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Abstract: Stochastic mortality models seek to forecast future mortality rates; thus, it is apparent that
the objective variable should be the mortality rate expressed in the original scale. However, the
performance of stochastic mortality models—in terms, that is, of their goodness-of-fit and prediction
accuracy—is often based on the logarithmic scale of the mortality rate. In this article, we examine
whether the same forecast outcomes are obtained when the performance of mortality models is
assessed based on the original and log scales of the mortality rate. We compare four different
stochastic mortality models: the original Lee–Carter model, the Lee–Carter model with (log)normal
distribution, the Lee–Carter model with Poisson distribution and the median Lee–Carter model. We
show that the preferred model will depend on the scale of the objective variable, the selection criteria
measure and the range of ages analysed.
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1. Introduction

Human longevity has steadily increased over the last 150 years. During the first half
of that period, improvements in life expectancy were mainly attributable to the reduction
in infant mortality; in the second half, improvements have been mainly driven by a fall
in the mortality rates of the elderly (Wilmoth 2000). Increasing human longevity and
ageing represent a major challenge with implications at many societal levels, including
rising pressure on healthcare and welfare systems and a declining labour force relative
to the overall population. In response, actuaries and demographers have paid increasing
attention to the modelling and projection of mortality rates.

One of the most influential approaches to the stochastic modelling of future mortality
has undoubtedly been the parametric non-linear regression model developed by Lee and
Carter (1992). In the Lee–Carter (LC) model, the mortality rate is estimated by means of
a non-linear combination of age and period parameters. Many subsequent attempts at
developing mortality models have drawn inspiration from the LC model, including, but
not limited to, Brouhns et al. (2002), Currie et al. (2004), Renshaw and Haberman (2003,
2006), Cairns et al. (2006) and Plat (2009). Following the introduction of the concept of
mortality coherence by Li and Lee (2005) to indicate that the mortality rates of related
populations should not diverge infinitely, many articles have extended the LC model to
focus, specifically, on such coherence. Mortality coherence of related populations has, thus,
been considered in terms of gender (Li 2013; Li et al. 2016, 2021; Pitt et al. 2018; Wong et al.
2020; Yang et al. 2016) and the countries constituting a given region (Biffis et al. 2017; Chen
and Millossovich 2018; Diao et al. 2021; Enchev et al. 2017; Lyu et al. 2021; Scognamiglio
2022). See Hunt and Blake (2021c) for a review of mortality models and Blake et al. (2023)
for recent developments in mortality modelling.
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This burgeoning of models and construction procedures, however, has introduced
another element to the study of future mortality, namely that of model selection. Indeed,
various frameworks have been proposed to construct and select the most suitable model in
the trade-off between complexity and parsimony (Barigou et al. 2021; Hunt and Blake 2014;
SriDaran et al. 2022). The construction of the optimal model typically involves selecting
a base (reference) model and deciding whether to incorporate additional parameters or
functions under certain selection criteria. Alternative stochastic mortality models can be
used as reference in the construction of the optimal mortality model. Here, most extensions
of the LC model define the reference mortality model assuming a Gaussian error structure
of log mortality rates (Chang and Shi 2022; Gao and Shi 2021; Li and Lu 2017; Li and Shi
2021; SriDaran et al. 2022) or a Poisson distribution of deaths (Barigou et al. 2021; Chen and
Millossovich 2018; Enchev et al. 2017; Hunt and Blake 2014; Li 2013; Li et al. 2016, 2021;
Pitt et al. 2018; Wong et al. 2020; Yang et al. 2016). A less common option for the reference
mortality model is to assume a binomial distribution of annual death probabilities (Atance
et al. 2020) or gamma distribution for mortality rates (Huang et al. 2022).

One issue that has not received sufficient research is the impact the selection criteria
might have on the model selection decision. As Atance et al. (2020) stress, there is no
single criterion for evaluating the goodness-of-fit and the prediction accuracy of stochastic
mortality models. Selection criteria frequently rely on measures based on squared errors
(Chang and Shi 2022; Enchev et al. 2017; Gao and Shi 2021; Li and Lu 2017; Li and Shi
2021), absolute errors (Li et al. 2016, 2021), maximum likelihood (Pitt et al. 2018; Yang et al.
2016) or a combination of these measures (Atance et al. 2020; Chen and Millossovich 2018;
Huang et al. 2022; Li 2013; Wong et al. 2020). Additionally, even the same selection criteria
measures are often defined based on either mortality rate predictions (estimates) (Atance
et al. 2020; Chen and Millossovich 2018) or log mortality rate predictions (estimates) (Chang
and Shi 2022; Enchev et al. 2017; Gao and Shi 2021; Li and Lu 2017; Li and Shi 2021; Li et al.
2021; Li and Lee 2005; Wong et al. 2020). Elsewhere, others have used a combination of
measures based on mortality rates expressed on both original and log scales (Li 2013; Li
et al. 2016). Predictive analytics, machine learning and artificial intelligence have become
popular in recent years (Chen and Khaliq 2022; Hainaut 2018; Li 2023; Marino et al. 2023;
Perla et al. 2021; Richman and Wüthrich 2021; Wang et al. 2021) and scholars are also using
different selection criteria measures to compare the mortality models. For example, on the
original scale, the mean squared error is used by Richman and Wüthrich (2021), the mean
absolute percentage error by Wang et al. (2021) and both measures by Chen and Khaliq
(2022), while, on the log scale, the mean square error is used by Hainaut (2018).

The goal of the present article is to evaluate the implications of choosing selection
criteria measures for the reference LC stochastic model based on either mortality rates or
log mortality rates. The model selection measures used in this study are based on squared
and absolute errors. To undertake this evaluation, we analyse the performance of stochastic
reference mortality models, for a set of countries, in terms of their goodness-of-fit and
prediction accuracy when the selection measures are based on either original mortality
rates or log mortality rates. In doing so, we compare four alternative reference mortality
models: namely, the original LC model (LC), the LC model with (log)normal distribution
(LN-LC), the LC model with Poisson distribution (P-LC) and the median LC model (M-LC).

Reference stochastic mortality models are rarely compared in the literature. Claims
have been made to the effect that the Poisson assumption provides a more rigorous sta-
tistical framework for analysing mortality data and that counting random variables is a
more natural choice than that of modelling the death rate (Cairns et al. 2009; Li 2013; Wong
et al. 2020). However, Gaussian and Poisson LC models have not been compared to date
in terms of their goodness-of-fit and prediction accuracy, with the exception of Brouhns
et al. (2002), who compared the two models solely in terms of the goodness-of-fit of Belgian
mortality rates, concluding that the Poisson LC model performed better for ages above 90.
Here, by comparing the use of selection criteria measures based on mortality rates in either
the original or log scales, we seek to determine if the preference for the Gaussian or Poisson
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assumption is conditional on the scale involved. While Santolino (2020) introduced the LC
quantile stochastic model to estimate the quantiles of the log mortality rate, here, we focus
our attention on the median LC model as a specific version of the LC quantile model that
models the median log mortality rate (Santolino 2021). Recall that the mean is the value
that minimizes the squared error while the median minimizes the absolute error. Thus,
we also seek to determine whether the median LC model is the preferred choice when
absolute-error-based selection measures are used in both the log and original scales.

