
Citation: Hong, Liang, Harris

Schlesinger, and Boyi Zhuang. 2023.

Whoops! It Happened Again: Demand

for Insurance That Covers Multiple

Risks. Risks 11: 73. https://

doi.org/10.3390/risks11040073

Academic Editors: Tianyang Wang,

Jing Ai and Xiufang Li

Received: 23 February 2023

Revised: 29 March 2023

Accepted: 6 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Whoops! It Happened Again: Demand for Insurance That
Covers Multiple Risks †

Liang Hong 1, Harris Schlesinger 2 and Boyi Zhuang 3,*

1 Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
2 Department of Economics, Finance, and Legal Studies, University of Alabama, Tuscaloosa, AL 35487, USA
3 Alabama Center for Insurance Information and Research, Culverhouse College of Business,

University of Alabama, 1500 Greensboro Ave Suite 2, Box 870397, Tuscaloosa, AL 35487, USA
* Correspondence: bzhuang@cba.ua.edu
† This article was completed after the untimely passing of Dr. Harris Schlesinger. His contribution to this article is

significant. However, any remaining errors are entirely our own and in no way attributed to him. This article is
dedicated to his memory.

Abstract: This article studies insurance demand in a two-period framework in which an individual
faces risks in both current and future periods. Models for insurance with and without the presence of
endogenous saving are both discussed. In contrast to what most literature suggests, when decisions
on insurance and saving are made separately, insurance alone does not always unambiguously reduce
risk, and decision makers might demand more insurance when there is a positive loading on the
premium than when the insurance price is actuarially fair. We compare the demand for insurance in
our framework with that in a two-period model where risk is concentrated in the second period and
derive the conditions under which these demands differ. We examine the effects of risk aversion and
derive the conditions under which a more risk-averse individual demands more or less insurance.

Keywords: two-period model; insurance; multiple risks; riskiness

1. Introduction

How does insurance work? Take automobile insurance for example: Once a contract
is agreed upon and a premium is paid, the insurance provides financial protection against
physical damage, bodily injury, and potential liability resulting from vehicle collision. The
contract often lasts for six months, during which time, multiple incidents are possible.
Meanwhile, when making decisions for insurance, people might or might not make joint
decisions for transferring wealth across periods (Hofmann and Peter (2016)). Therefore, to
study the decision-making process for purchasing insurance, one should take into account
these characteristics of an insurance contract. However, to the best of our knowledge, no
studies have been undertaken to incorporate these aspects into a single model.

First of all, to study the effects of the separate timing of paying a premium and
incurring a loss, an intertemporal model is needed. Most insurance articles (Mossin (1968);
Schlesinger (1981); Briys (1986); Somerville (2004); Schlesinger (2006)) use either a one-
period model or a continuous-time model in which insurance decisions and potential
loss happen simultaneously. Some works, especially more recent ones, intertemporally
separate costs and benefits (Dionne and Eeckhoudt (1984); Menegatti (2009); Hofmann and
Peter (2015); Peter (2017)). These works lay the foundation for exploring the demand for
insurance in a two-period framework.

Secondly, the model needs to address the possibility of multiple losses during the
insurance contract period. Risk reduction in the presence of multiple risks has drawn
attention from many researchers. However, previous literature has focused mostly on
multi-dimensional risks instead of multi-period ones. Raviv (1979) presents a single-period
model which incorporates the case of two potential losses. Doherty and Schlesinger (1983)
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examine insurance decisions when there is a second uninsurable correlated risk. Gollier and
Scarmure (1994) analyze the issue for the case of uncorrelated risks. Fluet and Pannequin
(1997) extend the standard adverse-selection model for insurance to the case where individ-
uals are subject to multiple risks. Bonato and Zweifel (2002) conduct an empirical analysis
of insurers’ information about multiple risks. Courbage et al. (2017) analyze optimal preven-
tion expenditures in a situation of multiple correlated risks. Seog and Hong (2022) analyze
insurance demand and saving in a two-period model with multiple loss states. We examine
in this paper an insurance contract covering two periods with the possibility of a loss at
each period.

In addition to allowing multiple occurrences of losses, our model also considers how
the timing of the loss will affect the decision maker’s choice on insurance purchase. Con-
sider the case when an individual purchases an insurance covering (part of) the potential
losses for one year. Whether a loss occurs soon after the purchase or near the end of the
year obviously makes a difference. If a loss occurs right after the purchase, the individual
experiences the effect of reduction in consumption resulting from both the cost of insurance
and the loss itself (in the case of partial coverage). On the other hand, if a loss occurs
towards the end of the year, it only affects the consumption level during that period.

Last but not least, the potential interaction between insurance and saving plays a vital
role in the decision-making process. While it is normally assumed that wealth is perfectly
fungible, Thaler (1999) shows that mental accounting violates this economic assumption,
which suggests that money spent on insurance might not be a perfect substitute for money
invested in saving. Hence, from the individual’s perspective, the insurance decision and
the saving decision could be separable. With this in mind, we present two settings for
insurance demand, one with and the other without endogenous saving.

