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Abstract: Estimation of the value-at-risk (VaR) of a large portfolio of assets is an important task for
financial institutions. As the joint log-returns of asset prices can often be projected to a latent space
of a much smaller dimension, the use of a variational autoencoder (VAE) for estimating the VaR is
a natural suggestion. To ensure the bottleneck structure of autoencoders when learning sequential
data, we use a temporal VAE (TempVAE) that avoids the use of an autoregressive structure for
the observation variables. However, the low signal-to-noise ratio of financial data in combination
with the auto-pruning property of a VAE typically makes use of a VAE prone to posterior collapse.
Therefore, we use annealing of the regularization to mitigate this effect. As a result, the auto-pruning
of the TempVAE works properly, which also leads to excellent estimation results for the VaR that beat
classical GARCH-type, multivariate versions of GARCH and historical simulation approaches when
applied to real data.

Keywords: value-at-risk estimation; variational autoencoders; recurrent neural networks; risk-
management; auto-pruning; posterior collapse

1. Introduction

The value-at-risk (VaR) is the most prominent risk measure in finance. Being defined
as a typically high quantile (the 95% or the 99% level are often used) of the loss function of
a portfolio of assets over a fixed time horizon, it is notoriously hard to estimate. Methods
to determine it range from simple historical simulation to parametric approximation.
This in particular includes variants of GARCH models combined with conditional normal
distribution assumptions (see e.g., Engle 2012) and first applications of neural networks
(see e.g., Chen et al. 2009).

In this work, we propose the temporal variational autoencoder (TempVAE), a varia-
tional recurrent neural network (VRNN) designed to handle the low signal-to-noise ratio
in financial time series1, and apply it to VaR estimation. By not assuming an autoregressive
structure for the observation variables, we explicitly force the model to use the bottleneck
structure from autoencoders.

The key concept behind the TempVAE is the variational autoencoder (VAE; see
Kingma et al. 2014; Rezende et al. 2014). As a variational distribution is used to approx-
imate an otherwise usually intractable posterior, VAE can be interpreted as a stochastic
version of standard autoencoders (AE). The use of a prior distribution results in a more
meaningful latent space fragmentation and an increase in robustness against common
training pitfalls such as over-fitting or model misspecification (see Sicks et al. 2021).

With the introduction of VRNNs, Chung et al. (2015) show promising results to model
complex data sequences, such as speech data, as compared to standard RNN models.
Based on this work, Luo et al. (2018) propose a neural stochastic volatility model (NSVM)
and show that, using VRNN, it is possible to adequately model the volatility of financial
data. However, the low signal-to-noise ratio makes variational models prone to posterior
collapse, i.e., the training results in the encoder become independent of the input.
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The reason for the posterior collapse is the auto-pruning. During training, the net sets
nodes of the latent space as inactive, which can be troublesome. On one hand, the model
focuses on useful representations by pruning away not needed nodes. On the other
hand, it is a problem when too many nodes become inactive before learning a useful
representation. This property of variational models has been analyzed by various authors
(see, e.g., Burda et al. 2016; Sicks et al. 2021) who demonstrate that VAE are capable of
identifying the correct data-generating model.

As we show here, the TempVAE is also prone to posterior collapse. We use annealing
(see also Bowman et al. 2015) of the regularization to mitigate this effect. As we weaken the
effect of the auto-pruning only at the initial steps of the training, we are able to find useful
representations of sequence data.

In total, we are using an existing method/model which has been introduced
in (Chung et al. 2015) and further developed in (Luo et al. 2018). However, as an innova-
tive ingredient, we restrict the generative part of the model to solemnly rely on the latent
variables. Therefore, in contrast to the models of the two aforementioned references,
our model can only pass information through the bottleneck structure of the VAE. As a
result, the signal identification via the bottleneck activities (see Equation (21)) becomes
feasible, whereas for the other models, it is not clear which source influences the out-
come. We have added the use of beta-annealing (as introduced in (Bowman et al. 2015))
to this setting to arrive at our TempVAE framework. Our further main innovations and
contributions are

1. The signal identification analysis of the model applied to financial time series where
we in particular show that the TempVAE possesses the auto-pruning property;

2. A test procedure to demonstrate that the TempVAE identifies the correct number of
latent factors to adequately model the data;

3. The demonstration that our newly developed TempVAE approach for the VaR estima-
tion performs excellently and beats the benchmark models; and

4. The detailed documentation of the hyperparameter choice in the appendix (the abla-
tion study).

The remaining parts of our contribution are structured as follows. In Section 2,
we present related work and compare it to our research. The definition of the Temp-
VAE can be found in Section 3. In Section 4, we explain the data and provide our results
for the VaR estimation with the TempVAE. We state our conclusions in Section 5. The ap-
pendix contains a detailed description of various analyses that lead to the actual form of
the TempVAE that we have suggested.

2. Comparison to Related Work

VAEs are popular generative probabilistic models that allow us to model complex
distributions. The models approximate a usually untractable posterior distibution by
one that is easier to handle. Girin et al. (2020) provide an overview on VAEs and focus
especially on dynamic VAEs. Stochastic units in RNNs, such as in dynamic VAEs, have
been considered by various authors. Bayer and Osendorfer (2014), Chung et al. (2015)
and Fraccaro et al. (2016) propose stochastic RNN with autoregressive structures for
the observations, while Goyal et al. (2017) and Luo et al. (2018) extend the approach
of (Chung et al. 2015) via auxiliary cost terms in the objective or to bidirectional RNNs,
respectively. Moreover, Xu and Chen (2021) propose a similar model to (Luo et al. 2018)
and apply it to financial return data.

Krishnan et al. (2017) consider a Gaussian state space model by assuming the Markov
property for the latent variables and excluding autoregressive structures. Given their as-
sumptions, they show that the true posterior for the latent variables given the observations
only depends on future observations. Additionally, Fraccaro et al. (2017) consider a combi-
nation of VAE with a state space model. In particular, they assume that the observations
of the state space model make up the bottleneck of the VAE. This way, they achieve a
disentanglement of the latent representation and the dynamics.
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Finally, Bowman et al. (2015) consider the encoding and decoding of single-layer RNN
sequences via VAEs to model speech data. They argue that annealing of the regularization
term is needed for learning meaningful information passing through the bottleneck.

Alternatively to the models by (Chung et al. 2015) and (Luo et al. 2018), we model a
temporal dependency only in the prior distribution. Therefore, our model is similar to the
deep Markov model by (Krishnan et al. 2017), but we do not use the Markov assumption.

