (x− 130.423)+ − (x− 230.423)+
TVaR 185.618 (x− 133.936)+ − (x− 233.936)+

VaR 169.535 (x− 124.162)+ − (x− 204.485)+
LVaR(ω = 0.2) 177.892 (x− 124.162)+ − (x− 204.485)+

0.95 LVaR(ω = 0.5) 185.618 (x− 133.937)+ − (x− 233.937)+
LVaR(ω = 0.8) 190.944 (x− 142.453)+ − (x− 242.453)+
TVaR 193.931 (x− 146.997)+ − (x− 246.997)+

VaR 174.278 (x− 128.079)+ − (x− 228.079)+
LVaR(ω = 0.2) 182.024 (x− 128.079)+ − (x− 228.079)+

0.97 LVaR(ω = 0.5) 191.469 (x− 143.261)+ − (x− 243.261)+
LVaR(ω = 0.8) 198.218 (x− 153.286)+ − (x− 253.286)+
TVaR 201.874 (x− 158.466)+ − (x− 258.466)+

VaR 192.459 (x− 172.635)+ − (x− 272.635)+
LVaR(ω = 0.2) 199.236 (x− 172.635)+ − (x− 272.635)+

0.99 LVaR(ω = 0.5) 209.402 (x− 172.635)+ − (x− 272.635)+
LVaR(ω = 0.8) 218.730 (x− 180.772)+ − (x− 280.772)+
TVaR 223.571 (x− 186.826)+ − (x− 286.826)+

VaR 252.207 (x− 249.023)+ − (x− 349.023)+
LVaR(ω = 0.2) 257.744 (x− 249.023)+ − (x− 349.023)+

0.999 LVaR(ω = 0.5) 266.050 (x− 249.023)+ − (x− 349.023)+
LVaR(ω = 0.8) 274.356 (x− 249.023)+ − (x− 349.023)+
TVaR 279.786 (x− 251.536)+ − (x− 351.536)+
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Table 4. Optimal solutions under different risk measures with the constraint of F2 under the settings
that X ∼ N(40, 100), θ = 4, and K = 120.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 156.309 (x− 124.162)+ − (x− 168.155)+
LVaR(ω = 0.2) 165.778 (x− 124.162)+ − (x− 168.155)+

0.90 LVaR(ω = 0.5) 179.981 (x− 124.162)+ − (x− r)+ with r ∈ [124.162, 299.231]
LVaR(ω = 0.8) 180.431 (x− 124.162)+ − (x− 299.231)+
TVaR 180.731 (x− 124.162)+ − (x− 299.231)+
VaR 169.535 (x− 124.162)+ − (x− 204.485)+
LVaR(ω = 0.2) 177.892 (x− 124.162)+ − (x− 204.485)+

0.95 LVaR(ω = 0.5) 180.731 (x− 124.162)+ − (x− 299.231)+
LVaR(ω = 0.8) 181.631 (x− 124.162)+ − (x− 299.231)+
TVaR 182.231 (x− 124.162)+ − (x− 299.231)+
VaR 174.172 (x− 124.162)+ − (x− 228.079)+
LVaR(ω = 0.2) 180.231 (x− 124.162)+ − (x− 299.231)+

0.97 LVaR(ω = 0.5) 181.731 (x− 124.162)+ − (x− 299.231)+
LVaR(ω = 0.8) 183.231 (x− 124.162)+ − (x− 299.231)+
TVaR 184.231 (x− 124.162)+ − (x− 299.231)+
VaR 178.287 (x− 124.162)+ − (x− 272.635)+
LVaR(ω = 0.2) 182.231 (x− 124.162)+ − (x− 299.231)+

0.99 LVaR(ω = 0.5) 186.732 (x− 124.162)+ − (x− 299.231)+
LVaR(ω = 0.8) 191.232 (x− 124.162)+ − (x− 299.231)+
TVaR 194.232 (x− 124.162)+ − (x− 299.231)+
VaR 229.023 (x− r)+ − (x− β(r))+ with r ∈ [47.219, 222.453] and β(r) ∈ [299.231, 349.023]
LVaR(ω = 0.2) 234.560 (x− r)+ − (x− β(r))+ with r ∈ [47.219, 222.453] and β(r) ∈ [299.231, 349.023]

0.999 LVaR(ω = 0.5) 242.866 (x− r)+ − (x− β(r))+ with r ∈ [47.219, 222.453] and β(r) ∈ [299.231, 349.023]
LVaR(ω = 0.8) 251.172 (x− r)+ − (x− β(r))+ with r ∈ [47.219, 222.453] and β(r) ∈ [299.231, 349.023]
TVaR 256.709 (x− r)+ − (x− β(r))+ with r ∈ [47.219, 222.453] and β(r) ∈ [299.231, 349.023]

Table 5. Optimal solutions under different risk measures with the constraint of F1 under the settings
that X ∼ F(x) = 1−

( x
120
)−3, θ = 4, and L = 100.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 123.163 (x− 85.197)+ − (x− 138.532)+
LVaR(ω = 0.2) 149.016 (x− 85.197)+ − (x− 138.532)+

0.90 LVaR(ω = 0.5) 187.796 (x− 85.197)+ − (x− r)+ with r ∈ [138.532, 235.197]
LVaR(ω = 0.8) 207.890 (x− 93.182)+ − (x− 243.182)+
TVaR 220.799 (x− 98.571)+ − (x− 248.571)+
VaR 147.079 (x− 85.197)+ − (x− 205.730)+
LVaR(ω = 0.2) 179.652 (x− 85.197)+ − (x− 205.730)+

0.95 LVaR(ω = 0.5) 220.799 (x− 98.571)+ − (x− 248.571)+
LVaR(ω = 0.8) 257.344 (x− 114.895)+ − (x− 264.895)+
TVaR 280.031 (x− 125.783)+ − (x− 275.783)+
VaR 164.667 (x− 116.196)+ − (x− 266.196)+
LVaR(ω = 0.2) 203.286 (x− 116.196)+ − (x− 266.196)+

