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Abstract: In this work, we present a rigorous development of a model for the Price–Volume relation-
ship of transactions introduced in 2009. For this development, we rely on the precise formulation
of diffusion auto-induced regime-switching models presented in our previous work of 2020. The
auto-induced regime-switching models referred to may be based on a finite set of stochastic differen-
tial equations (SDE)—all defined on the same bounded time interval—and a sequence of interlacing
stopping times defined by the hitting threshold times of the trajectories of the solutions of the SDE.
The coupling between price and volume—which we take as a proxy of liquidity—is assumed to be
the following: the regime switching in the price variable occurs at the stopping times for which there
is a change of region—in the product state space of price and liquidity—for the liquidity variable
(and vice versa). The regimes may be defined parametrically—that is, the SDE coefficients keep the
same functional form but with varying parameters—or the functional form of the SDE coefficients
may change with each regime. By using the same noise source for both the price and the liquidity
regime-switching models—volume (liquidity), which, in general, is not a tradable asset—we ensure
that despite incorporating information on liquidity, the price part of the coupled model can be
assumed to be arbitrage free and complete, allowing the pricing and hedging of derivatives in a
simple way.

Keywords: regime switching diffusions; auto-induced regime switching diffusions; price; volume of
transactions; liquidity

MSC: 60H10; 60H35; 62M15; 62P20; 60J70

1. Introduction

Our goal in this work is to study a general model that could be used for pricing and
hedging in an arbitrage free and complete financial market model, in which we can consider
the mutual influence of the variations of volume—considered as a proxy of liquidity—in the
variations of price and vice versa. We accomplish this desideratum with threshold-induced
regime switching processes—both price and volume (liquidity) models will be regime
switching process—but with a special coupling: the regime switch in the price process will
occur at a random time when the volume process crosses a threshold and vice versa. We
will show that despite its conceptual simplicity, this model can accommodate most of the
usual scenarios describing the mutual influence of liquidity—quantified by the volume
of transactions per unit of time—upon price (and vice versa). We will first describe the
characteristics of a model of a pair of threshold-induced regime switching processes and
we will prove the existence and unicity in law of such a pair of processes.
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It is difficult to produce a precise definition of liquidity in financial markets that can
account for all the properties that should be attributed to such a concept. Usual quantitative
proxies for liquidity are the bid–ask spread —which is the difference between the offer
and demand prices—and the number of shares traded by unit of time, which is, for us, the
volume of transactions per unit of time. Both these proxies are nonnegative, and we will
also suppose that, in our model, the liquidity process has [0,+∞[ as a state space.

We now briefly describe the contents of the present work.

• In Section 2, we provide an extensive literature review mainly focusing on several
ways of considering liquidity in financial markets that are relevant to our purposes.

• Section 3 describes a joint model for price and liquidity—in our approach, liquidity
will be taken as the volume of transactions per unit of time per day, in the subsequent
practical application—as a regime switching system of SDE with the coefficients of
the price model process switching as a consequence of the threshold crossing of the
trajectory of the liquidity process and vice versa. We consider a series of plausible
scenarios for the joint evolution dynamics of price and liquidity and we stress the
need of considering double thresholds in order to prevent ambiguity in the definition
of the threshold crossing stopping time.

• In Section 4, we prove the existence of the regime switching coupled (Price, Volume)
process by means of the Yamada–Watanabe theorem. The regime switching coupled
(Price, Volume) process is defined by gluing together trajectories of price and volume
processes at random points defined by the threshold crossings.

• Section 5 is the first section on the application part of this work. We consider data
from the Ford Motor Company and we present and justify the use of the Ornstein–
Uhlenbeck model for the liquidity (volume) by resorting to observed characteristics of
the data and the expected properties of the observed time series volume of transactions
per unit of time.

• In Section 6, we detail the estimators used, the method to obtain the estimates of the
parameters, and the thresholds, and we analyze the obtained results that allow us to
classify the dynamics of the (Price,Volume) process in one of the scenarios described
in Section 3.

• Finally in Section 7, we summarize the main results of this work and we project further
studies that seem justified by the obtained results.

2. A Dedicated Literature Review

There is a vast amount of literature on the subject of liquidity in financial markets. We
will first address some of the main aspects of liquidity in relation to our own work.

• Liquidity as a measure of easiness to convert assets into cash;
• The influence of liquidity in portfolio performance;
• Liquidity and the its bid–ask spread proxy;
• Liquidity and its volume of transactions proxy.

In the second part of this literature review, we will describe the works related to the
main modeling tool in this work, the auto-induced regime switching stochastic processes
given as solutions of stochastic differential equations (SDE). The following research papers
deal with particular interpretations of liquidity more related to the easiness of conversion
of assets into cash. In Kontŭs and Mihanović (2019), the authors considered liquidity level
measured by cash to current liabilities ratio and a deterministic arithmetic mathematical
model, for calculating net earnings through decreasing the amount of liquid assets. The
work by Georgescu et al. (2020) introduced an analytical framework in their methodology
to identify vulnerabilities arising from the liquidity and funding profiles of banks. They
proposed a novel liquidity metric that gauges the stress factor necessary for banks to become
illiquid, and they outlined another analytical framework for evaluating the resilience of
banks in the face of a liquidity shock. The study assessed the impact on the liquidity
position of individual banks, considering factors such as the magnitude of funding freezes
and the availability of liquidity buyers, across different scenarios. Liquidity is defined
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as the ease of converting assets into cash without incurring fiscal penalties. In Dolfin
et al. (2021), the authors employed the Kinetic Theory for Active Particles approach to
simulate the dynamics of liquidity profiles within a complex adaptive network system
resembling a stylized financial market. By tracking the time evolution of the aggregate
degree of connectivity, they were able to assess the changing network efficiency in two
distinct scenarios. This provided an initial analysis of the stability of the emerging and
evolving network structures.