In this paper, we look at paying a premium at a date t = 1 and then incurring potential
losses (and potential indemnities) at both dates t = 1 and t = 2. We investigate the
case where insurance and saving decisions are undertaken separately as well as the case
where they are undertaken jointly. Our paper contributes to the literature by developing a
theoretical model which not only describes the time structure of paying insurance premiums
upfront, but also allows the possibility of multiple losses. The results help to explain some
empirically observed deviations of insurance demand from those made with previous one-
or two-period models. The paper is organized as follows: Section 2 presents a model of
insurance, followed by extending the model to incorporate endogenous saving (which also
includes borrowing). The optimal levels of insurance in both settings are analyzed and
compared with those obtained from models in which risk is concentrated in the second
period. The effects on riskiness in both models are investigated. Section 3 examines the
effects of risk preferences. Section 4 concludes the paper.

2. The Models and the Results

This section presents the models and compares the results with those obtained from
models in which a loss state is only possible during the second period. We present two
different settings, one for the case where the insurance decision and the saving decision
are separable, the other for the case where the individual integrates the decision for saving
when purchasing insurance.

2.1. Optimal Insurance

First, we analyze the optimal level of insurance in the absence of endogenous saving.
The model presented in this section corresponds to situations where an individual either
forgoes her choice of saving or saves/borrows but does not integrate this into her decision-
making process of insuring the risk.

Assume that a representative individual is endowed with W in both the current and
the future periods and also faces the risk of losing l in both periods. The distributions of
such losses in these two periods are independent to each other. The possibilities of loss
during the current and the future periods are, respectively, π ∈ [0, 1] and δ ∈ [0, 1]. As we
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assume only two states of the world are possible, 1− π and 1− δ are the possibilities that
no loss occurs in the respective periods. For simplicity, we assume both the subjective time
discount rate and the rate of gross risk-free return are equal to one.

In this environment, the individual chooses at the current period the insurance cover-
age, α ∈ [0, 1], to maximize expected utility over the two periods:

E(U) ≡ πu(W − αP− l + αl) + (1− π)u(W − αP) + δu(W − l + αl) + (1− δ)u(W), (1)

where P = (1+λ)[πl + δl] denotes the insurance premium, and λ, the proportional loading
(λ = 0 in the case of a marginally fair premium).

To examine the effects of incorporating risks in both periods, we compare the optimal
demand for insurance with that of a two-period model in which a loss state is only possible
during the second period. This benchmark model is given as:

E(Ub) ≡ u(W − αP) + qu(W − L + αL) + (1− q)u(W), (2)

where q = π+δ
2 is the probability of losses during the second period, and L = 2l is the size

of such loss. These specifications ensure that the expected losses, as well as the maximum
possible losses over the two periods are the same between the two models. We acknowledge
that it is a bit odd to assume L = 2l, but notice that 0 < π + δ < 2, so if we keep loss severity
fixed and only vary the probabilities (i.e., L = l and q = π + δ), we not only eliminate half
of the possibilities by constraining them as π + δ < 1, but also have a different maximum
possible loss.

The following numerical example may help to illustrate the impact of different timings
of risks. Figure 1 provides a direct impression of the differences between the two models.
Though both the maximum possible loss and the expected loss of our model are the same
as those of the benchmark model, our model not only has a higher maximum expected
utility, its optimal level of insurance is also different from that of the benchmark model.

Figure 1. A Comparison between the two frameworks (w/o saving): u(x) = x(1−γ)−1
1−γ ; W = 10;

L = 2l = 4; q = π = δ = 0.2; λ = 0.2; γ = 2.
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Next, we will formally compare the optimal insurance of our model and that of the
benchmark model. It is straightforward to show that the second-order conditions are
satisfied for both models as long as the individual is risk-averse (u′′ < 0). Hence, the
optimal levels of insurance in each setting can be characterized by the respective first-order
conditions. With this in mind, we derive the following propositions:

For a zero loading, λ = 0, we have:

Proposition 1. a. A risk-averse individual demands less than full insurance.
b. When π + δ ≥ 1, the decision maker demands less insurance coverage than when risk is

concentrated in the second period.
c. Otherwise, the decision maker purchases less/equal/more insurance when π + δ > / = / < Ω1,

where Ω1 is an endogenously determined threshold.

Proof. See Appendix A.1.

It is noteworthy that the level of consumption at the no-loss state in the second period
is not permutable. Insurance decreases the consumption gaps between the respective
loss and the no-loss states in both the current and the future periods. However, the cost
of purchasing insurance in the first period increases the consumption gap between the
no-loss state in the first period and the no-loss state in the second period, as well as the
gap between the loss state in the first period and the no-loss state in the second period.
Therefore, insurance is an imperfect way of smoothing consumption over time in this model.
The individual purchases less than full insurance even when the insurance premium is
actuarially fair, which implies Mossin’s Theorem is violated. Given the optimal level of
insurance for the benchmark model, when the sum of the probabilities of losses for the
two periods is larger than one in our model, the marginal cost of purchasing insurance is
always greater than the expected marginal benefit, suggesting a decrease in the demand
of insurance. Otherwise, the decision maker purchases less insurance than when risk is
concentrated in the second period if the sum of the probabilities of losses is larger than a
threshold and vice versa.