0.97 LVaR(ω = 0.5) 261.214 (x− 116.196)+ − (x− 266.196)+
LVaR(ω = 0.8) 315.204 (x− 143.696)+ − (x− 293.696)+
TVaR 347.493 (x− 161.109)+ − (x− 311.109)+
VaR 299.146 (x− 286.991)+ − (x− 436.991)+
LVaR(ω = 0.2) 354.845 (x− 286.991)+ − (x− 436.991)+

0.99 LVaR(ω = 0.5) 438.394 (x− 286.991)+ − (x− 436.991)+
LVaR(ω = 0.8) 521.943 (x− 286.991)+ − (x− 436.991)+
TVaR 577.121 (x− 300.555)+ − (x− 450.555)+
VaR 930.918 (x− 930.000)+ − (x− 1080.000)+
LVaR(ω = 0.2) 1050.918 (x− 930.000)+ − (x− 1080.000)+

0.999 LVaR(ω = 0.5) 1230.918 (x− 930.000)+ − (x− 1080.000)+
LVaR(ω = 0.8) 1410.918 (x− 930.000)+ − (x− 1080.000)+
TVaR 1530.917 (x− 930.984)+ − (x− 1080.983)+
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Table 6. Optimal solutions under different risk measures with the constraint of F2 under the settings
that X ∼ F(x) = 1−

( x
120
)−3, θ = 4, and K = 140.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 123.163 (x− 85.197)+ − (x− 138.532)+
LVaR(ω = 0.2) 149.016 (x− 85.197)+ − (x− 138.532)+

0.90 LVaR(ω = 0.5) 187.796 (x− 85.197)+ − (x− r)+ with r ∈ [85.197, 369.788]
LVaR(ω = 0.8) 198.601 (x− 85.197)+ − (x− 369.788)+
TVaR 205.804 (x− 85.197)+ − (x− 369.788)+
VaR 147.079 (x− 85.197)+ − (x− 205.730)+
LVaR(ω = 0.2) 179.652 (x− 85.197)+ − (x− 205.730)+

0.95 LVaR(ω = 0.5) 205.831 (x− 85.197)+ − (x− 369.788)+
LVaR(ω = 0.8) 227.414 (x− 85.197)+ − (x− 369.788)+
TVaR 241.820 (x− 85.197)+ − (x− 369.788)+
VaR 158.831 (x− 85.197)+ − (x− 266.196)+
LVaR(ω = 0.2) 193.798 (x− 85.197)+ − (x− 369.788)+

0.97 LVaR(ω = 0.5) 229.815 (x− 85.197)+ − (x− 369.788)+
LVaR(ω = 0.8) 265.831 (x− 85.197)+ − (x− 369.788)+
TVaR 289.842 (x− 85.197)+ − (x− 369.788)+
VaR 236.991 (x− r)+ − (x− β(r))+ with r ∈ [15.450, 211.637] and β(r) ∈ [369.788, 436.991]
LVaR(ω = 0.2) 292.690 (x− r)+ − (x− β(r))+ with r ∈ [15.450, 211.637] and β(r) ∈ [369.788, 436.991]

0.99 LVaR(ω = 0.5) 376.238 (x− r)+ − (x− β(r))+ with r ∈ [15.450, 211.637] and β(r) ∈ [369.788, 436.991]
LVaR(ω = 0.8) 459.787 (x− r)+ − (x− β(r))+ with r ∈ [15.450, 211.637] and β(r) ∈ [369.788, 436.991]
TVaR 515.486 (x− r)+ − (x− β(r))+ with r ∈ [15.450, 211.637] and β(r) ∈ [369.788, 436.991]

VaR 880.000 (x− r)+ − (x− β(r))+ with r ∈ [0, 878.669] and β(r) ∈ [369.788, 1080]
LVaR(ω = 0.2) 1000.000 (x− r)+ − (x− β(r))+ with r ∈ [0, 878.669] and β(r) ∈ [369.788, 1080]

0.999 LVaR(ω = 0.5) 1180.000 (x− r)+ − (x− β(r))+ with r ∈ [0, 878.669] and β(r) ∈ [369.788, 1080]
LVaR(ω = 0.8) 1360.000 (x− r)+ − (x− β(r))+ with r ∈ [0, 878.669] and β(r) ∈ [369.788, 1080]
TVaR 1480.000 (x− r)+ − (x− β(r))+ with r ∈ [0, 878.669] and β(r) ∈ [369.788, 1080]

Table 7. Optimal solutions under different risk measures with the constraint of F1 under the settings

that X ∼ F(x) = exp
{
−
(

x−5
50

)−3
}

, θ = 3, and L = 100.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 100.108 (x− 80.741)+ − (x− 110.863)+
LVaR(ω = 0.2) 111.032 (x− 80.741)+ − (x− 110.863)+

0.90 LVaR(ω = 0.5) 123.962 (x− 81.409)+ − (x− 181.409)+
LVaR(ω = 0.8) 129.893 (x− 83.432)+ − (x− 183.432)+
TVaR 133.772 (x− 84.797)+ − (x− 184.797)+
VaR 108.290 (x− 80.741)+ − (x− 139.571)+
LVaR(ω = 0.2) 121.955 (x− 80.741)+ − (x− r)+ with r ∈ [139.571, 180.741]

0.95 LVaR(ω = 0.5) 133.772 (x− 84.797)+ − (x− 184.797)+
LVaR(ω = 0.8) 145.064 (x− 88.963)+ − (x− 188.963)+
TVaR 152.311 (x− 91.794)+ − (x− 191.794)+
VaR 112.261 (x− 80.741)+ − (x− 165.102)+
LVaR(ω = 0.2) 127.273 (x− 82.529)+ − (x− 182.529)+

