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Abstract: In this paper, we present a new method to construct new classes of distortion functions.
A distortion function maps the unit interval to the unit interval and has the characteristics of a
cumulative distribution function. The method is based on the transformation of an existing non-
negative random variable whose distribution function, named the generating distribution, may
contain more than one parameter. The coherency of the resulting risk measures is ensured by
restricting the parameter space on which the distortion function is concave. We studied cases when
the generating distributions are exponentiated exponential and Gompertz distributions. Closed-form
expressions for risk measures were derived for uniform, exponential, and Lomax losses. Numerical
and graphical results are presented to examine the effects of the parameter values on the risk measures.
We then propose a simple plug-in estimate of risk measures and conduct simulation studies to
compare and demonstrate the performance of the proposed estimates. The plug-in estimates appear
to perform slightly better than the well-known L-estimates, but also suffer from biases when applied
to heavy-tailed losses.

Keywords: coherent risk measure; distortion function; exponential–exponential distortion; Kumaraswamy
distortion; Gompertz distortion; L-estimator; plug-in estimator

1. Introduction

Risk measures or premium calculation principles are statistical tools for the cal-
culations of the insurance price corresponding to a risk in the actuarial literature; see
Fischer et al. (2018) for a discussion on recent risk measures with application to credit risk.
They have also been developed to assess the reserve capital required to cover unexpected
losses and ensure financial stability. For example, the value at risk (VaR) at level p is a
quantile-based risk measure such that VaRp(X) = inf[x|F(x) ≥ p] = F−1(p), 0 ≤ p ≤ 1,
where X is a non-negative loss or risk random variable with a cumulative distribution
function (cdf) F(X) = P(X ≤ x), x > 0. The conditional tail expectation (CTE) is an-
other risk measure defined as the average value of losses beyond the VaRp value, i.e.,
CTEp = E[X|X ≥ VaRp(X)]. Another popular premium principle is the Gini shortfall; see
Furman et al. (2017) and Eugene et al. (2021). It is given by GSp = CTEp + λTGinip, where
λ is the loading parameter and TGinip = 2

∫ 1
p F−1(u)(2u− 1− p)du/(1− p)2. It is said to

be more comprehensive as it combines the average serenity and the variability of a loss
distribution tail.

Artzner et al. (1997, 1999) addressed the desired behaviors and characteristics of risk
measures. More specifically, here, we are concerned about the coherency. Let ρ(X) be a risk
measure associated with a loss random variable X. A risk measure is coherent if it satisfies
the following four axioms: (i) monotonicity: if Y ≤ X ⇒ ρ(Y) ≤ ρ(X); (ii) subadditivity:
ρ(X + Y) ≤ ρ(X) + ρ(Y); (iii) positive homogeneity: for any c > 0, ρ(cX) = cρ(X); (iv)
translation invariance: for any c > 0, ρ(X + c) = ρ(X) + c. Subadditivity specifies that a
diversified portfolio reduces the overall risk profile. It is well known that the VaR does
not satisfy the subadditivity axiom and, hence, is not coherent; see Denuit et al. (2005) for
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examples. In contrast, the CTE developed by Rockafellar and Uryasev (2002) is a coherent
risk measure.

A distortion risk measure introduced by Denneberg (1994) calculates the insurance
premium by transforming or distorting the accumulative distribution function of the loss
variable. A distortion function is a non-decreasing function mapping the unit interval [0, 1]
to the unit interval such that g(0) = 0 and g(1) = 1. The risk-adjusted distortion risk
measure denoted by ρ or ρ(X) for a continuous loss X is given by

ρ(X) =
∫ ∞

0
g(S(x)) dx =

∫ ∞

0
xd[1− g(S(x))] =

∫ ∞

0
xg′(S(x)) f (x)dx (1)

=
∫ 1

0
S−1(t)g′(t)dt =

∫ 1

0
F−1(t)g′(1− t)dt, (2)

where the survival function S(x) = 1 − F(x), f (x) = dF(x)/dx, and g′(·) is the first
derivative of g(·). Based on (1), the distortion risk measure ρ can be interpreted as the
mean of a random variable Y with cdf 1− g(S(x)). It reflects the notion in Yaari (1987) that
probabilities are liable to be in the decision-maker’s perception (see Pflug 2009) and that
the distortion risk can be seen as the expected utility with a utility function of xg′(S(x))
with respect to the loss distribution. According to (2), the distortion risk measure is also
a spectral risk measure, which is a quantile-based risk measure that takes the form of∫ 1

0 F−1(t)ψ(t)dt, where ψ(t) ≥ 0,
∫ 1

0 ψ(t)dt = 1, and ψ′(t) ≥ 0. The function ψ represents
the user’s risk attitude; see Acerbi (2002) and Dowd et al. (2008). For the applications of
distortion risk measures, see Sereda et al. (2010) and Bihary et al. (2020).

Wang (1995, 2000) proposed two classes of distortion operators or transformation
for pricing financial and insurance risk: power distortion or the proportional hazards
transform defined by g(w) = wa, 0 ≤ a ≤ 1, and the Wang transform defined by g(w) =
Φ
(
Φ−1(w) + λ

)
, where Φ(·) is the standard normal cdf and λ is a scalar. The power

distortion brings about the dual-power distortion function g(w) = 1− (1− w)b, b ≥ 1. It is
shown that, if the distortion function is concave, then the resulting risk measure is coherent.

Wirch and Hardy (1999) considered the beta distribution distortion given by

g(w) =
∫ w

0

1
B(a, b)

ta−1(1− t)b−1dt, 0 ≤ w ≤ 1, 0 ≤ a ≤ 1, b ≥ 1, (3)

where B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt. Note that the beta distortion is concave when 0 ≤ a ≤ 1
and b ≥ 1. The distortion utilizes the beta probability density function (pdf) as its generating
function. Setting a = 1, the beta distortion yields the dual-power distortion. It is the power
distortion when b = 1. Applying the framework in (3), Samanthi and Sepanski (2018)
proposed new classes of distortion functions by replacing the beta pdf with other pdf’s.
Yin and Zhu (2018) presented three methods for constructing new classes of distortion
functions: compositing two distortions, convex linear mixing of distortions, and employing
copula cdf. Minasyan (2020) studied two new classes of financial risk measures defined
by the power function of the VaR and CTE. Minasyan (2021) introduced the concept of
variance distortion, i.e., distorting the variance instead of the mean, by using popular
existing distortion functions that yield the VaR and CTE. More references can be found in
Minasyan (2021).

Let X1, X2, · · · , Xn be independent and identically distributed (iid) loss random vari-
ables with the pdf, cdf, and survival function given by f , F, and S, respectively. Grounded
by (2), Jones and Zitikis (2003) and Jones and Zitikis (2007) proposed the following empir-
ical L-estimator, which is a linear combination of order statistics with weights being the
score function g(1− t) :

ρ̂L =
n

∑
i=1

[
g
(

n− i + 1
n

)
− g
(

n− i
n

)]
X(i), (4)
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The estimator is nonparametric, intuitive, and simple to implement. Due to the scarcity
of data in the tails for a heavy-tailed loss, bias-correction methods have been proposed. For
example, Brahimi et al. (2012) introduced a new reduced-biasestimator for heavy-tailed
losses; see the references therein for more bias-correction methods.

The organization of the paper is as follows. In Section 2, we stage the method em-
ployed to produce new distortion functions and demonstrate the method by employing
exponentiated exponential and Gompertz distributions as the generating functions. In
Section 3, closed-form expressions for distortion risk measures are derived for uniform,
exponential, Lomax, and Weibull loss distributions. Numerical and graphical comparisons
are also included. In Section 4, we propose a plug-in, empirical-distribution-based estima-
tor of the risk measures. The estimator does not require parametric assumptions on the loss
distribution. Simulations were conducted to compare and demonstrate the performance of
the proposed estimator. Concluding remarks are made in Section 5.