Let us now consider the case when there is a positive premium loading, i.e., λ > 0.
Let α̃∗ denote the optimal insurance coverage when risk is concentrated in the second
period, we have:

Proposition 2. a. Compared to the optimal level of insurance when the price is actuarially fair,
when π + δ ≥ 1

1+λ , a decision maker always demands less insurance; when π + δ < 1
1+λ ,

a non-decreasing absolute prudence is the sufficient but not necessary condition for an individual to
demand less insurance;

b. When π + δ ≤ 1−α̃∗

α̃∗(1+λ)
or π + δ ≥ 1

1+λ , the optimal demand for insurance is lower than
that when risk is concentrated in the second period;

c. Otherwise, the optimal demand for insurance is lower/equal/higher when (1+ λ)(π + δ) >
/ = / < Ω2, where Ω2 is an endogenously determined threshold.

Proof. See Appendix A.2.

Unlike Mossin’s Theorem, the individual does not purchase full insurance with an
actuarially fair premium. More importantly, the decision maker might purchase more
insurance when the premium becomes unfair. Given the optimal level of insurance when
the price is actuarially fair, a positive loading on the insurance premium increases the
marginal cost of purchasing insurance, as well as the marginal benefits of insuring in both
periods. If the probabilities of losses are large enough, the increases in the marginal cost
always outweigh the increases in marginal benefit for the loss state in the first period,
resulting in a lower demand for insurance. On the other hand, if the probabilities are small,
a non-decreasing absolute prudence1 ensures the increases in marginal cost are more than
the increases in marginal benefits for the loss states in both periods. This is important
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because standard risk aversion requires decreasing absolute prudence (Kimball (1993)),
implying that it is possible for an average decision maker to purchase more insurance when
the price becomes unfair.

When individuals make insurance decisions, they face several uncertainties. First,
they do not know whether the losses will occur or not over the two periods. Second, they
do not know how many losses will occur. Lastly, when a loss occurs, they are uncertain
whether it will happen during the first period or the second one. Therefore, the individuals
need to take into account all the uncertainties during the decision-making process.

Propositions 1 and 2 summarize such effects. Besides the deviation from Mossin’s
Theorem, it is also interesting to observe that when the cost of insurance is within a certain
range, whether the decision maker demands more or less insurance than when risk is
concentrated in the second period depends on whether the price is lower or higher than
a threshold. Notice that a higher cost of insurance does not necessarily mean a larger
premium loading; it can also mean the risk is greater, in the sense that the sum of the
probabilities of losses for the two periods is larger.

For an illustration, we compare the degree of riskiness in our model with that of
the benchmark model where risk is concentrated in the second period. In a two-period
model with a zero time discounting rate, one can multiply all the probabilities by 1/2.
Then, without loss of generality, the wealth prospects are the same ones as in the setting
of a single-period model. Therefore, we can use an illustration similar to the one in Briys
and Schlesinger (1990). First, we compare the risks in the two models. Even though we
construct our model so that the expected loss, as well as the probable maximum loss, are the
same as those of a benchmark model, the risks, as defined in Rothschild and Stiglitz (1970),
are different. Under the assumption of a zero time discounting rate, we can normalize the
sum of the probabilities for the four states to one. Then, an individual’s wealth prospects
over the two periods for both models can be illustrated as shown in Figure 2.

W − L

W

WW − l

W − l
µ

t1

t2

Figure 2. Wealth prospects over the two periods.

For the benchmark model, the individual’s wealth is W plus a lottery between W − L
and W. For our model, the individual’s wealth is the sum of two lotteries between W − l
and W. By construction, these two models have the same expected wealth, µ, over the
two periods. Essentially, from the benchmark model to our model, some of the probability
mass ( 1

2 π) is shifted from W to W − l during the first period, while in the second period
the entire probability mass ( 1

2 q) is shifted from W − L to W − l and/or W. Moreover, some
of the probability mass might shift from W to W − l, resulting in a probability mass of 1

2 δ

at W − l and a probability mass of 1
2 (1− δ) at W. Ultimately, the two probability masses in

the benchmark model, W and W − L, are shifted to W and W − l in our model. Such a shift
is a mean-preserving contraction of the wealth distribution, representing a decrease in risk.
Therefore, the situation faced by the decision maker in our model is less risky than the one
faced in the benchmark model.

Now, consider the case of insurance. Again, we normalize the sums of probabilities
to one, and the individual’s wealth prospects can be illustrated as in Figure 3. Assuming
the same level of insurance for both models, in the benchmark model, final wealth in the
first period is reduced by αP, while final wealth in the loss state in the second period is
increased by αL. In our model, final wealth in the no-loss state in the first period is reduced
by αP, while final wealth in the loss state in the second period is increased by αl. As for the
loss state in the first period, whether final wealth increases or decreases depends on the
sign of −P + l. Because the expected loss is the same for both models, the expected wealth
over the two periods is also the same given the same loading factor λ.
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W − L

W

W

t1

t2

Benchmark

W

WW − l

W − lt1

t2

Our Model

Figure 3. Wealth prospects with insurance (a).

In our model, when −P + l ≤ 0, W − αP− l + αl ≤W − l. It suggests that the effect
of insurance causes both a (mean-preserving) spread and a (mean-preserving) contraction
in the wealth distribution, so that it is less effective compared to its effects in the benchmark
model, in which it always represents a (mean-preserving) contraction. Mean-preserving
is achieved when the insurance price is actuarially fair. We have already illustrated that
there is less risk in our model. Therefore, as shown in Propositions 1 and 2, when π + δ ≥ 1
with λ = 0 or when π + δ ≥ 1

1+λ with λ > 0, the decision maker always demands less
insurance coverage than when risk is concentrated in the second period.

