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Abstract: Traditionally, Parisian ruin is said to occur when the insurer’s surplus process has stayed
below level zero continuously for a certain grace period. Inspired by this concept, in this paper we
propose a modification by assuming that once a grace period has been granted when the surplus
becomes negative, the surplus level will not be monitored continuously in the interim, but instead it
will be checked at the end of the grace period to see whether the business has recovered. Under an
Erlang distributed grace period, a computationally tractable formula for the Gerber–Shiu expected
discounted penalty function is derived. Numerical examples regarding the modified Parisian ruin
probability are also provided.
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1. Introduction

In this paper, the evolution of the insurer’s surplus is modeled by the compound
Poisson risk process with dynamics

U(t) = u + ct−
N(t)

∑
i=1

Yi, t ≥ 0,

where u = U(0) ≥ 0 is the initial surplus, c > 0 is the premium rate per unit time,
{N(t)}t≥0 is a Poisson process with the rate λ > 0, and {Yi}∞

i=1 form a sequence of
independent and identically distributed (i.i.d.) claim amounts independent of {N(t)}t≥0.
It is further assumed that Y1 is a positive continuous random variable with density fY and
Laplace transform f̃Y. The positive security loading (or net profit) condition of the model
is c > λE[Y1]. In the rest of the paper, we shall use Pu and Eu, respectively, to denote the
probability and expectation taken under the initial condition U(0) = u.

While the classical ruin time τCL = inf{t ≥ 0 : U(t) < 0} (with the convention
inf ∅ = +∞) is defined to be the first time the surplus process falls below zero, the resulting
deficit at ruin |U(τCL)| may not be large, and one may argue that it is still worthwhile
for the insurer to continue its business as long as it is profitable in the long ruin (so that
it will recover with probability one). In the compound Poisson model, Dassios and Wu
(2008a, 2008b) first proposed that the Parisian ruin time is defined as the first time when the
surplus process has continuously remained negative for a prescribed period d > 0 granted
by the regulator. They derived the exact Laplace transform of the Parisian ruin time for
exponential claims and the asymptotic ruin probability for light-tailed claims, and further
results in the same model were subsequently obtained by, e.g., Czarna et al. (2017) and
Landriault et al. (2019, Section 3.3). The concept of Parisian ruin was indeed motivated
by Parisian options in finance (e.g., Chesney et al. (1997) and Schröder (2003)), where an
option is knocked in (or out) if the stock price has stayed above or below a certain level
for a prescribed amount of time. Parisian ruin is indeed a more consistent representation
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of bankruptcy and liquidation as described by Chapters 7 and 11 of the US Bankruptcy
Code in corporate finance. In essence, instead of immediate liquidation, a business may
remain operational even if it is unable to fulfill its obligations in the midst of a crisis, during
which it is given a chance by the regulator for debt restructuring. Detailed motivation and
justification can be found in Li et al. (2014, 2020), particularly in a ruin theory context.
Parisian ruin problems have also been analyzed by, e.g., Czarna and Palmowski (2011),
Loeffen et al. (2013, 2018), Czarna (2016), and Lkabous et al. (2017) in Lévy insurance
risk processes and by Wong and Cheung (2015) in a renewal risk model with exponential
claims. In order to obtain mathematically tractable results, some researchers have replaced
the deterministic grace period by a sequence of i.i.d. stochastic grace periods. For example,
Landriault et al. (2014), Baurdoux et al. (2016) and Bladt et al. (2019) considered mixed
Erlang, exponential and phase-type distributions, respectively, for the grace period. In
particular, the case of an Erlang grace period is of great importance due to its usefulness in
approximating a deterministic time horizon. This Erlangization technique, first proposed
by, e.g., Carr (1998) and Kyprianou and Pistorius (2003) in option pricing, has been gaining
popularity in insurance risk processes in the analyses of finite-time ruin probabilities (e.g.,
Asmussen et al. (2002), Stanford et al. (2005) and Ramaswami et al. (2008)) and periodic
dividend decisions (e.g., Albrecher et al. (2011a) and Zhang and Cheung (2016)). In risk
models with Parisian implementation delays (e.g., Landriault et al. (2014) and Cheung
and Wong (2017)), this amounts to replacing the deterministic grace period d > 0 by an
Erlang(n) random variable with rate parameter γ > 0. By fixing the mean n/γ = d and
letting n→ ∞, it is known that the Erlang variable converges in distribution to a probability
mass at d. The aforementioned references have demonstrated the excellent performance of
Erlangization. On the other hand, the case of exponential Parisian ruin coincides with the
following two models:

(i) A model where the event of ruin is only checked periodically (Albrecher et al. 2013)
by a Poissonian observer with nice identities known from Albrecher and Ivanovs
(2013, 2017) and Albrecher et al. (2016) and exotic ruin quantities from Landriault
et al. (2019, Section 3.2) and Li and Zhou (2022);

(ii) A model where the insurer declares bankruptcy at a constant rate (that is the recip-
rocal of the mean of the exponential grace period) as in Albrecher et al. (2011b),
Gerber et al. (2012) and Albrecher and Lautscham (2013).