2. Proposed Methods and Distortions

We first advance the method, similar to those in Aldhufairi and Sepanski (2020) and
Aldhufairi et al. (2020), for constructing a distortion. The main idea stems from the fact that
a cdf with a domain of the unit interval by definition is also a distortion function.

Let Y be a non-negative continuous random variable with cdf G. Consider the follow-
ing two transformations of the random variable Y:

W = e−Y and W1 = 1− e−Y. (5)

The transformed random variables W and W1 both have a support of I = [0, 1], and
their respective cdfs are given by

H(w) = P(W ≤ w) = 1− P(Y < − ln w) = 1− G(− ln w), (6)

K(w) = P(W1 ≤ w) = P(Y ≤ − ln(1− w)) = G(− ln(1− w)), (7)

for w ∈ I. Both H(·) and K(·) are continuous and non-decreasing with H(0) = K(0) = 0
and H(1) = K(1) = 1. Let G′(y) = dG(y)/dy be the pdf of Y. Note that K(w) in (7) can
also be derived from the framework:

K(w) =
∫ − ln(1−w)

0
G′(y) dy,

motivated by the framework in (3); see Samanthi and Sepanski (2018).
Since W or W1 is continuous, its quantile function or inverse cdf is non-decreasing

and may also potentially serve as a distortion for the purpose of constructing new risk
measures. While the cdfs and inverse cdfs of W and W1 are distortions, they must be
concave to produce coherent risk measures. To ensure the concavity, we restricted the
parameter spaces where the second derivative of the functions is non-positive.

We next showcase four new admissible distortions deriving from the cases when Y
has an exponentiated exponential distribution and a Gompertz distribution. A distortion
function is said to be admissible if it yields coherent risk measures, i.e., if it is concave.
The parameter space over which the distortion is concave is presented for each of the
four distortions.

2.1. Distortions via Exponentiated Exponential Distribution

Let Y be an exponentiated exponential random variable. Its cdf is G(y) = (1− e−αy)θ ,
where y > 0, θ > 0, α > 0. We refer to cdf G as the generating distribution. Then, the cdfs
of the transformed variables in (6) are given by

He(w) = 1− G(− ln w) = 1− (1− wα)θ ,

Ke(w) = G(− ln(1− w)) = (1− (1− w)α)θ . (8)
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The respective inverse cdfs of He(w) and Ke(w) are

H−1
e (w) = (1− (1− w)1/θ)1/α and K−1

e (w) = 1− (1− w1/θ)1/α.

In this case, He and K−1
e are of the same functional form with different parameter-

izations, so are Ke and H−1
e . The distortion He(·) can also be formulated with the Ku-

maraswamy pdf instead of the beta pdf in (3), which was studied in Samanthi and Sepanski
(2018). The distortion He will be cited as the Kumaraswamy distortion below.

Since the support of transformed variables in (5) is the unit interval, we will refer to
Ke as the unit-exponentiated exponential (UEE) distortion below. Note that the power and
dual-power distortions are special cases of the beta distortion in (3), the Kumaraswamy
and UEE distortions.

Lemma 1. The Kumaraswamy distortion He(w) = 1− (1− wα)θ is concave on I if 0 < α ≤ 1
and θ ≥ 1.

Proof. See Samanthi and Sepanski (2018).

The notations of the parameters in (8) or Ke are changed in the following lemma so that,
throughout the paper, θ consistently represents a parameter with a constraint of greater
than or equal to one.

Lemma 2. The UEE distortion Ke(w) =
(
1− (1− w)θ

)α is concave on I if 0 < α ≤ 1 and
θ ≥ 1.

Proof. The first and second derivatives of Ke(w) with respect to w are given by

K′e(w) = αθ(1− w)θ−1[1− (1− w)θ]α−1,

K′′e (w) = αθ(1− w)θ−2[1− (1− w)θ]α−2[
(αθ − 1)(1− w)θ − (θ − 1)

]
,

respectively. If θ ≥ 1, since 0 ≤ (1− w)θ ≤ 1, (αθ − 1)(1− w)θ − (θ − 1) ≤ θ(α− 1). In
this case, if α ≤ 1, K′′e is non-positive for all w in I. If θ < 1, there is no α > 0 value such
that K′′o (w) ≤ 0 for all w in I.

2.2. Distortions via Gompertz Distribution

Let Y be a Gompertz random variable with cdf G(y) = 1− e−θ(eαx−1), y > 0, α > 0,
θ > 0. The resulting distortions Ho(w) and Ko(w) from (6) and (7) and their inverse func-
tions are

Ho(w) = e−θ(w−α−1), H−1
o (w) =

(
1− ln w

θ

)−1/α

,

Ko(w) = 1− e−θ[(1−w)−α−1], K−1
o (w) = 1−

[
1− ln(1− w)

θ

]−1/α

.

The first and second derivatives of Ho(w) are, respectively,

H′o(w) = Ho(w)
[
αθw−α−1

]
H′′o (w) = αθHo(w)w−α−2[αθw−α − (α + 1)

]
. (9)

There exists no admissible parameter space for α and θ on which H′′o (w) is non-positive
for all w ∈ I. Similarly, one can show that the same conclusion holds for K−1

o . The cdfs of
the transformed variables defined in (5) are distortions, but may not be admissible, e.g.,
Ho. When G is the Weibull cdf, the resulting distortions are not admissible, though not
shown here.
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In what follows, the distortion Ko will be called the unit Gompertz (UG) distortion
and H−1

o the unit Gompertz quantile (UGQ) distortion.

Lemma 3. The UG distortion Ko(w) = 1 − e−θ[(1−w)−α−1] is concave on I if α > 0 and
θ ≥ 1 + 1/α.

Proof. The respective first and second derivatives of Ko(w) are given by

K′o(w) = αθe−θ[(1−w)−α−1](1− w)−α−1.

K′′o (w) = αθe−θ[(1−w)−α−1](1− w)−α−2[α + 1− αθ(1− w)−α
]
.

The second derivative is non-positive if α + 1− αθ(1− w)−α ≤ (α + 1) − αθ ≤ 0
since (1− w)−α ≥ 1 for α > 0 and 0 ≤ w ≤ 1. Therefore, if θ ≥ 1 + 1/α, then Ko(w) is
concave.

Lemma 4. The UGQ distortion H−1
o (w) =

(
1− θ−1 ln w

)−1/α is concave on I if α > 0 and
θ ≥ 1 + 1/α.

Proof. The respective first and second derivatives of Qo(w) = H−1
o (w) are given by

Q′o(w) =
1

αθ

1
w

(
1− ln w

θ

)−1−1/α

;

Q′′o (w) =
1

αθ

1
w2

(
1− ln w

θ

)−2−1/α[(
1 +

1
α

)
1
θ
−
(

1− ln w
θ

)]
=

1
θ2α

1
w2

(
1− ln w

θ

)−2−1/α[
1 +

1
α
− θ + ln w

]
.

Since ln w ≤ 0 for 0 < w ≤ 1, the second derivative is non-positive if 1 + 1/α− θ ≤ 0.
That is, when θ ≥ 1 + 1/α, then H−1

o is concave on I.

In summary, applying the exponential transformation to negative random variables
with the exponentiated exponential and Gompertz distributions, we obtain four new
admissible distortions. Table 1 summarizes the four lemmas in this section.

Table 1. Proposed distortions and admissible parameter spaces.