By excluding the dependency from past realizations (the autoregressive part) for the
observable returns R, the return distribution is independent from past returns but not from
the past latent variables Z. Therefore, we force the encoder of the implemented model
to encode as much information as possible in the latent variables Z. As a consequence,
properties of conventional VAE such as the auto-pruning can be observed properly. This
is not necessarily the case if we model the decoder distribution to be autoregressive on
the returns R2, as assumed by (Luo et al. 2018) and (Chung et al. 2015). In this case,
a substantial part of the information that can be used by the decoder would not have to
pass the bottleneck. Even if the posterior q(Z|R) collapses and becomes independent of the
input, the decoder would be able to use past observed R to achieve a good fit.

Various authors have proposed to estimate the VaR of a portfolio with artificial neu-
ral networks (ANN). Liu (2005) uses the estimates of historical simulation and GARCH
as input for ANNs. Therefore, his model can be interpreted as an ensemble model.
Chen et al. (2009) and Arimond et al. (2020) estimate the VaR by modeling parameters
of their respective distribution assumption. Chen et al. (2009) use a standard ANN
whereas Arimond et al. (2020) compare ANNs with temporal convolutional neural nets and
RNNs. Arian et al. (2020) use standard VAE for the task of estimating the VaR. To account
for the time dependency in the data, they preprocess the data with rolling window statistics.
Fatouros et al. (2022) estimate the VaR of the underlying univariate time series composing
the portfolio via a recurrent neural net. They combine the univariate VaR estimates via an
estimate of the covariance matrix of the log-returns of the elements of the portfolio.

In contrast to this, in our work, we model the data not univariately but in a multivariate
way. In particular, we do not have to rely on a conventionally estimated covariance matrix
or on a parameterized model for the log-returns. Our approach is based on the observation
that the joint log-returns of asset prices can often be projected to a lower dimensional
space. By using the TempVAE for modeling the portfolio return, we can generate many
realizations of the actual return (we use 1000 realizations) and then use the resulting
empirical quantile of the loss function for the estimation of the VaR. Thus, the TempVAE
yieds a time-dependent and, due to the auto-pruning property, parsimonious model for the
data sequences.

3. The Temporal Variational Autoencoder

We use the TempVAE to learn the multivariate distribution of asset returns. Therefore,
we assume that the return series R = R1:T is generated via latent variables Z = Z1:T , where
T ∈ N and T > 1. The distributions of the variables Zt are estimated via approximate
inference, and we expect these to hold information such as the current market environment,
peer group behavior or interactions. Without further assumptions, the identification of
the underlying information within the variables is usually infeasible. For example a mere
rotation results in a model with the same expressiveness. Nonetheless, as we will see,
the auto-pruning forces the TempVAE to model the data by only active dimensions of the
latent space.

Given the two discrete-time stochastic processes R and Z, we assume an autoregressive
time dependency on the latent variables given by

Zt|Z1:t−1 ∼ N (µz(Z1:t−1), Σz(Z1:t−1)), (1)

Rt|Z1:t ∼ N (µr(Z1:t), Σr(Z1:t)). (2)
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Here, µz, µr, Σz and Σr are functions mapping to Rκ , Rd, Rκ×κ and Rd×d, respectively.
The variables R1, . . . , RT are assumed to be i.i.d. Given this dependency structure, the joint
distribution can be factorized as

pθ(Z) =
T

∏
t=1

pθ(Zt|Z1:t−1), (3)

pθ(R|Z) =
T

∏
t=1

pθ(Rt|Z1:t). (4)

To account for the dependency of the past sequences, we use RNN layers. Furthermore,
we use Multi-Layer Perceptrons (MLPs) to map from the output of the RNNs to the
parameter space of the distributions. In total, we use the model architecture given by

{µz
t , Σz

t } = MLPz
G(h

z
t ), (5)

hz
t = RNNz

G
(
hz

t−1, Zt−1
)
, (6)

Zt ∼ N (µz
t , Σz

t ), (7)

{µr
t , Σr

t} = MLPr
G(h

r
t), (8)

hr
t = RNNr

G
(
hr

t−1, Zt
)
, (9)

Rt ∼ N (µr
t , Σr

t), (10)

which is also depicted in Figure 1. Here, Equations (5), (6), (8) and (9) mean that the
parameters on their left sides are the output of the neural networks on the right ones. These
parameters then characterize the normal distributions in relations (7) and (10). hz

t and hr
t

are defined as the hidden states of the RNNs, propagating past information through later
time points. The initial states are set to zero. Combining the hidden states of the model is
possible and yields a more general model formulation. However, during our experiments,
it turned out to be favorable to use not trainable priors (see Appendix B.2). In order to
achieve this, we separate the hidden states as shown in Figure 1.

Zt

hr
t

Rt

Zt+1

hr
t+1

Rt+1

Zt−1

hr
t−1

Rt−1

hz
t hz

t+1hz
t−1

Figure 1. The dependency structure of the generative model. Realizations of Z influence the realiza-
tions of R as well as all future realizations of R and Z. The Gaussian distribution parameters from
the MLP as well as the sampling are represented by the dashed lines. Furthermore, information of
former time points is propagated through the RNN hidden states hr

· and hz
· .
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We approximate the intractable pθ(Z|R) by the inference distribution qφ(Z|R). Similar
to (Krishnan et al. 2017), one can show that Zt ⊥⊥ R1:t−1|Z1:t−1. Therefore, we can factorize
the distribution such that the variable Zt depends on the (future) observations Rt:T :

pθ(Z|R) =
T

∏
t=1

pθ(Zt|Z1:t−1, Rt:T). (11)

Krishnan et al. (2017) argue that q should be factorized the same way. As q is only an
approximation to p, we also considered providing the full sequence R1:T instead of Rt:T
which yields a better performance (see Appendix B.7). We therefore factorize q as

qφ(Z|R) =
T

∏
t=1

qφ(Zt|Z1:t−1, R1:T) (12)

and assume qφ(Zt|Z1:t−1, R1:T) ∼ N
(

µ̂z(Z1:t−1, R1:T), Σ̂
z
(Z1:t−1, R1:T)

)
. µ̂z and Σ̂

z are

functions mapping to Rκ and Rκ×κ , respectively. To use the full sequence of returns R1:T ,
we implement the inference distribution via a bidirectional RNN as follows{

µ̂z
t , Σ̂

z
t

}
= MLPz

I

(
ĥz

t

)
(13)

ĥz
t = RNNz

I

(
ĥz

t−1, Zt−1,
[

ĥ→t , ĥ←t
])

(14)

ĥ→t = RNNz
I

(
ĥ→t−1, Rt−1

)
(15)

ĥ←t = RNNz
I

(
ĥ←t+1, Rt+1

)
(16)

Zt ∼ N
(

µ̂z
t , Σ̂

z
t

)
. (17)

As we have a distribution assumption with an intractable p(Z|X), we train the model using
the evidence lower bound (ELBO; see (Bishop 2006) Section 9.4 for a formal derivation)
given as