In the particular area of studies relating the influence of liquidity in portfolio perfor-
mance, we may look to the following. A general review of several models of liquidity
and issues related to liquidity, including price impact models with price manipulation
strategies, was given in Gökay et al. (2011) in the collection Di Nunno and Øksendal (2011).
A technical introduction to several aspects of the use of mathematical tools in the study of
market liquidity is given in Guéant (2016). We stress the important statement of the author
that option pricing models that consider liquidity issues are rarely utilized, mainly due
to their predominantly nonlinear nature. Moreover, the author points out that nonlinear
pricing models are troublesome in practice when dealing with a book of options. However,
the author also stresses that managing options with significant nominal values, particularly
when handled independently, underscores the importance of liquidity (see (Guéant 2016,
p. 171)). In the work by Çetin and Rogers (2007), dealing with discrete time models, the
authors adopted a contrary assumption from the assumptions we postulate in this work;
the actions of agents only impact prices during their trading activities, leading to a price
process for the share that remains unaffected by the agents’ actions at other times. Both
the two following works study diffusion models for the price dynamics where the indirect
feedback effect is modeled by making the drift and volatility coefficients depend on the
large trader’s trading strategy. In the work by Cvitanić and Ma (1996), we can find the
important idea that in the context of a generalized Black–Scholes model, hedging contingent
claims involve incorporating coefficients in the stock price dynamics that explicitly rely
on the wealth and portfolio process of a specific investor. In other words, the actions of a
significant investor influence the price dynamics of primary securities. The paper by Cuoco
and Cvitanić (1998) investigates the optimal consumption and investment challenge for
an investor of large sums, whose portfolio decisions impact the instantaneous expected
returns on the traded assets.

We now detail the analysis of some research papers that sheds light over the complex
relations between liquidity assessed by the bid–ask spread and the activity of the market
given by the volume of transactions. In the work by Johnson (2008), we learn that in a
static perspective, the findings reported in the literature say that stocks that are traded more
frequently tend to exhibit narrower bid–ask spreads. In contrast, in a dynamic perspective,
when resorting to the statistical analysis of market data, increased trading volume does not
necessarily result in markets being more liquid. The authors proposed the conciliation of
these two perspectives by reporting an analysis which found that in the model, volume and
liquidity are behaving independently, but volume is positively correlated with the liquidity
variance, which can be taken as the liquidity risk. The interesting viewpoint that the actions
of a fairly large trader can influence the price, causing a noticeable price impact, is taken
in Glover et al. (2010); as a consequence, the price impact can be regarded as lasting, as it
will impact the underlying price dynamics for other participants in the market. The authors
consider a modified geometric Brownian model (GBM) for the stock price; the modification
is taken in the volatility term in the associated PDE and is interpreted as the additional shares
traded as a result of a deterministic hedging strategy, coupled with a function that models the
form of price impact. The thorough analysis of PDE shows that the financial modeling in this
equation is insufficient to describe the true price dynamics, thus opening the door to other
approaches. In Liu and Yong (2005), the authors investigated how the price impact in the
underlying asset market influences the replication of a European contingent claim, deriving a
generalized partial differential equation (PDE) for Black–Scholes pricing and confirming the
existence and uniqueness of a classical solution to this PDE. Their findings hold significant
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consequences for empirical statistical analysis of the volatility smile. Numerical analysis of the
Black–Scholes type of a PDE obtained when liquidity constraints are introduced in the model
are presented in Casabán et al. (2011); Company et al. (2010, 2012).

We will now discuss some relevant literature on volume of transactions and its in-
terplay with price movements in order to establish the desired connection of volume of
transactions as a proxy of liquidity of stock prices and, most importantly, to enlighten our
model choices. The article by Ying (1966) provides an empirical analysis of the connection
between stock prices—daily closing prices—and daily volume of transactions, using statis-
tical tools. The author’s ideas on the connection price–volume is perfectly captured in the
following statement: “Prices and volumes of sales in the stock market are joint products of
a single market mechanism, and any model that attempts to isolate prices from volumes or
vice versa will inevitably yield incomplete if not erroneous results.” The more significant
results being that a reduced volume typically coincides with a price decrease, while a
substantial increase in volume is generally associated with either a significant price rise
or a substantial price fall. The work by Epps (1975) also states that a well-known saying
on Wall Street suggests that the trading volume (the number of shares traded) tends to be
higher in bull markets and lower in bear markets. A remarkable finding of the author is
that the ratio of volume to price change is higher for upticks than the absolute value of this
ratio on downticks; he arrived at this conclusion using a two parameter portfolio selection
model as a framework and a lognormal model for the end-of-period values. The research
by Epps and Epps (1976) gives a continuation of Epps (1975) by modeling the change of the
logarithm of price as a mixture distribution with transaction volume as the mixing variable.
One of the most significant conclusions reached in this study is that the volume of transac-
tions and the returns from one transaction to the next are correlated random variables. In
the article by Tauchen and Pitts (1983), the authors deduced, based on economic theory,
the joint probability distribution of both price change and trading volume over any time
interval within the trading day. The revue article by Karpoff (1987) also contributed to
the understanding of the price–volume relation, offering, among other contributions, the
empirical finding that volume shows a positive correlation with the extent of price change
and, in equity markets, with the price itself. One of the most significant findings in the
study by Jones et al. (1994) is that almost all the information in the trading behavior of
agents is encapsulated in the frequency of trades during a specific interval. The authors
also advised that their findings indicate that theoretical models should incorporate both
trade frequency and size of trades, that is, that the volume of transactions by unit of time
is a variable to be considered in the models for the price–volume interaction. They also
insisted that a more challenging endeavour might be to explicitly define scenarios where
the number of trades encompasses all pertinent information for security pricing, since the
size of the trades contains little or no additional information. Finally, in this short review of
works on the interaction price and volume of transactions, we note that in the recent study
by Dong and Tang (2023), the authors provided an SDE joint model for the price–liquidity
relationship, in which the liquidity model is an Ornstein–Uhlenbeck SDE.

The auto-induced regime switching for processes defined as solutions of stochastic
differential equations (SDE) has been studied under different perspectives; see Esquível
et al. (2020) for a recent review, from which we extract some highlights presented next. Our
contributions to the theme of auto-induced regime switching processes given as solutions
of SDE started with the PhD thesis by Mota (2007), later exploited in a study already dealing
with liquidity modeling, i.e., Rianço et al. (2009), as well as in Mota (2013), where a stock
price model with two different mean reverting regimes was studied. A comprehensive
study of a stock price regime switching geometric Brownian model was presented in Mota
and Esquível (2014), with a detailed analysis of some more technical aspects in Esquível
and Mota (2014), and a large comparative statistical study of the regime-switching model
and the usual models in Mota and Esquível (2016). In Mota et al. (2021), there is a further
exploration of auto-induced regime-switching models with varying functional forms for
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the coefficients of the SDE. Let us now detail the interactions of our contributions with
other authors’ contributions.