Finally, we also examine whether the selection of the preferred reference mortality
model also depends on the interval of ages considered. In the actuarial field, the mortality
patterns of greatest interest are often those that manifest at more advanced ages. Most life
insurance products are defined so as to provide longevity protection, given that individuals
receiving a lifetime income may live longer than accounted for in the valuation of the
provision of insurer liabilities (longevity risk) (Hunt and Blake 2021ab). Annuities are
usually deferred to retirement. Pension funds and annuity providers need to effectively
manage the longevity risk to which they are exposed for future improvements in mortality
at the ages at which periodic payments are made (OECD 2014). In this study, therefore,
we analyse the performance of the four reference mortality models under the alternative
selection criterion measures at ages both below and above 50 years old.

The main contribution of our study is that the focus is on the selection criteria measure
and how it determines the choice of the optimal stochastic mortality model. In previous
studies, the selection criteria measures are usually stated a priori and a set of mortality
models is evaluated according to them to choose the preferred model. In those studies, the
focus is on the design of a new—frequently more complex—mortality model. The aim of
those studies is to prove that the new modelling approach outperforms previous mortality
developments in terms of goodness-of-fit and/or prediction accuracy. Multiple selection
criteria measures can be used to evaluate mortality models. To the best of our knowledge,
however, the impact of the choice of the selection criteria measure on the selected mortality
model has not been previously discussed in detail in the literature. In our study, four
basic stochastic mortality models with equal complexity in their designs are stated and the
impact of alternative selection measures on the model choice is discussed.

The rest of this article is structured as follows. In Section 2, we introduce our notation.
Our motivation for the study is provided in Section 3. Stochastic parametric mortality
models are described in Section 4. We present an application in Section 5. The analysis is
illustrated for a population divided in age intervals in Section 6. Finally, a discussion is
provided in Section 7.

2. Notation

Let the random variable Dx,t denote the number of deaths in a population at age x and
calendar year t, x = 0, . . . , ω and t = 1, . . . , T. The central rate of mortality mx,t is defined
as mx,t =

Dx,t
Ex,t

, where Ex,t is the central exposure to risk at age x in year t. The estimated
and predicted central rates of mortality are denoted as m̂x,t and m̃x,t, respectively.

Two measures have been preferred in the literature to compare fitted and predicted
values: the sum of the squared error and the sum of the absolute percentage error (or their
respective mean values). The sum of the squared error in log scale (SSEL) is defined as

SSEL = ∑
∀(x,t)

(log(mx,t)− log(m̂x,t))
2,

and the sum of the absolute percentage error in log scale (SAPEL) as

SAPEL = ∑
∀(x,t)

(∣∣∣∣ log(mx,t)− log(m̂x,t)

log(mx,t)

∣∣∣∣).

The out-of-sample versions of these measures can be defined to evaluate prediction
accuracy as follows. Let us consider that data until the calendar year t∗ were used to
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calibrate mortality models, for 1 < t∗ < T. The sum of the squared predicted error in log
scale (SSPEL) is defined as

SSPELt∗ =
T

∑
t=t∗+1

ω

∑
x=0

(log(mx,t)− log(m̃x,t))
2

and the sum of the absolute percentage predicted error in log scale (SAPPEL) as

SAPPELt∗ =
T

∑
t=t∗+1

ω

∑
x=0

(∣∣∣∣ log(mx,t)− log(m̃x,t)

log(mx,t)

∣∣∣∣).

In line with Li and Lee (2005), who proposed the use of the explanation ratio to
compare models, here, we use this ratio to evaluate the prediction accuracy of our models.
If we consider that m̄x,t∗ = ∑t∗

t=1 mx,t/t∗ for 1 < t∗ < T, the explanation ratio in log scale
RL can be defined as

RLt∗ = 1− SSPEL

∑T
t=t∗+1 ∑ω

x=0(log(mx,t)− log(m̄x,t∗))
2 .

Equivalent measures can be derived for mortality rates in the original scale. The sum
of the squared error (SSE) is defined as

SSE = ∑
∀(x,t)

(mx,t − m̂x,t)
2,

the sum of the absolute percentage error (SAPE) as

SAPE = ∑
∀(x,t)

(∣∣∣∣mx,t − m̂x,t

mx,t

∣∣∣∣),

the sum of the squared predicted error (SSPE) as

SSPEt∗ =
T

∑
t=t∗+1

ω

∑
x=0

(mx,t − m̃x,t)
2

and the sum of the absolute percentage predicted error (SAPPE) as

SAPPEt∗ =
T

∑
t=t∗+1

ω

∑
x=0

(∣∣∣∣mx,t − m̃x,t

mx,t

∣∣∣∣).

Finally, the explanation ratio R can be defined as

Rt∗ = 1− SSPE

∑T
t=t∗+1 ∑ω

x=0(mx,t − m̄x,t∗)
2 .

A review of these and other selection measures used in the literature, including the
mean absolute error, is provided by Atance et al. (2020).

3. Motivation

To illustrate differences in the analysis of mortality rates in log scale and in the original
scale, we consider the 2020 mortality rate of the Spanish male population for ages between
0 and 100 years. Data were obtained from the Human Mortality Database (HMD 2023). Let
us assume that two stochastic mortality models were used to forecast the mortality rates
for Spanish males.

• Model A predicted a 40% higher mortality rate for each age below 50 and a 5% higher
rate for each age above 50.
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• Model B predicted a 5% higher mortality rate for each age below 50 and a 40% higher
mortality rate for each age above 50.

Figure 1 shows the mortality rate predictions made by the two models and the ob-
served Spanish male mortality rate—on the left, as represented in logarithmic scale; on the
right, as represented in the original scale.
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Figure 1. Illustration of mortality rate predictions made by model A and model B in log and original
scales for Spanish male population in 2020.

Figure 1 (left) shows that both model predictions are equally acceptable; however,
their prediction accuracy differs when mortality rates in the original scale are analysed
(Figure 1, right). When squared errors of the log mortality rates are compared, the SSPEL
of models A and B take the same value (5.780); thus, the choice of model is indifferent.
However, the prediction accuracy of both models differs when the sum of the squared
error of mortality rates in the original scale is analysed. In this case, model A is preferred:
SSPE of model A = 0.003 vs. SSPE of model B = 0.220. However, the opposite holds if the
sum of the absolute percentage error is analysed. Prediction accuracy is different in log
scale: SAPPEL of model A = 3.20 vs. SAPPEL of model B = 7.51. Thus, model A would
be preferred. However, the choice of models is indifferent when the sum of the absolute
percentage error is compared in the original scale: SAPPE of both models A and B = 22.5.