L(θ, φ) = Eqφ(Z|R)[log pθ(R|Z)] +Eqφ(Z|R)

[
log
(

pθ(Z)
qφ(Z|R)

)]
(18)

= Eqφ(Z|R)[log pθ(R|Z)]− DKL
(
qφ(Z|R)||pθ(Z)

)
. (19)

The components are given by Equations (3), (4) and (12). As we have log pθ(R) ≥ L(θ, φ),
maximization of the ELBO most likely leads to an increase in the likelihood of our distribu-
tion model. In a similar way to (Krishnan et al. 2017), we can rewrite the ELBO as

L(θ, φ) = Eqφ(Z|R)[log pθ(R|Z)]−
T

∑
t=1

Eqφ(Z1:t−1|R)
[

DKL
(
qφ(Zt|Z1:t−1, R)

∥∥ pθ(Zt|Z1:t−1)
)]

. (20)

Since we assume a Gaussian distribution for q and p, we can analytically calculate the
Kullback–Leibler divergence (KL-Divergence) inside the expectation in (20).

The Auto-Pruning Property of VAEs and the Posterior Collapse

The auto-pruning property of VAE originates from the KL-Divergence and has been
analyzed by various authors (see Burda et al. 2016; Sicks et al. 2021). When nodes in the
bottleneck are “pruned away”, it means that these nodes are not used in the neural net
and therefore also not for the reconstruction. The auto-pruning capabilities of VAE are
desirable, as the model focuses on useful latent representations. However, it is considered
a problem when too many units become inactive before the actual learning of such a useful
representation has performed some successful first steps. In the extreme case, the KL-
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Divergence between qφ(Z|R) and pθ(Z) is 0, and we have qφ(Z|R) ≡ pθ(Z). Hence, q is
independent of R, and we say that the posterior q collapses as the input does not matter.

As we consider multivariate Gaussian distributions with a diagonal covariance matrix,
it becomes apparent that only a subset of nodes can be inactive. The posterior does
not collapse in this case, as information can still be propagated to the decoder through
active nodes. A diagonal covariance matrix implies independence of the latent variables Z.
In order for a univariate part to be inactive, it has to be independent of the other dimensions.
Nonetheless, the overall independence is not a necessity to monitor inactivity. For example,
block-wise covariance matrices would result in batches of active or inactive latents.

When using the TempVAE on financial data, we observe an instantaneous collapse of
the posterior at the beginning of the training. From our point of view, the signal within the
financial returns data is not strong enough to be captured before the KL-Divergence term
dominates the ELBO and causes a posterior collapse. Therefore, we consider β-annealing
of the KL-Divergence similar to (Bowman et al. 2015) (see Appendix A).

To measure the amount of active units, Burda et al. (2016) propose an activity statistic
that is calculated after training. For each node, they estimate the activity by

Au = Covx

(
Eqφ(u|x)[u]

)
and call a node inactive if Au < 0.01. The intuition behind this statistic is as follows.
If for given inputs x, the expected values in a latent dimension do not show significant
variability, the resulting latent dimension has no useful information of the input and is seen
as independent.

Since we assume a time-dependent model for the prior in (3), we adjust the activity
statistic to calculate the activities of a sequence of Z1:M ∈ RM×κ . For m = 1, . . . , M and
k = 1, . . . , κ, we calculate

A(m,k)
z := CovR,Z1:m−1

(
Eqφ(Zm,k |Z1:m−1,R)[Zm,k]−Epθ(Zm,k |Z1:m−1)[

Zm,k]
)

. (21)

The statistic becomes equal to the one proposed by (Burda et al. 2016) if we assume a
time-independent standard Gaussian prior3 in (3). With the statistic in (21), we quantify
the effect of the input R. Similar to (Burda et al. 2016), we call a node inactive from the
input if A(m,k)

z < 0.01.

4. Implementation, Experiments and VaR-Estimation

In this section, we present the results we achieved on four datasets (see Section 4.1)
with our model regarding the identification of the underlying signal (see Section 4.2). Then,
in Section 4.3, we present results for the fit to financial data as well as the VaR estimation.
For further details on the model implementation and for an additional ablation study
validating our design choices, see Appendices A and B.

4.1. Description of the Used Data Sets

We consider the four datasets “DAX”, “S&P500”, “Noise” and “Oscillating PCA” for
our studies. Here, the last two datasets are simple artificial examples with the only purpose
to check the correct performance of the TempVAE. Throughout the section, data are stored
in d-dimensional vectors

Rt := (Rt,1, . . . , Rt,d)
T ∈ Rd. (22)

First, we consider (d = 22) stock price time series, provided by DAX (German stock index)
enlisted companies, from 11.06.2001 to 09.06.2021. We calculate the daily logarithmic re-
turns4 via the observed closing prices. Therefore, if St,i denotes the price of stock i = 1, . . . , d
at time t = 1, . . . , T, the dataset “DAX” contains

Rt,i := ln(St,i)− ln(St−1,i). (23)
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For “S&P500”, we consider 397 stocks of the S&P500 index that have a history from
02.01.2002 up to 09.06.2021. We calculate the log-returns analogously to the “DAX” data.

The dataset “Noise” is just white noise with dimension d = 22. Hence, for all
t = 1, . . . , T and i = 1, . . . , d

Rt,i ∼ N (0, 1).

The dataset “Oscillating PCA k” (with k ∈ {2, 5, 10}) is constructed based on k inde-
pendent harmonic oscillator signals. Each univariate signal Z1:T is constructed by randomly
choosing an intercept i ∼ U (−1, 1), an amplitude a ∼ U (−1, 1), a frequency f ∼ U (0.5, 24)
and a noise series ε1:T , with ε ∼ N

(
0, 0.022). Then, we set

Zt = i + a · cos
(

t
100
· f · π

)
+ a · εt.

The case k = 2 is shown in Figure 2. The oscillator sequences Z1:T,1:k ∈ RT×k are then
transformed to a 22-dimensional series by applying a randomly chosen rotation U ∈ Rd×k:

St = U · ZT
t,1:k + 5 and Rt,i := ln(St,i)− ln(St−1,i)

for each t = 1, . . . , T and i = 1, . . . , d.
Finally, a sliding window is applied to the d-dimensional series R1:T to generate T−M

consecutive series in Rd×M of size M = 21. For further details on preprocessing procedures,
see Appendix A.

0 20 40 60 80 100
Time step

1

0

1

Signal 1
Signal 2

Figure 2. The first 100 steps of two oscillating signals. The two signals have different amplitude,
frequency and origin.