0.97 LVaR(ω = 0.5) 146.287 (x− 89.432)+ − (x− 189.432)+
LVaR(ω = 0.8) 163.912 (x− 96.586)+ − (x− 196.586)+
TVaR 174.945 (x− 101.444)+ − (x− 201.444)+
VaR 146.303 (x− 136.691)+ − (x− 236.691)+
LVaR(ω = 0.2) 169.542 (x− 136.691)+ − (x− 236.691)+

0.99 LVaR(ω = 0.5) 204.401 (x− 136.691)+ − (x− 236.691)+
LVaR(ω = 0.8) 239.259 (x− 136.691)+ − (x− 236.691)+
TVaR 261.556 (x− 148.004)+ − (x− 248.004)+
VaR 405.479 (x− 404.917)+ − (x− 504.917)+
LVaR(ω = 0.2) 455.486 (x− 404.917)+ − (x− 504.917)+

0.999 LVaR(ω = 0.5) 530.496 (x− 404.917)+ − (x− 504.917)+
LVaR(ω = 0.8) 605.506 (x− 404.917)+ − (x− 504.917)+
TVaR 655.511 (x− 405.550)+ − (x− 505.550)+
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Table 8. Optimal solutions under different risk measures with the constraint of F2 under the settings

that X ∼ F(x) = exp
{
−
(

x−5
50

)−3
}

, θ = 3, and K = 120.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 100.108 (x− 80.741)+ − (x− 110.863)+
LVaR(ω = 0.2) 111.032 (x− 80.741)+ − (x− 110.863)+

0.90 LVaR(ω = 0.5) 123.111 (x− 80.741)+ − (x− 237.333)+
LVaR(ω = 0.8) 126.578 (x− 80.741)+ − (x− 237.333)+
TVaR 128.889 (x− 80.741)+ − (x− 237.333)+
VaR 108.290 (x− 80.741)+ − (x− 139.571)+
LVaR(ω = 0.2) 121.955 (x− 80.741)+ − (x− r)+ with r ∈ [80.741, 237.333]

0.95 LVaR(ω = 0.5) 128.889 (x− 80.741)+ − (x− 237.333)+
LVaR(ω = 0.8) 135.822 (x− 80.741)+ − (x− 237.333)+
TVaR 140.444 (x− 80.741)+ − (x− 237.333)+
VaR 112.261 (x− 80.741)+ − (x− 165.102)+
LVaR(ω = 0.2) 125.037 (x− 80.741)+ − (x− 237.333)+

0.97 LVaR(ω = 0.5) 136.593 (x− 80.741)+ − (x− 237.333)+
LVaR(ω = 0.8) 148.148 (x− 80.741)+ − (x− 237.333)+
TVaR 155.852 (x− 80.741)+ − (x− 237.333)+
VaR 117.308 (x− 80.741)+ − (x− 236.691)+
LVaR(ω = 0.2) 140.444 (x− 80.741)+ − (x− 237.333)+

0.99 LVaR(ω = 0.5) 175.111 (x− 80.741)+ − (x− 237.333)+
LVaR(ω = 0.8) 209.778 (x− 80.741)+ − (x− 237.333)+
TVaR 232.889 (x− 80.741)+ − (x− 237.333)+
VaR 384.917 (x− r)+ − (x− β(r))+ with r ∈ [0, 384.179] and β(r) ∈ [237.333, 504.917]
LVaR(ω = 0.2) 434.923 (x− r)+ − (x− β(r))+ with r ∈ [0, 384.179] and β(r) ∈ [237.333, 504.917]

0.999 LVaR(ω = 0.5) 509.933 (x− r)+ − (x− β(r))+ with r ∈ [0, 384.179] and β(r) ∈ [237.333, 504.917]
LVaR(ω = 0.8) 584.943 (x− r)+ − (x− β(r))+ with r ∈ [0, 384.179] and β(r) ∈ [237.333, 504.917]
TVaR 634.950 (x− r)+ − (x− β(r))+ with r ∈ [0, 384.179] and β(r) ∈ [237.333, 504.917]

Table 9. Optimal solutions under different risk measures with the constraint of F1.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 77.587 (x− 63.496)+ − (x− 83.203)+
LVaR(ω = 0.2) 86.448 (x− 63.496)+ − (x− 83.203)+

0.90 LVaR(ω = 0.5) 99.738 (x− 63.496)+ − (x− r)+ with r ∈ [83.203, 183.496]
LVaR(ω = 0.8) 102.565 (x− 64.314)+ − (x− 184.314)+
TVaR 104.436 (x− 64.863)+ − (x− 184.863)+
VaR 85.980 (x− 63.496)+ − (x− 106.736)+
LVaR(ω = 0.2) 96.987 (x− 63.496)+ − (x− 106.736)+

0.95 LVaR(ω = 0.5) 104.436 (x− 64.863)+ − (x− 184.863)+
LVaR(ω = 0.8) 109.982 (x− 66.532)+ − (x− 186.532)+
TVaR 113.624 (x− 67.662)+ − (x− 187.663)+
VaR 90.005 (x− 63.496)+ − (x− 127.432)+
LVaR(ω = 0.2) 101.312 (x− 63.949)+ − (x− 183.949)+

0.97 LVaR(ω = 0.5) 110.592 (x− 66.720)+ − (x− 186.720)+
LVaR(ω = 0.8) 119.598 (x− 69.577)+ − (x− 189.577)+
TVaR 125.452 (x− 71.529)+ − (x− 191.529)+
VaR 95.128 (x− 65.043)+ − (x− 185.043)+
LVaR(ω = 0.2) 113.624 (x− 67.662)+ − (x− 187.662)+

0.99 LVaR(ω = 0.5) 139.572 (x− 76.565)+ − (x− 196.566)+
LVaR(ω = 0.8) 163.204 (x− 86.098)+ − (x− 206.099)+
TVaR 177.766 (x− 92.674)+ − (x− 212.675)+
VaR 280.907 (x− 279.867)+ − (x− 399.867)+
LVaR(ω = 0.2) 320.917 (x− 279.867)+ − (x− 399.867)+

0.999 LVaR(ω = 0.5) 380.933 (x− 279.867)+ − (x− 399.867)+
LVaR(ω = 0.8) 440.949 (x− 279.867)+ − (x− 399.867)+
TVaR 480.954 (x− 281.130)+ − (x− 401.130)+
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Table 10. Optimal solutions under different risk measures with the constraint of F2.