Distortion Function Form Admissible Parameter Space

Kumaraswamy He(w) = 1− (1− wα)θ 0 < α ≤ 1, θ ≥ 1
UEE Ke(w) = (1− (1− w)θ)α 0 < α ≤ 1, θ ≥ 1
UG Ko(w) = 1− e−θ[(1−w)−α−1] α > 0, θ ≥ 1 + 1/α

UGQ H−1
o (w) =

(
1− θ−1 ln w/

)−1/α
α > 0, θ ≥ 1 + 1/α

Figure 1 shows how the two new distortions UG and UGQ behave at varying θ and
α values. Assuming that a risk-neutral agent would not distort the survival distribution,
Belles-Sampera et al. (2016) used the area under a distortion function as a measure of global
risk attitude. The area under a concave curve on [0, 1] is always greater than half, and a
larger area indicates a higher level of global risk-tolerant attitude.

For the UG distortion, when α = 0.5, Graph (a) indicates that a higher level of global
risk-tolerant attitude and risk aversion is associated with a larger θ value. Setting θ = 6
(Graph (b)), a larger α value corresponds to a larger level of global risk-tolerant attitude.
When α = 10 and θ = 6, the area under the curve is close to 1, which reflects a very
conservative global risk-tolerant attitude. Similarly, for the UGQ distortion, the choice of
a larger θ at a fixed α value or a larger α at a fixed θ value reflects a higher level of global
risk-tolerant attitude.
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From (2), the derivative of the distortion g′(w), 0 < w ≤ 1, i.e., the slope of the tangent
line to a distortion curve at w, is the assigned weight to the loss of S−1(w). For example,
when α = 0.5, at a small extreme survival value w, the slopes of the tangent lines to the
curves increase as θ increases. That is, a greater weight is assigned to a large extreme loss
as θ increases, indicating a higher level of risk aversion. One, therefore, expects to obtain a
larger distortion risk measure for a larger θ; see Tables 2 and 3 below

Figure 1. UG distortion cures are displayed in (a) and (b), and UGQ in (c) and (d) for varying θ or α.

3. Examples of Distortion Risk Measures

In this section, we calculate the distortion risk measures defined in (1) for uniform,
exponential, Lomax, and Weibull losses using the distortions in Table 1. The derivations of
the Kumaraswamy and UEE risk measures for the exponential and Lomax losses can be
found in Samanthi and Sepanski (2018).

3.1. Uniform Loss

When the loss variable is uniform over the interval [0, 2b], then the respective cdf and
survival function are F(x) = x/2b and S(x) = 1− x/2b for 0 ≤ x ≤ 2b. In this case, we use
the formula of ρ =

∫
g
(
S(x)

)
dx in (1) to calculate the distortion risk measures.

The Kumaraswamy risk measure for the uniform loss is given by, with substitution
s = [(2b− x)/2b]α or x = 2b(1− s1/α),

∫ 2b

0
1−

[
1−

(
2b− x

2b

)α]θ

dx = 2b− 2b
α

∫ 1

0
(1− s)θs(1−α)/α ds = 2b

[
1− 1

α
B
(

θ + 1,
1
α

)]
.

When θ = 1, the Kumaraswamy risk measure is the PH or power risk measure of
2b/(1 + α) for 0 < α ≤ 1; see also Wang (1995).
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The UEE risk measure, with substitution s = 1 − (x/2b)θ or x = 2b(1 − s)1/θ , is
given by

∫ 2b

0

[
1−

( x
2b

)θ
]α

dx =
2b
θ

∫ 1

0
sα(1− s)1/θ−1ds =

2b
θ

B
(

α + 1,
1
θ

)
.

For the UG distortion, with substitution s = (x/2b)−α, the UG risk measure is given by

∫ 2b

0

(
1− e−θ

[
(x/2b)−α−1

])
dx = 2b− 2b

α

∫ ∞

1

eθe−θs

s−(1+1/α)
dx = 2b− 2b

α
eθE
(

1 +
1
α

, θ

)
,

where E(a, z) =
∫ ∞

1 e−zs/sa ds is the generalized exponential integral.
The UGQ distortion risk measure is, with substitution s = 1− (1/θ) ln(1− x/2b),

∫ 2b

0

[
1− 1

θ
ln S(x)

]−1/α

dx =
∫ 2b

0

[
1− 1

θ
ln
(

2b− x
2b

)]−1/α

dx

= 2bθeθ
∫ ∞

1
e−θss−1/αds = 2bθeθE

(
1
α

, θ

)
.

The distortion risk measures derived for a uniform loss on [0, 2b] in this section are
summarized in Table 2 below. The distortion risk measures by power and dual-power
distortions in Wang (1995) are special cases of the Kumaraswany risk measures. They are
presented not only as a strategy for double-checking the calculations, but also due to their
popularity.

Table 2. Distortion risk measures for a uniform loss on (0, 2b).

Distortion Parameter Space Risk Measures

Power 0 < α ≤ 1 2bα/(1 + α)
Dual-power θ ≥ 1 2bθ/(θ + 1)
Kumaraswamy 0 < α ≤ 1, θ ≥ 1 2b− (2b/α)B(θ + 1, 1/α)]
UEE 0 < α ≤ 1, θ ≥ 1 (2b/θ)[B(α + 1, 1/θ)]
UG α > 0, θ > 1 + 1/α + 1 2b− (2b/α)eθ E(1 + 1/α, θ)
UGQ α > 0, θ > 1 + 1/α + 1 2bθeθ E(1/α, θ)

3.2. Exponential Loss

When the loss variable X has an exponential distribution with mean b, the respective
cdf, survival function, and their inverses are F(x) = 1− e−x/b, S(x) = e−x/b, F−1(u) =
−b ln(1 − u), and S−1(u) = −b ln u. Below, the formulas in (2) will be used and the
derivative g′ of each distortion in Table 1 will be required.

The Kumaraswamy risk measure for an exponential loss can also be found in Samanthi
and Sepanski (2018). Briefly, from (2), it is given by, with substitution s = uα,∫ 1

0
αθ(−b ln u)

(
1− uα

)θ−1uα−1du =
−b
α

∫ 1

0
θ(ln s)(1− s)θ−1ds =

b
α
[Ψ(θ + 1)−Ψ(1)],

where the integral is the expected value of the logarithm of a beta variable with parameters
1 and θ and the digamma function Ψ(a) = dΓ(a)/Γ(a).

Since ln(1 + s) ≤ s for s > −1, the UEE distortion risk measure is∫ 1

0
F−1(s)g′(1− s)ds = −bαθ

∫ 1

0
ln(1− s) sθ−1(1− sθ)α−1ds (10)

≤ bαθ
∫ 1

0
sθ(1− sθ)α−1ds ≤ bαθ

∫ 1

0
sθ−1(1− sθ)α−1ds,
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which is finite for θ ≥ 1. Applying the fact ln(1− s) = −∑∞
k=1 sk/k, for |s| < 1, the risk

measure in (10) is given by

bαθ
∞

∑
k=1

1
k

∫ 1

0
sk+θ−1(1− sθ)α−1ds = bα

∞

∑
k=1

1
k

∫ 1

0
tk/θ(1− t)α−1dt = bα

∞

∑
k=1

1
k

B
(

1 +
k
θ

, α

)
.