4. Stochastic Mortality Models
4.1. Lee–Carter Stochastic Mortality Model

The original Lee–Carter mortality model, introduced in 1992, can be defined as follows
(Lee and Carter 1992):

log(mx,t) = ax + bx · kt + εx,t (1)

where ax and bx are the specific age parameters and kt the time-varying index, x = 0, . . . , ω
and t = 1, . . . , T. Finally, the error εx,t has mean 0 and variance σ2

ε. Within this frame-
work, infinite solutions exist. For any scalars c and d, the following transformations
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{ãx, b̃x, k̃t} = {ax − c · bx,
bx

d
, d · (kt + c)} give unaltered fitted values. To overcome the lack

of identifiability, Lee and Carter (1992) proposed two constraints ∑x bx = 1 and ∑t kt = 0.
The conditional expectation in (1) is equal to

E
[
log(mx,t)

]
= ax + bx · kt. (2)

The expectation is the value that minimizes the sum of squared errors. One strat-
egy for estimating the parameters is to minimize the squared residuals; however, this
model cannot be directly estimated using ordinary least squares because the right-hand
side of Equation (1) is not linear with the parameters. To estimate the coefficients, Lee
and Carter (1992) proposed the application of singular value decomposition (SVD), that
is, decomposing the matrix of log mortality rates once the average over time of log age-
specific rates has been subtracted. This way, a vector of coefficient estimates θ̂ is ob-
tained, θ̂ = (â0, . . . , âω, b̂0, . . . , b̂ω, k̂1, . . . , k̂T)

>. Note that, in general, it does not hold that
E
[
log(mx,t)

]
= log

(
E
[
log(mx,t)

])
. The authors suggested recalibrating k̂t via iterative pro-

cesses to match the estimated number of deaths with the observed number of deaths in
period t,

∑
x

dx,t = ∑
x

Ex,texp(âx + b̂x · k̂t)

where dx,t is the observed number of deaths in period t and at age x. The motivation for this
second-stage estimate is to avoid sizeable discrepancies between the numbers of predicted
and actual deaths, which are likely to occur because the first step is based on logarithms
of death rates (Brouhns et al. 2002; Lee and Carter 1992). In this study, we consider the
original LC model (without second-stage recalibration) for the purpose of comparison with
the LC model with lognormal error distribution (see Section 4.2).

4.2. Lee–Carter Model with Known Parametric Distribution

The error term εx,t in (1) is often assumed to be normally distributed. In that case, it
holds that log(mx,t) is normally distributed with E

[
log(mx,t)

]
= ax + bx · kt and variance

σ2
ε, i.e., log(mx,t) ∼ N (E

[
log(mx,t)

]
, σ2

ε). This is equivalent to assuming that mx,t is
lognormally distributed as follows:

mx,t ∼ LN(E
[
log(mx,t)

]
, σ2

ε),

with E
[
mx,t] = exp(ax + bx · kt +

σ2
ε

2 ) and variance V
[
mx,t] =

(
exp(σ2

ε)− 1
)
· exp(2 · (ax +

bx · kt) + σ2
ε).

Brouhns et al. (2002) reported that the logarithm of the observed mortality rates was
much more variable at older ages and suggested modelling the number of deaths by
means of a non-linear Poisson regression model with exposure to risk. The Poisson Lee–
Carter model proposed by Brouhns et al. (2002) is represented as a generalized non-linear
regression model as follows:

- The random component

Dx,t ∼ Poisson(Ex,t ·E
[
mx,t

]
),

where E[Dx,t] = Ex,t ·E
[
mx,t

]
or, equivalently, E

[
mx,t

]
=

E[Dx,t ]
Ex,t

.

- The systemic component
ηx,t = ax + bx · kt

- The link function

g
(
E[Dx,t]

Ex,t

)
= g

(
E
[
mx,t

])
= ηx,t.
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In the case of the Poisson regression, the canonical link function g is the logarithmic
function, so

log(E
[
mx,t

]
) = ax + bx · kt, (3)

or, equivalently, E
[
mx,t

]
= exp(ax + bx · kt).

Renshaw and Haberman (2006) showed that maximum-likelihood estimates may be
obtained under the Gaussian and Poisson structures using an iterative process. The quasi-
Poisson non-linear regression is often used to account for the overdispersion of deaths.
The extra dispersion parameter of the quasi-Poisson can be calculated separately from the
deviance function (Wong et al. 2020). Currie (2016) showed that many common mortality
models can be expressed in the standard terminology of generalized linear or non-linear
models. Villegas et al. (2018) defined a unified framework of stochastic mortality, which
they refer to as generalized age–period–cohort (GAPC) stochastic mortality models, taking
their inspiration from the definition of age–period–cohort models proposed by Hunt and
Blake (2015), with the Poisson Lee–Carter model being identified as a particular case. These
first authors developed the R package StMoMo to fit GAPC models using maximum log
likelihood.

Remark 1. Assuming that mx,t is lognormally distributed with E
[
mx,t] = exp(ax + bx · kt +

σ2
ε

2 )
and variance V

[
mx,t] =

(
exp(σ2

ε)− 1
)
· exp(2 · (ax + bx · kt) + σ2

ε) is equivalent to assuming

that Dx,t is lognormally distributed with E
[
Dx,t] = exp(ax + bx · kt + ln(Ex,t) +

σ2
ε

2 ) and
variance V

[
Dx,t] =

(
exp(σ2

ε)− 1
)
· exp(2 · (ax + bx · kt + ln(Ex,t)) + σ2

ε). Likelihood selection
measures, such as the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC), can be used for the lognormal and Poisson LC models. However, those measures should be
used with caution when comparing the Poisson and lognormal deaths framework, since they involve
a discrete and a continuous random variable, respectively.

4.3. Median Lee–Carter Model

Let Y be a continuous random variable with finite expectation and cumulative dis-
tribution function FY defined by FY(y) = P(Y ≤ y). The inverse function of FY is known
as the quantile function, Q. The quantile of order α is defined as Qα(Y) = F−1

Y (α) =
inf{y | FY(y) ≥ α}, where α ∈ (0, 1). Santolino (2020) introduced the quantile Lee–Carter
model equivalent to expression (1). Let us consider the following expression for the log
mortality rate:

log(mx,t) = aα
x + bα

x · kα
t + εx,t

where superscript α indicates the α-quantile associated with the parameters. The error εx,t
has an α-quantile equal to 0, Qα(ε) = 0. Thus, the quantile Lee–Carter model is defined as

Qα(log(mx,t)) = aα
x + bα

x · kα
t . (4)

As in the case of the mean Lee–Carter regression model, to overcome the lack of
identifiability, two constraints are established, namely ∑x bα

x = 1 and ∑t kα
t = 0. The

median case was investigated by Santolino (2021), i.e., α = 0.5. In the same way that the
mean is the value that minimizes the sum of squared deviations, the median minimizes
the sum of absolute deviations. The parameters of median LC regression can be estimated
using least absolute techniques (Santolino 2020, 2021).

Median regression has many of the appealing properties of the ordinary sample
median (Koenker 2005). Least absolute regression estimates are less sensitive to the presence
of outliers than ordinary least square regression estimates are. Santolino (2021) showed that
this feature is particularly appealing in the context of mortality rates since outliers are often
observed (wars, pandemics, etc.). Another appealing property is that the median regression
is stable under monotonic transformations. For any monotone function g, it holds that
Q0.5(g(Y|X)) = g(Q0.5(Y|X)), so Q0.5(log(mx,t)) = log(Q0.5(mx,t)). Therefore, unlike in
the original LC framework (Lee and Carter 1992), in the M-LC model a second-stage
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estimate would not be required. This second property is partially evaluated in this study
since the log mortality rate is modelled in the M-LC design and the selection measures are
based on the mortality rate in the log and original scales.