In the study of Parisian ruin problems in the literature, it is implicitly assumed that
the insurance business is monitored continuously during the grace period so that the event
of Parisian ruin can be checked. However, as mentioned in, e.g., Broadie et al. (2007,
footnote 14), the rehabilitation process lasts for 2.5 years on average as the business under-
goes reorganization. In view of this, we believe the assumption that information in relation
to solvency is accessible at a granular level over such a long period is rather unrealistic.
Even access to such information could be feasible from the insurer’s perspective, this is
rarely the case when it comes to the regulator’s point of view. In general, regulators likely
require financial reports on a regular basis such that snapshots of the aggregated financial
status can be acquired exclusively at specific time points depending on the regulations. In
order to partially capture the above feature, in this paper we suggest a modification to the
definition of Parisian ruin as follows. While it is still assumed that a grace period is granted
when the surplus falls below zero, we propose that the surplus process will not be inspected
until the end of the grace period. In other words, the surplus level at the end of the grace
period alone is required and utilized for determining whether the business returns to a
good shape: if the surplus is non-negative, then business resumes as normal, but if the
surplus is negative, then ruin is declared. If the surplus level becomes negative again after
the resumption of normal business, then another grace period is granted again and the
procedure repeats. While one would argue that it is more reasonable to have multiple
inspection points within a grace period, such a mathematically complex situation lies some-
where between (i) the usual assumption of continuous monitoring; and (ii) our proposed
model of a single inspection at the end of a grace period. Therefore, it is of theoretical
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interest to analyze the proposed model as a starting point. Li et al. (2020) pointed out
that the descriptions of the rehabilitation feature are far from unified in global regulatory
frameworks. Our focus is to study the effect (e.g., on the ruin probability) when one tweaks
the definition of Parisian ruin and it is not our intention to claim that the proposed model
is more suitable in practice. Moreover, the grace period in our model will be assumed to be
Erlang distributed. On one hand, the Erlangization method is thus applicable to mimic a
deterministic grace period. On the other hand, this also allows us to introduce randomness
into the conversion from Chapter 11 (reorganization) to Chapter 7 (liquidation), as Antill
and Grenadier (2019) argued that modeling such “conversion as exogenous and random is
a reasonable approximation of reality”.

The rest of the paper is organized as follows. Section 2.1 is devoted to the mathematical
construction of the modified Parisian ruin time and the definition of the key quantity
of interest, namely the expected discounted penalty function proposed by Gerber and
Shiu (1998). Section 2.2 provides some preliminary results from Albrecher et al. (2013)
concerning the discounted distribution of the increment of the process within an Erlang
time horizon. In Section 3, a general expression for the the Gerber–Shiu function is derived,
and explicit formulas for the components involved are provided when the claims follow a
combination of exponentials. Numerical examples are given in Section 4 to illustrate (i) the
difference between the standard Parisian ruin probability and the ruin probability under
our proposed model; and (ii) the effect of the claim distribution on the modified Parisian
ruin probability. Section 5 ends the paper with some discussions on possible extensions.

2. Problem Formulation and Preliminaries
2.1. Modified Parisian Ruin Time and Gerber–Shiu Function

With Erlangization in mind, we let {Tk}∞
k=1 be an i.i.d. sequence of Erlang(n) random

variables with common density

fT(t) =
γntn−1e−γt

(n− 1)!
, t > 0,

where γ > 0 is the rate parameter. Here, Tk refers to the k-th grace period accompanied by
the k-th regulatory check. We construct a sequence of stopping times {τk}∞

k=1 via

τk =

{
inf{t ≥ 0 : U(t) < 0}, k = 1.
inf{t ≥ τk−1 + Tk−1 : U(t) < 0}, k = 2, 3, 4, . . . .

Clearly, τk marks the starting time of the k-th grace period, and in particular τ1 = τCL is
the classical ruin time. We further define k∗ = inf{k ≥ 1 : U(τk + Tk) < 0}, which keeps
track of the first regulatory check where a negative surplus is observed at the end of the
corresponding grace period. The modified Parisian ruin time is therefore ζ = τk∗ + Tk∗ .
Figure 1 illustrates the random times defined above in relation to the modified Parisian
ruin time for a particular sample path.

Recall that, under the classical ruin time τCL, the Gerber–Shiu expected discounted
penalty function (Gerber and Shiu 1998) where the penalty only depends on the deficit is
defined by

φδ,CL(u) = Eu[e−δτCL w(|U(τCL)|)1{τCL<∞}], u ≥ 0. (1)

Here, δ ≥ 0 can be regarded as the force of interest or the Laplace transform argument for τCL,
and w(·) is the “penalty function”. It is also known that φδ,CL(u) admits the representation

φδ,CL(u) =
∫ ∞

0
w(y)hδ,CL(y|u)dy, u ≥ 0, (2)

where the general formula for the discounted density hδ,CL(y|u) of |U(τCL)| can be ob-
tained by integrating out the first argument in Equation (2.40) of Gerber and Shiu (1998)
concerning the discounted joint density of the surplus prior to ruin and the deficit at ruin.
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To analyze the modified Parisian ruin time, we shall study the Gerber–Shiu function
for which the penalty only depends on the deficit observed at such ruin time, namely

φδ(u) = Eu[e−δζw(|U(ζ)|)1{ζ<∞}], u ≥ 0. (3)

The discounted density of the associated deficit |U(ζ)| is defined by hδ(y|u), which satisfies

φδ(u) =
∫ ∞

0
w(y)hδ(y|u)dy, u ≥ 0. (4)

If δ = 0 and w(·) ≡ 1, then φδ(u) reduces to the modified Parisian ruin probability
ψ(u) = Pu{ζ < ∞}.