In Lejay and Pigato (2017), the authors took a stochastic process model, of geometric
Brownian motion functional form type with two regimes corresponding to two disjoint
regions of the phase space defined by a threshold; a region for values grater or equal than
the threshold and a region for values lesser than the threshold. The theory in Le Gall (1984)
allowed the deduction of the existence result for such a model. The fitting of the model
to data—the same 21 stock prices used in Esquível and Mota (2014)—was completed by
means of the theory of occupation times and local times estimators. A comparison between
the results in both Lejay and Pigato (2017) and Pigato (2019) and the results in Esquível and
Mota (2014) obtained by different methods was presented in Lejay and Pigato (2019a); since
the data were the same and both methods are equally sound, the results were shown to be
in good agreement. Moreover, Lejay and Pigato (2019a) allowed the reader to differentiate
between the two models, allowing, nevertheless, to detect the similarities. An important
remark is that the two models are structurally different, since it appears impossible to
describe the model in Lejay and Pigato (2019a) as a process obtained as a sum of excursions
of two different geometric Brownian processes; the reason being the structure of the level
sets of the geometric Brownian processes. Another approach in the same thematic is
provided in Lejay and Pigato (2019b); the model is the same model as in Lejay and Pigato
(2019a), but only the estimators for the drift, maximum likelihood estimators, are studied.
The estimators for the volatility were given in Lejay and Pigato (2018).

3. The Coupled Price–Liquidity (Volume) Model

Following Rianço et al. (2009), we consider a price–liquidity coupled model with
regimes and thresholds given, in a first approximation, by the following stochastic differen-
tial equations: {

dSt = µ(t, St, θ)dt + σ(t, St, θ)dB1
t , S0 ∈ R+

dLt = ν(t, Lt, λ)dt + η(t, Lt, λ)dB2
t , L0 ∈ R+ ,

(1)

where (B1
t )t≥0 and (B2

t )t≥0 are Brownian processes with the following correlation matrix:

/Σ =

[
1 ρ
ρ 1

]
,

µ and ν are the drift coefficients of the SDE defining the dynamics of the price and liquidity,
respectively, and σ and η are the volatility coefficients of these SDE; these coefficients are
supposed to satisfy regularity conditions to ensure the existence and unicity of solutions,
conditions that will be detailed in Section 4. The lower and upper thresholds for the price
and liquidity are denoted, respectively, by Sm, SM for the price and Lm, LM, for the liquidity.

Let us state two hypotheses that rule the regime changes according to the parameters
and thresholds. The first hypothesis concerns the SDE for the process describing the time
evolution of the price in Formula (1).

A The interplay of the regimes and the thresholds, for the process (St)t≥0, is given by
the following relations satisfied by the parameter values, and consequently, the price
drift coefficient:

θ =


θh if Lt > LM

θs if Lm ≤ Lt ≤ LM

θd if Lt < Lm

, µ(t, St, θ) =


µ(t, St, θh) if Lt > LM

µ(t, St, θs) if Lm ≤ Lt ≤ LM

µ(t, St, θd) if Lt < Lm ,

(2)

with a similar relation for the price volatility coefficient.
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B The interplay of the regimes and the thresholds for the process (Lt)t≥0, that is, the
liquidity process, is given by:

λ =


λh if St > SM

λs if Sm ≤ St ≤ SM

λd if St < Sm

, ν(t, Lt, λ) =


ν(t, Lt, λh) if St > SM

ν(t, Lt, λs) if Sm ≤ St ≤ SM

ν(t, Lt, λd) if St < Sm ,

(3)

with a similar relation for the liquidity volatility coefficient.

The general question of existence and unicity of such a couple of processes (St, Lt)t≥0
is answered in Theorem 5. First, let us gain some intuition on the general properties and
modeling capabilities of such a pair of price–liquidity processes. Combining different signs
for the drifts according to parameters this model allows for, at least, 16 scenarios, which we
detail in Table 1, reproduced from Rianço et al. (2009).

Table 1. Some 16 scenarios of possible (Price,Volume) dynamics.

Scenarios I II III IV V VI VII VIII

Liquidity on highest price subdomain ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Liquidity on lowest price subdomain ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑

Price on highest liquidity subdomain ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑

Price on lowest liquidity subdomain ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

Scenarios IX X XI XII XIII XIV XV XVI

Liq. on highest price subdomain ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Liq. on lowest price subdomain ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↑

Pri. on highest liquidity subdomain ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↑

Pri. on lowest liquidity subdomain ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↑

For all these scenarios, we will suppose that for the subdomains defined by the product
of the two closed intervals with extremities given by the thresholds, that is, [Sm, SM]×
[Lm, LM], both price and liquidity have small tendencies with respect to the tendencies in
the other subdomains. Of course, some of these scenarios may lack economic sense. Let us
concentrate on the first scenario, which may be described in the following way:

1. If the price becomes larger than the highest threshold, then liquidity has a tendency
to increase;

2. If the price becomes smaller than the lowest threshold, then liquidity has a tendency
to decrease;

3. If liquidity becomes larger than the highest threshold, then the price has a tendency
to increase;

4. If the liquidity becomes smaller than the lowest threshold, then the price has a
tendency to decrease.

This scenario can be achieved with a price and volume combination such as µ(t, St, θh) <

0, µ(t, St, θd) > 0, and also µ(t, St, θs) � min
(∣∣∣µ(t, St, θh)

∣∣∣, ∣∣∣µ(t, St, θd)
∣∣∣), and with a liq-

uidity combination such as ν(t, Lt, λh) > 0, ν(t, Lt, λd) < 0, and also:

ν(t, Lt, λs)� min
(∣∣∣ν(t, Lt, λh)

∣∣∣, ∣∣∣ν(t, Lt, λd)
∣∣∣) .

In Figure 1, we depict an example of a possible evolution of the random process
(St, Lt)t≥0 according to the choices corresponding to the first scenario.
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St↘ (θh )

St (θs)

St↗ (θd )

Lt↘ (λh )

Lt (λs)

Lt↗ (λd )

Figure 1. Possible evolution of a trajectory of (St, Lt)t≥0 according to the implementation of the
first scenario.

Remark 1 (On the double line representation, in Figures 2 and 3, of the thresholds of
Figure 1). For reasons that have to do with the structure of level sets of continuous local martingales—
see Esquível and Mota (2014) for a detailed explanation—the thresholds Sm, SM, Lm, and LM must
be taken, in fact, as double thresholds of the form Sm − εS, Sm + εS for Sm, SM − εS, SM + εS for
SM, and Lm − εL, Lm + εL for Lm, LM − εL, LM + εL for LM. We note that, in the applications of
this model, both εS > 0 and εL > 0 are to be chosen small enough so that the units of the processes
(St)t≥0 and (Lt)t≥0—for instance, USD and number of shares traded by unit of time—are insensitive
to quantities lesser than 2εS and 2εL. The rule for the process crossing one of the thresholds, let us
say Sm, is the following: in the case that, for some t > 0, we have St ≤ Sm − εS, we consider that the
process (St)t≥0 crosses Sm (from below) at the first time that St = Sm + εS, that is, at the hitting
time of the upper part Sm + εS of the double threshold Sm; the others cases follow the same principle.