5. Application

To evaluate the models’ goodness-of-fit and prediction accuracy, the mortality rate
of the male population in the 0–100 age range was considered for a set of countries. Data
were obtained from the Human Mortality Database (HMD 2023). In selecting the interval
of years for each country, we chose the most recent period—with a minimum interval
length of sixty years and a maximum of one hundred—for which complete mortality rates
were available. Calendar years with null mortality rates for ages in the 0–100 range were
excluded since log mortality rates cannot deal with zeros. An alternative would have
been to consider null mortality rates as missing values and to use statistical techniques to
impute values (Scognamiglio 2022). However, we opted to exclude these calendar years to
avoid any impact on our results attributable to the application of imputation techniques.
Nine countries were compared (in parentheses is the period considered in our analysis):
Austria (1922–2020), Belgium (1945–2020), Canada (1921–2020), France (1921–2020), Italy
(1957–2019), Japan (1947–2021), Spain (1921–2020), UK (1922–2020) and USA (1933–2020).
The rest of the countries for which information was available presented null mortality rates
for ages in the 0–100 range in at least one year in the last sixty and, so, were not included in
the analysis.

5.1. Goodness-of-Fit

The sum of squared errors for the nine countries when evaluating their respective
mortality rates in logarithmic (SSEL) and original scale (SSE) are shown in Table 1. The
stochastic mortality model providing the lowest goodness-of-fit value is highlighted in
bold for each country. In the logarithmic scale, the minimum sum of squared errors is
observed for the LC with lognormal distribution (LN-LC) followed by the original LC
model. When the sum of squared errors is analysed in the original scale (SSE), the best
fit is again provided by the LN-LC, but it is now followed by the P-LC and M-LC. The
original LC framework would be our least preferred of the four when evaluating the sum
of squared errors in the original scale.

Table 1. Model fit statistics. Sum of squared error when mortality rate is evaluated in logarithmic
(SSEL) and original scales (SSE).

Mortality Rate in Log Scale Mortality Rate in Original Scale
(SSEL) (SSE)

LC LN-LC P-LC M-LC LC LN-LC P-LC M-LC

AUSTRALIA 282.22 281.51 419.95 309.30 6.46 6.25 6.02 6.27
BELGIUM 234.63 233.81 320.58 248.57 8.53 8.49 8.63 8.57
CANADA 181.39 180.88 359.24 193.88 2.57 2.50 2.54 2.53
FRANCE 238.77 238.29 474.36 268.95 10.16 9.34 9.88 9.57
ITALY 86.91 86.72 152.97 102.63 1.28 1.24 1.34 1.30
JAPAN 96.11 95.84 190.87 114.07 4.30 4.15 4.24 4.49
SPAIN 247.33 243.97 382.97 267.59 5.63 4.54 4.71 4.58
UK 247.91 247.53 936.17 276.50 4.48 4.43 3.95 4.36
US 72.62 72.47 108.37 83.36 0.49 0.46 0.47 0.49

Note: Minimum values in bold.

The sum of the absolute percentage error for the nine countries when the mortality
rate was evaluated in the logarithmic (SAPEL) and original scales (SAPE) are shown in
Table 2. The lowest SAPEL value is provided by the M-LC model for six countries, so we
would select this as our reference model when the minimum SAPEL criterion is applied.
The other three models perform similarly in terms of SAPEL. When the minimum SAPE
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criterion is applied, the M-LC model would also be selected. In this case, the second best fit
is provided by the original LC modelling approach.

Table 2. Model fit statistics. Sum of absolute percentage error when mortality rate is evaluated in
logarithmic (SAPEL) and original scales (SAPE).

Mortality Rate in Log Scale Mortality Rate in Original Scale
(SAPEL) (SAPE)

LC LN-LC P-LC M-LC LC LN-LC P-LC M-LC

AUSTRALIA 436.09 433.37 400.20 405.28 1349.38 1366.15 1409.66 1333.12
BELGIUM 430.36 461.27 470.95 443.97 956.28 969.04 994.97 929.54
CANADA 315.71 315.01 306.50 302.93 1074.87 1082.81 1127.27 1054.39
FRANCE 694.30 664.41 788.89 714.54 1096.32 1116.12 1400.93 1013.96
ITALY 175.45 174.67 175.51 168.60 528.11 534.55 553.25 490.59
JAPAN 262.43 259.38 268.22 240.83 637.93 643.31 735.30 600.13
SPAIN 432.43 405.22 416.09 394.65 1175.39 1198.93 1360.14 1106.17
UK 437.25 439.80 445.46 413.34 1278.28 1297.43 1672.93 1249.48
US 174.10 173.48 169.23 165.79 622.97 624.67 692.18 599.71

Note: Minimum values in bold.

5.2. Prediction Accuracy

Stochastic mortality models seek to forecast future mortality; thus, their prediction
accuracy is often more important than a particular model’s goodness-of-fit. The four
mortality models compared herein have just one time-dependent parameter: that is, the
time-varying index kt in the LC, LN-LC and P-LC models and k0.5

t in the M-LC model.
In other words, the dynamics of the mortality rates are captured by the set of estimated
mortality indexes k̂t and k̂0.5

t , t = 1, . . . , T. Time-series techniques are used to project
mortality indexes. For comparative purposes, in all cases, estimated mortality indexes are
assumed to follow an autoregressive integrated moving average with drift, ARIMA (1, 1, 0).

To evaluate the models’ prediction accuracy, the following approach was followed.
Model parameters were estimated with mortality data until calendar year 1990 and the
model was then projected until either calendar year 2020 or the last year for which mortality
data were available.1 The sum of the squared prediction error and absolute percentage
prediction error WAS computed in the logarithmic scale, SSPEL and SAPPEL, and in
the original scale, SSPE and SAPPE. An additional year was then included in the model
estimation, so that their parameters were estimated with mortality data until 1991. Mortality
projections were made to the last year for which data were available and prediction errors
were computed. The process was repeated with an additional year being included each
time in the model estimation. In the last step, the parameters were estimated with mortality
data up to and including the penultimate calendar year for which mortality data were
available and, thus, mortality was projected one year ahead.

Table 3 displays in percentage terms the number of times that each model performed
best in terms of the minimum squared prediction error and the absolute percentage predic-
tion error in log and original scales. When prediction accuracy was evaluated in terms of
the lowest squared prediction error in log scale, the LN-LC model performed best (47.23%),
followed by the LC model (23.25%) and the M-LC model (22.88%). However, the lowest
sum of absolute prediction percentage error in log scale was most frequently obtained by
the M-LC model (38.38%), closely followed by the P-LC model (35.79%). When prediction
accuracy was evaluated in terms of the lowest sum of the squared prediction error in the
original scale, the P-LC model performed best (80.82%). The P-LC model also recorded the
best performance in terms of obtaining the lowest sum of the absolute percentage prediction
error, but was closely followed by the M-LC model (36.16% and 32.84%, respectively).

Table 3 displays the average of the number of times that each model performed the
best for the horizon period 1991–2020. Appendix A shows the performance of the mortality
models for different projection periods to evaluate the impact of the selected forecast
horizon on the outcomes (Table A1). The results remained quite stable for the different time
horizons. A remarkable pattern is that the PLC model was preferred to the MLC model for
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time horizons further out in time in accordance with the absolute error measures (SAPPEL
and SAPPE). However, the preference was reversed when shorter-term predictions were
made (time horizons of less than or equal to ten years, approximately).