Figure 1. Sample path illustrating the construction of the modified Parisian ruin time.

2.2. Discounted Density of the Increment in a Grace Period

Note that when the surplus process downcrosses level zero at time τk (where k = 1, 2, . . .),
a shortfall of magnitude |U(τk)| is recorded. In order to tell whether ruin or recovery occurs
at time τk + Tk, we need to know the difference between the surplus levels at time τk and at
time τk + Tk. By virtue of spatial homogeneity, the change U(τk)−U(τk + Tk) has the same
distribution as ∑

N(T)
i=1 Yi − cT (where T is a generic random variable with density fT(·)).

Due to the discount factor embedded in the Gerber–Shiu function, we have to keep track of
the time T as well. From Section 3.2 of Albrecher et al. (2013), the joint Laplace transform
of (T, ∑

N(T)
i=1 Yi − cT) can be represented as

E
[

e−δT−s(∑
N(T)
i=1 Yi−cT)

]
=
∫ ∞

−∞
e−sygδ(y)dy, (5)

where gδ(y) (for −∞ < y < ∞) is the discounted density of the increment ∑
N(T)
i=1 Yi − cT. It

is convenient to decompose gδ(y) as

gδ(y) = gδ,−(−y)1{y<0} + gδ,+(y)1{y>0} (6)

so that gδ,−(·) (resp. gδ,+(·)) represents the case where ∑
N(T)
i=1 Yi − cT is negative (resp.

positive) and there is a net gain (resp. net loss) during a grace period. While general
expressions for gδ,−(·) and gδ,+(·) are available in Albrecher et al. (2013, Section 3.2), the
key to the derivation of the Gerber–Shiu function in Section 3.1 relies on the “Erlang” form
of the density gδ,−(y) in Equation (3.15), therein given by

gδ,−(y) =
n

∑
j=1

Aj
yj−1e−ργ+δy

(j− 1)!
, y > 0, (7)
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where Ajs are constants that do not depend on y, and ργ+δ is a Lundberg root. Specifically,
for x ≥ 0, we define ρx to be the unique non-negative root of the Lundberg-type equation

cs− (λ + x) + λ f̃Y(s) = 0. (8)

Since γ > 0 (and hence γ+ δ > 0), it is known that ργ+δ > 0. We shall delay the discussions
about what Ajs and gδ,+(·) exactly are to the detailed example in Section 3.2 when claims
are distributed as a combination of exponentials.

3. Main Results
3.1. General Expressions for Gerber–Shiu Function and Discounted Density of Deficit

We begin with the following theorem, which gives a general expression concerning
the Gerber–Shiu function under our modified Parisian ruin time.

Theorem 1. For a given choice of penalty function w(·), the Gerber–Shiu function φδ(u) defined
in (3) admits the representation

φδ(u) = χδ(u) +
n

∑
j=1

(
n−j+1

∑
k=1

Aj+k−1 ϕδ,k(u)

)
ηδ,j u ≥ 0. (9)

The intermediate quantities appearing above can be specified as follows. First, χδ(u) is given by

χδ(u) =
∫ ∞

0
w(z)ξδ(z|u)dz, u ≥ 0, (10)

where the function

ξδ(z|u) =
∫ z

0
gδ,+(z− y)hδ,CL(y|u)dy +

∫ ∞

z
gδ,−(y− z)hδ,CL(y|u)dy, u, z ≥ 0, (11)

is expressed in terms of (i) the discounted densities gδ,−(·) and gδ,+(·) of the increment defined
in Section 2.2; and (ii) the discounted density hδ,CL(·|u) of the classical deficit |U(τCL)| defined
via (2). Second, {Ai}n

i=1 are constants associated with the representation (7) of gδ,−(·). Third,
the quantity

ϕδ,k(u) =
∫ ∞

0

yk−1e−ργ+δy

(k− 1)!
hδ,CL(y|u)dy, u ≥ 0; k = 1, 2, . . . , n, (12)

is the classical Gerber–Shiu function φδ,CL(u) in (1) evaluated under the penalty function
w(y) = yk−1e−ργ+δy/(k− 1)!, where ργ+δ is the unique positive root of (8) at x = γ + δ. Fourth,
the constants {ηδ,j}n

j=1 can be solved from the system of n linear equations

ηδ,i =
∫ ∞

0

ui−1e−ργ+δu

(i− 1)!
χδ(u)du +

n

∑
j=1

(
n−j+1

∑
k=1

Aj+k−1

∫ ∞

0

ui−1e−ργ+δu

(i− 1)!
ϕδ,k(u)du

)
ηδ,j, i = 1, 2, . . . , n. (13)