On the other hand, if we focus on the states that are affected by the choice of insurance
and normalize the sums of these probabilities to one, we can illustrate the individual’s
wealth prospects as in Figure 4.

W − L

W
µ1

t1

t2

Benchmark

W

W − l

W − l
µ2

t1

t2

Our Model

Figure 4. Wealth prospects with insurance (b).

µ1 = E(w|1, 2L) and µ2 = E(w|1, 2l) are the expected levels of wealth given a loss
state occurs in the second period for the benchmark model and our model, respectively.
Consider the case when λ = 0. We have µ1 = W − q

1+q L and µ2 = W − π+δ
1+δ l = W − q

1+δ L.

Thus, the optimal level of insurance for the benchmark model is ᾱ∗ = 1
1+q , and the two

probability masses of W and W− L are shifted to µ1. In our model, insurance cannot equate
the levels of wealth for all three states to µ2.

We have shown that when π + δ ≥ 1 the decision maker always demands less in-
surance compared to that in the benchmark model. If π + δ < 1, things are not quite
straightforward. Applying α = ᾱ∗ to the model, we have w1l = W − 3

2
qL

1+q < µ2,

w2l = W − 1
2

qL
1+q > µ2, and w1nl = µ1, where w1nl , w1l , and w2l are the levels of wealth for

the three states. Increasing the level of insurance will move the probability mass of w1l
closer to µ2 while moving w2l further from it. We know an increase in insurance will move
the probability mass of w1nl to the left, but because µ1 < / = / > µ2 when π < / = / > δ,
whether the probability mass will move closer or further from µ2 remains endogenously
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determined. Therefore, even though the insured risk is less risky in our model and the
insurance itself might not be as effective, the decision maker could still demand more
insurance.

2.2. Optimal Insurance and Optimal Saving

In the previous model, we exclude the possibility of saving in order to focus our
inquiry on the case when the decisions for saving do not play a role in the determination of
optimal insurance. Here, we examine the situation when the decisions for insurance and
saving are made jointly.

In addition to consuming and purchasing insurance, individuals also decide how
much they want to save or borrow at Period 1. We denote by S the individual’s savings.
Note that S stands for saving for S > 0, and borrowing for S < 0. The individual’s objective
function then changes to:

U ≡ πu(W − αP− l + αl − S) + (1− π)u(W − αP− S) + δu(W − l + αl + S) + (1− δ)u(W + S). (3)

When endogenous saving can be used to achieve consumption smoothing, the second-
period wealth in the no-loss state is affected by the individual’s decisions. Mossin’s Theorem
can be proved with this model:

Lemma 1. With endogenous saving, an individual purchases full insurance if and only if the
premium is actuarially fair.

Proof. See Appendix A.3.

This is reminiscent of the Separation Theorem obtained by Dionne and Eeckhoudt
(1984), in which endogenous saving is described implicitly. In addition, our finding extends
Mossin’s Theorem to a two-period setting in which both periods are subject to the risk of loss.
With a zero premium loading, full insurance (α = 1) equates the consumption level of the
loss state and that of the respective no-loss state in each period. The corresponding saving
choice, S = − (π+δ)l

2 , equates the levels of consumption in t = 1 and t = 2.
On the other hand, even though the levels of consumption across periods/states

can still be equalized, a positive premium loading causes insurance (or sacrificing sav-
ing/increasing borrowing to fund insurance purchase) to generate a cost of lower aggregate
consumption over time. Therefore, it is not optimal to purchase full coverage. In conclusion,
Mossin’s Theorem is restored for the model with both insurance and endogenous saving.

Figure 5 illustrates the differences between our model and the benchmark model with
the presence of endogenous saving. The expected utilities are calculated with the optimal
levels of saving given different levels of insurance. Even when the decision maker can shift
wealth between periods, the different timings of losses still have a profound effect on the
optimal demand for insurance. When compared with Figure 12, we notice that the presence
of endogenous saving increases both the maximum expected utilities and the optimal levels
of insurance for both models, but the difference between the two optimal insurance levels
still persists.

As discussed in Hofmann and Peter (2016), because both insurance and saving are
endogenous, the saving choice that is optimal for one level of insurance is typically not
optimal for other levels of insurance. Thus, we cannot directly plug the first-order condition
of one model into that of the other model and check the sign. Therefore, comparing the
optimal choice of insurance with that of the benchmark model in which risk is concentrated
in the second period seems difficult. Fortunately, using the method proposed by Gollier
(2004), we are still able to investigate the effects of having risks in both periods. The results
are summarized in the following proposition:

Proposition 3. When (1 + λ)(δ + π) > / = / < Ω3, the optimal demand for insurance
is lower/equal/higher than that when risk is concentrated in the second period, where Ω3 is an
endogenously determined threshold.
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Proof. See Appendix A.5.

Figure 5. A Comparison between the two frameworks (with saving): u(x) = x(1−γ)−1
1−γ ; W = 10;

L = 2l = 4; q = π = δ = 0.2; λ = 0.2; γ = 2.