4.2. Signal Identification

We train the TempVAE on the four datasets from Section 4.1 and analyze calculated
activities given by (21) as well as the fit to the data. As we can see in Figures 3 and 4,
the TempVAE correctly identifies the amount of hidden dimensions. For the “Noise” data,
no activity is reported at all. The decoder model p(R|Z) is left on its own to model the
data as no meaningful information can be identified that can be propagated from input
to output. For the data “Oscillating PCA 2”, the model correctly identifies the two active
nodes per timestep. For the “Oscillating PCA 5” and “Oscillating PCA 10” data, the model
also identifies two active dimensions through time (see Appendix D). Although this is not
the amount given by the linear construction, identifying fewer dimensions is not necessarily
problematic, since we have a non-linear model. We observe comparable fitting results for
these datasets (see Appendix D).



Risks 2023, 11, 79 8 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time step within M Sliding Window

1
2
3
4
5
6
7
8
9

10

Z 
di

m
en

sio
n

0.0

0.2

0.4

0.6

0.8

1.0

Activity

Figure 3. The activity statistics for the “Noise” data. We consider sequences of size M = 21 as input.
The graph shows the activity values of statistic (21) for the κ = 10 dimensional latent space.
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Figure 4. The activity statistics for the “Oscillating PCA 2” data. We consider sequences of size
M = 21 as input. The graph shows the activity values of statistic (21) for the κ = 10 dimensional
latent space.

When applied to the financial data, we can observe two and four active dimensions
for the “DAX” and “S&P500” datasets, respectively (see Appendix E). The fact that only a
few active nodes could be identified is not surprising. In their work, Laloux et al. (2000)
show that only a small fraction of dimensions (roughly 11) are needed to linearly model
406 assets of the S&P500 during the years 1991–1996.

4.3. Fit to Financial Data and Application to Risk Management

To assess the performance of the model on the “DAX” data5, we compare the TempVAE
to a GARCH model as well as to the multivariate GARCH versions DCC-GARCH-MVN
and DCC-GARCH-MVt (see Appendix C for details). The capacities of these models are
less compared to the used TempVAE neural net. Nonetheless, GARCH and its variants are
market standard for VaR calculation. To underline the usefulness of a model, the results
have to be compared to these benchmarks.

To compare the models, we calculate the negative log-likelihood (NLL), which is given by

NLL(Rnonlog
t , µt, Σt) :=

1
2

(
d log(2π) + log|Σt|+

(
Rnonlog

t − µt

)T
Σ−1

t

(
Rnonlog

t − µt

))
and average across all timestamps in the test set. Rnonlog

t represents the non-logarithmic
returns of the test data and µt as well as Σt are estimated by the models. To estimate these
values, we first sample the log-returns from a model. For the TempVAE, we estimate these
empirically by sampling

z(i)1:t ∼ qφ(Z|r1:t−1) as well as r(i)t ∼ pθ(R|z(i)1:t)

for i = 1, . . . , 1000. Then, we transform these samples to non-log-returns and calculate the
empirical means and covariances to approximate µt and Σt.
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We also consider the diagonal NLL, where we use the diagonal matrix with entries
diag(Σt) instead of Σt. Furthermore, we calculate a univariate version by considering the
returns of an equally weighted portfolio containing the 22 assets. Given the log-returns
in (23), we calculate these by

RP,nonlog
t,i :=

1
d

d

∑
i=1

(exp(Rt,i)− 1). (24)

Table 1 displays the different fit scores for the three models. Considering the NLL
scores, the GARCH and normal DCC-GARCH models achieve the best performance since
these models are directly minimizing the respective scores. The TempVAE as a regularized
model has to find a trade-off between the NLL and the regularization terms. Nonetheless,
if we consider the scores for the portfolio returns, we see all multivariate models performing
similarly and outperforming the GARCH model. Due to the strong dependency between
the different assets in the portfolio, estimating the underlying covariance structure plays an
essential role in estimating the next day’s portfolio performance. Furthermore, we could
observe the models capturing the correlations between the assets (see Appendix F for an
excerpt of the first two dimensions).

Table 1. Fit scores for models TempVAE, GARCH and two multivariate GARCH. In all cases, lowest
is best.

Model Diagonal NLL NLL Portfolio NLL

GARCH 22.76 22.84 −0.51
TempVAE 25.79 20.35 −3.04

DCC-GARCH-MVN 25.03 18.69 −3.07
DCC-GARCH-MVt 25.44 19.17 −3.05

To compare the performance on the VaR estimation, as a further method, we consider
historical simulation (HS).6 Then, for each method, we calculate the VaR estimates via
1000 Monte Carlo samples from the respective distributions.7 VaR95 then denotes the
empirical estimator for the 95%-Value-at-Risk which is the 50th value of the ordered
samples of returns (arranged from lowest to highest). VaR99 denotes the corresponding
estimator given as the 10th value of the ordered sample. For this, also note that we are
looking at the actual returns, i.e., the negative of the losses.

We compare the models by their average number of exceedances, i.e., when the VaR
estimate was higher then the observed return, within the test set. We below denote these
values by AE95 and AE99, and they help us to validate the VaR estimates by their 5% and
1% quantile assumption. A good performance is a necessary condition for filtering out
those candidates that we compare with respect to a further criterion.

As this second performance check, we use the ‘Regulatory Loss Function’ (RLF)
proposed by (Sarma et al. 2003). This score penalizes exceedances of observed returns
below the VaR and is given by

RLF(VaRt, rt) =

{
(VaRt − Rt)

2, if Rt ≤ VaRt

0, otherwise.

Here, Rt denotes the value of the (non-logarithmic) portfolio return at time t. We calculate
the average of these values over the test set.

In Table 2, the losses for the models as well as the average number of exceedances
are displayed. The amount of average exceedances helps us to validate the VaR estimates
by their 5% and 1% quantile assumption, and a good performance is a necessary condi-
tion. As the number of exceedances of a predicted VaRt does not look at the size of the
exceedances8, we have introduced RLF as an additional criterion to judge among those
models that are good in estimating the average number of exceedances. As small numbers
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of RLF show that the VaRt requires a high reserve when it is needed, a small RLF value
is good. Therefore, although DCC-GARCH-MVt has the lowest values for the RLF95 and
RLF99, the TempVAE produces the best estimates.

Table 2. The table displays the values (all of these have to be multiplied by 10−2) of the RLF scores as
well as the average number of exceedances for the VaR95 and the VaR99 within the test set. For the
RLF values, lowest is best. For the average exceedances, the respective quantile level assumption is
the optimal value. Hence, for VaR95, the best value is 5, and for VaR99, the best value is 1.