Proof. Modified Parisian ruin cannot occur if the surplus process does not fall below zero.
Therefore, we first condition the deficit |U(τCL)| at the classical ruin time τCL to be equal to
y > 0. There are three cases depending on the increment of the surplus process during the
grace period from time τCL to time τCL + T1:

1. if there is a positive net loss of z > 0 (with discounted density gδ,+(·)), then ruin
happens with a deficit of |U(ζ)| = y + z;

2. if there is a positive net gain of z ∈ (0, y) (with discounted density gδ,−(·)), then
the gain is insufficient for the process to recover to a non-negative surplus and ruin
happens with a deficit of |U(ζ)| = y− z; and

3. if there is a positive net gain of z ≥ y, then the process recovers and restarts at the
newly achieved non-negative surplus level z− y.
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With the above arguments, we arrive at the integral equation

φδ(u) =
∫ ∞

0

(∫ ∞

0
w(y + z)gδ,+(z)dz +

∫ y

0
w(y− z)gδ,−(z)dz +

∫ ∞

y
φδ(z− y)gδ,−(z)dz

)
hδ,CL(y|u)dy. (14)

To simplify the above equation, it is first noted that the sum of the first two double integrals
can be expressed as∫ ∞

0

(∫ ∞

0
w(y + z)gδ,+(z)dz +

∫ y

0
w(y− z)gδ,−(z)dz

)
hδ,CL(y|u)dy

=
∫ ∞

0

(∫ ∞

y
w(z)gδ,+(z− y)dz

)
hδ,CL(y|u)dy +

∫ ∞

0

(∫ y

0
w(z)gδ,−(y− z)dz

)
hδ,CL(y|u)dy

=
∫ ∞

0
w(z)

(∫ z

0
gδ,+(z− y)hδ,CL(y|u)dy +

∫ ∞

z
gδ,−(y− z)hδ,CL(y|u)dy

)
dz

= χδ(u), (15)

where the definitions (10) and (11) have been used in the last equality. Meanwhile, with the
help of (7), the third integral inside the big bracket of (14) is found to be

∫ ∞

y
φδ(z− y)gδ,−(z)dz =

n

∑
j=1

Aj

(j− 1)!

∫ ∞

0
φδ(z)(y + z)j−1e−ργ+δ(y+z)dz

=
n

∑
j=1

Aj

(j− 1)!

j

∑
k=1

(
j− 1
k− 1

)(∫ ∞

0
zj−ke−ργ+δzφδ(z)dz

)
yk−1e−ργ+δy

=
n

∑
k=1

yk−1e−ργ+δy

(k− 1)!

n

∑
j=k

Aj

∫ ∞

0

zj−ke−ργ+δz

(j− k)!
φδ(z)dz

=
n

∑
k=1

yk−1e−ργ+δy

(k− 1)!

n−k+1

∑
j=1

Aj+k−1

∫ ∞

0

zj−1e−ργ+δz

(j− 1)!
φδ(z)dz

=
n

∑
j=1

ηδ,j

n−j+1

∑
k=1

Aj+k−1
yk−1e−ργ+δy

(k− 1)!
,

where

ηδ,j =
∫ ∞

0

zj−1e−ργ+δz

(j− 1)!
φδ(z)dz, j = 1, 2, . . . , n. (16)

Utilizing the definition (12), the last double integral in (14) becomes

∫ ∞

0

(∫ ∞

y
φδ(z− y)gδ,−(z)dz

)
hδ,CL(y|u)dy =

n

∑
j=1

ηδ,j

n−j+1

∑
k=1

Aj+k−1 ϕδ,k(u).

This, together with (15), confirms that the representation (9) is valid.
Note that each ηδ,j in (16) is expressed in terms of the Gerber–Shiu function φδ(·) itself

and has not been completely determined. It remains to show that {ηδ,j}n
j=1 satisfies the

linear equations specified in (13). This is seen to be true by multiplying both sides of (9) by
ui−1e−ργ+δu/(i− 1)! (for each i = 1, 2, . . . , n) and then integrating with respect to u from 0
to ∞.

The system of linear equations in (13) can indeed be rewritten in a more compact
manner. To this end, we start by defining the function

∆δ,i(z) =
∫ ∞

0

ui−1e−ργ+δu

(i− 1)!
ξδ(z|u)du, z ≥ 0; i = 1, 2, . . . , n.
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The first integral on the right-hand side of (13) can now be equivalently expressed as

∫ ∞

0

ui−1e−ργ+δu

(i− 1)!
χδ(u)du =

∫ ∞

0
w(z)∆δ,i(z)dz. (17)

We further define the n-dimensional column vectors ηδ and ∆δ(z) with i-th elements ηδ,i and
∆δ,i(z), respectively, as well as the n-dimensional square matrix Γδ with the (i, j)-th element

[Γδ]ij =
n−j+1

∑
k=1

Aj+k−1

∫ ∞

0

ui−1e−ργ+δu

(i− 1)!
ϕδ,k(u)du. (18)

Then, (13) becomes

ηδ =
∫ ∞

0
w(z)∆δ(z)dz + Γδηδ,

with solution
ηδ = (I− Γδ)

−1
∫ ∞

0
w(z)∆δ(z)dz, (19)

where I is an identity matrix of dimension n, and the invertibility of the matrix I− Γδ

is assumed.
The above vectors/matrices are also useful for us to obtain a compact expression for

the discounted density of deficit |U(ζ)| in the following corollary.