When θ = 1, ∑∞
k=1 B(1 + k, α)/k = ∑∞

k=1
∫ 1

0 sk(1 − s)α−1/k ds =
∫ 0

1 ln(1 − s)(1 −
s)α−1ds = [(1− s)α(1− α ln(1− s))]/α2) |01= 1/α2 and the UEE risk measure is reduced
to the power risk measure. When α = 1, ∑∞

k=1 B(1 + k/θ, 1)/k = ∑∞
k=1(1/k)θ/(θ + k) =

∑∞
k=1[1/k− 1/(θ + k)] = Ψ(θ + 1)−Ψ(1); see https://en.wikipedia.org/wiki/Digamma_

function, (accessed on 6 October 2021).
The UG risk measure is given by, with substitution s = t−α ∈ (∞, 1),

bαθeθ
∫ 1

0
ln(1− t)e−θt−α

t−α−1dt = bαθeθ
∞

∑
k=1

∫ 1

0

tk−α−1

k
e−θt−α

dt

= bθeθ
∞

∑
1

1
k

∫ ∞

1
s−k/αe−θsds = bθeθ

∞

∑
1

1
k

E
(

k
α

, θ

)
,

where E is the generalized exponential integral. It is shown in Section 3.4 that this UG
exponential risk measure as a special case of UG Weibull risk measures being finite.

The UGQ risk measure using the formula ρ =
∫

g(S(x))dx is

∫ ∞

0

[
1− 1

θ
ln(e−x/b)

]−1/α

dx =
∫ ∞

0

(
1 +

x
bθ

)−1/α
dx.

When α ≥ 1, the risk measure is not finite. When 0 < α < 1, it is bαθ/(1− α).
Table 3 summarizes the distortion risk measures for an exponential loss with mean

b. It is obvious that a larger mean of b results in a larger distortion risk measure. As
the distortion parameter θ increases, the resulting distortion risk measure increases. As
indicated in Figure 1, a larger θ represents a higher level of risk aversion. The effects of
the distortion parameter α do not have the same pattern across the distortions considered
in Table 3. For example, for 0 ≤ α < 1, as α increases, the power and Kumaraswamy risk
measures for exponential losses decrease while the UGQ exponential risk measure increases.

Table 3. Distortion risk measures for an exponential loss with mean b.

Distortion Parameter Space Risks Measure

Power 0 < α ≤ 1 b/α
Dual Power θ ≥ 1 b[Ψ(θ + 1)−Ψ(1)]
Kumaraswamy 0 < α ≤ 1, θ ≥ 1 (b/α)[Ψ(θ + 1)−Ψ(1)]
UEE 0 < α ≤ 1, θ ≥ 1 bα ∑∞

k=1(1/k)B(1 + (k/θ), α)

UG α > 0, θ > 1
α + 1 bθeθ ∑∞

k=1(1/k)E(k/α, θ)

UGQ α > 0, θ > 1
α + 1 bαθ/(1− α) if 0 < α < 1; undefined if α ≥ 1

For an exponential loss with a mean of 50, the 3D Figure 2 displays the UEE and UG
distorted risk measures involving the sum of an infinite series, numerically computed using
R, with the parameter values α and θ in their respective admissible spaces. The plots for the
UEE and UG risk measures allow us to gain better insight into the effect of the parameters
on the risk measures. A larger θ value appears to yield a larger UEE or UG exponential risk
measure, which is not at all transparent by examining the formulas. The effect of increasing
α seems less dramatic when alaha is large for the UG distortion.

https://en.wikipedia.org/wiki/Digamma_function
https://en.wikipedia.org/wiki/Digamma_function
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Figure 2. The 3D graphs of UEE and UG risk measures for an exponential loss with mean 50.

3.3. Lomax Loss

The cdf, survival function, and their inverses, with parameters a > 0 and b > 0, of a
Lomax loss variable X are given by, for x > 0 and 0 < u ≤ 1,

F(x) = 1−
(

b
b + x

)a
, F−1(u) = b

[
(1− u)−1/a − 1

]
, (11)

S(x) =
(

b
b + x

)a
, S−1(u) = b

[
u−1/a − 1

]
,

respectively. The Lomax loss has a mean of b/(a − 1). The calculations of the Ku-
maraswamy and UEE distortion risk measures for a Lomax loss are shown in Samanthi
and Sepanski (2018).

By (2), (11), and with substitution s = u−α, the UG distortion risk measure for a Lomax
loss is ∫ 1

0
F−1(u)g′(1− u)dt = bαθ

∫ 1

0

[
(1− u)−1/a − 1

]
u−α−1e−θ(u−α−1) du

= bαθ
∫ 1

0

∞

∑
k=1

(−1)kuk−α−1e−θ(u−α−1)du

= bθeθ
∫ ∞

1

∞

∑
k=1

(−1)k
(
−1/a

k

)
s−k/αe−θsds = bθeθ

∞

∑
k=1

(−1)k
(
−1/a

k

)
E
(

k
α

, θ

)
,

where E is the generalized exponential integral, since (1− u)−1/a = ∑∞
k=0(−1)kuk(−1/a

k ).
The UGQ distortion risk measure for a Lomax loss is given by

∫ ∞

0

[
1− ln S(x)

θ

]−1/α

dx =
∫ ∞

0

[
1− a

θ
ln
(

b
b + x

)]−1/α

dx. (12)

With substitution s = 1− (a/θ) ln(b/(b + x)), s > 1, the integral in (12) is

bθ

a
e−θ/a

∫ ∞

1
s−1/αeθs/ads =

bθ

a
e−θ/a

∫ ∞

1
a1−1/αt−1/αeθtdt

Note that, by L’Hopital’s rule, for 0 < α ≤ 1,

lim
t→∞

eθt

t1/α
= lim

t→∞

(
eαθt

t

)1/α

= lim
t→∞

(
αθeαθt

1

)1/α

= ∞

Therefore, the risk measure in (12) is not well defined.
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The mean of a Lomax loss increases as a decreases and b increases. Intuitively, one
expects the parameters a and b to have the same effect on the distortion risk measures,
which can be verified from the formulas except for the UEE distortion in Table 4. Varying
the α and θ values, we plot the UEE and UG risk measures for a Lomax loss with a mean
of 50 with (a, b) = (12.61, 580.40) in Figure 3. The figure shows that the UEE Lomax risk
measure increases as θ increases and α decreases and that the UG Lomax risk measure
increases as θ or α increases. When the risk aversion indicator θ increases, all distorted risk
measures increase.

Figure 3. The 3D graphs of UEE and UG risk measures for a Lomax loss with mean 50.

Table 4. Distortion risk measures for a Lomax loss with parameters (a, b).

Distortion Parameter Space Risk Measures

Power 0 < α ≤ 1 b/(aα− 1), aα 6= 1
Dual Power θ ≥ 1 bθ[B(1− 1/a, θ)− B(1, θ)]
Kumaraswamy 0 < α ≤ 1, θ ≥ 1 bθ[B(1− 1/(aα), θ)− B(1, θ)], aα 6= 1

UEE 0 < α ≤ 1, θ ≥ 1 ∑∞
k=0 (

θ
k)(−1)k[1 + ∑∞

i=1 (
αk
i )

(−1)ib
ia−1 ]

UG α > 0, θ > 1
α + 1 bθeθ ∑∞

k=1(−1)k(−1/a
k )E

(
k/α, θ

)
UGQ α > 0, θ > 1

α + 1 Undefined

3.4. Weibull Loss

When the loss variable X follows a Weibull distribution, its respective cdf and survival
function are F(x) = 1− e−xc/b and S(x) = e−xc/b. It has a mean of b1/cΓ(1 + 1/c). The
quantile function is F−1(u) = [−b ln(1− u)]1/c for 0 < u < 1. The hazard rate function of
the Weibull distribution with parameters b and c is (c/b)x(c−1). It is a decreasing function
when c < 1, marking a heavy-tailed distribution, and increasing when c > 1, marking
a light-tailed distribution. The characteristics of its hazard function make the Weibull
distribution an adequate model for a variety of applications, such as weather forecasting,
insurance modeling, and financial risk analysis; see Frees (2018).