α The Risk Measure ρ ρα(TI∗(X)) I∗(x)

VaR 77.587 (x− 63.496)+ − (x− 83.203)+
LVaR(ω = 0.2) 86.448 (x− 63.496)+ − (x− 83.203)+

0.90 LVaR(ω = 0.5) 99.738 (x− 63.496)+ − (x− r)+ with r ∈ [63.496, 257.326]
LVaR(ω = 0.8) 101.186 (x− 63.496)+ − (x− 257.326)+
TVaR 102.151 (x− 63.496)+ − (x− 257.326)+
VaR 85.980 (x− 63.496)+ − (x− 106.736)+
LVaR(ω = 0.2) 96.987 (x− 63.496)+ − (x− 257.326)+

0.95 LVaR(ω = 0.5) 102.151 (x− 63.496)+ − (x− 257.326)+
LVaR(ω = 0.8) 105.046 (x− 63.496)+ − (x− 257.326)+
TVaR 106.976 (x− 63.496)+ − (x− 257.326)+
VaR 90.005 (x− 63.496)+ − (x− 127.432)+
LVaR(ω = 0.2) 100.543 (x− 63.496)+ − (x− 257.326)+

0.97 LVaR(ω = 0.5) 105.368 (x− 63.496)+ − (x− 257.326)+
LVaR(ω = 0.8) 110.193 (x− 63.496)+ − (x− 257.326)+
TVaR 113.410 (x− 63.496)+ − (x− 257.326)+
VaR 95.084 (x− 63.496)+ − (x− 185.043)+
LVaR(ω = 0.2) 106.976 (x− 63.496)+ − (x− 257.326)+

0.99 LVaR(ω = 0.5) 121.453 (x− 63.496)+ − (x− 257.326)+
LVaR(ω = 0.8) 135.929 (x− 63.496)+ − (x− 257.326)+
TVaR 145.580 (x− 63.496)+ − (x− 257.326)+
VaR 239.867 (x− r)+ − (x− β(r))+ with r ∈ [0.243, 238.049] and β(r) ∈ [257.326, 399.867]
LVaR(ω = 0.2) 279.877 (x− r)+ − (x− β(r))+ with r ∈ [0.243, 238.049] and β(r) ∈ [257.326, 399.867]

0.999 LVaR(ω = 0.5) 339.893 (x− r)+ − (x− β(r))+ with r ∈ [0.243, 238.049] and β(r) ∈ [257.326, 399.867]
LVaR(ω = 0.8) 399.909 (x− r)+ − (x− β(r))+ with r ∈ [0.243, 238.049] and β(r) ∈ [257.326, 399.867]
TVaR 439.920 (x− r)+ − (x− β(r))+ with r ∈ [0.243, 238.049] and β(r) ∈ [257.326, 399.867]

5. Conclusions

It is well known that VaR and TVaR are the most popular risk measures and both of
them have been widely used in the literature (see, e.g., Cai and Tan 2007; Cai et al. 2008;
Lu et al. 2016). However, these two risk measures were generally considered separately. By
noticing that TVaRα ≥ VaRα and the size of capital reserves may be significantly different
based on VaR and TVaR, we have proposed a new family of risk measures named LVaR
which is a linear combination of VaR and TVaR. This new risk measure considers VaR
and TVaR simultaneously and helps us to obtain a risk assessment by LVaR. A major
issue in a reinsurance contract is to guarantee a balance between the ceded risk and the
contract premium. From the perspective of the insurer, the problem is how to choose a
ceded loss function such that the total losses are as small as possible (or the total benefits
are as large as possible). To this end, we have revisited the optimal reinsurance problem by
minimizing the LVaR of the total risk of the insurer when the reinsurer’s risk exposure has
an upper limit.

In this paper, the optimal reinsurance problem has been studied between one insurer
and one reinsurer. However, as introduced by Boonen et al. (2021), the setting with one
insurer and multiple reinsurers may be more realistic in practice. This inspires our future
work to consider the case with multiple reinsurers.

The most important results are presented in Theorems 1 and 2, which provide the
solutions of our optimal reinsurance model. It is shown that the two-layer reinsurance
is always the optimal reinsurance strategy under two types of constraints. Furthermore,
we have found that the minimums of LVaR of an insurer’s total risks are larger than those
of VaR and smaller than those of TVaR. The same holds for deductibles. In numerical
illustrations, we have noted significant differences in the size of capital reserves depending
on adopted weight coefficients, and moreover, higher capital reserves are obtained for
larger weight coefficients.