Corollary 1. The discounted density hδ(y|u) of the deficit |U(ζ)| defined via (4) admits
the representation

hδ(y|u) = ξδ(y|u) + σδ(u)(I− Γδ)
−1∆δ(y), u, y ≥ 0, (20)

where σδ(u) is an n-dimensional row vector with j-element ∑
n−j+1
k=1 Aj+k−1 ϕδ,k(u).

Proof. By applying the definition of σδ(u) as well as (10) and (19) to (9), we can express
φδ(u) as

φδ(u) =
∫ ∞

0
w(z)ξδ(z|u)dz + σδ(u)(I− Γδ)

−1
∫ ∞

0
w(z)∆δ(z)dz.

Comparison with (4) yields the desired result (20).

3.2. Laplace Transform of Ruin Time When Claims Follow a Combination of Exponentials

In this subsection, it is assumed that the claim amounts are distributed as a combina-
tion of exponentials with density

fY(y) =
m

∑
j=1

qjαje
−αjy, y > 0,

where αjs are positive and distinct while qjs are non-zero numbers that sum to one. The
class of combinations of exponentials is known to be dense in the set of positive continuous
distributions, and it has become a popular choice for the claim amount distributions in
insurance risk processes. Interested readers are referred to Dufresne (2007) for fitting
algorithms of this class of distributions.

With the above distributional assumption, explicit formulas for the discounted densi-
ties gδ,−(y), gδ,+(y) and hδ,CL(y|u) are available as follows. First, the Laplace transform of
the claim amounts can be written as f̃Y(s) = Q2(s)/Q1(s), where

Q1(s) =
m

∏
i=1

(αi + s) and Q2(s) =
m

∑
j=1

qjαj

m

∏
i=1,i 6=j

(αi + s).
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In this case, the Lundberg-type Equation (8) at x = γ + δ has m roots with negative real
parts. Denoting these roots by {−Rγ+δ,i}m

i=1, it is known from Albrecher et al. (2013,
Section 4) that

gδ,+(y) =
m

∑
i=1

n

∑
j=1

Bij
yj−1e−Rγ+δ,iy

(j− 1)!
, y > 0, (21)

and the coefficients Ajs in (7) and Bijs above are obtained from the partial fractions expansion

(γ

c

)n [Q1(s)]n

(ργ+δ − s)n ∏m
i=1(s + Rγ+δ,i)n =

n

∑
j=1

Aj

(ργ+δ − s)j +
m

∑
i=1

n

∑
j=1

Bij

(s + Rγ+δ,i)j . (22)

Concerning hδ,CL(y|u), from Gerber and Shiu (2005, Equations (7.8) and (7.9)), we have

hδ,CL(y|u) =
m

∑
j=1

m

∑
k=1

Cjke−Rδ,ku−αjy, u, y ≥ 0, (23)

where

Cjk =

(
m

∏
`=1,` 6=j

−Rδ,k + α`
αj − α`

)(
m

∏
i=1,i 6=k

αj − Rδ,i

−Rδ,k + Rδ,i

)
(αj − Rδ,k), j, k = 1, 2, . . . , m. (24)

Next, we shall evaluate the necessary intermediate quantities in relation to the general
results in Theorem 1. Using (23), we readily see that (12) is found to be

ϕδ,k(u) =
m

∑
i=1

m

∑
j=1

Cij

(ργ+δ + αi)k e−Rδ,ju. (25)

Therefore, (18) is given by

[Γδ]ij =
n−j+1

∑
k=1

Aj+k−1

m

∑
`=1

m

∑
a=1

C`a

(ργ+δ + α`)k
1

(ργ+δ + Rδ,a)i . (26)

Moreover, substituting (7), (21) and (23) into (11) followed by a change of variables of
integration yields

ξδ(z|u) =
m

∑
i=1

n

∑
j=1

m

∑
`=1

m

∑
k=1

BijC`k

∫ z

0

yj−1e−Rγ+δ,iy

(j− 1)!
e−Rδ,ku−α`(z−y)dy

+
n

∑
j=1

m

∑
`=1

m

∑
k=1

AjC`k

∫ ∞

0

yj−1e−ργ+δy

(j− 1)!
e−Rδ,ku−α`(z+y)dy. (27)

Note that the function χδ(·) defined in (10) depends on the choice of the penalty function.
In what follows, it is further assumed that w(·) ≡ 1 so that φδ(u) becomes the Laplace
transform of the modified Parisian ruin time. Consequently, χδ(·) is simply the integral of
(27) with respect to z. By changing the order of integration in the first term, we obtain