Remark 2 (On the (Price, Volume) regime regions). With a nontrivial determination of the
four thresholds Sm, SM, Lm, and LM, the state space [0,+∞[×[0,+∞[ is divided in nine different
subdomains. With the rule for regime switching defined in Remark 1, the double thresholds define
nine regions in the complement of the region B, in the state space, formed by the following bands:

B = (]Sm − e, Sm + e[∪]SM − e, SM + e[)×R)
⋃

⋃
(R× (]Lm − e, Lm + e[∪]LM − e, LM + e[)

(4)

where, in each one, a combination of (Price, Volume) regimes is perfectly defined. There is no defined
combination of (Price, Volume) regimes in the regions inside each of the bands in B; this fact is
evident when we consider the possibility of the (Price, Volume) process staying inside of, say, a Price
band while crossing the Liquidity band or vice versa.

Remark 3 (On the regime switching stopping times). An observed possible trajectory of the
process (St, Lt)t≥0 such as the one represented in Figure 1 shows that the regime switching occurs
whenever this processes passes from one subdomain to another one by crossing one Price threshold
or one Liquidity threshold or both thresholds at the same time. The case when (St)t≥0 crosses a
threshold—either Sm or SM—and (Lt)t≥0 does not cross a threshold and the case when (Lt)t≥0
crosses a threshold—either Lm or LM—and (St)t≥0 does not cross a threshold define in clear way a
stopping time according to the principles explained in the Remark 1. Now, considering the double
thresholds, we observe that each of the nine subdomains has an exterior border and an interior
border (see Figures 2 and 3), and thus, considered the region regimes, explicited in Remark 2,
the random time change for switching subdomains is the hitting time of the interior border of the
arrival subdomain.
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The case when the change in subdomains is such that both (St)t≥0 and (Lt)t≥0 cross
one of their respective thresholds at random times, say τS and τL—according to the prin-
ciples explained in the Remark 1— such that τS ≡ τL, which, for instance, happens at
an intersection point of an horizontal and a vertical border of an interior region, is a
random time at which both the Price process and the Volume process simultaneously
change regimes.

Figure 2. A global view of a joint trajectory (St, Lt)t≥0 crossing one of their respective (double)
thresholds at random times.

The example of a possible trajectory given in Figure 2—without the details in cross-
ing the double thresholds and in Figure 3 including the details in crossing the double
thresholds—shows that since the liquidity threshold has been hit, at time t = τL(ω), there
is at that time a Price regime switch and then when the Price threshold is hit at time
t = τS(ω), there is at that random time a Liquidity regime switch. The two sequences of
regime switching hitting thresholds stopping times one sequence for Price and another for
Liquidity are, in this way, unambiguously defined.

Figure 3. A local view of a joint trajectory (St, Lt)t≥0 crossing one of their respective (double)
thresholds at random times.

4. On the Existence of a Regime Switching Process (St, Lt)t≥0

We observe that, by definition, in Formulas (1)–(3), the process (St)t≥0 only depend
on the process (Lt)t≥0—additionally, the process (Lt)t≥0 only depends on the process
(St)t≥0—by means of the sequence of stopping times 0 < τ1 < τ2 < · · · < τn < . . .
defined in Remarks 1, 2, and 3. This sequence of stopping times has realizations which are
the interlacing of the two sequences of times; one sequence for the crossing of the Price
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threshold and the other for the crossing of the Volume threshold, with the possibility of
equal values in the two sequences of numbers whenever corner hitting occurs. Thus, we
can apply the results on the existence of regime switching diffusions developed in Esquível
et al. (2020) to each one of the SDE equations in Formula (1) separately. For the reader’s
convenience, we now provide, following Esquível et al. (2020), an updated version of
context and results that allow to prove the existence of the regime switching process
in question.

Let (Ω,F ,P) be a complete probability space with F = (Ft)t≥0 a right-continuous
complete filtration on it. Let B([0, T]) be the Borel σ-algebra on [0, T]. For the essential
notions pertaining to the subject of existence and unicity of solutions of SDE, the reader is
referred to the masterful expositions of (Liptser and Shiryaev 2001, p. 132) and (Kallenberg
2002, pp. 412–26).

Definition 1 (Progressively measurable processes). A process (Xt)t≥0 is progressively
measurable—with respect to F—if for every T > 0 the process (Xt)t≤T is such that for every
t ∈ [0, T], we have that Xt : Ω× [0, T] 7→ R is measurable with respect to FT ×B([0, T]).

We observe that since sections of functions defined on a product measure space are
measurable, a progressive measurable process is adapted to the filtration F. Now, consider
an SDE given by: {

dXt = µ(t, Xt, θ)dt + σ(t, Xt, θ)dBt , t ∈ [0, T] ,
X0 = Z ,

(5)

with (Bt)t∈[0,T] a Brownian motion with respect to some filtration F = (Ft)t∈[0,T] such that,
almost surely, for all t > 0:∫ t

0
|µ(u, Xu, θ)|+ |σ(u, Xu, θ)|2du < +∞ , (6)

in order for the Lebesgue and Ito’s integrals implicit in Formula (5) to exist, and such that
the integrands in Formula (5) are progressively measurable. For our purpose, we formulate
a third hypothesis, where we will suppose that the stopping times of regime switching, of
both price and liquidity, are satisfied.

C Let 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · be an increasing sequence of F-stopping
times, denoted by T , such that we have, almost surely, limn→+∞ τn = +∞ and, for
any T ∈ R+, the function:

nT : Ω −→ N
ω 7−→ #{k ≥ 1 : τk(ω) ≤ T} (7)

is almost surely finite, that is, P[nT < +∞] = 1.

It is well known that pathwise uniqueness implies uniqueness in law (Proposition 1
in (Yamada and Watanabe 1971, p. 158) or Proposition 3.20 in (Karatzas and Shreve
1991, p. 309)). Furthermore, there is a remarkable result connecting strong existence and
pathwise uniqueness due to Yamada and Watanabe Yamada and Watanabe (1971), which
has a thorough treatment in (Kallenberg 2002, p. 424).