By introducing the weighted coefficient ω, the new risk measure LVaR may help
financial institutions, such as insurance companies, to quantify risk based on different
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situations since the weight coefficient ω reflects the user’s attitude towards risk. More
precisely, the larger ω means the higher sensitivity to the severity of losses exceeding VaR.
Most importantly, if a insurer intends to transfer some part of risk to one reinsurance, our
work may provide a way to determine the size of the transferred risk.
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Appendix A

Proof of Lemma 2. According to the sign of δ, we consider δ ≥ 0 and δ < 0 in turn.
In the case of δ ≥ 0, for any I(x) ∈ F1, let

g(x; a, b) = (x− eα)+ − (x−VaRα(X))+,

where eα = VaRα(X)− I(VaRα(X)). Obviously, (eα, VaRα(X)) ∈ D1, and hence g(x; a, b) ∈ G1.
Furthermore, we have g(x; eα, VaRα(X)) = 0 ≤ I(x) for 0 ≤ x < eα and g(x; eα, VaRα(X)) =
I(VaRα(X)) ≤ I(x) for x ≥ VaRα(X). For eα ≤ x < VaRα(X), by using the property of Lip-
schitz continuity of I(x), we have g(x; eα, VaRα(X)) = x−VaRα(X) + I(VaRα(X)) ≤ I(x).
Thus, we conclude that g(x; eα, VaRα(X)) ≤ I(x) for x ≥ 0. Noting that
g(VaRα(X); eα, VaRα(X)) = I(VaRα(X)), by (11), we have LVaRα

(
Tg(X)

)
≤ LVaRα(TI(X)).

Hence, the desired result follows for δ ≥ 0.
In the case of δ < 0, for any I(x) ∈ F1, let

g(x; a, b) = (x− eα)+ − (x− (eα + L))+,

where eα is defined as above. We can easily check that VaRα(X) ≤ eα + L and, hence,
g(x; a, b) ∈ G1. We can prove that g(x; eα, eα + L) = 0 ≤ I(x) for 0 ≤ x < eα, and
g(x; eα, eα + L) = L ≥ I(x) for x ≥ eα + L. If eα ≤ x < VaRα(X), we have from Lipschitz
continuity of I(x) that

g(x; eα, eα + L) = x−VaRα(X) + I(VaRα(X)) ≤ I(x).

Similarly, if VaRα(X) ≤ x < eα + L, we have

g(x; eα, eα + L) = x−VaRα(X) + I(VaRα(X)) ≥ I(x).

Hence, by applying (11), we have the desired result for δ < 0. The proof is complete.

Proof of Theorem 1. By Lemma 2, we can solve the optimal problem (14) instead of (4).
Applying the definition of g(x) in (13), we have

g(VaRα(X)) = VaRα(X)− a, (A1)

∫ VaRα(X)

0
g(x)dFX(x) =

∫ VaRα(X)

a
(x− a)dFX(x)

=
∫ VaRα(X)

a
SX(t)dt− (VaRα(X)− a)SX(VaRα(X)), (A2)
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and ∫ ∞

VaRα(X)
g(x)dFX(x) =

∫ b

VaRα(X)
(x− a)dFX(x) +

∫ ∞

b
(b− a)dFX(x)

=
∫ b

VaRα(X)
SX(t)dt + (VaRα(X)− a)SX(VaRα(X)). (A3)

Combining (A1)–(A3) with (11), we obtain

LVaRα

(
Tg(X)

)
= ωΨ(α) + VaRα(X)− (1−ω)(VaRα(X)− a) + (1 + θ)

∫ VaRα(X)

a
SX(t)dt

−(1 + θ)(VaRα(X)− a)SX(VaRα(X)) + δ
∫ b

VaRα(X)
SX(t)dt

+δ(VaRα(X)− a)SX(VaRα(X))

= ωΨ(α) + VaRα(X)− (1−ω)(VaRα(X)− a) + (1 + θ)
∫ VaRα(X)

a
SX(t)dt

+δ
∫ b

VaRα(X)
SX(t)dt−ω(VaRα(X)− a)

= ωΨ(α) + a + (1 + θ)
∫ VaRα(X)

a
SX(t)dt + δ

∫ b

VaRα(X)
SX(t)dt

∆
= φ(a, b). (A4)

The rest of the work is to minimize (A4) according the sign of δ.

(i) If δ < 0 (which implies α > θ∗), taking the partial derivative with respect to b on
φ(a, b) yields

∂φ(a, b)
∂b

= δSX(b) < 0. (A5)

From (A5) and (12), for any α ∈ (p0, 1) and (a, b) ∈ D1, we always have φ(a, b) ≥
φ(a, a + L). Note that (a, b) ∈ D1 implies (a, a + L) ∈ D1, so that the minimum of
LVaRα

(
Tg(X)

)
must be attained at (a, b) with b = a + L. As a result, it suffices to solve

the following optimal problem

min
a∈[max{0,VaRα(X)−L},VaRα(X)]

ϕ(a), (A6)

where

ϕ(a) = φ(a, a + L) = ωΨ(α) + a + (1 + θ)
∫ VaRα(X)

a
SX(t)dt + δ

∫ a+L

VaRα(X)
SX(t)dt.

By taking the first two derivatives of ϕ(a), we have

ϕ′(a) = 1− (1 + θ)SX(a) + δSX(a + L)

and

ϕ′′(a) = (1 + θ) fX(a)− δSX(a + L) > 0,

which implies that ϕ(a) is convex. In addition, we can obtain

ϕ′(VaRθ∗(X)) = 1− (1 + θ)(1− θ∗) + δSX(VaRθ∗(X) + L)
= δSX(VaRθ∗(X) + L) < 0, (A7)
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and

ϕ′(VaRα(X)) = 1− (1 + θ)(1− α) + δSX(VaRα(X) + L)
≥ 1− (1 + θ)(1− α) + δSX(VaRα(X))

= 1−ω ≥ 0. (A8)

Let a0 be the solution to ϕ′(a) = 0. We consider the following two cases.

(a) If VaRα(X)− L ≤ a0, we have ϕ′(VaRα(X)− L) ≤ 0. Combining with (A7) and
(A8), we conclude that the minimum of ϕ(a) must be attained at a0 with
a0 ∈ (max{VaRθ∗(X), VaRα(X)− L}, VaRα(X)).