χδ(u) =
m

∑
i=1

n

∑
j=1

m

∑
`=1

m

∑
k=1

BijC`k

[∫ ∞

0

(∫ ∞

y
e−α`(z−y)dz

)
yj−1e−Rγ+δ,iy

(j− 1)!
dy

]
e−Rδ,ku

+
n

∑
j=1

m

∑
`=1

m

∑
k=1

AjC`k

(∫ ∞

0

yj−1e−(ργ+δ+α`)y

(j− 1)!
dy

)(∫ ∞

0
e−α`zdz

)
e−Rδ,ku

=
m

∑
`=1

m

∑
k=1

C`k
α`

 n

∑
j=1

Aj

(ργ+δ + α`)
j +

m

∑
i=1

n

∑
j=1

Bij

Rj
γ+δ,i

e−Rδ,ku. (28)
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Then, using the identity (17) and the above result, the i-th element of
∫ ∞

0 ∆δ(z)dz is

∫ ∞

0
∆δ,i(z)dz =

m

∑
`=1

m

∑
k=1

C`k
α`

 n

∑
j=1

Aj

(ργ+δ + α`)
j +

m

∑
a=1

n

∑
j=1

Baj

Rj
γ+δ,a

 1
(ργ+δ + Rδ,k)i . (29)

We now have all the necessary pieces to compute the Laplace transform of the modified
Parisian ruin time, and the procedure is summarized as follows.

• Step 1: Find the roots of the Lundberg Equation (8) at x = γ + δ. Denote the positive
root by ργ+δ and the m roots with negative real parts by {−Rγ+δ,j}m

j=1. Additionally,
find the m roots with negative real parts of the Lundberg Equation (8) at x = δ and
denote them by {−Rδ,j}m

j=1.

• Step 2: Determine the coefficients Ajs and Bijs from the partial fractions expansion (22).
• Step 3: Compute Cjks using (24).
• Step 4: Compute ηδ using (19) (at w(·) ≡ 1), where the (i, j)-th element of Γδ is given

by (26) and the i-th element of
∫ ∞

0 ∆δ(z)dz is given by (29).
• Step 5: Compute φδ(u) with (9), where χδ(u) and ϕδ,k(u) are given by (28) and (25),

respectively, and {ηδ,j}n
j=1 are the elements of ηδ from Step 4.

4. Numerical Illustrations

This section aims to provide numerical examples for the modified Parisian ruin proba-
bility using the results from Section 3.2. In order to compare with the standard Parisian
ruin probability in Landriault et al. (2014, Section 4), who looked at the case of exponential
claims with Erlang grace periods, we shall closely follow the parameters therein. It is always
assumed that the claims arrive at rate λ = 1/3 and the premium is collected at rate c = 4.
We first consider exponential claim amounts with mean 9 (so that fY(y) = (1/9)e−(1/9)y)
and calculate the modified Parisian ruin probability ψ(u) = Pu{ζ < ∞} (by letting δ = 0
in Section 3.2). In particular, we shall fix the mean of the Erlang grace periods to be
E[T] = n/γ = 1, 2, 5, 10 in turn while increasing n (and γ) to see the performance of
Erlangization in approximating deterministic grace periods.

Tables 1 and 2 summarize the modified Parisian ruin probabilities for an initial surplus
of u = 0 and u = 50, respectively, and the numerical values of the standard Parisian ruin
probability from Landriault et al. (2014) are also reproduced here for easy comparison.
For reference, the classical ruin probabilities are given by P0{τCL < ∞} = 0.7500 and
P50{τCL < ∞} = 0.1870. The following observations are made from the tables along with
some insights.

• When n = 1, the two Parisian ruin probabilities are identical for each fixed pair of
(u,E[T]). This is a direct consequence of the memoryless property of exponential
grace periods.

• The modified Parisian ruin probability Pu{ζ < ∞} is smaller than the classical ruin
probability Pu{τCL < ∞}. This must be the case because modified Parisian ruin can
only occur if the surplus process ever falls below zero. On the other hand, for fixed
triplet (u,E[T], n), the modified Parisian ruin probability is no less than the standard
Parisian ruin probability. Recall that, according to the definition of standard Parisian
ruin, the business is deemed to have recovered as long as the surplus attains a non-
negative level at any time point within the grace period. However, under the modified
Parisian ruin, this is not sufficient to avoid ruin: the surplus has to be non-negative
at the end of the grace period in order to survive the regulatory check. As a result,
our proposed definition of ruin is more stringent than standard Parisian ruin from a
regulatory point of view, and the modified Parisian ruin probability could potentially
be a risk quantity to consider if one wishes to be conservative.

• For fixed (n, u), the modified Parisian ruin probability ψ(u) decreases when the
expected grace period E[T] increases. For reference, in Figure 2, we have further
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plotted ψ(u) as a function of u for E[T] = 1, 2, 5, 10 in the case where n = 50 to observe
that the curves are ordered. Recall that the insurer’s surplus process has a positive
trend under the positive loading condition. Therefore, the business is more likely to
survive the regulatory check if it is given a longer grace period so that profits can be
accumulated, thereby lowering the modified Parisian ruin probability.