Theorem 1 (Strong solutions and pathwise uniqueness). Let an SDE—specified by its coef-
ficients µ and σ—have weak solutions and pathwise uniqueness for a given initial law L. Then,
strong existence and uniqueness in law hold for such solutions.

Existence and unicity of SDE solutions can be studied in Braumann (2019) in the case
of Lipschitz regularity and sublinear growth of the coefficients. For our purposes, we have
the following important result, initially formulated for homogeneous SDE, that is also
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valid in the nonhomogeneous case (see (Rogers and Williams 2000, p. 266)). This result
is essentially an existence and unicity in law of strong solutions of SDE with irregular
coefficients. In (Prokhorov and Shiryaev 1998, p. 40) (and in (Karatzas and Shreve 1991,
p. 291), with essentially the classical proof of the Yamada–Watanabe result), there is a
formulation of Theorem 1 in (Yamada and Watanabe 1971, p. 164) for nonhomogeneous
drift and volatilities that—for dimension one—suit better our purposes of having processes
with continuous trajectories.

Theorem 2 (Yamada and Watanabe 1971). Suppose that µ and σ are progressively measurable
and satisfy the following hypothesis.

D There exists ρ1 : [0,+∞[ 7→ [0,+∞[, an increasing continuous function possibly dependent
of θ ∈ Θ, such that ρ1(0) = 0, such that:

lim
ε→0

∫
ε

du
ρ1(u)

= +∞ ,

and
∀t, x, y, θ (σ(t, x, θ)− σ(t, y, θ))2 ≤ ρ1(|x− y|) .

E There exists ρ2 : [0,+∞[ 7→ [0,+∞[, an increasing concave function, possibly dependent of
θ ∈ Θ, such that ρ2(0) = 0, such that:

lim
ε→0

∫
ε

du
ρ2(u)

= +∞ ,

and
∀t, x, y, θ (µ(t, x, θ)− µ(t, y, θ)) ≤ ρ2(|x− y|) .

Then, for any random variable Z, θ ∈ Θ and t0 ∈ [0, T], pathwise uniqueness holds for the following
stochastic differential equation:{

dXt = µ(t, Xt, θ)dt + σ(t, Xt, θ)dBt , t ∈ [t0, T] ,
Xt0 = Z .

(8)

Remark 4. Starting with Theorem 2, that is, the important Yamada–Watanabe result, we have, by
the continuity of both µ and σ, applying a well known Skorokhod’s theorem (see (Kallenberg 2002,
p. 419)) that there is a weak solution. Finally, by Theorem 1, strong existence and uniqueness in
law holds.

The following result is proved in a more general context in Esquível et al. (2020).
For the reader’s convenience, we present here a proof that applies directly to the SDE in
Formula (1) and that we hope may enlighten the procedure of building a regime switching
process by gluing excursions obtained as solutions of SDE.

Theorem 3 (On the existence of regime switching solutions to SDE). Consider a finite set
Θ = {θ1, θ2, . . . , θm} as the parameters of the different m regimes. Let the functions µ(t, x, θ)
and σ(t, x, θ) satisfy the hypothesis of Theorem 2. Let T the increasing sequence of F-stopping
times 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · , defined according to Remark 1, Remark 2, and
Remark 3, verify hypothesis C. There exists a process (Xt)t≥0, with continuous trajectories, which
is a unique in law regime switching process associated with the parameter space Θ together with
the increasing sequence of F-stopping times T .

Proof. Consider some random variable X0 measurable with respect to F0 and consider the
SDE given by: {

dX1
t = µ(t, X1

t , θi)dt + σ(t, X1
t , θi)dBt , t ∈ [0, τ1] ,

X1
t0
= X0 ,

(9)
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where the functions µ(t, x, θi) and σ(t, x, θi) satisfy the hypothesis of Theorem 2 for every
θi ∈ Θ. We observe that the strong solution (X1

t )t∈[0,τ1[
exists and is unique in law. Now,

consider, after the regime switching at time τ1, that the new value of the parameter is θj.
Again, the SDE:{

dX̃2
t = µ(t + τ1, X̃2

t , θj)dt + σ(t + τ1, X̃2
t , θj)dBt , t ∈ [0, τ2 − τ1] ,

X̃2
0 = X1

τ1
.

(10)

As before, the strong solution and unique in law solution (X̃2
t )t∈[0,τ2−τ1]

exists and
we may define (X2

t )t∈[τ1,τ2[
≡ (X̃2

t−τ1
)t∈[τ1,τ2]

. By induction, we may so have a sequence
((Xn

t )t∈[τn−1,τn [)n≥1 of unique in law processes and so—using the hypothesis of the sequence
of stopping times stated in Formula (7),—we may define the process, for almost all ω ∈ Ω:

Xt =
+∞

∑
n=1

Xn
t 1I[τn−1,τn [(t) ,

which is the unique in law process obtained by gluing together excursions corresponding
to regimes prescribed by the initially given sequence of stopping times. The proof that any
excursion, for any possible value of the parameter, has a version that is almost surely contin-
uous is a consequence of a general theorem on the dependence on parameter in (Kallenberg
2002, p. 345). This implies that the process (Xt)t≥0 has continuous trajectories.

A simple condition in Theorem 4 ensures that the essential hypothesis on the sequence
of stopping times T is verified (see Esquível et al. (2020)).

Theorem 4 (A condition ensuring admissible sequence of stopping times). If σ is such that
the Ito’s stochastic integral part in the SDE given by Formula (5) is a martingale then T verifies
Hypothesis C.

It is possible now to formulate a result that ensures the existence of the price–liquidity
model proposed. In a first approach, since we want a complete model for pricing, we will
suppose that the Brownian processes (B1

t )t≥0 and (B2
t )t≥0 are the same. For the general

case, we have to state results with enlargement of filtrations corresponding to the two noise
sources (B1

t )t≥0 and (B2
t )t≥0.

Theorem 5 (On the existence of a price–liquidity process model). Suppose that for the SDE
in Formula (1), both Hypothesis A and Hypothesis B are verified. Suppose that µ and σ—as well
as ν and η—satisfy Hypothesis D and Hypothesis E. Suppose that the increasing sequence T of
F-stopping times 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · , derived as an application of Theorem 3 and
of Remarks 1, 2 and 3, do satisfy hypothesis C. Then, there exists a unique in law regime switching
process (St, Lt)t≥0 with continuous trajectories.

Proof. The proof is a consequence of Theorem 3 applied to each one of the equations in
Formula (1) with the sequence of stopping times generated by the procedure indicated in
the Remarks 1, 2, and 3.