Table 3. Comparison of prediction accuracy. Percentage of times the mortality model performed best
in terms of the lowest value of the selection measure.

Mortality Rate in Log Scale Mortality Rate in Original Scale

LC LN-LC P-LC M-LC LC LN-LC P-LC M-LC

SSPEL SSPE

23.25% 47.23% 6.64% 22.88% 4.42% 8.49% 80.82% 6.27%

SAPPEL SAPPE

6.64% 19.19% 35.79% 38.38% 28.41% 2.58% 36.16% 32.85%
Note: Maximum values in bold.

While Table 3 provides information as to just how often a model performed best in terms
of the lowest selection measure value, it says nothing about how accurate the prediction
was. Table 4 addresses this by showing the average explanation ratio for the four models in
the log scale (∑T−1

t∗=1990 RLt∗/(T − 1990)) and the original scale (∑T−1
t∗=1990 Rt∗/(T − 1990)).

On average, the explanation ratio in log scale for both the LC and LN-LC models was
93.07%, followed by the M-LC (92.37%) and, finally, the P-LC model with the lowest mean
explanation ratio (83.88%). In the original scale, the order of the performance of the models
is inverted. Here, the best mean explanation ratio is obtained by the P-LC model (89.60%),
followed by the M-LC model (84.24%) and, finally, the LN-LC and LC models had the
lowest mean explanation ratios (80.87% and 80.26%, respectively).

Table 4. Comparison of prediction accuracy. Average of the explanation ratio in log scale (RL) and
original scale (R).

Mortality Rate in Log Scale Mortality Rate in Original Scale

LC LN-LC P-LC M-LC LC LN-LC P-LC M-LC

Average of RLt∗ Average of Rt∗

93.07% 93.07% 83.88% 92.37% 80.26% 80.87% 89.60% 84.24%
Note: Maximum values in bold.

6. Analysis by Age Interval

Actuarial practitioners are typically interested in mortality patterns in advanced ages
given their impact on life insurance pricing and provisions. In addition, heterogeneity in
mortality, which is due to observable and unobservable differences among individuals,
increases at older ages, producing more variability in the observed deaths of old popu-
lations (Pitacco 2019). In this section, we analyse the performance of the four reference
mortality models when employing alternative selection criterion measures for young and
old populations. The four goodness-of-fit selection measures were estimated by age for
each mortality model. The mean and standard deviation values of the error measures
by age are displayed in Figures A1 and A2 of Appendix B, respectively. In terms of the
estimated mean error, a change in the performance behaviour of models is observed at
approximately the age of 50 years for the four selection measures (Figure A1). In terms
of the standard deviation of estimated errors, as expected, higher values are observed for
old ages (Figure A2). In the case of the PLC, a high variability in the SSEL measure is
also observed for young ages (Figure A2). Based on these results, the age of 50 years is
selected as a breaking point to separate the age range between young and adult populations.
Mortality models are fitted for all ages, but the computation of model selection measures is
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achieved by differentiating the population into two age intervals: 0–50 years (young) and
51–100 years (old). Our goal is to analyse whether model selection is dependent on the age
interval considered.

Goodness-of-fit tables for the young and old populations are provided in
Appendix B. Based on the lowest sum of the squared error for the young population,
the LC model for mortality rates was preferred in the log scale and the P-LC model in the
original scale. However, based on the absolute percentage error for the young population,
the M-LC and LC models performed best in terms of presenting the lowest SAPEL and
SAPE. In the case of the old population, the preferred model was the P-LC on the basis of
the SSEL, the SAPEL and the SAPE goodness-of-fit measures. When considering the SSE,
the LN-LC model was the preferred model for the old population.

Model prediction accuracy results are shown separately for the young and old pop-
ulations (Tables 5 and 6). Table 5 reports in percentage terms the number of times each
mortality model performed best in terms of minimum squared prediction error and abso-
lute percentage prediction error in log and original scales, differentiating by age group. For
the population under 50, the mortality model providing the best prediction most frequently
was the LC model, followed closely by the LN-LC and M-LC models. In contrast, the
P-LC model rarely provided the best prediction in the age range 0 to 50, regardless of the
prediction measure considered. However, for the population aged 51–100, the P-LC model
provided the highest degree of prediction accuracy with largely overlapping values for all
prediction measures.

Table 5. Comparison of prediction accuracy for population aged 50 or younger and population aged
51 and over. Percentage of times the mortality model showed the best performance (lowest value of
the selection measure).

Mortality Rate in Log Scale Mortality Rate in Original Scale

LC LN-LC P-LC M-LC LC LN-LC P-LC M-LC

Age SSPEL SSPE

Under 50 42.80% 31.73% 1.84% 23.63% 39.48% 34.69% 2.21% 23.62%
51 and over 1.48% 0.74% 95.57% 2.21% 4.42% 8.49% 80.81% 6.28%

SAPPEL SAPPE

Under 50 40.59% 27.31% 2.21% 29.89% 33.57% 33.21% 7.38% 25.84%
51 and over 1.84% 1.84% 91.51% 4.81% 0.74% 1.10% 96.68% 1.48%

Note: Maximum values in bold.

Finally, Table 6 shows the average of the explanation ratio in log scale and original
scale, differentiating between the young and old populations. The LC model was the model
with the highest explanation ratio on average in log scale for the population aged under
50, closely followed by the LN-LC and M-LC models. In contrast, the explanation ratio
of the P-LC model is notably lower (81.43%). The distance, however, is shortened when
the explanation ratio is analysed in the original scale for this young population. Now, the
highest mean explanation ratio is obtained by the LN-LC model (99.39%), closely followed
by the LC (99.38%), M-LC (99.32%) and P-LC models (98.76%).

Table 6. Comparison of prediction accuracy for population aged 50 or younger and population aged
51 and over. Average of the explanation ratio in log scale (RL) and original scale (R).

Mortality Rate in Log Scale Mortality Rate in Original Scale

LC LN-LC P-LC M-LC LC LN-LC P-LC M-LC

Age Average of RLt∗ Average of Rt∗

Under 50 94.71% 94.70% 81.43% 94.38% 99.38% 99.39% 98.76% 99.32%
51 and over 86.11% 86.16% 92.95% 83.92% 80.02% 80.63% 89.49% 80.64%

Note: Maximum values in bold.
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When analysing the prediction accuracy for the population aged 51 and over, the
highest explanation ratio on average was obtained by the P-LC model in both the log scale
(92.95%) and the original scale (89.49%). The performance of the other three mortality
models in terms of the mean explanation ratio was notably worse in both log and original
scales. In log scale, the second-best model in terms of the mean explanation ratio was
the LN-LC model (86.16%), followed by the LC (86.11%) and M-LC models (83.92%). In
the original scale, the second best model was the M-LC model (80.64%), followed by the
LN-LC (80.63%) and M-LC models (80.02%).