• For fixed (n, u), the difference between the two Parisian ruin probabilities increases
in E[T]. Intuitively, when E[T] is small, there is insufficient time for the insurer to
collect a premium for recovery. Consequently, it is more likely for the surplus process
to remain negative for the entire grace period, leading to ruin under both definitions
and hence a small difference in the ruin probabilities.

• As n increases down each column, the modified Parisian ruin probability converges
because one approaches the case of deterministic grace periods thanks to the Erlan-
gization procedure. The use of moderate values of n (around n = 20) often leads to
excellent results.

Table 1. Standard and modified Parisian ruin probabilities under exponential claims when u = 0.

n
E[T] = 1 E[T] = 2 E[T] = 5 E[T] = 10

Standard Modified Standard Modified Standard Modified Standard Modified

1 0.6886 0.6886 0.6478 0.6478 0.5676 0.5676 0.4867 0.4867
5 0.6767 0.6786 0.6195 0.6275 0.5020 0.5322 0.3879 0.4423
10 0.6748 0.6770 0.6144 0.6241 0.4910 0.5273 0.3737 0.4370
15 0.6741 0.6764 0.6126 0.6229 0.4873 0.5257 0.3690 0.4353
20 0.6737 0.6761 0.6117 0.6223 0.4854 0.5250 0.3667 0.4344
25 0.6735 0.6759 0.6112 0.6219 0.4842 0.5245 0.3653 0.4339
30 0.6733 0.6758 0.6108 0.6217 0.4835 0.5242 0.3644 0.4336
35 0.6732 0.6757 0.6105 0.6215 0.4829 0.5240 0.3637 0.4333
40 0.6732 0.6756 0.6103 0.6214 0.4825 0.5238 0.3633 0.4331
45 0.6731 0.6755 0.6102 0.6213 0.4822 0.5237 0.3629 0.4330
50 0.6731 0.6755 0.6100 0.6212 0.4820 0.5236 0.3626 0.4329

Table 2. Standard and modified Parisian ruin probabilities under exponential claims when u = 50.

n
E[T] = 1 E[T] = 2 E[T] = 5 E[T] = 10

Standard Modified Standard Modified Standard Modified Standard Modified

1 0.1717 0.1717 0.1615 0.1615 0.1415 0.1415 0.1213 0.1213
5 0.1687 0.1692 0.1545 0.1565 0.1252 0.1327 0.0967 0.1103
10 0.1683 0.1688 0.1532 0.1556 0.1224 0.1315 0.0932 0.1090
15 0.1681 0.1687 0.1528 0.1553 0.1215 0.1311 0.0920 0.1085
20 0.1680 0.1686 0.1525 0.1552 0.1210 0.1309 0.0914 0.1083
25 0.1679 0.1685 0.1524 0.1551 0.1207 0.1308 0.0911 0.1082
30 0.1679 0.1685 0.1523 0.1550 0.1206 0.1307 0.0909 0.1081
35 0.1679 0.1685 0.1522 0.1550 0.1204 0.1306 0.0907 0.1081
40 0.1679 0.1685 0.1522 0.1549 0.1203 0.1306 0.0906 0.1080
45 0.1679 0.1684 0.1521 0.1549 0.1202 0.1306 0.0905 0.1080
50 0.1678 0.1684 0.1521 0.1549 0.1202 0.1305 0.0904 0.1079
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Figure 2. Modified Parisian ruin probability ψ(u) for E[T] = 1, 2, 5, 10 using n = 50.

Next, we are interested in the modified Parisian ruin probability when the claim
amounts deviate from the exponential assumption. Specifically, the following two claim
distributions will be considered:

• A sum of two independent exponential variables (possessing respective means 3 and
6) with density fY(y) = 2(1/6)e−(1/6)y − (1/3)e−(1/3)y;

• A mixture of two exponentials with density fY(y) = (1/3)(1/18)e−(1/18)y +(2/3)(2/9)
e−(2/9)y.

Both distributions have the same mean of 9 while their variances are 45 and 162,
respectively (compared to a variance of 81 in the exponential case). When u = 0, the
classical ruin probability is P0{τCL < ∞} = 0.7500 for both claim distributions, whereas
when u = 50, the values of the probability P50{τCL < ∞} are 0.1238 and 0.2933, respectively.
The modified Parisian ruin probability values under these two claim distributions are
provided in Tables 3 and 4. Such probabilities exhibit a very similar pattern compared
to the case of exponential claims, such as monotonicity in E[T] and convergence in the
Erlangization procedure. More importantly, when we compare the modified Parisian ruin
probabilities across the three claim amounts, it is clear that a claim distribution with a higher
variance leads to a higher ruin probability. For easy comparison, we have also plotted in
Figure 3 the modified Parisian ruin probability ψ(u) under three claim distributions when
E[T] = 5 and n = 50, and the curves are ordered according to the claim variance. This
intuitively makes sense because a higher claim variance will more likely lead to a larger
shortfall when the surplus process falls below zero and hence it becomes more difficult for
the process to recover when it is checked at the end of the grace period. Note that the case
of mixed exponential claims leads to significantly higher ruin probability than the other
two claim distributions when the initial surplus u is large, indicating that insurers need to
be cautious with claims of high variance.
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Table 3. Modified Parisian ruin probabilities when claims are a sum of exponentials.