(b) If VaRα(X)− L > a0, we obtain ϕ′(VaRα(X)− L) > 0. Then by the monotonicity
of ϕ(a) in [VaRα(X)− L, VaRα(X)], we find that ϕ(a) attains its minimum at
VaRα(X)− L.

Hence, the proof of (i) is complete.
(ii) If δ = 0 (which implies α ≥ θ∗), we have

LVaRα

(
Tg(X)

)
= ωΨ(α) + a + (1 + θ)

∫ VaRα(X)

a
SX(t)dt ∆

= η(a)

with a ∈ [max{0, VaRα(X)− L}, VaRα(X)]. Taking the first derivatives of η(a),
we obtain

η′(a) = 1− (1 + θ)SX(a).

From the monotonicity of η(a), we find that the minimum of η(a) is attained at
VaRθ∗(X) for VaRα(X)− L ≤ VaRθ∗(X), as well as at VaRα(X)− L for VaRα(X)− L >
VaRθ∗(X). Equivalently, if VaRα(X) − L ≤ VaRθ∗(X), then LVaRα(TI(X)) attains
its minimum at I∗(x) = (x−VaRθ∗(X))+ − (x − r)+, where r is any real number
in [VaRα(X), VaRθ∗(X) + L]. If VaRα(X) − L > VaRθ∗(X), LVaRα(TI(X)) attains its
minimum at I∗(x) = (x− (VaRα(X)− L))+ − (x−VaRα(X))+.

(iii) If δ > 0, taking the partial derivative of φ(a, b) with respect to b yields

∂φ(a, b)
∂b

= δSX(b) > 0. (A9)

From (A9) and the properties of D1, for any α ∈ (p0, 1) and (a, b) ∈ D1, we have
φ(a, b) ≥ φ(a, VaRα(X)). Thus, the minimum of LVaRα(TI(X)) must be attained at
(a, VaRα(X)) ∈ D1. Consequently, it suffices to solve the following optimal problem

min
a∈[max{0,VaRα(X)−L},VaRα(X)]

γ(a),

where

γ(a) = ωΨ(α) + a + (1 + θ)
∫ VaRα(X)

a
SX(t)dt.

Taking the first derivatives of γ(a) yields

γ′(a) = 1− (1 + θ)SX(a). (A10)

We consider the following cases.

(a) If α ≤ θ∗, then from (A10), the minimum of LVaRα(TI(X)) is attained at I∗(x) = 0.
(b) If α > θ∗ and VaRα(X)− L ≤ VaRθ∗(X), from (A10), LVaRα(TI(X)) attains its

minimum at I∗(x) = (x−VaRθ∗(X))+ − (x−VaRα(X))+.
(c) If α > θ∗ and VaRα(X)− L > VaRθ∗(X), then the minimum of LVaRα(TI(X)) is

attained at I∗(x) = (x− (VaRα(X)− L))+ − (x−VaRα(X))+.
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The proof is complete.

Proof of Lemma 3. For any I(x) ∈ F2, let g1(x) = (x− eα)+ − (x−VaRα(X))+ with
eα = VaRα(X)− I(VaRα(X)), and g2(x) = (x− eα)+ − (x− eα −M)+ and g3(x) = x −
(x−M)+ with M = K + (1 + θ)E[I(X)]. By similar arguments to Lemma 2, we can show
that g1(x) ≤ I(x) ≤ g3(x) and E[g1(X)] ≤ E[I(X)] ≤ E[g3(X)].

We consider the following two cases, E[g2(X)] ≤ E[I(X)] and E[g2(X)] > E[I(X)].
In the case of E[g2(X)] ≤ E[I(X)], for any function g4(x; a) = (x− a)+ − (x− a−M)+,
we have

E[g4(X; a)] =
∫ a+M

a
SX(x)dx.

Thus,

∂E[g4(X; a)]
∂a

= SX(a + M)− SX(a) < 0,

which indicates that E[g4(X; a)] is decreasing with respect to a. From the continuity of
E[g4(X; a)] with respect to a, there must exist g(x; c) = (x − c)+ − (x− c−M)+ with
0 ≤ c ≤ eα, such that E[g(X)] = E[I(X)] and g2(x) ≤ g(x) ≤ g3(x). We can easily verify
that g(x) ∈ G2 for 0 ≤ c ≤ eα and g(x) ≥ g2(x) ≥ I(x) for x ≥ VaRα(X). Then, by (10),
g(x) is the desired function, that is, LVaRα

(
Tg(X)

)
≤ LVaRα(TI(X)).

Similarly, in the case of E[g2(X)] > E[I(X)], for any function g5(x; b) = (x− eα)+ −
(x− b)+, we obtain that

E[g5(X; a)] =
∫ b

eα

SX(x)dx

and

∂E[g5(X; a)]
∂b

= SX(b) > 0,

so that E[g5(X; a)] is increasing with respect to b. Because E[g5(X; a)] is continuous with
respect to a, there must exist g(x; k) = (x− eα)+ − (x− k)+ with k ∈ [VaRα(X), eα + M),
such thatE[g(X)] = E[I(X)] and g1(x) ≤ g(x) < g2(x). As a result, we have g(VaRα(X)) ≥
g1(VaRα(X)) = I(VaRα(X)). If x ∈ [0, VaRα(X)], we can easily check that g(x) ≤
I(x), and combining this with E[g(X)] = E[I(X)], we obtain

∫ ∞
VaRα(X) g(x)dFX(x) ≥∫ ∞

VaRα(X) I(x)dFX(x). Furthermore, for k ∈ [VaRα(X), eα + M), we can find that k− eα <

M = K + (1 + θ)E[I(X)] = K + (1 + θ)E[g(X)], which implies that g(x) ∈ G2. Hence, by
(10), we have LVaRα

(
Tg(X)

)
≤ LVaRα(TI(X)) and the proof is complete.