For the Weibull loss, the Kumaraswamy risk measure is defined to be∫ ∞

0
1−

[
1−

(
S(x)

)α
]θ

dx =
∫ ∞

0
1−

[
1− e−αxc/b

]θ
dx ≤ θ

∫ ∞

0
e−αxc/bdx,

since Bernoulli’s inequality states that (1 + t)r ≥ 1 + rt for t ≥ −1 and r ≥ 1, and (1 + t)r

≤ 1 + rt for t ≥ −1 and 0 ≤ r ≤ 1. With a substitution of xc, the integral
∫ ∞

0 e−αxc/bdx =

Γ(1/c)(b/α)1/c/c for c > 0 and is finite. Thus, the Kumaraswamy distortion risk measure
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for a Weibull loss is finite. By the binomial expansion of (1 + t)a = ∑∞
k=1 (

a
k)t

k for |t| < 1,
the risk measure is given by

∞

∑
k=1

∫ ∞

0

(
θ

k

)
(−1)k

[
e−αxc/b

]k
dx =

1
c

∞

∑
k=1

(
θ

k

)
(−1)k

(
αk
b

)−1/c
Γ
(

1
c

)
.

When α = 1, we obtain the dual-power distortion risk measure given by

1
c

∞

∑
k=1

(
θ

k

)
(−1)k

(
k
b

)−1/c
Γ
(

1
c

)
. (13)

When c = 1, the Weibull loss reduces to the exponential loss. Using the Newton series
for the digamma function, the risk measure in (13) is equal to

b
∞

∑
k=1

(
θ

k

)
(−1)kk−1Γ(1) = b[Ψ(θ + 1)−Ψ(1)],

which coincides with the result for the exponential loss in Table 3.
Since 0 < 1− e−xc/b < 1 for x > 0 and (1− e−xc/b)α ≥ (1− e−xc/b)θ for the admissible

parameter space of 0 < α ≤ 1, θ ≥ 1, and by applying Bernoulli’s inequality, the UEE risk
measure for the Weibull loss, we obtain that∫ ∞

0

[
1− (1− e−xc/b)θ

]α
dx ≤

∫ ∞

0

[
1− (1− e−xc/b)θ

]α
dx ≤ θα

∫ ∞

0
e−αxc/bdx

which is finite.
The UG Weibull risk measure has no closed form and needs to be computed numeri-

cally. Below, we show that the UG Weibull risk measure is finite. It is defined to be

∫ ∞
0 1− e−θ

[
(1−e−xc/b)−α−1

]
dx

=
∫ 1

0 1− e−θ
[
(1−e−xc/b)−α−1

]
dx +

∫ ∞
1 1− e−θ

[
(1−e−xc/b)−α−1

]
dx

≤
∫ 1

0 1− e−θ
[
(1−e−xc/b)−α−1

]
dx +

∫ ∞
1 θ

[
(1− e−xc/b)−α − 1

]
dx = A1 + θA2 (14)

since et ≥ 1 + t or 1− et ≤ −t by the Taylor series. The integrand in A1 is bounded on
the unit interval; therefore, A1 in (14) is finite. Let z = 1− e−1/b. With the substitution
t = (1 − e−xc/b) ∈ (1 − e−1/b, 1) and x = [−b ln(1 − t)]1/c for 1 < x < ∞ and using
integration by parts, A2 is given by

(t−α − 1)
[
− b ln(1− t)

]1/c∣∣1
t=z + αb1/c ∫ 1

z t−α−1[− ln(1− t)
]1/cdt

= b1/c limt=1(t−α − 1)[− ln(1− t)]1/c + 1− z−α + αb1/c ∫ 1
z t−α−1[− ln(1− t)

]1/cdt. (15)

The limit term in (15) can be shown to be 0 by repeatedly applying L’Hopital’s rule
and limit laws. By the Cauchy–Schwarz inequality for integrals, we obtain that

∫ 1

z
t−α−1[− ln(1− t)

]1/cdt ≤
(∫ 1

z
t−2(α+1)dt

)1/2(∫ 1

z

[
− ln(1− t)

]2/cdt
)1/2

(16)

By substitution s = − ln(1− t), t ∈ [1− e−1/b, 1) and s ∈ [1/b, ∞),∫ 1

1−e−1/b

[
− ln(1− t)

]2/cdt =
∫ ∞

1/b
s2/ce−sds < Γ(2/c + 1). (17)

Combining (14), (15), (16), and (17), we conclude that the UG Weibull risk measure
is finite.
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The UGQ risk measure for the Weibull loss is given by, with substitution s = [1 +
xc/(θb)]−1, ∫ ∞

0

[
−θ−1 ln S(x) + 1

]−1/αdx =
∫ ∞

0 (1 + θbxc)−1/αdx

= 1
c (θb)1/c ∫ 1

0 (1− s)1/c−1s1/α−1/c−1ds = 1
c (θb)1/cB

(
1
α −

1
c , 1

c

)
. (18)

The beta function is only well defined if 1/α− 1/c is positive, i.e., if α < c. When
c = 1 and α < 1, (18) is equal to θbα/(1− α); see Table 3.

From Table 5, the power distortion churns out a risk measure that is θ1/c times the mean
loss. For a heavy-tailed Weibull loss with c < 1, the distorted risk measure would increase
by a higher magnitude than the case with c > 1. By Table 5 and Figure 4, the distortion risk
measure increases as θ increases or α decreases for the UEE and Kumaraswany distortions.

Table 5. Distortion risk measures for a Weibull loss with parameters b and c.

Distortion Parameter Space Risk Measures

Power θ ≥ 1 Γ(1 + 1/c)(bθ)1/c

Dual-Power θ ≥ 1 Γ(1 + 1/c)b1/c ∑∞
k=1 (

θ
k)(−1)k(k)−1/c

Kumaraswamy 0 < α ≤ 1, θ > 1 Γ(1 + 1/c)b1/cα−1/c ∑∞
k=1 (

θ
k)(−1)kk−1/c

UEE 0 < α ≤ 1, θ ≥ 1 Γ(1 + 1/c)b1/c ∑∞
k=0 (

α
k)(−1)k ∑∞

i=0 (
θk
i )(−1)ii−1/c

UG α > 0, θ > 1
α + 1 Finite

UGQ α > 0, θ > 1
α + 1 (1/c)(θb)1/cB(1/α− 1/c, 1/c), α < c

Figure 4. The 3D graphs of the Kumaraswamy, UEE, and UG risk measures of Weibull loss with
mean 50.

4. Numerical Analyses and Estimation

In this section, we numerically compute distortion risk measures for uniform, expo-
nential, Lomax, and Weibull losses. Note that the parameter θ in Table 1 assumes values
of at least 1. We then propose a non-parametric, plug-in estimator for the distortion risk
measure and conducted simulations to compare the proposed estimator with the empirical
L-estimator in (4).

4.1. Numerical Results for Distortion Risk Measures

The loss distributions considered are uniform on the interval (0, 100), exponential with
mean 50, Lomax with parameters (12.61, 580.40), and Weibull with parameters (5, c = 0.50)
and (412.20, c = 1.50). The loss distribution parameters were selected so that all loss distri-
butions had a mean of 50. We fixed the mean value of the loss distributions and inspected
how distortion risk measures vary with the tailedness, measured by the kurtosis, of a loss
distribution. A normal distribution has a kurtosis of 3 and an exponential distribution of 6.
The Lomax loss parameters were chosen to have a kurtosis of 12. For the Weibull loss, we
used c = 0.5 and c = 1.5, corresponding to heavy-tailed and light-tailed distributions with
kurtoses of 84.72 and 1.39, respectively. Note that the UGQ distorted Lomax risk measures
are not well-defined; see Table 4. The VaR and CTE values at various percentile levels for
each loss distribution are reported as benchmark comparisons and can provide insights
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into the right tails of the loss random variables under study. They are supplied in Table 6.
The risk premium, defined as the difference between the premium, e.g., the CTE, and the
expected value, is larger for a loss with a heavier tailedness.