Model RLF95 RLF99 AE95 AE99

GARCH 44.47 32.35 24.3 17.8
TempVAE 12.64 5.96 4.8 1.3

DCC-GARCH-MVN 13.15 7.10 5.4 2.1
DCC-GARCH-MVt 10.23 4.14 3.9 0.6

HS 14.57 7.43 5.1 1.3

In Figure 5, the VaR95 values for the DCC-GARCH-MVN, HS and TempVAE are
displayed. The blue line shows the original returns of the DAX portfolio. The full path of
the VaR95 estimates as well as the VaR99 estimates can be found in Appendix F. We can see
the VaR95 estimates for the DCC-GARCH-MVN and TempVAE are quickly responding to
the changes in the volatility of the data. Comparing TempVAE directly to DCC-GARCH-
MVN, we see the VaR estimates to be more volatile but also responsive to the evolution of
the returns. The HS on the other side is showing the well-known time delay (see Liu 2005).
Even though in terms of average exceedances, the HS is best followed by TempVAE, in our
point of view, the TempVAE provides the most reasonable estimates among the models.
This is particularly supported by the RLF values.
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Figure 5. The VaR95 estimates for the two models TempVAE, DCC-GARCH-MVN and for HS on a
fraction of the test data. The blue line shows the original return data.

5. Conclusions

In this paper, we present a novel variational recurrent neural net with the well-known
bottleneck structure of autoencoders to handle sequential data. As we model the data on
the basis of a time-dependent prior, we call the model temporal variational autoencoder
(TempVAE). By ensuring that the information has to flow through the bottleneck, we lever-
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age the auto-pruning property of VAE. This way, we are able to find parsimonious model
representations of the data without using methods such as grid search.

We successfully apply the TempVAE to risk management. More precisely, we estimate
the risk measure VaR and show that our model performs competitively to the consid-
ered benchmark models. We provide a roughly unbiased estimation of VaR exceedances,
showing the model is performing best in terms of the considered RLF scores.

Future research directions can incorporate applying the TempVAE architecture to
other types of data sequences. Furthermore, the active dimensions in the bottleneck are not
necessarily yielding disentangled representations. Research in this direction can foster the
understanding of the auto-pruning and hence variational models further.
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Appendix A. β-Annealing, Model Implementation and Data Preprocessing

Appendix A.1. β-Annealing

The low signal-to-noise ratio in financial data makes it necessary to proceed delicately
when modeling financial data. We propose to use annealing of the regularization to
mitigate the initial effects of the auto-pruning. Specifically, we consider β-annealing of the
KL-Divergence similar to Bowman et al. (2015). We add β ≥ 0 to the ELBO in (20) to obtain

Lβ(θ,φ)=Eqφ(Z|R) [log pθ(R|Z)]−β·∑T
t=1 Eqφ(Z1:t−1 |R)

[
DKL

(
qφ(Zt |Z1:t−1,R)

∥∥ pθ(Zt |Z1:t−1)
)]

. (A1)

The KL influence is adjusted over β. During training, we start with β = 0 and increase it
over time. In Figure A1, the annealing over 1000 epochs is depicted, and the effect on the
KL-Divergence is shown as well.
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Figure A1. On the left: The KL influence is adjusted over β. During training, we start with β = 0 and
increase it over time. We implement this by subtracting an exponentially decaying term from the
ultimate β value. We use a decay rate of 0.96 and decay steps of 20. On the right: The evolution of the
(negative) KL-Divergence over time. We can see how the values starts to decrease after the annealing
has increased β enough.
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Appendix A.2. Model Implementation

We implement the model based on Section 3. For the RNNs, we choose ‘Gated
Recurrent Units’ (see Cho et al. 2014) with dimension 16, and the initial values of these
states are set to zero. For the MLPs, we use normal Feedforward Networks that have two
hidden layers with dimension 16 and the output layer with varying output dimension.
For the latent variables, we choose dimension 10. In our experiments, with this size of the
latent dimension, the model is overspecified, and the auto-pruning removes the dimensions
that are not needed.

We initialize all MLP layer weights with the ‘Variance Scaling’ initializer as proposed
by He et al. (2015). As the activation function for the hidden layers, we use the ‘Rec-
tified Linear Unit’ (ReLU). For the µz, µ̂z and µr layer, we use no activation. We use a
diagonal covariance structure for Σz and Σ̂

z and a rank-1 perturbation output as given
in Rezende et al. (2014) for Σr. For all covariance layers, we use exponential activation for
the diagonal entries. Furthermore, we add L2 regularization with parameter λ = 0.01 for
the weights of the hidden layers of the MLP as well as dropout with a rate of 10% to the
RNN layers. In our experiments, both the dropout and the L2 regularization turned out to
be crucial for the auto-pruning to work properly as well as for an adequate data modeling
(see Appendix B.6).

In contrast to the model of Luo et al. (2018), we set the parameters of the prior
(i.e., Equations (5)–(7)) as non-trainable. Allowing a trainable prior results in an unfavorable
performance regarding the signal identification as well as the risk-management application
(see Appendix B.2). In our point of view, the fixed prior serves as guidelines for the model
to identify temporal transitions. If the prior is learned simultaneously with the encoder,
past adaptions of the encoder to the temporal dynamics can become obsolete by changes in
the prior parametrization.

For the training of the model, we use the reparametrization trick as introduced
by Kingma and Welling (2014). Using the ADAM optimizer by Kingma and Ba (2015),
we train the model for 1000 epochs with a batch size of 256. We use an initial learning
rate of 0.001 with an exponential learning rate decay with a decay rate of 0.96 and 500 de-
cay steps. If not explicitly excluded, we apply the β-annealing as described in Figure A1
during training.

Appendix A.3. Data Preprocessing

To model the data with artificial neural networks, we split the data into a training and
test set. Furthermore, we use the empirical mean and standard deviation of the training
part to standardize each (i = 1, . . . , d) univariate series R1:T,i. Finally, we apply a sliding
window on the d-dimensional series in (22) to generate T −M intervals of size M = 21.
We define

Rt:t+M := (Rt, . . . , Rt+M) ∈ Rd×M,

for t = 1, . . . , T−M. After the preprocessing, we have different amounts of observations
which we split into 66% training and the rest into test data:

• For the DAX data, 5061 observations were split at t = 3340 into 3340 training observa-
tions and 1721 test observations.

• For the S&P500 data, 4872 observations were split at t = 3215 into 3215 training
observations and 1657 test observations.

• For the noise data, 5050 observations were split at t = 3333 into 3333 training observa-
tions and 1717 test observations.

• For each of the oscillating PCA datasets, 9979 observations were split at t = 6586 into
6586 training observations and 3393 test observations.