n
E[T] = 1 E[T] = 2 E[T] = 5 E[T] = 10

u = 0 u = 50 u = 0 u = 50 u = 0 u = 50 u = 0 u = 50

1 0.6813 0.1110 0.6347 0.1031 0.5451 0.0883 0.4573 0.0740
5 0.6693 0.1086 0.6100 0.0988 0.5053 0.0818 0.4093 0.0663

10 0.6671 0.1082 0.6058 0.0980 0.5002 0.0810 0.4038 0.0654
15 0.6664 0.1081 0.6043 0.0978 0.4986 0.0807 0.4019 0.0651
20 0.6660 0.1080 0.6036 0.0977 0.4978 0.0806 0.4010 0.0649
25 0.6657 0.1080 0.6031 0.0976 0.4973 0.0805 0.4005 0.0649
30 0.6656 0.1079 0.6028 0.0975 0.4970 0.0805 0.4001 0.0648
35 0.6655 0.1079 0.6026 0.0975 0.4968 0.0804 0.3999 0.0648
40 0.6654 0.1079 0.6024 0.0975 0.4966 0.0804 0.3997 0.0647
45 0.6653 0.1079 0.6023 0.0975 0.4965 0.0804 0.3995 0.0647
50 0.6652 0.1079 0.6022 0.0974 0.4964 0.0804 0.3994 0.0647

Table 4. Modified Parisian ruin probabilities when claims are a mixture of exponentials.

n
E[T] = 1 E[T] = 2 E[T] = 5 E[T] = 10

u = 0 u = 50 u = 0 u = 50 u = 0 u = 50 u = 0 u = 50

1 0.6943 0.2775 0.6600 0.2660 0.5930 0.2416 0.5237 0.2147
5 0.6853 0.2754 0.6433 0.2616 0.5641 0.2319 0.4857 0.2002

10 0.6838 0.2751 0.6406 0.2609 0.5600 0.2304 0.4809 0.1982
15 0.6833 0.2750 0.6397 0.2606 0.5587 0.2299 0.4793 0.1975
20 0.6830 0.2749 0.6393 0.2605 0.5580 0.2297 0.4785 0.1972
25 0.6829 0.2749 0.6390 0.2604 0.5576 0.2295 0.4780 0.1970
30 0.6827 0.2748 0.6388 0.2604 0.5573 0.2294 0.4777 0.1968
35 0.6827 0.2748 0.6387 0.2603 0.5571 0.2294 0.4775 0.1968
40 0.6826 0.2748 0.6386 0.2603 0.5570 0.2293 0.4773 0.1967
45 0.6826 0.2748 0.6385 0.2603 0.5569 0.2293 0.4772 0.1966
50 0.6825 0.2748 0.6384 0.2603 0.5568 0.2292 0.4771 0.1966

Sum Exp

Exp

Mixed Exp

20 40 60 80 100
u

0.1

0.2

0.3

0.4

0.5

ψ(u)

Figure 3. Modified Parisian ruin probability ψ(u) for three claim distributions when E[T] = 5 and
n = 50.

5. Concluding Remarks

In this paper, we have proposed a modification to the standard definition of Parisian
ruin and derived an exact formula for the corresponding Gerber–Shiu function. Through
numerical illustrations, it is demonstrated that our formulas can be easily computed, and
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we also suggest that the modified Parisian ruin probability is more conservative than the
standard Parisian counterpart.

Extensions of our proposed model can potentially be considered in various directions.
First, one may argue that, when the business is undergoing restructuring and reorganization
during the grace period, the surplus process is allowed to follow different dynamics. In
this case, we can replace gδ,−(·) and gδ,+(·) in (14) by g∗δ,−(·) and g∗δ,+(·), which are the
discounted densities defined via (5) and (6), but with a possibly different premium rate,
Poisson arrival rate and claim distribution. Second, a lower bankruptcy barrier −b (for
some b > 0) may be incorporated such that ruin is declared immediately if the shortfall is
larger than b when an excursion below zero begins at time τk for some k = 1, 2, . . .. Denoting
the resulting Gerber–Shiu function by φδ(u; b), the integral Equation (14) is generalized to

φδ(u; b) =
∫ b

0

(∫ ∞

0
w(y + z)gδ,+(z)dz +

∫ y

0
w(y− z)gδ,−(z)dz +

∫ ∞

y
φδ(z− y; b)gδ,−(z)dz

)
hδ,CL(y|u)dy

+
∫ ∞

b
w(y)hδ,CL(y|u)dy,

which can be solved in a similar manner to the proof of Theorem 1. Third, it will also be
interesting to replace the compound Poisson model by a spectrally negative Lévy process.
However, this extension is far from straightforward because we need to take into account
the case where the process downcrosses zero by diffusion, and moreover the densities
gδ,−(·) and gδ,+(·) are not known from the literature. We leave this as an open problem.
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