Table 6. VaR and CTE values at levels of 0.25, 0.5, 0.75, 0.95, and 0.99 for uniform (0, 100), exponential
(0.02), Lomax (12.61, 580.40), Weibull (5, 0.5), and Weibull (412.20, 1.5) losses.

Level

Loss 0.25 0.5 0.75 0.95 0.99

Uniform VaR 25 50 75 95 99
CTE 62.6 75 87.5 97.5 99.5

Exponential VaR 14.38 34.66 69.31 149.79 230.26
CTE 64.38 84.66 119.31 199.79 280.26

Lomax VaR 13.39 32.80 67.45 155.64 255.84
CTE 64.54 85.61 123.25 219.04 327.87

Weibull (5, 0.5) VaR 2.07 12.01 48.05 224.36 530.19
CTE 66.45 96.67 167.36 424.15 810.45

Weibull (412.20, 1.5) VaR 24.14 43.38 68.86 115.10 153.31
CTE 62.01 76.23 97.32 138.63 174.22

Table 7 tabulates the beta, Kumaraswamy, and UEE risk measures for the losses
examined in Section 3 and Table 8 the UG and UGQ risk measures for some admissible
parameter values. The dash notation in Table 8 connotes that the resulting risk measure
is not finite for UGQ Lomax risk or not well-defined due to the lack of admissibility. The
beta and Kumaraswamy distortions both have the power and dual-power distortions as
their special cases when θ = 1 or α = 1; therefore, they are expected to have the same
risk measures in theses cases. While this conclusion seems trivial, we computed them to
possibly detect programming errors.

Table 7. The beta, Kumaraswamy, UEE risk measures for uniform (0, 100), exponential (0.02), Lomax
(12.61, 580.40), Weibull (5, 0.5), and Weibull (412.20, 1.5) losses.

Beta Kumaraswamy UEE

α α α

Loss θ 0.25 0.5 1 0.25 0.5 1 0.25 0.5 1

Uniform 1 80 66.67 50 80 66.67 50 80 66.67 50
2 88.89 80 66.67 93.33 83.33 66.67 87.4 78.54 66.67
10 97.56 95.24 90.91 99.90 98.48 90.91 96.76 94.36 90.91

Exponential 1 200 100 50 200 100 50 196.78 99.97 50
2 240 133.33 75 300 150 75 227.27 128.5 75
10 325.26 213.33 146.45 585.79 292.9 146.45 302.62 203.32 146.65

Lomax 1 269.64 109.41 50 269.64 109.41 50 209.30 109.41 50
2 327.22 147.91 76.02 429.87 168.82 76.02 313.05 142.23 76.02
10 460.15 247.46 155.91 1034.72 363.65 155.49 431.41 234.36 155.49

Weibull (5, 0.5) 1 800.00 200.00 50.00 800 200 50 799.30 200.00 50.00
2 992.00 288.89 87.50 1400 350 26.91 945.45 274.58 87.50
10 1485.30 575.95 253.22 4051.45 1012.86 253.22 1373.67 532.94 253.22

Weibull (412.20, 1.5) 1 125.99 79.37 50.00 125.99 79.37 50.00 125.99 79.37 50.00
2 146.72 99.98 68.50 172.61 108.74 68.50 142.34 97.22 68.50
10 185.73 141.92 111.28 280.41 176.65 111.28 178.52 137.52 111.28
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Table 8. UG and UGQ risk measures for uniform (0, 100), exponential (0.02), Lomax (12.61, 580.40)
and Weibull (5, 0.5), and Weibull (412.20, 1.5) losses.

UG UGQ

α α

Loss θ 0.25 0.5 1 5 0.25 0.5 1 5

Uniform 5 58.10 73.94 85.21 96.69 58.10 79.94 85.21 96.09
10 72.78 84.37 91.56 98.20 72.78 84.37 91.56 98.20
15 79.76 88.79 94.08 98.76 79.76 88.79 94.08 98.76
20 83.88 91.26 95.44 99.05 83.88 91.26 95.44 99.05

Exponential 5 59.76 87.14 117.85 195.02 83.33 250 1252.69 16,897.55
10 85.64 116.10 148.57 227.24 166.67 493.38 2162.13 19,249.5
15 102.56 134.26 167.40 246.63 250.00 735.20 2944.07 20,729.93
20 115.16 147.54 181.03 260.56 333.33 973.87 3644.30 21,821.35

Lomax 5 59.92 88.74 122.41 214.18 - - - -
10 87.24 120.58 157.79 256.06 - - - -
15 105.62 144.22 180.29 282.28 - - - -
20 119.60 156.67 196.99 301.59 - - - -

Weibull (c = 0.5) 5 61.88 106.77 172.66 416.78 208.33 5022.05 180,021.20 -
10 105.13 169.86 257.64 554.89 833.33 16,688.58 - -
15 139.51 217.08 318.39 647.58 1875 33,135.06 - -

Weibull (c = 1.5) 5 58.03 77.02 95.73 135.91 67.69 130.45 330.07 2279.65
10 75.87 94.59 112.54 150.81 107.46 206.83 499.95 2572.00
15 86.47 104.79 122.24 159.43 140.81 270.65 462.31 2752.00
20 93.96 111.93 129.01 165.47 170.58 327.39 744.17 2882.70

The distortion risk measures in Tables 7 and 8 appear to increase as θ increases, as
shown in the previous section. As α increases, the resulting risk measures appear to
decrease for the beta, Kumaraswamy, and UEE distortions and increase for the UG and
UGQ distortions if well-defined. The loss distributions with a larger kurtosis or tailedness
are more sensitive to the distortion in the sense that the distortion will yield a larger risk
measure. The UGQ distortion measures seem to be more sensitive than the other distortions
to the loss kurtosis. As we can see for the exponential and Weibull (c = 0.5) losses, they
can be much larger than the VaR and CTE. Both the VaR and CTE values of the four loss
distributions fall in between the ranges of the distortion measures produced by the beta,
Kumaraswamy, UEE, and UG distortions presented, which may be seen as an indication
that those distortions have practicability.

4.2. Estimation of Distortion Risk Measures

Instead of (2), we considered the equation in (1) such that ρ =
∫ ∞

0 xg′
(
S(x)

)
f (x)dx =

E
[
Xg′

(
S(X)

)]
, the expected value of the function Xg′

(
S(X)

)
. An intuitive estimator of an

expected value is the sample mean. Let F̂(x) = ∑n
j=1 I(Xj ≤ x)/n denote the empirical cdf.

Then, the survival function S(X) can be estimated by

Ŝ(x) = 1− F̂(x) =
n

∑
j=1

I(Xj > x)/n.

The proposed plug-in estimator is given by

ρ̂p =
1
n

n

∑
i=1

Xig′
(

Ŝ(Xi)
)

.