Remark 2. The four reference stochastic mortality models analysed in our study are single-factor
mortality models. Multiple factors may be required to capture the dynamics of mortality rates,
particularly at older ages where mortality rates are higher and variability is shown to be higher.
In Appendix C we provide an illustration of the performance of two-factor mortality models with
lognormal and Poisson error distributions. In the case of the lognormal two-factor mortality model,
the expected value of the log mortality rate is expressed as E

[
log(mx,t)

]
= ax + ∑2

i=1 bx,i · kt,i. In
the case of the Poisson two-factor mortality model, the log of the expected value of the mortality
rate is log(E

[
mx,t

]
) = log

(
E[Dx,t ]

Ex,t

)
= ax + ∑2

i=1 bx,i · kt,i. The percentage of times that the two-
factor models performed the best in terms of goodness-of-fit and prediction accuracy are shown in
Tables A6 and A7, respectively. The results are in line with those obtained in the case of single-factor
mortality models. In terms of goodness-of-fit, the lognormal two-factor mortality model is preferred.
By contrast, the Poisson two-factor model is preferred in terms of prediction accuracy. For age, the
two-factor lognormal model has a better fit and better prediction for ages below 50 years, while the
two-factor Poisson model has a better fit and better prediction for ages above 50 years.

7. Discussion and Concluding Remarks
7.1. Discussion

Goodness-of-fit and prediction accuracy measures are usually defined in terms of the
sum of squared errors and the sum of absolute percentage errors. In the case of mortality
modelling, these measures may be defined for mortality rates in log scale or in the original
scale. When our primary interest lies in the performance of mortality models for age ranges
that present relatively low mortality rates, selection measures need to assess relative rather
than absolute variations in estimations/predictions. In this case, the selected measures
should be the sum of squared errors in log scale and the sum of absolute percentage errors
in the original scale. In contrast, the sum of squared errors in the original scale and the
sum of absolute percentage errors in log scale should be selected when the performance of
mortality models for age ranges that present relatively high mortality rates is our priority.

This distinction between selection measures defined on the basis of mortality rates in
either log or original scales is relevant because of the marked differences in mortality rates
with age. For instance, in 2020, in the case of the Spanish male population, the mortality
rate of a 5-year-old boy was approximately 36 times lower than that of a 50-year-old
male, 430 times lower than that of a 75-year-old male, and 2429 times lower than that of a
90-year-old male (Figure 1). This means that conclusions may diverge when the analysis is
conducted based on selection measures defined with mortality rates on log scale, on the
one hand, and with mortality rates on the original scale, on the other.

In terms of goodness-of-fit, we conclude that the best performance is provided by
the LC model with lognormal distribution when selection measures are based on squared
errors, regardless of the scale of the mortality rates. In logarithmic scale, the performances
of the original LC model and the LN-LC model are similar, but the latter is clearly preferred
to the original LC when the squared error selection measure is based on mortality rates
in the original scale. In fact, both the Poisson LC model and the median LC model are
preferred to the original LC model when goodness-of-fit is evaluated based on squared
errors in the original scale. The LN-LC model takes into account that the expected mortality
rate is higher than the exponential of the mean of the log mortality rate. That is, the
Gaussian (lognormal) error distribution for mortality rates in log (original) scale seems
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adequate when the purpose is to minimize squared errors. Goodness-of-fit measures are
often based on the absolute percentage error (Li et al. 2016, 2021) and, here, when the
selection criterion is the minimum absolute percentage error, the best performance was
obtained by the M-LC model in both log and original scales.

The parameters of the LN-LC and the P-LC models were estimated using maximum
likelihood, whereas the parameters of the original LC model were estimated using least
square optimization techniques and those of the M-LC model using least absolute opti-
mization techniques. In the case of the original LC model, the conditional mean of the log
mortality rate is estimated; in the case of the M-LC model, the conditional median of the
log mortality rate is computed. In general, the mean of the log does not match the log of
the mean; yet, the median of the log does match the log of the median. The M-LC model
performs better than the original LC model in terms of goodness-of-fit when selection
measures based on absolute errors are used, but also when the selection measure is the sum
of squared errors in the original scale. Thus, least absolute optimization algorithms can be
an interesting alternative to least square optimization algorithms to estimate the parameters
of the LC model when we are interested in ages with relatively high mortality rates.

Stochastic mortality models serve to predict future mortality, hence the interest in
evaluating the prediction accuracy of such models. When the models’ prediction error
is considered in the original scale, the most accurate predictions are obtained most often
by the P-LC model. The superior performance of the P-LC model is particularly evident
when prediction accuracy is evaluated in terms of the squared prediction error. When the
prediction error is evaluated in log scale, the best performance is provided by the LN-LC
model in terms of the squared prediction error and the M-LC model in terms of the absolute
percentage predicted error. Unlike the squared prediction error in log scale, the absolute
percentage prediction error in log scale penalizes prediction errors in ages associated with
high mortality rates.

Mortality patterns in advanced ages attract particular attention in actuarial research
given their relevance for insurance products. When considering an old population (aged
51 and over), the best fit is provided by the P-LC model when the selection criteria are
defined in log scale, but also when the criteria are based on the absolute percentage error in
the original scale. This means the Poisson LC should be selected if our primary concern is
goodness-of-fit for a population at advanced ages. This outcome is in line with Brouhns
et al. (2002), who showed that the P-LC model performed better than the original LC
model at the most advanced ages (over 90) in the Belgian population in terms of the
proportion of the variance accounted for by the model. However, here, unlike in Brouhns
et al. (2002), we compare the prediction accuracy for different age intervals. The preference
for the Poisson model becomes more explicit when the prediction accuracy is analysed
for the old population (aged 51–100). In this case, all the prediction accuracy measures
considered in this study show the performance of the P-LC model to be superior to that of
the other models.

In short, in terms of goodness-of-fit, mortality models that perform well in log scale
also perform adequately in the original scale. In general, the LC model based on the
lognormal distribution is preferred to those based on squared errors, while the M-LC model
is the preferred model based on absolute errors. These two models are also preferred when
prediction accuracy is analysed in log scale. However, the Poisson LC model is unreservedly
the one selected when prediction accuracy is analysed in the original scale, the reason
being that the P-LC model performs particularly well in terms of both goodness-of-fit and
prediction accuracy in the interval of ages marked by high mortality rates (population aged
over 51). Yet, for the population aged 50 and under, the P-LC model performs worse in
terms of both goodness-of-fit and prediction accuracy than the other models. However,
even though it is the model with the poorest prediction accuracy, its explanation ratio in
the original scale for this age interval is very high (98.76%). The explanation for this lies in
the fact that the Poisson model does not perform as well as the other three models at ages
associated with infinitesimal mortality rates.
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Summarizing, the original LC model or the LC model regression with heavy right-
tailed distributed error, such as the lognormal distribution, were adequate to describe
and predict the behaviour of mortality rates in log scale in terms of the minimum square
error (SSPEL). However, the parameters estimates of the original LC model (least square
techniques) and the lognormal-error-distributed LC model (maximum likelihood) seem
more sensitive to observations with low mortality rates than those parameter estimates
of the median LC model (least absolute techniques) and the Poisson-error-distributed LC
model (maximum likelihood). As a result, the last two modelling approaches showed a
better performance in minimizing square prediction errors in the original scale (SSPE) and
in terms of the minimum absolute percentage prediction error in the original and log scales
(SAPPE and SAPPEL). Therefore, LC-based modelling approaches focused on estimating
the median or assuming Poisson error distribution seem more adequate when the mortality
model is designed to predict mortality rates in the original scale (or in logarithmic scale
when the prediction error is measured in terms of absolute percentage deviation). When
our main interest lies in predicting mortality rates in log scale and the prediction error
is measured in terms of square deviation, the original LC model or the LC model with
lognormal-distributed error should be preferred.