Proof of Theorem 2. For any g(x; a, b) ∈ G2, if b ≤ VaRα(X), we have g(VaRα(X)) = b− a
and ∫ ∞

VaRα(X)
g(x)dFX(x) =

∫ ∞

VaRα(X)
(b− a)dFX(x) = (b− a)(1− α).

Then, applying (10), we obtain that

LVaRα

(
Tg(X)

)
= ωΨ(α) + VaRα(X)− (1−ω)(b− a) + (1 + θ)E[g(X)]−ω(b− a)

= ωΨ(α) + VaRα(X)− [b− a− (1 + θ)E[g(X)]]

= ωΨ(α) + VaRα(X)− ψ(a, b)
∆
= η1(a, b) (A11)

for b ≤ VaRα(X), where ψ(a, b) = b− a− (1 + θ)E[g(X)]. If b > VaRα(X), we have that
g(VaRα(X)) = VaRα(X)− a and
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∫ ∞

VaRα(X)
g(x)dFX(x) =

∫ b

VaRα(X)
(x− a)dFX(x) +

∫ ∞

b
(b− a)dFX(x)

=
∫ b

VaRα(X)

∫ x

a
dtdFX(x) + (b− a)SX(x)

=
∫ VaRα(X)

a

∫ b

VaRα(X)
dFX(x)dt +

∫ b

VaRα(X)

∫ b

t
dFX(x)d + (b− a)SX(x)

=
∫ VaRα(X)

a
SX(VaRα(X))− SX(b)dt +

∫ b

VaRα(X)
SX(t)− SX(b)dt + (b− a)SX(x)

=
∫ b

VaRα(X)
SX(t)dt + (VaRα(X)− a)(1− α).

Let h(b) ∆
= b− ω

1−α

∫ b
VaRα(X) SX(t)dt. By (10), we obtain that

LVaRα

(
Tg(X)

)
= ωΨ(α) + VaRα(X)− (1−ω)(VaRα(X)− a) + (1 + θ)E[g(X)]

− ω

1− α

∫ b

VaRα(X)
SX(t)dt−ω(VaRα(X)− a)

= ωΨ(α) + a + (1 + θ)E[g(X)]− ω

1− α

∫ b

VaRα(X)
SX(t)dt

= ωΨ(α)− [b− a− (1 + θ)E[g(X)]] + b− ω

1− α

∫ b

VaRα(X)
SX(t)dt

= ωΨ(α)− ψ(a, b) + h(b)
∆
= η2(a, b). (A12)

Thus,

LVaRα

(
Tg(X)

)
=

{
η1(a, b), b ≤ VaRα(X),
η2(a, b), b > VaRα(X).

(A13)

From (A11) and (A12), we have

∂η1(a, b)
∂a

=
∂η2(a, b)

∂a
= 1− (1 + θ)SX(a), (A14)

∂η1(a, b)
∂b

= −1 + (1 + θ)SX(b), (A15)

∂η2(a, b)
∂b

= δSX(b) (A16)

and

h′(b) = 1− ω

1− α
SX(b). (A17)

For convenience, define

D3
∆
= {(a, b) | (a, b) ∈ D0, b ≤ VaRθ∗(X)},

D4
∆
= {(a, b) | (a, b) ∈ D0, b ≤ VaRα(X)}.

The rest is to show the results, in turn, according to δ < 0, δ = 0 and δ > 0. First, we
consider the case of δ < 0. If b∗0 ≥ VaRθ∗(X), note that δ < 0 implies α > θ∗. We have from
(A14)–(A17) that for any (a, b) ∈ D3,

η1(a, b) ≥ η1(a, a) = η1(VaRθ∗(X), VaRθ∗(X))
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> η1(VaRθ∗(X), VaRα(X)) = η2(VaRθ∗(X), VaRα(X))

≥ η2(VaRθ∗(X), b∗0) = ωΨ(α)− K + h(β(b∗0)).

For any (a, b) ∈ D4\D3, we have

η1(a, b) ≥ η1(a, VaRα(X)) = η2(a, VaRα(X))

≥ η2(VaRθ∗(X), VaRα(X))

≥ η2(VaRθ∗(X), b∗0) = ωΨ(α)− K + h(β(b∗0)).

For any (a, b) ∈ D0\D4, we obtain

η2(a, b) ≥ η2(a, β(a)) = ωΨ(α)− K + h(β(a))
≥ ωΨ(α)− K + h(β(b∗0)).

Then, the minimum of LVaRα(TI(X)) is ωΨ(α) − K + h(β(b∗0)) which is attained at
I∗(x) = (x−VaRθ∗(X))+ − (x− b∗0)+.

Similarly, if b∗0 < VaRθ∗(X), for any (a, b) ∈ D3,

η1(a, b) ≥ η1(a, a) = η1(VaRθ∗(X), VaRθ∗(X))

≥ η1(VaRθ∗(X), b∗0) = ωΨ(α) + VaRα(X)− K.

For any (a, b) ∈ D4\D3, we obtain

η1(a, b) ≥ η1(a, min{β(a), VaRα(X)})
≥ η1(r, β(r)) = ωΨ(α) + VaRα(X)− K,

where r is any real number in
[
max

{
0, a∗0

}
, a∗1
]
. For any (a, b) ∈ D0\D4, we have

η2(a, b) ≥ η2(a, β(a)) = ωΨ(α)− K + h(β(a))
> ωΨ(α)− K + h(VaRα(X)) = ωΨ(α) + VaRα(X)− K.

Hence, the minimum of LVaRα(TI(X)) is attained at I∗(x) = (x− r)+ − (x− β(r))+ with
r ∈

[
max

{
0, a∗0

}
, a∗1
]

as b∗0 < VaRα(X). The proof for the case of δ < 0 is complete.
For the case of δ = 0, note that δ = 0 implies α ≥ θ∗. If α = θ∗, we have

b∗0 ≥ VaRθ∗(X) = VaRα(X), then for any (a, b) ∈ D4,

η1(a, b) ≥ η1(a, a)

= η1(VaRα(X), VaRα(X))

= η2(VaRα(X), VaRα(X))

= ωΨ(α) + VaRα(X).