5. Price and Liquidity Models

In the following, we consider particular examples of joint price and liquidity models
in order to study real data and assess the functioning of the mixed regime-switching model
introduced in Section 3 and studied in Section 4. We recall that our interpretation of
liquidity is given by the volume of transactions, that is, the number of transactions by unit
of time. We will first deal with the problem of adequately modeling liquidity.
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5.1. Liquidity Models

First, let us explore two models for the liquidity as given by the volume of transactions.
Let us detail some of the intrinsic and of the observable data characteristics of the daily
number of transactions.

• As pointed out previously, there are connections between the variation of the price
and a consequent variation of the volume of transactions and vice versa. We propose
in this work a model to describe the aforementioned connections.

• The daily number of transactions reflects the available share of the public capital of
the firm that integrates the portfolios of common investors. It is expected that the
proportion of this public capital, with respect to the whole public capital of the firm,
fluctuates around a certain value; this intrinsic characteristic points to a possible mean
reverting model.

• There appear to exist abrupt and very significant changes on the volume of transactions
that are not immediately connected to the information flow on the value of the firm
that influences the price changes. This may occur caused by several reasons: sudden
need for cash of an agent with a large share of the public capital of the firm (see,
again, Çetin and Rogers (2007); Glover et al. (2010); Gökay et al. (2011), (Guéant 2016,
p. 171)); some herd investment phenomena associated with the emergence of an
independent and new more rewarding source of profit; and some herd investment
phenomena associated with the disappearance of an independent and previously well
established source of profit. This characteristic seems to justify the coupling of a mean
reverting model with some jump process; we will not consider jump processes in
this work.

These characteristics justify the research we present next. We will consider first the
exponential Ornstein–Uhlenbeck (EOU) (see, for instance, Schwartz (1997)) given by:

dVt =

(
θ(γ− ln(Vt)) +

σ2

2

)
Vtdt + σVtdBt , (11)

which by Ito’s formula is seen to be the exponential of the well known Ornstein–Uhlenbeck
diffusion process. That is, if Ut = ln(Vt), then dUt = θ(γ−Ut)dt + σdBt, a very well-
known process. In particular, the parameter estimation for such a process can be performed
very efficiently (see Aït-Sahalia (2002)).

It is advisable to look at a paradigmatic dataset in order to get a general idea of some
qualitative characteristics of a volume of transactions set. The dataset we will consider is
from the Ford Motor Company stock and ranges from 19 March 2018 to 17 March 2023,
roughly a five-year-long observation of the volume of transactions. In Figure 4, we present
on the left-hand side the data and on the right-hand side a simulated trajectory of an
exponential Ornstein–Uhlenbeck process with a set of parameters estimated by a heuristic
method in such a way that the mean of the process coincides with the mean of the data. We
considered the double logarithms of the volume of transactions data in order to lower the
order of magnitude of the data—a desirable property for the estimation procedure—and in
order to better accommodate the particular model chosen. In the data of this five-year-long
set of daily observations, on the left-hand side of Figure 4, it is clear by inspection that
there are several significant regime changes taking place around days 400, 500, and 600. It
would be advisable to consider this extended period for the application of the joint regime-
switching model of Sections 3 and 4 if we want to find regime changes. At first sight, both
the right-hand and the left-hand side of Figure 4 could be thought to be trajectories of the
same process, that is, a first argument to support the adequateness of the model given in
Formula (11).
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Figure 4. Ford Motor Company’s volume of transactions and a trajectory of an EOU process.

5.2. Price Models

For the price model, we consider the classical geometrical Brownian model given by
an SDE of the form:

dSt = µStdt + σStdBt . (12)

This model was already considered in regime-switching models in Esquível and Mota
(2014); Mota (2013) and provides excellent results with respect to pricing of derivatives.

6. Parameter Estimation

In this section, we develop a methodology for the estimation of the model thresholds
and regime parameters. The main idea is to start with an equidistant Euler–Maruyama
discretization of the SDE and to observe that the recurrence generated allows the definition
of a conditional density that can be taken as a contrast quasi-likelihood. Starting references
to this methodology are given in Pedersen (1995a, 1995b) and the methodology was ex-
ploited in the context of regime-switching models in Mota and Esquível (2016); Mota et al.
(2021). An alternative way of building contrast functions that also produce consistent and
asymptotically normal estimators is given in Kessler (1997).

6.1. On the Quasi-Likelihood Estimators

Let us briefly expose the general method to obtain estimators that maximize a quasi-
likelihood function built upon the Euler–Maruyama discretisation of an SDE. Consider a
process given as a solution of an SDE such as the following:

dXt = µ(t, Xt)dt + σ(t, Xt)dBt , X0 = x0 .

Under regularity conditions, this equation has a strong and unique solution (see
(Øksendal 2003, p. 66)). Suppose that these conditions are verified and consider the
Euler–Maruyama discretisation scheme given by:

Xt+∆t − Xt = µ(t, Xt)∆t + σ(t, Xt)(Bt+∆t − Bt) ,

which under regularity conditions—joint measurability of the coefficients, Lipschitz condi-
tions, sublinear growth—is known to have a strong order of convergence of at least 0.5 (see
(Kloeden and Platen 1992, pp. 324–26)). The Euler–Maruyama in the form given by:

Xt+∆t = Xt + µ(t, Xt)∆t + σ(t, Xt)∆Bt .

may be considered a recursive method for building the approximate trajectories of the
solutions of the SDE. Considering the equidistant sequence of time points given by
t1, t2 = t1 + ∆t, . . . , ti+1 = ti + ∆t, . . . and observing that the increments of the Brow-
nian process are normally distributed, which we denote by ∆Bt _ N (0, ∆t), we have that
L
(
Xti+1 |Xti = xti

)
, the law of Xti+1 given that Xti = xti , is given by:

L
(
Xti+1 |Xti = xti

)
_ N

(
Xti + µ(ti, xti )∆t, σ(ti, xti )

2∆t
)

.
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As a consequence, the conditional density of the law L
(
Xti+1 |Xti

)
is given by:

f(
Xti+1 |Xti=xti

)(x) =
1√

2πσ(ti, xti )
2∆t

exp

(
− (x− xti − µ(ti, xti )∆t)2

2σ(ti, xti )
2∆t

)
.

From this conditional density, we may now assume that the density of the transition
probability to go from xti to xti+1 in time ∆t is given by:

p(xti+1 , xti , ∆t) =
1√

2πσ(ti, xti )
2∆t

exp

(
−
(

xti+1 − xti − µ(ti, xti )∆t
)2

2σ(ti, xti )
2∆t

)
.