No parametric assumptions were made about the underlying loss distribution.
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Below, we employed simulations for the time being to preliminarily investigate the
behaviors of the proposed estimator and compare it with the empirical L-estimator in (4) for
the exponential loss and the Lomax losses with parameters of 5 and 200, both with a mean
of 50. The exponential distribution had a kurtosis of 6 and the Lomax distribution a kurtosis
of 70.8. Five-hundred simulations were run for each of sample sizes n = 50, 100, 500, and
1000 for various distortions. For each distortion, we ran them for three pairs of admissible
α and θ values. The true theoretical distortion risk measures, the sample mean, the bias
defined as the difference between the sample mean and the theoretical risk measure, and the
standard deviations of estimates from the 500 simulations are displayed in Tables 9 and 10.

As one would expect, the bias and standard deviation decreased as the sample size
increased in Tables 9 and 10. As seen in the previous section, as θ increased, the resulting
distortion risk measure increased, so were the biases and standard deviations of the L-
estimator and plug-in estimators. A distortion of a loss distribution with a larger kurtosis
would result in a larger risk measure and also a larger bias and standard deviation in the
two estimators. When the sample size was 500 and 1000, in general, the proposed plug-in
estimates appeared to perform slightly better than the L-estimates in terms of the bias and
standard deviation. Based on the results from the sample size of 1000, both the L-estimator
and plug-in estimators seemed to be consistent for the distortions with parameter values of
α = 1 and θ = 3. Though the proposed plug-in estimator had smaller biases in the majority
of the cases, both estimators performed poorly in estimating the UGQ risk measures for the
exponential loss.
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Table 9. Sample means, biases and standard deviations in parentheses of L-estimates and plug-in estimates from 500 simulations for exponential loss with mean 50.

Distortion L-estimate Plug-in L-estimate Plug-in L-estimate Plug-in

Beta (0.5, 3) 153.33 153.33 Beta (0.5, 6) 187.82 187.82 Beta (1, 3) 91.67 91.67
n = 50 133.92 (24.45) 134.28 (24.51) n = 50 159.65 (32.04) 159.61 (33.06) n = 50 90.53 (12.79) 90.51 (13.16)
mean bias −19.42 −19.00 −28.17 −28.21 −1.14 −1.16
n = 100 140.11 (19.52) 142.36 (18.98) n = 100 168.60 (25.88) 166.54 (24.38) n = 100 91.28 (9.92) 91.30 (4.54)
mean bias −13.22 −12.65 −19.22 −21.28 −0.38 −0.29
n = 500 147.08 (10.50) 149.63 (9.89) n = 500 178.81 (14.23) 180.29 (14.59) n = 500 91.40 (4.56) 91.44 (4.54)
mean bias −6.26 −5.97 −9.01 −7.53 −0.27 −0.25
n = 1000 148.94 (7.62) 152.67 (6.90) n = 1000 181.48 (10.40) 183.32 (8.52) n = 1000 91.54 (3.01) 91.92 (2.67)
mean bias −4.39 −0.66 −6.34 −3.5 −0.13 0.25
Kumar (0.5, 3) 183.33 183.33 Kumar (0.5, 6) 245 245 Kumar (1, 3) 91.67 91.67
n = 50 153.52 (30.90) 149.16 (28.54) n = 50 189.24 (44.53) 189.21 (40.51) n = 50 90.53 (12.19) 92.77 (13.10)
mean bias −29.81 −34.17 −55.76 −55.79 −1.14 1.1
n = 100 162.68 (25.22) 166.45 (21.42) n = 100 205.39 (37.99) 211.48 (33.99) n = 100 91.28 (9.92) 92.41 (10.04)
mean bias −20.65 −16.88 −39.61 −33.52 −0.39 0.74
n = 500 173.56 (14.22) 180.52 (13.96) n = 500 226.17 (23.12) 230.59 (21.46) n = 500 91.40 (4.56) 91.63 (4.58)
mean bias −9.77 −2.81 −18.83 −14.41 −0.27 −0.04
n = 1000 176.74 (11.19) 181.33 (10.01) n = 1000 231.92 (18.99) 234.67 (17.93) n = 1000 91.71 (3.04) 91.82 (3.04)
mean bias −6.59 −2.00 −13.08 −10.33 0.04 0.15
UEE (0.5, 3): 146.51 146.51 UEE (0.5, 6) 178.78 178.78 UEE (1, 3) 91.67 91.67
n = 50 128.66 (23.05) 130.89 (21.63) n = 50 153.37 (29.94) 154.26 (27.26) n = 50 90.53 (12.79) 92.77 (13.09)
mean bias −17.85 −15.62 −25.41 −24.52 −1.14 1.10
n = 100 134.37 (18.37) 139.65 (17.32) n = 100 161.48 (24.08) 168.94 (22.45) n = 100 91.28 (9.92) 92.41 (10.04)
mean bias −12.14 −6.86 −17.30 −9.84 −0.39 0.74
n = 500 140.78 (9.83) 143.20 (8.66) n = 500 170.69 (13.15) 174.27 (12.59) n = 500 91.40 (4.56) 91.63 (4.58)
mean bias −5.73 −3.31 −8.09 −4.51 −0.27 −0.04
n = 1000 142.67 (7.48) 144.89 (6.21) n = 1000 173.43 (10.12) 176.53 (10.05) n = 1000 91.71 (3.04) 91.82 (3.04)
mean bias −3.75 −1.62 −5.35 −2.25 −0.04 0.15
UG (1, 3) 96.90 96.90 UG (1, 6) 125.71 125.71 UG (6, 3) 181.26 181.26
n = 50 95.75 (13.60) 97.76 (13.85) n = 50 122.56 (19.12) 129.45 (20.08) n = 50 171.92 (33.96) 201.23 (39.16)
mean bias −1.15 0.86 −3.15 3.74 −9.34 19.97
n = 100 96.51 (10.53) 97.51 (10.63) n = 100 124.56 (14.73) 127.86 (15.10) n = 100 177.20 (26.07) 191.95 (28.05)
mean bias −0.39 0.61 −1.15 2.15 −4.06 10.66
n = 500 96.63 (4.84) 96.83 (4.85) n = 500 125.18 (6.84) 125.83 (6.57) n = 500 179.86 (12.19) 182.81 (12.38)
mean bias −0.27 −0.07 −0.53 0.12 −1.4 1.55
n = 1000 96.94 (3.22) 97.04 (3.22) n = 1000 125.70 (4.54) 126.03 (4.55) n = 1000 180.89 (8.34) 182.37 (8.41)
mean bias 0.04 0.14 −0.01 0.32 −0.37 1.11
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Table 9. Cont.

Distortion L-estimate Plug-in L-estimate Plug-in L-estimate Plug-in

UGQ (0.5, 4) 200 200 UGQ (0.5, 8) 400 400 UGQ (0.25, 8) 133.33 133.33

n = 50 106.04 (20.39) 111.20 (21.23) n = 50 143.76 (32.37) 146.12 (29.49) n = 50 98.67 (17.67) 99.11 (18.4)
mean bias −93.96 −88.80 −256.24 −254.88 −34.66 −34.22
n = 100 113.58 (17.54) 114.67 (18.96) n = 100 158.15 (29.37) 169.43 (26.40) n = 100 104.20 (14.66) 110.76 (15.00)
mean bias −86.42 −85.33 −241.85 −230.57 −29.13 −22.57
n = 500 126.15 (12.16) 130.04 (11.99) n = 500 184.32 (22.95) 193.44 (19.98) n = 500 112.40 (9.09) 123.13 (7.99)
mean bias −73.85 −69.96 −215.69 206.56 −20.94 −10.20
n = 1000 130.88 (1128) 133.81 (10.99) n = 1000 194.36 (22.41) 196.27 (20.02) n = 1000 115.33 (7.87) 125.04 (6.82)
mean bias −69.12 −66.19 −205.64 −203.73 −18.00 −8.29
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Table 10. Sample means, biases and standard deviations parentheses of L-estimates and plug-in estimates from 500 simulations for Lomax loss with parameters (5, 200).