7.2. Conclusions

In this article, we have evaluated the implications of using different selection criteria
measures when seeking to choose the most suitable stochastic mortality model. We show
that least absolute optimization techniques constitute an interesting alternative to least
square algorithms for estimating the parameters of stochastic mortality models when our
interest lies in the fitting of mortality rates expressed in the original scale. We also provide
solid arguments for selecting the Poisson LC model when the main concern is the prediction
accuracy of mortality rates in advanced ages (51 and over). This result has important
implications, since while the Poisson assumption has traditionally been considered to
provide a rigorous statistical framework, the prediction accuracies of Gaussian and Poisson
LC models have rarely been compared.

In general, selection criteria measures based on log scale errors yielded approximately
the same modelling preferences in the fitting and forecasting domains. That is, the quadratic
and absolute error measures defined on a logarithmic scale showed roughly similar results
when used to rank order explanatory models intended to explain variation in historical
data and to rank-order predictive models focused on forecasting error. This was not the
case for selection criteria measures based on original scale errors for both squared and
absolute deviations. In that case, the selected mortality models with the best fit results
according to these measures were not the preferred mortality models in terms of prediction
accuracy.

The aim of our study was to examine the implications of selection criteria measures
for the choice of the most appropriate stochastic model. For this purpose, four alternative
versions of the stochastic LC mortality model with the same design and number of pa-
rameters were selected. The rationale for this selection was that the comparison between
the mortality models should be ‘fair’ and no other elements should influence the results
except the underlying distributional assumption and the method of parameter estimation.
We argue that our comparison of the reference mortality models is useful to researchers.
The need for more complex developments in mortality modelling is often justified when
researchers compare the performance improvement of their models with respect to a ref-
erence mortality model. Our study may be useful in selecting the benchmark stochastic
model to include in that comparison. However, we recognize that the number of models
compared is limited and that a more comprehensive selection of modelling approaches
should be an advantage. In this regard, the comparison of the mortality models with
recent machine learning extensions of the LC model is an interesting practical exercise for
the future.
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To conclude, this study provides an enhanced awareness of the implications of using
different selection criteria measures in terms of their impact on the performance of mor-
tality models. Indeed, we show that models that provide a good fit or a good prediction
performance in log scale may well be inadequate in the original scale, and vice versa. Some
measures are better suited to mortality estimations/predictions at ages with relatively low
mortality rates, while others perform better at ages with relatively high mortality rates.
The use of one selection measure or another ultimately depends on the preferences of the
decision makers, but they must be aware that the mortality model they select might be
conditioned on the measure used in conducting the evaluation.
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Appendix A

Table A1. Comparison of prediction accuracy by the length of the time horizon, where ∆T is the
number of projected years. Percentage of times the mortality model performed best in terms of the
lowest value of the selection measure.

SSPEL SSPE SAPPEL SAPPE

∆T ∗ LC LN-LC PLC MLC LC LN-LC PLC MLC LC LN-LC PLC MLC LC LN-LC PLC MLC

30 33.3 33.3 22.2 11.1 0 22.2 77.8 0 0 22.2 55.6 22.2 22.2 11.1 55.6 11.1
29 22.2 33.3 11.1 33.3 0 11.1 88.9 0 0 22.2 55.6 22.2 22.2 0 55.6 22.2
28 11.1 44.4 11.1 33.3 0 22.2 77.8 0 0 22.2 55.6 22.2 22.2 0 55.6 22.2
27 11.1 33.3 11.1 44.4 0 22.2 77.8 0 0 22.2 55.6 22.2 22.2 0 66.7 11.1
26 11.1 44.4 11.1 33.3 0 22.2 66.7 11.1 0 22.2 66.7 11.1 22.2 0 66.7 11.1
25 11.1 44.4 11.1 33.3 0 22.2 77.8 0 0 22.2 66.7 11.1 11.1 0 77.8 11.1
24 22.2 44.4 11.1 22.2 0 22.2 66.7 11.1 22.2 0 55.6 22.2 11.1 0 66.7 22.2
23 11.1 44.4 11.1 33.3 0 11.1 66.7 22.2 0 22.2 55.6 22.2 22.2 0 55.6 22.2
22 22.2 55.6 11.1 11.1 0 22.2 66.7 11.1 0 22.2 55.6 22.2 33.3 11.1 33.3 22.2
21 11.1 55.6 11.1 22.2 11.1 0 77.8 11.1 0 22.2 55.6 22.2 33.3 0 44.4 22.2
20 22.2 44.4 11.1 22.2 11.1 0 77.8 11.1 0 11.1 55.6 33.3 22.2 11.1 44.4 22.2
19 22.2 44.4 11.1 22.2 11.1 0 77.8 11.1 0 11.1 55.6 33.3 22.2 0 55.6 22.2
18 22.2 44.4 11.1 22.2 11.1 0 77.8 11.1 0 11.1 55.6 33.3 33.3 0 44.4 22.2
17 22.2 44.4 11.1 22.2 0 0 88.9 11.1 0 11.1 55.6 33.3 33.3 0 44.4 22.2
16 22.2 44.4 11.1 22.2 0 11.1 88.9 0 0 22.2 44.4 33.3 33.3 0 33.3 33.3
15 33.3 33.3 11.1 22.2 0 0 88.9 11.1 11.1 22.2 33.3 33.3 33.3 0 44.4 22.2
14 22.6 66.7 0 11.1 0 11.1 88.9 0 0 22.2 33.3 44.4 22.2 0 33.3 44.4
13 22.2 44.4 11.1 22.2 0 11.1 88.9 0 0 33.3 33.3 33.3 22.2 0 44.4 33.3
12 11.1 66.7 0 11.1 0 11.1 88.9 0 0 11.1 33.3 55.6 22.2 0 44.4 33.3
11 22.2 55.6 0 22.2 0 11.1 88.9 0 0 44.4 22.2 33.3 22.2 0 44.4 33.3
10 11.1 77.8 0 11.1 0 11.1 88.9 0 0 22.2 22.2 55.6 22.2 0 22.2 55.6
9 33.3 44.4 0 22.2 11.1 0 77.8 11.1 22.2 11.1 22.2 44.4 33.3 0 22.2 44.4
8 11.1 77.8 0 11.1 0 0 88.9 11.1 11.1 11.1 11.1 66.7 22.2 0 11.1 66.7
7 44.4 55.6 0 0 0 0 88.9 11.1 22.2 11.1 0 66.7 44.4 0 11.1 44.4
6 44.4 33.3 0 22.2 0 0 88.9 11.1 22.2 11.1 0 66.7 44.4 0 0 55.6
5 22.2 55.6 0 22.2 0 0 88.9 11.1 22.2 11.1 0 66.7 44.4 0 0 55.6
4 33.3 55.6 0 11.1 11.1 0 77.8 11.1 11.1 22.2 0 66.7 55.6 0 0 44.4
3 33.3 33.3 0 33.3 11.1 0 88.9 0 11.1 22.2 0 66.7 44.4 0 0 55.6
2 22.2 44.4 0 33.3 11.1 0 88.9 0 22.2 11.1 11.1 55.6 22.2 11.1 11.1 55.6
1 50.0 25.0 0 25.0 50.0 12.5 37.5 0 37.5 25.0 12.5 25.0 25.0 37.5 0 37.5