Appendix B. Ablation Studies

In this section, we validate some of the design choices for the TempVAE model. We will
address each point in a separate section, starting off with the β-annealing.
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Appendix B.1. Preventing Posterior Collapse with β-Annealing

A deep neural net such as the TempVAE has to be trained with caution to prevent
posterior collapse. The β-annealing proposed in Appendix A is a useful tool to prevent this
collapse. In this section, we compare the TempVAE with a model ‘TempVAE noAnneal’ with
no annealing, where we set β = 1 instead of using β-annealing. Given the activity statistics
of a model A(m,k)

z , as described in (21) for m = 1, . . . , M and k = 1, . . . , κ, we calculate the
average number of active units as

Āz :=
1

M · κ
M

∑
m=1

κ

∑
k=1

1{
A(m,k)

z ≥0.02
} (A2)

In Table A1, we see the average number of active units for the two models and in Table A2,
the NLL scores as calculated in Section 4.3 are reported.

Table A1. The average number of active units given by (A2) for the two models with and without
annealing. We see that the model with the annealing is not decreasing the number of average active
dimensions when increasing the number of latent signals. For the model without annealing, this is
not the case.

DAX Noise Osc. PCA
2

Osc. PCA
5

Osc. PCA
10

TempVAE 20% 0% 20% 20% 20%
TempVAE noAnneal 0% 0% 10% 20% 10%

Table A2. The negative log-likelihood for the two models on the test set. We see the TempVAE is
outperforming the version without annealing on every relevant dataset. Only for the noise case,
where there is nothing to learn, are the results comparable.

DAX Noise Osc. PCA
2

Osc. PCA
5

Osc. PCA
10

TempVAE 20.29 31.48 −38.51 −1.40 11.07
TempVAE noAnneal 27.49 31.44 3.58 2.60 13.28

Using the annealing, a latent process in financial data is identified. Without annealing,
a posterior collapse occurs and no encoding information is propagated to the decoder.
Notice that the amount of active dimensions need not match the amount of latent signals.
Because of non-linearities, it can be possible for the model to use less dimensions than
needed to adequately model the data (see Appendix D).

Appendix B.2. Comparison to a Model with Trainable Prior Parameters

In this section, we find that using a non-trainable prior pθ(Z) yields better results
in terms of the auto-pruning functionality as well as of the fit of the model. To see this,
we compare the TempVAE model with a version ‘TempVAE trainPrior’, where the prior is
trainable. Figures A2 and A3 display the activities of the ‘TempVAE trainPrior’ bottleneck
for the DAX data and for the oscillating PCA data, respectively.
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Figure A2. The activity statistics for the “DAX” data for the model ‘TempVAE trainPrior’. We consider
sequences of size M = 21 as input. The graph shows the activity values of statistic (21) for the κ = 10
dimensional latent space.
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Figure A3. The activity statistics for the “oscillating PCA” data for the model ‘TempVAE trainPrior’.
We consider sequences of size M = 21 as input. The graph shows the activity values of statistic (21)
for the κ = 10 dimensional latent space.

Comparing these figures with Figure 4, we notice that the value of the activity statistics
drastically decreased. For the model with trainable prior, it is questionable if any infor-
mation from the input is propagated to the output for the ‘Oscillating PCA’ data at later
time steps.

Comparing the VaR forecasts of both models in Figure A4, we see that the VaR forecasts
for the model with trainable prior are more volatile. This also affects the average amount
of exceedances of this estimator, as can be seen in Table A3. The TempVAE outperforms
the version with trainable prior, as the amount of exceedances for the VaR95 should be
close to 5, and for VaR99, they should be close to 1. From our point of view, setting the
prior as non-trainable gives the model more stability during training. This results in a more
consistent output, e.g., for the VaR estimates.

Table A3. The average exceedances for the model TempVAE and the version with trainable pa-
rameters for the prior pθ(Z). TempVAE outperforms the trainable prior version. For the average
exceedances, the respective quantile assumption is the optimal value. Hence, for VaR95, the best
value is 5, and for VaR99, the best value is 1.

Model AE95 AE99

TempVAE 4.8 1.3
TempVAE trainPrior 8.2 3.1
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Figure A4. VaR95 forecasts of both models ‘TempVAE’ and ‘TempVAE trainPrior’ on the test set.
The VaR forecasts for the model with trainable prior are more volatile.

Appendix B.3. Autoregressive Structure for the Observables Distribution

Modeling an autoregressive connection for the observations produces questionable
results due to over-fitting. In this section, we compare the model TempVAE with the
model ‘TempVAE AR’, a version of the model with autoregressive structures as proposed,
e.g., by Chen et al. (2023) or Luo et al. (2018). The implementation of the model ‘TempVAE
AR’ is identical to the model TempVAE except for the generative distribution. Instead
of (8)–(10), we implement this part as

{µr
t , Σr

t} = MLPr
G(h

r
t), (A3)

hr
t = RNNr

G
(
hr

t−1, zt, rt−1
)
, (A4)

rt ∼ N (µr
t , Σr

t). (A5)

Therefore, past observations are influencing the current distributions. If such a dependency
structure is assumed given a sequence of observations R1:T , the latent variables become
dependent on the whole observed sequence, as argued in Luo et al. (2018). As we account
for this already in our proposed model for the encoder (see (13)–(17)), we do not have to
adapt for this part.

Looking at Table A4, we see that TempVAE outperforms ‘TempVAE AR’ on all test sets.
In fact, we can observe over-fitting for the ‘TempVAE AR’ model, whereas the TempVAE
did not suffer from this. Common VAEs possess an inherent robustness against over-fitting
(see e.g., Kingma et al. 2014) originating from the regularization with the KL-Divergence.
As the structure of the TempVAE enforces this regularized bottleneck structure, we are
not surprised that we do not observe over-fitting with the TempVAE. On the other side,
‘TempVAE AR’ has the possibility to ignore the regularized bottleneck, and hence, over-
fitting becomes more of a concern.
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Table A4. The negative log-likelihood for the two models TempVAE and ‘TempVAE AR’ on the test
set. We see that the TempVAE is outperforming the version with an autoregressive structure, even in
the case of the Noise dataset. This is because the ‘TempVAE AR’ model was over-fitting these data.

DAX Noise Osc. PCA
2

Osc. PCA
5

Osc. PCA
10

TempVAE 20.29 31.48 −38.51 −1.40 11.07
TempVAE AR 22.68 32.91 −34.72 25.33 69.26

Apart from these results, another point speaks in favor of the TempVAE without an
autoregressive structure for the observations. As information does not necessarily have
to pass the bottleneck, analyzing the latent space activity becomes tedious. Even for a
completely collapsed posterior q, the model can use information from the input sequence
to model the output.