For (a, b) ∈ D0\D4,

η2(a, b) ≥ η2(VaRθ∗(X), b)
= η2(VaRα, b)
= ωΨ(α) + VaRα(X).

Hence, the minimum of LVaRα(TI(X)) is ωΨ(α) + VaRα(X) which is attained at
I∗(x) = (x−VaRα(X))+ − (x− r)+ with r ∈ [VaRα(X), β(VaRα(X))].

If α > θ∗ and b∗0 ≥ VaRα(X), for any (a, b) ∈ D3,

η1(a, b) ≥ η1(a, a) = η1(VaRθ∗(X), VaRθ∗(X))

> η1(VaRθ∗(X), VaRα(X))

= η2(VaRθ∗(X), VaRα(X))



Risks 2023, 11, 125 23 of 26

= ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx.

For any (a, b) ∈ D4\D3,

η1(a, b) ≥ η1(a, VaRα(X)) = η2(a, VaRα(X))

≥ η2(VaRθ∗(X), VaRα(X))

= η2(VaRθ∗(X), r)

= ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx,

where r is any real number in [VaRθ∗(X), VaRα(X)]. For any (a, b) ∈ D0\D4,

η2(a, b) ≥ η2(VaRθ∗(X), b)
= η2(VaRθ∗(X), r)

= ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx,

where r is any real number in [VaRα(X), b∗0 ]. Hence, the minimum of LVaRα(TI(X)) is

ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx

and is attained at I∗(x) = (x−VaRθ∗(X))+ − (x − r)+, where r is any real number in
(VaRθ∗(X), b∗0 ].

If α > θ∗ and b∗0 < VaRα(X), for any (a, b) ∈ D3,

η1(a, b) ≥ η1(a, a) = η1(VaRθ∗(X), VaRθ∗(X))

> η1(VaRθ∗(X), b∗0)
= ωΨ(α) + VaRα(X)− K.

For any (a, b) ∈ D4\D3,

η1(a, b) ≥ η1(a, min{β(a), VaRα(X)})
≥ η1(r, β(r))
= ωΨ(α) + VaRα(X)− K,

where r is any real number in
[
max

{
0, a∗0

}
, a∗1
]
. For any (a, b) ∈ D0\D4,

η2(a, b) = η2(a, β(a))
= ωΨ(α)− K + h(β(a))
> ωΨ(α)− K + h(β(VaRα(X)))

= ωΨ(α) + VaRα(X)− K.

Hence, the minimum of LVaRα(TI(X)) is ωΨ(α) + VaRα(X) − K which is attained at
I∗(x) = (x− r)+ − (x− β(r))+, where r is any real number in

[
max

{
0, a∗0

}
, a∗1
]
.

For the case of δ > 0, if α ≤ θ∗, for any (a, b) ∈ D4,

η1(a, b) ≥ η1(a, a) = ωΨ(α) + VaRα(X).

For any (a, b) ∈ D0\D4,

η2(a, b) ≥ η2(a, VaRα(X)) ≥ η2(VaRα(X), VaRα(X)) = ωΨ(α) + VaRα(X).
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Hence, the minimum of LVaRα(TI(X)) is ωΨ(α) + VaRα(X) as α ≤ θ∗ and is attained at
I∗(x) = 0.

If α > θ∗ and b∗0 ≥ VaRα(X), for any (a, b) ∈ D3,

η1(a, b) ≥ η1(a, a) = η1(VaRθ∗(X), VaRθ∗(X))

> η1(VaRθ∗(X), VaRα(X))

= ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx.

For any (a, b) ∈ D4\D3,

η1(a, b) ≥ η1(a, VaRα(X))

≥ η1(VaRθ∗(X), VaRα(X))

= ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx.

For any (a, b) ∈ D0\D4,

η2(a, b) ≥ η2(VaRθ∗(X), b)
η2(VaRθ∗(X), VaRα(X))

= η1(VaRθ∗(X), VaRα(X))

= ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx.

Hence, the minimum of LVaRα(TI(X)) is

ωΨ(α) + VaRθ∗(X) + (1 + θ)
∫ VaRα(X)

VaRθ∗ (X)
SX(x)dx

and is attained at I∗(x) = (x−VaRθ∗(X))+ − (x−VaRα(X))+.
Finally, if α > θ∗ and b∗0 > VaRα(X), for any (a, b) ∈ D3,

η1(a, b) ≥ η1(a, a) = η1(VaRθ∗(X), VaRθ∗(X))

> η1(VaRθ∗(X), b∗0)
= ωΨ(α) + VaRα(X)− K.

For any (a, b) ∈ D4\D3,

η1(a, b) ≥ η1(a, min{β(a), VaRα(X)})
≥ η1(r, β(r))
= ωΨ(α) + VaRα(X)− K,

where r is any real number in
[
max

{
0, a∗0

}
, a∗1
]
.

For any (a, b) ∈ D0\D4,

η2(a, b) > η2(a, VaRα(X)) = η1(a, VaRα(X))

≥ η1(VaRθ∗(X), VaRα(X))

= ωΨ(α) + VaRα(X)− ψ(VaRθ∗(X), VaRα(X))

> ωΨ(α) + VaRα(X)− K.

Hence, the minimum of LVaRα(TI(X)) is ωΨ(α) + VaRα(X) − K and is attained at
I∗(x) = (x− r)+ − (x− β(r))+, where r is any real number in

[
max

{
0, a∗0

}
, a∗1
]
.

Therefore, by combining the above analyses, we complete the proof of Theorem 2.
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