Endogenous saving helps individuals achieve better consumption smoothing and
changes the optimal level of insurance. Individuals purchase full insurance with an actuari-
ally fair price. When there is a positive premium loading, comparing the optimal demand
for insurance with that of the benchmark model in which risk is concentrated in the second
period shows that the decision maker demands less insurance when the cost of insurance is
higher than a threshold and vice versa. Again, a higher cost of insurance can be the result
of either a larger premium loading or a larger sum of the probabilities of losses for the two
periods or both.

As for the effects on riskiness, when taking into account endogenous saving, the
decision maker can move wealth between periods. If the endowments are the same in both
periods, we have shown that the individual will borrow in the first period. The individual’s
wealth prospects are illustrated in Figure 6.

As can be seen from Figure 6, in each model, borrowing moves some of the wealth
from the second period to the first one. Thus, even though insurance might still cause a
spread in the wealth distribution, this effect can be “fixed” by borrowing from the future.
Therefore, whether the decision maker purchases more or less insurance than one would if
risk is concentrated in the second period is now determined endogenously, as we shown in
Proposition 3.



Risks 2023, 11, 73 9 of 17

W − L

W

W

t1

t2

Benchmark

W

WW − l

W − lt1

t2

effects from insurance
effects from saving

Our Model

Figure 6. Wealth prospects with insurance and saving.

3. Effects of Risk Aversion
3.1. Model with Independent Insurance Decision

Assume individual V’s utility function is more concave than that of individual U.
Her utility function can be described as v, where v is a concave transformation of u.
Following Pratt (1964), v = k(u), with k′ > 0, k′′ < 0. As mentioned in Hofmann and Peter
(2016), the concavity of the individual’s utility function in a two-period model measures
the resistance to consumption fluctuations across both different states and periods.

Proposition 4. Let individual V be more risk averse than individual U. The sufficient (but not
necessary) condition for V to purchase more insurance than U is that U’s consumption in the loss
state of the first period is not less than in the loss state of the second period.

Proof. See Appendix A.6.

This finding is similar to the result in Hofmann and Peter (2016), where they suggest
the individual with a more concave utility invests more in self-insurance if and only if
individual U’s Period 1 consumption exceeds her Period 2 consumption in the loss state.
However, unlike Hofmann and Peter (2016), where the condition is necessary and sufficient,
the condition in our finding is sufficient but not necessary. This is similar to the finding in
Seog and Hong (2022)’s two-period model with multiple loss states in the second period.
Our model, allowing the loss to happen in both periods, provides a condition that is based
on the relationship between the consumption levels of the two loss states. If individual
U’s level of consumption in the loss state of the first period is not less than in the loss state
of the second period, purchasing more insurance will close the gap between these two
levels of consumption. On the other hand, if individual U’s level of consumption in the
loss state of the first period is less than in the loss state of the second period, reducing the
amount of insurance purchased will close the gap between these two levels of consumption.
Because individual V has a larger desire to smooth consumption, these reductions in the
consumption volatility are beneficial to her.

3.2. Model with Endogenous Saving

Again, consider individual V whose utility function is specified as v = k(u), with
k′ > 0 and k′′ < 0.

Proposition 5. When endogenous saving presents, an individual with a more concave utility
a. Purchases more insurance when (1 + λ)(π + δ) < π

1−δ ;
b. Never purchases more insurance when the price is actuarially fair;
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c. Purchases less insurance when (1 + λ)(π + δ) > max(1, π
1−δ ).

Proof. See Appendix A.7.

Note that both conditions are sufficient but not necessary. The above proposition
shows that with endogenous saving, a decision maker with a more concave utility does
not always demand more insurance. In fact, she might even purchase less insurance. This
finding is different from the results in Hofmann and Peter (2016) and Seog and Hong (2022),
where they show an agent with more concave utility always selects more self-insurance.
When the cost of insurance is high and the probability of loss during the second period
is relatively low compared to that during the first period, the “risk” of no loss occurring
during the second period causes the individual to reduce her insurance demand. Even
though endogenous saving helps the individual achieve consumption smoothing across
periods, unlike the case where risk is concentrated in the second period and the choice of
insurance is entirely devoted to mitigating the risk, here the choice of insurance still plays a
part in improving the individual’s consumption stream. Recall that the concavity of the
utility function in a two-period model measures the resistance to consumption fluctuations
across both different states and periods. Hence, an increase in the concavity might cause the
expected cost of purchasing insurance and having a loss during the first period outweigh
the expected benefit of having insurance during the second period, thereby causing the
individual to purchase less insurance.

4. Conclusions

The two-period model we present in this paper better describes the time structure of
paying an insurance premium upfront and allows the possibility of having multiple losses
over the two periods. The model also distinguishes the timing of the losses. In addition,
endogenous saving enriches people’s options, enables them to smooth their levels of
consumption across periods/states, and achieve a better total outcome.