Distortion L-estimate Plug-in L-estimate Plug-in L-estimate Plug-in
Beta (0.5, 3) 218.06 218.06 Beta (0.5, 6) 281.53 281.53 Beta (1, 3) 97.62 97.62
n = 50 156.33 (50.52) 160.01 (51.77) n = 50 192.52 (68.41) 191.22 (67.13) n = 50 94.78 (20.66) 93.63 (20.10)
mean bias −61.73 −58.05 −89.01 −90.31 −3.14 −3.85
n = 100 179.79 (37.62) 178.99 (38.82) n = 100 214.40 (51.68) 215.30 (50.96) n = 100 97.20 (13.71) 97.17 (13.45)
mean bias −46.27 −39.07 −67.13 −66.23 −0.42 −0.45
n = 500 188.99 (26.26) 190.43 (27.11) n = 500 239.49 (36.98) 240.15 (35.49) n = 500 97.45 (6.63) 97.43 (6.06)
mean bias −29.07 −27.63 −42.05 −41.38 −0.17 −0.19
n = 1000 193.66 (21.78) 194.59 (21.74) n = 1000 246.79 (33.98) 248.15 (32.94) n = 1000 97.42 (5.04) 97.58 (4.55)
mean bias −24.40 −23.47 −34.74 −33.38 −0.20 −0.04
Kumar (0.5, 3) 280.77 280.77 Kumar (0.5, 6) 422.11 422.11 Kumar (1, 3) 97.62 97.62
n = 50 185.03 (66.45) 185.16 (33.83) n = 50 239.38 (100.43) 242.69 (55.64) n = 50 94.48 (20.66) 96.76 (21.13)
mean bias −95.74 −95.61 −182.73 −179.42 −3.14 −0.86
n = 100 207.45 (51.01) 217.63 (28.73) n = 100 278.24 (81.00) 281.56 (49.53) n = 100 97.20 (13.71) 97.68 (6.65)
mean bias −73.32 −63.14 −143.87 −140.55 −0.42 0.06
n = 500 234.50 (37.86) 240.52 (24.08) n = 500 330.43 (65.85) 340.23 (28.26) n = 500 97.45 (6.63) 97.68 (6.65)
mean bias −46.27 −40.25 −91.68 −81.88 −0.17 0.06
n = 1000 242.66 (33.26) 249.74 (22.81) n = 1000 346.24 (60.48) 353.64 (24.77) n = 1000 97.57 (4.52) 97.58 (4.50)
mean bias −38.11 −31.03 −75.87 −68.47 −0.05 −0.04
UEE (0.5, 3): 206.21 206.21 UEE (0.5, 6) 263.84 263.84 UEE (1, 3) 97.62 97.62
n = 50 149.17 (47.26) 155.63 (46.39) n = 50 183.26 (63.31) 184.81 (60.52) n = 50 94.48 (20.66) 96.76 (21.13)
mean bias −57.04 −50.58 −80.58 −79.03 −3.14 −0.86
n = 100 163.51 (35.10) 159.99 (33.47) n = 100 203.19 (47.58) 206.34 (49.08) n = 100 97.20 (13.71) 98.36 (13.86)
mean bias −42.7 −22.97 −38.03 −31.26 −0.14 0.06
n = 500 179.37 (24.38) 183.24 (22.31) n = 500 225.81 (33.75) 232.58 (34.25) n = 500 97.48 (6.63) 97.68 (6.65)
mean bias −26.84 −22.97 −38.03 −31.26 −0.14 0.06
n = 1000 184.16 (20.70) 186.47 (19.05) n = 1000 232.63 (28.91) 239.43 (28.93) n = 1000 97.58 (4.52) 97.58 (4.50)
mean bias −22.05 −19.74 −31.21 −24.41 −0.04 −0.04
UG (1, 3) 103 103 UG (1, 6) 141.23 141.23 UG (6, 3) 226 226
n = 50 99.84 (20.69) 101.79 (22.03) n = 50 135.03 (31.33) 142.03 (35.59) n = 50 207.08 (62.65) 241.23 (79.61)
mean bias −3.16 −1.21 −6.20 0.8 −18.92 15.23
n = 100 102.47 (15.29) 103.63 (14.51) n = 100 139.25 (23.97) 143.50 (23.03) n = 100 217.35 (50.29) 237.62 (50.37)
mean bias −0.53 0.63 −1.98 2.27 −8.65 11.62
n = 500 102.67 (6.78) 103.64 (6.95) n = 500 140.38 (10.84) 141.44 (11.16) n = 500 223.12 (24.09) 227.67 (24.57)
mean bias −0.33 0.64 −0.85 0.21 −2.88 1.67
n = 1000 102.89 (4.77) 102.89 (4.78) n = 1000 140.92 (7.76) 141.56 (7.67) n = 1000 224.91 (17.55) 228.35 (17.05)
mean bias −0.11 −0.11 −0.31 0.33 −1.09 2.35
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5. Concluding Remarks

The framework employed in the paper was motivated by the fact that a cumulative
distribution function with unit interval support is a distortion function. It utilizes an
exponential transformation of a non-negative random variable, whose distribution function
is named the generating distribution, to a random variable with a support of the unit
interval. There are other functions, for instance 1/(1+ x), that can transform a non-negative
random variable into a variable with unit interval support.

There are numerous candidates for the role of the generating distribution. The gener-
ating distributions employed here included the exponentiated exponential and Gompertz
distributions. The proposed framework opens the door to a world of new distortion func-
tions. We demonstrated that the framework also produces some existing well-known
distortions, e.g., power and dual-power distortions. We developed two new distortion
functions and derived admissible spaces on the parameters so that the resulting distor-
tion risk measures were coherent. The distortion risk measures for uniform, exponential,
Lomax, and Weibull losses were computed. The effects of the distortion parameters on
the risk measures and risk tolerance attitudes were examined by graphs and closed-form
expressions of risk measures. As Wang and Xu (2023) pointed out, there has been little
discussion on which distortion risk measures at hand should be chosen. It would be of
great interest to further explore how to tune the parameters to better reflect or approximate
decision-maker’s risk preferences and various risk attitudes.

We proposed a plug-in estimator for the distortion risk measure and ran simulations
to compare it with the empirical L-estimator in Jones and Zitikis (2003). It appeared that the
plug-in estimator, just like the empirical L-estimator, suffered biases when losses followed
heavy-tailed or Pareto-liked distributions. Kim (2010) showed that, when the distortion
function is concave, L-estimates of distortion risk measures are negatively biased, and the
bias can be corrected through the bootstrapping for a continuous loss distribution. The
negative biases in the L-estimates were demonstrated in our simulation results. While this
is not the case for the proposed plug-in estimate, the simulation results indicated that the
proposed plug-in estimates seemed to also perform poorly for heavy-tailed losses. Brahimi
et al. (2012) proposed an alternative estimators of L-functionals for heavy-tailed losses
by means of extreme value theory and established their asymptotic normality. Abdelaziz
(2015) established a new estimator using an approximation of the tail of the loss distribution.
The asymptotic distribution of the proposed plug-in estimator will be investigated first,
and bias correction estimators may then ensue in the future.

Kim (2010) proposed to correct the bias through bootstrapping for a continuous loss
distribution. Brahimi et al. (2012) proposed alternative estimators of L-functionals for
heavy-tailed losses by means of extreme value theory and established their asymptotic
normality. Abdelaziz (2015) established a new estimator using an approximation of the tail
of the loss distribution. The asymptotic distribution of the proposed plug-in estimator will
be investigated first, and bias correction estimators may then ensue in the future.
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