* Mortality rates of Italy for the year 2020 were not available. This country was excluded when ∆T = 1.

https://www.mortality.org
https://www.mortality.org
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Appendix B
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Figure A1. Average of the estimated goodness-of-fit measure values by age for the LC, LN-LC, PLC
and MLC mortality models: (A) SSEL; (B) SSE; (C) SAPEL and (D) SAPE. Note: y-axis in log scale
in plots (B,C).
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Figure A2. Standard deviation of the estimated goodness-of-fit measure values by age for the LC,
LN-LC, PLC and MLC mortality models: (A) SSEL; (B) SSE; (C) SAPEL and (D) SAPE. Note: y-axis
in log scale in plots (B,C).
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Table A2. Model fit statistics. Sum of squared error when mortality rate was evaluated in logarithmic
and original scale for population aged 50 or younger.

Mortality Rate in Log Scale Mortality Rate in Original Scale
(SSEL) (SSE × 100)

LC LN-LC PLC MLC LC LN-LC PLC MLC

AUSTRALIA 158.41 158.47 337.19 188.80 0.14 0.13 0.33 0.21
BELGIUM 164.39 164.44 266.92 176.85 0.40 0.44 0.26 0.65
CANADA 96.45 96.46 299.97 107.60 0.44 0.40 0.23 0.34
FRANCE 166.41 166.55 435.10 206.31 7.85 8.05 4.28 4.78
ITALY 69.67 69.66 142.87 90.19 0.11 0.11 0.09 0.39
JAPAN 53.40 53.42 160.02 71.70 0.45 0.46 0.12 0.37
SPAIN 176.89 176.88 323.89 201.83 7.64 8.06 1.59 6.92
UK 122.09 122.10 895.18 132.45 0.46 0.49 0.32 0.45
US 45.22 45.14 93.44 52.55 0.14 0.14 0.12 0.14

Note: Minimum values in bold.

Table A3. Model fit statistics. Sum of absolute percentage error when mortality rate was evaluated in
logarithmic and original scale for population aged 50 or younger.

Mortality RATE in Log Scale Mortality Rate in Original Scale
(SAPEL) (SAPE)

LC LN-LC PLC MLC LC LN-LC PLC MLC

AUSTRALIA 105.87 105.89 143.15 112.04 710.12 722.26 944.90 745.26
BELGIUM 82.72 82.74 101.85 82.48 594.93 605.71 703.29 592.06
CANADA 83.84 83.84 113.66 84.32 536.47 544.17 706.55 542.81
FRANCE 107.51 107.57 177.62 107.10 622.32 635.39 1094.37 601.21
ITALY 50.19 50.20 60.57 52.96 349.61 353.89 424.91 352.65
JAPAN 51.99 52.00 79.43 55.26 343.28 347.60 513.21 344.61
SPAIN 121.34 121.33 155.23 118.12 717.83 732.95 960.75 679.00
UK 93.61 93.61 206.10 90.58 602.39 612.84 1315.15 587.47
US 55.68 55.63 77.69 55.88 340.87 343.06 488.68 334.36

Note: Minimum values in bold.

Table A4. Model fit statistics. Sum of squared error when mortality rate was evaluated in logarithmic
and original scale for population aged 51 and over.

Mortality Rate in Log Scale Mortality Rate in Original Scale
(SSEL) (SSE)

LC LN-LC PLC MLC LC LN-LC PLC MLC

AUSTRALIA 123.80 123.04 82.76 120.50 6.46 6.25 6.02 6.27
BELGIUM 70.24 69.37 53.67 71.72 8.52 8.48 8.62 8.56
CANADA 84.93 84.42 59.27 86.28 2.57 2.49 2.53 2.52
FRANCE 72.36 71.74 39.29 62.65 9.99 9.26 9.84 9.52
ITALY 17.25 17.06 10.09 12.44 1.27 1.24 1.34 1.29
JAPAN 42.72 42.42 30.86 42.36 4.29 4.14 4.24 4.49
SPAIN 70.44 67.08 59.08 65.76 5.55 4.46 4.69 4.51
UK 125.82 125.43 41.00 144.06 4.47 4.43 3.94 4.36
US 27.41 27.33 14.93 30.81 0.48 0.46 0.47 0.49

Note: Minimum values in bold.
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Table A5. Model fit statistics. Sum of absolute percentage error when mortality rate was evaluated in
logarithmic and original scale for population aged 51 and over.

Mortality Rate in Log Scale Mortality Rate in Original Scale
(SAPEL) (SAPE)

LC LN-LC PLC MLC LC LNLC PLC MLC

AUSTRALIA 330.22 327.48 257.04 293.24 639.26 643.88 464.75 587.85
BELGIUM 347.65 378.53 369.10 361.45 361.35 363.33 291.68 337.48
CANADA 231.87 231.17 192.84 218.62 538.40 538.74 420.72 511.58
FRANCE 586.79 556.83 611.27 607.44 470.09 480.73 306.56 412.75
ITALY 125.26 124.47 114.93 115.64 178.49 180.66 128.35 137.94
JAPAN 210.45 207.38 188.78 185.57 294.65 295.71 222.09 255.53
SPAIN 311.10 283.89 260.87 276.53 457.56 465.94 399.40 427.17
UK 343.64 346.19 238.46 322.75 675.86 684.58 357.78 662.02
US 118.42 117.85 91.54 109.91 282.10 281.60 203.50 265.35

Note: Minimum values in bold.

Appendix C

This appendix compares the performance of a two-factor lognormal mortality model
(LN2F) and a two-factor Poisson mortality model (P2F) (see Remark 2). The percentage
of times the models obtained the best results in terms of goodness-of-fit and prediction
accuracy are shown in in Tables A6 and A7, respectively. The results are shown for all ages
(population), individuals younger than 50 years (young population) and individuals older
than 50 years (elderly population).

Table A6. Comparison of goodness-of-fit. Percentage of times the mortality model showed the best
performance (lowest value of the selection measure).

SSEL SSE SAPEL SAPE

LN2F P2F LN2F P2F LN2F P2F LN2F P2F

All ages 100% 0% 89% 11% 62% 38% 100% 0%
Under 50 100% 0% 0% 100% 100% 0% 100% 0%
50 and over 33% 57% 89% 11% 38% 62% 0% 100%

Table A7. Comparison of prediction accuracy. Percentage of times the mortality model showed the
best performance (lowest value of the selection measure).

SSPEL SSPE SAPPEL SAPPE

LN2F P2F LN2F P2F LN2F P2F LN2F P2F

All ages 47% 53% 37% 63% 40% 60% 46% 54%
Under 50 51% 49% 54% 46% 51% 49% 51% 49%
50 and over 35% 65% 37% 63% 36% 64% 36% 64%

Note
1 In the cases of Italy and Japan, this was 2019 and 2021, respectively.
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