There are several interesting findings generated from this structure. First of all, we
show that Mossin’s Theorem is violated when saving is absent. People purchase less than
full insurance even with an actuarially fair price. More importantly, people might increase
their insurance purchases when the price becomes unfair. Once we introduce endogenous
saving into the model, people have the ability to smooth their levels of consumption across
periods and states and are able to achieve the first-best outcome. Mossin’s Theorem is
restored for this setting. Insurance and saving jointly allow enough degrees of freedom
to equalize levels of consumption in all states and periods, but without a “fair” insurance
price, people might not want to. We derive conditions for which the decision maker
demands more or less insurance than when risk is concentrated in the second period and
illustrate the effects on riskiness. We also derive the conditions under which a more risk-
averse individual demands more insurance and the condition when the individual might
even reduce her insurance purchase. We find that though the insured risk is less risky
in our model compared to when risk is concentrated in the second period and insurance
alone does not always unambiguously reduce risk, the decision maker could still demand
more insurance.

The results shed new light on how we can interpret some empirically observed non-
optimal (under a one-period expected utility framework) choices of insurance coverage.
In order to improve the efficiency of insurance markets, policy makers and designers of
insurance policies need to identify the impacts of multiple risks and the timings of risks on
insurance demand. The present article examines insurance demand in a simple two-period
model with coinsurance and only two states of the world. Recent research shows that a
result established for coinsurance may not hold for other types of insurance (insurance with
deductibles or upper limits) (Hong (2019)). It will be interesting to see how the optimal
outcomes would change with other types of insurance and with different assumptions on
the distribution of losses. Other risk management instruments such as self-protection could
also be analyzed.
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Appendix A

Appendix A.1. Proof of Proposition 1

When the premium is actuarially fair (i.e., λ = 0, P = (π + δ)l), we can rewrite the
first-order derivative with respect to α as:

∂U
∂α |λ=0 = π(−P + l)u′(W − αP− l + αl) + (1− π)(−P)u′(W − αP)

+δlu′(W − l + αl) = π(−P + l)u′(W − αP− l + αl)− π(−P)u′(W − αP)

−(πl + δl)u′(W − αP) + δlu′(W − l + αl) = π(−P + l)u′(W − αP− l + αl)

−π(−P + l)u′(W − αP)− δlu′(W − αP) + δlu′(W − l + αl) = θ1 + θ2,

(A1)

where
θ1 = π(−P + l)u′(W − αP− l + αl)− π(−P + l)u′(W − αP), (A2)

and
θ2 = −δlu′(W − αP) + δlu′(W − l + αl). (A3)

It is clear that if α = 1, θ1 = 0, and the sign of the derivative solely depends on the
sign of θ2, which can be rewritten as:

θ2|α=1 = −δlu′(W − P) + δlu′(W), (A4)

and it is negative because of u′′ < 0. Therefore, if α = 1, the first-order derivative is
negative, which suggests full insurance is too much.

Now, consider the optimal level of coverage for the two-period model which only the
second period is subject to a possible loss. It is straightforward to solve for the optimal
coverage given an actuarially fair price, which gives us ᾱ∗ = 1

1+q . Plug this into (A1), and
we can rewrite it as:

∂U
∂α
|λ=0,α=ᾱ∗ = π(−P + l)[u′(W − 3

2
αP)− u′(W − αP)]− δl[u′(W − αP)− u′(W − 1

2
αP)], (A5)

Again, because u′′ < 0, it is clear that (A5) is always negative when −P + l ≤ 0,
which requires π + δ ≥ 1. When π + δ < 1, (A5) is negative/equal to zero/positive when

π + δ > / = / < Ω1, where Ω1 = 1− δ[u′(W−αP)−u′(W− 1
2 αP)]

π[u′(W− 3
2 αP)−u′(W−αP)]

.

Appendix A.2. Proof of Proposition 2

Denote α∗ as the optimal level of insurance when λ = 0, so we have:

∂U
∂α |α=α∗ = π[−(πl + δl) + l]u′[W − α(πl + δl)− l + αl]

+(1− π)[−(πl + δl)]u′[W − α(πl + δl)] + δlu′(W − l + αl) = 0.
(A6)

Plugging α∗ into the first-order derivative when λ > 0 yields:

∂U
∂α |α=α∗ = π[−(1 + λ)(πl + δl) + l]u′[W − α(1 + λ)(πl + δl)− l + αl]

+(1− π)[−(1 + λ)(πl + δl)]u′[W − α(1 + λ)(πl + δl)] + δlu′(W − l + αl).
(A7)
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Because |α=α∗u′[W − α(1 + λ)(πl + δl) − l + αl] > u′[W − α(πl + δl) − l + αl] and
|α=α∗u′[W − α(1 + λ)(πl + δl)] > u′[W − α(πl + δl)], (A7) is negative as long as
π + δ ≥ 1

1+λ .
We have proved in Proposition 1 that α∗ < 1, so |α=α∗ [W − α(πl + δl) − l + αl] <

[W − α(πl + δl)]. When π + δ < 1
1+λ , because |α=α∗ [W − α(πl + δl)− l + αl]− [W − α(1 +

λ)(πl + δl) − l + αl] = [W − α(πl + δl)] − [W − α(1 + λ)(πl + δl)], (A7) is negative as
long as absolute prudence, − u′′′

u′′ , is non-decreasing.
Consider the case when the risk is concentrated in the second period. The first-order

condition for this case can be written as:

∂Ub
∂α

= −(1 + λ)qLu′[W − α(1 + λ)qL] + qLu′(W − L + αL) = 0. (A8)

Denoting the optimal solution for (A8) as α̃∗, we have:

|α=α̃∗(1 + λ)qLu′[W − α(1 + λ)qL] = qLu′(W − L + αL). (A9)

To simplify the notation, we denote:

ũ′1l = |α=α̃∗u′(W − αP− l + αl),

ũ′1nl = |α=α̃∗u′(W − αP),

ũ′2l = |α=α̃∗u′(W − l + αl),

ũ′2L = |α=α̃∗u′(W − L + αL).