Appendix B.4. Using a Diagonal Covariance Matrix Σr
t

Here, we compare the ‘TempVAE’ with the model ‘TempVAE diag’, a version of the
model, where the output covariance matrix for the observables is modeled as diagonal
and not via the rank-1-perturbation as given in Appendix A. As we can see in Table A5,
the average amount of VaR exceedances is approximately the same for the two model
architectures. This indicates that by the usage of the latent variables, the covariance
structure of the data can be explained well enough to obtain a comparable performance
for the VaR estimates. We still decided to propose the rank-1 perturbation for the model,
as Luo et al. (2018) were able to improve their fit this way.

Table A5. The average exceedances for the model TempVAE and the version with diagonal covariance
matrix for Σr

t . For the average exceedances, the respective quantile assumption is the optimal value.
Hence, for VaR95, the best value is 5, and for VaR99, the best value is 1.

Model AE95 AE99

TempVAE 4.8 1.3
TempVAE diag 5.3 1.6

Appendix B.5. Setting µr
t ≡ 0

In their paper, Xu and Chen (2021) motivate to model only the covariance Σr
t of the

observable distribution (2). We therefore compare the TempVAE with the model ‘TempVAE
zeroMean’, which is the same model but with the mean parameter fixed to an output of
zero. Figures A5 and A6 show the activity statistics for the “DAX” and “Oscillating PCA
2” datasets.
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Figure A5. The activity statistics for the “DAX” data for the model ‘TempVAE zeroMean’. We consider
sequences of size M = 21 as input. The graph shows the activity values of statistic (21) for the κ = 10
dimensional latent space.
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Figure A6. The activity statistics for the “Oscillating PCA 2” data for the model ‘TempVAE zeroMean’.
We consider sequences of size M = 21 as input. The graph shows the activity values of statistic (21)
for the κ = 10 dimensional latent space.

Here, we can observe that the number of identified active nodes per timestep is less in
comparison with the TempVAE model. A smaller latent space occupation than given by
the amount of latent signals is possible due to the non-linearities of the net. However, from
our point of view, it is rather questionable that one latent dimension suffices to capture
the signal in both the “Oscillating PCA 2” dataset and the “DAX” dataset. Furthermore,
comparing the kernel density estimated distributions of the “Oscillating PCA 2” dataset in
Figures A7 and A12, we see that the model is not able to correctly model the two dimensions
of the signal inherent in the data. Therefore, we decide to model the mean parameter.
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Figure A7. The kernel density estimated distribution of the “oscillating PCA 2” data. On the left,
we see the model ‘TempVAE zeroMean’ and on the right, the historical data.

Appendix B.6. Regularization: L2, Dropout and KL-Divergence

In this section, we compare the TempVAE to five other models where different regular-
ization procedures are set as inactive. The models we consider are

1. ‘TempVAE’.
2. ‘TempVAE det’: The KL-Divergence is switched off and the bottleneck uses only a

mean parameter whereas the covariance is set to zero. Therefore, the bottleneck is
deterministic and the auto-pruning switched off.

3. ‘TempVAE no dropout/L2’: Dropout and L2 regularization are switched off.
4. ‘TempVAE no L2’: L2 regularization is switched off.
5. ‘TempVAE no dropout’: Dropout is switched off.
6. ‘TempVAE det no dropout/L2’: ‘TempVAE det’ and ‘TempVAE no dropout/L2’ combined.

In Table A6, the average number of active dimensions is shown. As we can see, only
the model ‘TempVAE’ is providing favorable results. The deterministic models show no
auto-pruning for the Oscillating PCA data versions while the model ‘TempVAE det no
dropout/L2’ is even activating most of the latent nodes when modeling the Noise data.
This extensive use of bottleneck nodes is a sign of over-fitting. It is important to understand
that if the KL-Divergence is switched off for these models, the reconstruction error, that
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is, the first term in Equation (A1), is the only factor driving the encoder model training.
Hence, the encoder aims to provide latent variables that are best suited for reconstruction
just as in a normal autoencoder model. Since the encoder and prior distribution are
disconnected without the KL-Divergence term, the forecast of these models is highly
doubtful. Nonetheless, the reconstruction has been learned, and therefore, we can analyze
the latent space activity.

The stochastic models without L2, dropout or both also show questionable results.
Therefore, we conclude that both regularizations are essential to learn the deep neural net
and for the auto-pruning to work properly.

Table A6. The average number of active units given by (A2) for the models where different regular-
izations are excluded.

DAX Noise Osc. PCA
2

Osc. PCA
5

Osc. PCA
10

TempVAE 20% 0% 20% 20% 20%
TempVAE det 0% 0% 90% 81% 90%

TempVAE no dropout/L2 20% 0% 31% 76% 30%
TempVAE no L2 20% 6% 20% 20% 30%

TempVAE no dropout 20% 0% 31% 41% 40%
TempVAE det no dropout/L2 90% 90% 90% 80% 90%

Furthermore, we found that none of the models without dropout were able to ade-
quately model the data structure of the “Oscillating PCA 2”. Figure A8 displays the kernel
density estimated distribution of the first two dimensions of the data “Oscillating PCA 2”.
In contrast to Figure A12, the plot for the model ‘TempVAE’ structure is poorly fit.
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Figure A8. The kernel density estimated distribution of the “oscillating PCA 2” data for the model
‘TempVAE no dropout’. On the left, we see the ‘TempVAE no dropout’ model and on the right, we see
the historical data.

Appendix B.7. Encoder Dependency

In this section, we compare the ‘TempVAE’ model with ‘TempVAE backwards’, which
is a version where the encoder structure is not implemented as in (13)–(17), but with a
backward RNN, which is given by{

µ̂z
t , Σ̂

z
t

}
= MLPz

I

(
ĥz

t

)
(A6)

ĥz
t = RNNz

I

(
ĥz

t−1, zt−1, ĥ←t
)

(A7)

ĥ←t = RNNz
I

(
ĥ←t+1, rt+1

)
(A8)

zt ∼ N
(

µ̂z
t , Σ̂

z
t

)
. (A9)



Risks 2023, 11, 79 19 of 26

This is in consensus with the dependency structure of the posterior pθ(Z|R), which is
shown in (11).

Figure A9 displays the KDE estimation of the first two dimensions of the oscillating
PCA data. In contrast to Figure A12, the plot for the model ‘TempVAE’ structure is poorly fit.
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Figure A9. The kernel density estimated distribution of the “oscillating PCA 2” data for the model
‘TempVAE backwards’. On the left, we see the ‘TempVAE backwards’ model and on the right, we see
the historical data.

Table A7 shows that the auto-pruning is performing poorly when using only the back-
wards RNN for the model. As the encoding model is only a variational approximation to
the actual posterior, we therefore decide to use the bidirectional architecture for our model.

Table A7. The average number of active units given by (A2) for the two models with different
encoder architecture.

DAX Noise Osc. PCA
2

Osc. PCA
5

Osc. PCA
10

TempVAE 20% 0% 20% 20% 20%
TempVAE backwards 10% 0% 10% 0% 0%

Appendix C. GARCH and DCC-GARCH

As benchmarks for the fit of the financial data, we consider three models.