Furthermore, as a consequence, using the Markov character of the process, the logarithm of
the density of the transition probability to go from xt1 to xti+1 in time i× ∆t:

ln
(

p(xti+1 , xt1 , i∆t)
)
= ln

(
i

∏
j=1

p(xtj+1 , xtj , ∆t)

)
=

= −1
2

i

∑
j=1

ln
(

2πσ
(

tj, xtj

)2
∆t
)
−

i

∑
j=1

(
xtj+1 − xtj − µ

(
tj, xtj

)
∆t
)2

2σ
(

tj, xtj

)2
∆t

.

In order to get a quasi-likelihood function that we can use as a contrast function, we
may neglect the terms that do not contain the parameter functions µ

(
ti, xtj

)
and σ

(
ti, xtj

)
and we obtain the contrast quasi-likelihood function Fc given by:

Fc

(
µ
(

tj, xtj

)
, σ
(

tj, xtj

))
:=

= −1
2

i

∑
j=1

ln
(

σ
(

tj, xtj

)2
)
− 1

2∆t

i

∑
j=1

(
xtj+1 − xtj − µ

(
tj, xtj

)
∆t
)2

σ
(

tj, xtj

)2 .

We now consider the particular cases that are relevant for our study. In case of the
GBM µ(t, Xt) = µXt and σ(t, Xt) = σXt and thus, the contrast quasi-likelihood function—
to be maximized—is given by:

Fc(µ, σ) := −1
2

i

∑
j=1

ln
(

σ2x2
tj

)
− 1

2∆t

i

∑
j=1

(
xtj+1 − xtj − µxtj ∆t

)2

σ2x2
tj

.

By equating the derivative of Fc(µ, σ) to zero with respect to each of the parameters, we
obtain the quasi-normal equations derived from the quasi-likelihood contrast function and
we get the estimators in the usual way. The correspondent estimate µ̃ for the parameter µ,
obtained from the observed data xtj , is given by:

µ̃ =
1

i∆t

i

∑
j=1

xtj+1 − xtj

xtj

,

and the estimate σ̃ of the parameter σ is given by:

σ̃2 =
1

i∆t

i

∑
j=1

(
xtj+1 − xtj − µ̃xtj ∆t

)2

x2
tj

.
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We now consider the model for the liquidity given by the volume of transactions. As
previously observed, we want to model “ln(ln(Volume))” with an exponential Ornstein–
Uhlenbeck (EOU) process Vt. Then, with Ut = ln(Vt), that is with Vt = exp(Ut), we have
that Ut is an Ornstein–Uhlenbeck (OU) process. Thus, we must model “ln(ln(ln(Volume)))”
by Ut to have “ln(ln(Volume))” modeled by Vt. In case of the OU process with µ(t, Xt) =
θ(γ− Xt) and σ(t, Xt) = σ, we have:

Fc(θ, γ, σ) := −i ln(σ)− 1
2σ2∆t

i

∑
j=1

(
xtj+1 − xtj − θ

(
γ− xtj

)
∆t
)2

.

The estimate γ̃ of the parameter γ, obtained from the observed data xtj , is given by:

γ̃ =
1
i

[
1

θ̃∆t

i

∑
i=1

(
xtj+1 − xtj

)
+

i

∑
i=1

xtj

]
,

the estimate θ̃ of the parameter θ is given by:

θ̃ =
∑i

j=1

(
xtj+1 − xtj

)(
γ̃− xtj

)
∆t ∑i

j=1

(
γ̃− xtj

)2 ,

and the estimate σ̃ of the parameter σ is given by:

σ̂2 =
1

i∆t

i

∑
j=1

(
xtj+1 − xtj − θ̃

(
γ̃− xtj

)
∆t
)2

.

We observe that the estimates θ̃ and γ̃ are coupled in a system of equations that has to be
solved as one.

The estimation procedure we use is similar to the one developed previously in Esquível
and Mota (2014); Mota (2013); Mota and Esquível (2014); Mota et al. (2021), but adapted for
the coupled model (Price, Volume) and is described next.

1. We identify a domain of variation for the data and we choose accordingly two extreme
values both for the thresholds of the price and the volume of transactions; an example
of the criteria for the choice of the thresholds is to have at least ten observations above
the upper threshold and ten observations below the lower threshold.

2. For a given set of thresholds, we estimate the parameters and compute the value taken
by the quasi-likelihood contrast functions on the estimated values of the parameters.
The estimation of the parameters is done as follows. We consider the pairs (Price,
Volume) for each date. We estimate three sets of the Price model parameters; the first
set, with the Price data observations corresponding to the Volume observations that
exceed the upper Volume threshold; the second set of parameters, with the Price data
observations corresponding to the Volume observations in the region between the
upper and the lower threshold; and the third set of parameters, with the Price data
observations corresponding to the Volume observations in the region below the lower
Volume threshold. We then estimate the three sets of Volume model parameters in a
similar way as done with the Price parameter estimation but classifying the Volume
data observations in three sets according to the positions of the corresponding Price
observation with respect to the two thresholds: above the upper Price threshold,
between the Price thresholds, and below the lower Price threshold.

3. For the first round of research we reduce the difference between the lower and the
upper threshold of both the Price and Volume data by a fixed quantity proportional to
the initial separations between the thresholds. Furthermore, we repeat the parameter
estimation procedure until the minimal distance between the thresholds—defined
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by the initial separation of thresholds divided by a fixed quantity—is attained. We
identify the values of the thresholds corresponding to the maximum of the quasi-
likelihood contrast function and, for the second round of research, we consider a
neighborhood of the two sets of thresholds. We next proceed as in the first round and
so on and so forth. After a finite number of rounds, the value of the quasi-likelihood
contrast function is constant in an interval and we chose the thresholds corresponding
to the middle point of this interval.

6.2. Parameter Estimation: Results and Interpretation

The results of the estimation procedure give the values below, with the increasing scale
of importance of the values being: blue, orange, and red. The total number of observations
considered was 1259.