Recall that qL = πl + δl. Plugging (A9) into the first-order derivative of U with respect
to α yields:

∂U
∂α |α=α̃∗ = π(−P)[ũ′1l − ũ′1nl ] + [−(πl + δl)]ũ′2L + δlũ′2l + πlũ′1l

= −πP[ũ′1l − ũ′1nl ]− δl[ũ′2L − ũ′2l ]− πl[ũ′2L − ũ′1l ].
(A10)

When π + δ ≤ 1−α̃∗

α̃∗(1+λ)
, |α=α̃∗W − L + αL ≤ W − αP− l + αl, and (A10) < 0. When

π + δ > 1−α̃∗

α̃∗(1+λ)
, (A10) < / = / > 0 if (1 + λ)(π + δ) > / = / < Ω2, where Ω2 =

−π[ũ′1l−ũ′2L ]+δ[ũ′2L−ũ′2l ]

π[ũ′1l−ũ′1nl ]
.

On the other hand, from (A9) we also have |α=α̃∗u′(W − αP) < u′(W − L + αL), thus:

∂U
∂α
|α=α̃∗ < π(l − P)[ũ′1l − ũ′1nl ]− δl[ũ′2L − ũ′2l ], (A11)

which is negative as long as l − P ≤ 0, or, π + δ ≥ 1
1+λ .

Appendix A.3. Proof of Lemma 1

First-order conditions with respect to α and S are, respectively,

∂U
∂α = π(−P + l)u′(W − αP− l + αl − S) + (1− π)(−P)u′(W − αP− S) + δlu′(W − l + αl + S)

= 0,
(A12)

and

∂U
∂S = −πu′(W − αP− l + αl − S)− (1− π)u′(W − αP− S) + δu′(W − l + αl + S) + (1− δ)u′(W + S)

= 0.
(A13)

It is easy to see that the second-order condition holds, so we have a set of maximum
solutions for optimal insurance and saving. It is straightforward to show that α = 1 and
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S = − (π+δ)l
2 solve both first-order conditions when λ = 0. The individuals are able to

equalize their levels of consumption in all periods/states to W − (π+δ)l
2 .

Next, assume the individuals still purchase full insurance (α = 1), given an unfair
premium, so

∂U
∂S
|α=1 = −πu′(W − P− S)− (1− π)u′(W − P− S) + δu′(W + S) + (1− δ)u′(W + S) = 0, (A14)

which yields S = − P
2 . The existing of capital market allows us to shift the premium

payment across periods. Thus, we can still equate all the consumption levels across states
and periods. However, if we plug this result back to the first-order condition with respect
to insurance, we have

∂U
∂α |α=1 = π(−P + l)u′(W − P

2 ) + (1− π)(−P)u′(W − P
2 ) + δlu′(W − P

2 )

= −λ(π + δ)lu′(W − P
2 ) < 0.

(A15)

So full insurance is too much, which leads to the conclusion that purchasing full
insurance is never optimal with endogenous saving.

Appendix A.4. A Comparison between Figures 1 and 5

Figure A1. A Comparison between Figures 1 and 5 (with and w/o saving). u(x) = x(1−γ)−1
1−γ ; W = 10;

L = 2l = 4; q = π = δ = 0.2; λ = 0.2; γ = 2.

Appendix A.5. Proof of Proposition 3

Gollier (2004) proves the following Lemma:

Lemma A1. Let f : R2 → R be a concave function in the variables (α, S), that is, fαα < 0 and
fαα fSS − f 2

αS > 0, which is maximal at (α∗, S∗). Let ᾱ ∈ R be a value we want to compare α∗ with.
Then, α∗ > ᾱ if and only if fα(ᾱ, Ŝ) > 0 where Ŝ is the value that maximizes f (ᾱ, S).
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Let α̂∗ be the level of optimal insurance when loss is concentrated in the second period
and S̄ be the level of saving that maximize U at α̂∗. Hence, S̄ solves the following first-order
condition:

∂U
∂S |α=α̂∗ = −πu′(W − αP− l + αl − S)− (1− π)u′(W − αP− S)

+δu′(W − l + αl + S) + (1− δ)u′(W + S) = 0.
(A16)

According to Lemma 2, α∗ > α̂∗ if and only if the following is positive:

∂U
∂α |α=α̂∗ ,S=S̄ = π(−P + l)u′(W − αP− l + αl − S)

+(1− π)(−P)u′(W − αP− S) + δlu′(W − l + αl + S).
(A17)

To simplify the notation, we denote:

û′1l = |α=α̂∗ ,S=S̄u′(W − αP− l + αl − S),

û′1nl = |α=α̂∗ ,S=S̄u′(W − αP− S),

û′2l = |α=α̂∗ ,S=S̄u′(W − l + αl + S),

û′2nl = |α=α̂∗ ,S=S̄u′(W + S).