1. GARCH: A GARCH(1,1) model, introduced by Bollerslev (1986).
2. DCC-GARCH-MVN: A Dynamic Conditional Correlation GARCH(1,1), introduced

by Engle (2012), with a multivariate Gaussian distribution assumption for the error
term.

3. DCC-GARCH-MVt: A Dynamic Conditional Correlation GARCH(1,1), with a multi-
variate distribution assumption for the error term.

As the GARCH model is univariate, we model each dimension of our observed data
separately. Therefore, we assume a correlation of 0 among the observed assets. The DCC-
GARCH models can be seen a a multivariate extension of the first, where the correlations are
modeled as well. All models are linear and optimized by using the Maximum Likelihood
principle. We used the ‘rmgarch’ library in R (see Ghalanos 2019).

Appendix D. Activities on the Oscillating PCA Data Sets

For “oscillating PCA 5” and “oscillating PCA 10”, the model identifies two active
dimensions through time, as can be seen in Figures A10 and A11. In our point of view, this
is not problematic, since the non-linearities of the artificial neural net can be the reason that
fewer dimensions are needed to model the data appropriately. This can be observed in
Table A8. Comparable scores are achieved for the Score Portfolio NLL. Furthermore, this
can also be observed when we look at the fit of the model. For an excerpt of the first two
dimensions, see Figures A12–A14.
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Figure A10. The activity statistics for the “oscillating PCA 5” data. We consider sequences of size
M = 21 as input. The graph shows the activity values of statistic (21) for the κ = 10 dimensional
latent space.
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Figure A11. The activity statistics for the “oscillating PCA 10” data. We consider sequences of size
M = 21 as input. The graph shows the activity values of statistic (21) for the κ = 10 dimensional
latent space.

Table A8. The different fit scores for the model TempVAE on the “oscillating PCA” datasets. Compa-
rable scores are achieved for the Score Portfolio NLL. The multivariate scores are not comparable,
as the structure of the data is not Gaussian.

Score Osc. PCA 2 Osc. PCA 5 Osc. PCA 10

TempVAE Portfolio NLL −5.21 −5.77 −4.80
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Figure A12. The kernel density estimated distribution of the first two dimensions Rt,1:2 of the
“oscillating PCA 2” data. On the left, we see the TempVAE model, and on the right, we see the
historical data.
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Figure A13. The kernel density estimated distribution of the first two dimensions Rt,1:2 of the
“oscillating PCA 5” data. On the left, we see the TempVAE model, and on the right, we see the
historical data.
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Figure A14. The kernel density estimated distribution of the first two dimensions Rt,1:2 of the
“oscillating PCA 10” data. On the left, we see the TempVAE model, and on the right, we see the
historical data.

Appendix E. Activities on the Stock Market Data and Model Adaptions for
High-Dimensional Data

In Figures A15 and A16, we see the activities for the 22 dimensional “DAX” data and
the 397 dimensional “S&P500” data.
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Figure A15. The activity statistics for the “DAX” data. We consider sequences of size M = 21 as
input. The graph shows the activity values of statistic (21) for the κ = 10 dimensional latent space.
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As the dimension of the data increased by a factor of 18 compared to the the other
datasets in Section 4.1, we adjust the model implementation. For the RNN layers in (9),
(14), (15) and (16) we choose dimension 80, for the RNN layer in (6) we choose dimension
16. For the MLPs in (13), (5) and (8), we keep the two hidden layers and choose dimensions
60 and 30 for the first and second layer, respectively. Furthermore, we reduce the initial
learning rate to 1e-4 and change the β-annealing steps from 20 to 100.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Time step within M Sliding Window

1
2
3
4
5
6
7
8
9

10

Z 
di

m
en

sio
n

0.0

0.2

0.4

0.6

0.8

1.0

Activity

Figure A16. The activity statistics for the “S&P500” data. We consider sequences of size M = 21 as
input. The graphs shows the activity values of statistic (21) for the κ = 10 dimensional latent space.

Appendix F. VaR and Scatterplots

In this section, we will show some further VaR path plots for the models TempVAE,
HS and DCC-GARCH-MVN. For this, see Figures A17–A19.

Furthermore, we provide scatterplots for the first two dimensions of the different
models used for the VaR estimation in Figures A20–A23.
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Figure A17. The VaR99 estimates for the models TempVAE, DCC-GARCH-MVN and HS on a fraction
of the test data.
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Figure A18. The VaR95 estimates for the two models TempVAE, DCC-GARCH-MVN and HS on the
whole test data.
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Figure A19. The VaR99 estimates for the two models TempVAE, DCC-GARCH-MVN and HS on the
whole test data.
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Figure A20. The kernel density estimated distribution of the first two dimensions Rt,1:2 of the “DAX”
data. On the left, we see the TempVAE model and on the right, we see the historical data.
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Figure A21. The kernel density estimated distribution of the first two dimensions Rt,1:2 of the “DAX”
data. On the left, we see the GARCH model, and on the right, we see the historical data.
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Figure A22. The kernel density estimated distribution of the first two dimensions Rt,1:2 of the “DAX”
data. On the left, we see the DCC-GARCH-MVN model, and on the right, we see the historical data.
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Figure A23. The kernel density estimated distribution of the first two dimensions Rt,1:2 of the “DAX”
data. On the left, we see the DCC-GARCH-MVt model, and on the right, we see the historical data.

Notes
1 i.e., the fact that drift parameters are notoriously hard to estimate while volatility parameters are much easier to obtain.
2 e.g., p(R|Z) = ∏T

t=1 p(Rt|R1:t−1, Z1:t)
3 Then, the assumption is pθ(Z) = ∏T

t=1 pθ(Zt), with pθ(Zt) ∼ N (0, I) for all t = 1, . . . , T.
4 This is common practice when modeling financial data as the increments of the log-stock prices are typically assumed to

be independent (or at least uncorrelated) while the price increments are definitely not. For our later application in risk
management (the VaR estimation), we therefore transform the log-return forecasts of the models to actual returns by using
Rnonlog

t,i := exp
(

Rt,i
)
− 1) to model the extremes in the data adequately.

5 The benchmark models are note feasible on the “S&P500” data due to a too high dimension.
6 We consider a time window of 180 days.
7 Note that usually one can calculate the VaR estimates for GARCH models analytically. But as we apply a non-linear transform of

the modeled log-returns (see expression (24)) this task is not trivially performed.
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8 Indeed, we could get the fractions of mispredictions correct by always predicting the VaR as −∞ for the initial fractions of the
predictions and then equal to 1 (i.e., a total loss). Of course, this is no reasonable predictor!
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