The estimated thresholds—for ln ln(Volume) and for ln(Price)—are the following:
Volume: 2.92666, 2.84673; Price: 2.95864, 1.86765

Price parameters:

• INSIDE region to volume thresholds
µ̂ = 0.0000303338, σ̂ = 0.000186221 − used observations: 988

• OUTER region to UPPER volume threshold
µ̂ = 0.00039011, σ̂ = 0.0000339217 − observations used: 16

• OUTER region to LOWER volume threshold
µ̂ = −0.000220446, σ̂ = 0.0000212108 − observations used: 67

Total observations used in the estimation: 1071 (85.1%)
Volume parameters:

• INSIDE region to price thresholds
θ̂ = 0.284088, γ̂ = 1.05682, σ̂ = 0.0000365883 − observations used: 1110

• OUTER region to the UPPER price threshold
θ̂ = −2.27393 ∗ 10−6, γ̂ = 25.4527, σ̂ = 0.0000472025 − observations used: 57

• OUTER region to the LOWER price threshold
θ̂ = 0.508836, γ̂ = 1.06761, σ̂ = 0.0000221147 − observations used: 79

Total observations used in the estimation: 1246 (98.9%).
In Figure 5, we have, on the left-hand side, the observed trajectory (Price–Volume)

and the estimated thresholds. By resorting to the SDE model estimated parameters, we can
observe on the right-hand side of the figure a scheme of the (Price–Volume) dynamics in
the phase space of the observed (Price–Volume) trajectory.

The (Price, Volume) dynamics—as analyzed with respect to the logarithm of price and
the two-fold logarithm of volume—is different according to one of the nine regions defined
by the two thresholds for the price and the two thresholds for the volume; the dynamics
depend of the conjunction of the parameters that are different for each of the three regimes
of Price and the three regimes of Volume, similarly to what is depicted in Figure 1.

On the right-hand side of Figure 5, we present a schematic representation in the phase
space (Price, Liquidity) of the estimated parameters. The general principle for reading
this representation is that a greater thickness of the arrow represents a larger value of the
parameter and a wavy arrow represents a higher volatility. Furthermore, the direction of
the arrow is self explicit: for price—in the horizontal axis of the phase space—since the
model is the GMB process, it goes from right to left for a negative drift and it goes from left
to right for a positive drift; for liquidity (volume of transactions)—in the vertical axis—the
general tendency is decreasing, but this tendency is of different nature for prices lesser than
the upper price threshold and for prices larger than this threshold.
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Figure 5. On the left, Ford Motor Company price–volume of transactions and estimated thresholds
values: Volume: 2.92666, 2.84673; Prices: 2.95864, 1.86765; On the right, schematic representation of
the dynamic (Price–Volume) from the estimated parameters.

In fact, for prices lesser than the upper price threshold, the volume mean reversion
occurs in the direction of a value smaller than the values taken by the observed trajectory
(Price,Volume). For prices larger than the upper price threshold, the volume mean reversion
occurs in the opposite direction of a much larger value than the values taken by the observed
trajectory (Price,Volume). The right-hand side of Figure 5 shows that the dynamics of the
observed (Price,Volume) trajectory of the Ford Motor Company is of type IV, as defined
in Table 1 of page 6. The behavior of the Ford Motor company stock depicted by this
model clearly indicates that liquidity decreases in either the highest or the lowest prices
and that prices tend to increase with higher liquidity and to decrease with the lowest
liquidity; both these conclusions are coherent with standard economic considerations.
Firstly, the highest or lowest prices will indicate a reversal of stock demand tendency, and
secondly, higher liquidity (respectively, lower liquidity), indicating an increase in demand
(respectively, a decrease in demand), will be accompanied by increasing prices (respectively,
decreasing prices). At the managerial level of an investment company, admitting the
stationarity hypothesis in the dynamics, that is, nonexistence of unexpected high impact
events, this information has a clear use; for instance, if prices are at a high point level, high
volume trades will face liquidity problems; for instance, at higher liquidity levels, buying
may be advisable.

7. Conclusions and Further Work

In this work, we present a complementary study of a coupled regime-switching model
for the Price and Volume of transactions—as a proxy of liquidity—of equities, previously
introduced in Rianço et al. (2009). We show the existence of a stochastic process that
satisfies the SDE equations for Price and Volume with coefficients switching according
to thresholds crossing. The existence of this stochastic process comes from the existence
of an increasing sequence of threshold hitting regime switching stopping times. In order
to build this sequence, the first fundamental rule is that the regime only changes after
the trajectory reaches the second threshold of a double line threshold. As a result, there
is an increasing sequence of stopping times for Price and there is also a similar one for
Volume; from the existence of these two sequences, we can infer that there is a sequence
of increasing stopping times for regime switching that are stopping times either for Price
regime switching or for Volume regime switching, being always possible to specify their
respective nature in any realization of the sequence, that is, if it is a stopping time for
Price regime switching or if it is a stopping time for Volume regime switching. These
realizations are sequences, of real positive numbers, formed by intertwining times and
there may be time values for which both trajectory of the processes, Price and Volume,
change regime simultaneously.

We showed how to estimate both the parameters and the thresholds and we applied
the estimation procedure introduced to a particular dataset providing an interpretation
of the estimated values found in accordance with the model proposed. As a first line of
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future work, it would be interesting to compare the derivative pricing performance of the
model here introduced to the performance of the price GBM regime-switching model in a
study similar to the one in the study by Mota and Esquível (2014). Increased performance
results for the (Price, Volume) regime-switching model would sustain the importance of
considering the information gained by the volume of transactions.

Another natural and more general question to be studied is to model the price–volume
relation in the context of algorithmic trading, a methodology that has been largely adopted
in many stock exchanges.

A very interesting line of investigation is the auto-induced regime switching diffusions
under the perspective of the theory of random dynamical systems. It is well known
(see (Arnold 1998, pp. 473–75)) that if the coefficients of the SDE are smooth the Lyapunov
exponent of the unique solution of the Fokker–Planck equation associated with the SDE
is strictly negative, and hence, the random dynamical system generated by the SDE is
exponentially stable. Since, at least in the application developed in this work, the solution
of the auto-induced regime switching diffusion is obtained by the gluing of solutions of
SDE with smooth coefficients (see Theorem 3), it follows that the regime switching stopping
times may be considered as bifurcations points of the random dynamical system. The
theory of bifurcations of random dynamical systems has made progress that are presented,
for instance, in Crauel and Gundlach (1999).

As already pointed out in Esquível and Mota (2014), the auto-induced regime-switching
models with one varying quantity—for instance, temperature—are adequate to describe,
for instance, the functioning of a thermostat. The model described in this work with two
mutually influencing varying quantities can be used to describe the behavior, for instance,
of a hygrostat-thermostat device, which is a device that simultaneously regulate temper-
ature and humidity. A consequent line of investigation is the possible application of the
models developed here to other industry phenomena.
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