Plugging (A16) into (A17) yields:

∂U
∂α
|α=α̂∗ ,S=S̄ = πlû′1l + δ(l − P)û′2l − (1− δ)Pû′2nl . (A18)

Thus, the optimal level of insurance decreases/does not change/increases when

(1 + λ)(π + δ) > / = / < Ω3, where Ω3 =
πû′1l+δû′2l

δû′2l+(1−δ)û′2nl
.

Appendix A.6. Proof of Proposition 4

From v = k(u), we have v′ = k′(u)(u′). Hence, the first order derivative for the
individual V is as follow:

∂V
∂α = π(−P + l)k′[u(W − αP− l + αl)]u′(W − αP− l + αl)

+(1− π)(−P)k′[u(W − αP)]u′(W − αP) + δlk′[u′(W − l + αl)]u′(W − l + αl).
(A19)

Denote the optimal level of insurance for individual U as α∗. Individual V has
incentive to purchase more insurance than individual U if the following inequality holds:

∂v
∂α
|α=α∗ > 0. (A20)

We have shown that the decision maker always purchases less than full insurance,
regardless of whether the insurance price is actuarially fair or not. Thus, we have the
following relationship between the levels of consumption:

W − α∗P− l + α∗l < W − α∗P, (A21)

which implies:
k′[u(W − α∗P− l + α∗l)] > k′[u(W − α∗P)]. (A22)
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If W− α∗P− l + α∗l ≥W− l + α∗l, then k′[W− α∗P− l + α∗l] ≤ k′[u(W− α∗P)], and
we have the following:

∂V
∂α |α=α∗ > π(−P + l)k′[u(W − αP− l + αl)]u′(W − αP− l + αl)

+(1− π)(−P)k′[u(W − αP− l + αl)]u′(W − αP)

+δlk′[u(W − αP− l + αl)]u′(W − l + αl)

= k′[u(W − αP− l + αl)] du
dα |α=α∗ = 0.

(A23)

Therefore, W − α∗P − l + α∗l ≥ W − l + α∗l is the sufficient condition for individ-
ual V to purchase more insurance. Notice that because of (A22), it is possible that the
inequality (A23) still holds when W − α∗P− l + α∗l < W − l + α∗l.

Appendix A.7. Proof of Proposition 5

Let α∗ be the level of optimal insurance for individual U and Ŝ be the level of sav-
ing that maximize individual V’s utility at α∗. Hence, Ŝ solves the following first-order
condition for individual V:

∂V
∂S |α=α∗ = −πv′(W − αP− l + αl − S)− (1− π)v′(W − αP− S)

+δv′(W − l + αl + S) + (1− δ)v′(W + S) = 0.
(A24)

Denote ᾱ as the optimal insurance for individual V. According to Lemma 1, α∗ > ᾱ if
and only if the following is positive:

∂V
∂α |α=ᾱ,S=Ŝ = π(−P + l)v′(W − αP− l + αl − S)

+(1− π)(−P)v′(W − αP− S) + δlv′(W − l + αl + S).
(A25)

To simplify the notations, we denote:

v̂′1l = |α=ᾱ,S=Ŝv′(W − αP− l + αl − S),

v̂′1nl = |α=ᾱ,S=Ŝv′(W − αP− S),

v̂′2l = |α=ᾱ,S=Ŝv′(W − l + αl + S),

v̂′2nl = |α=ᾱ,S=Ŝv′(W + S).

From (A24), we have:

(1− π)v̂′1nl = −πv̂′1l + δv̂′2l + (1− δ)v̂′2nl , (A26)

and

πv̂′1l = −(1− π)v̂′1nl + δv̂′2l + (1− δ)v̂′2nl > −(1− π)v̂′1l + δv̂′2l + (1− δ)v̂′2nl . (A27)

From (A27), we have:

v̂′1l > δv̂′2l + (1− δ)v̂′2nl > v̂′2nl . (A28)
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Plugging (A26) into (A25) gives us the following:

∂V
∂α
|α=ᾱ,S=Ŝ = πlv̂′1l + (1− δ)(−P)v̂′2nl + δ(l − P)v̂′2l , (A29)

which is positive if l > P and πl > (1− δ)P. Therefore, individual V purchases more insur-
ance if (1 + λ)(π + δ) < min(1, π

1−δ ). On the other hand, if (1 + λ)(π + δ) > max(1, π
1−δ ),

individual V demands less insurance. Notice that both conditions are sufficient but not
necessary.

Now, assume π
1−δ > 1, so the condition to purchase more insurance becomes

(1 + λ)(π + δ) < 1. This is equivalent to (π + δ) < 1
(1+λ)

≤ 1, where 1
(1+λ)

= 1 if f
λ = 0. This contradicts the assumption of π

1−δ > 1, or equivalently, (π + δ) > 1. Hence, in
order for the condition to hold, it must be the case that π

1−δ < 1, or equivalently, (π + δ) < 1.
Then, the condition to purchase more insurance reduces to (1 + λ)(π + δ) < π

1−δ .
Furthermore, when λ = 0, the above condition becomes π + δ < π

1−δ , or π + δ > 1.
This contradicts what we just showed above. Hence, when the insurance price is actuarially
fair, one would never purchase more insurance.

Notes
1 According to Kimball (1990), the absolute prudence measures the strength of the precautionary saving motive.
2 A figure with direct comparison between Figures 1 and 5 is provided in Appendix A.4.
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