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Abstract: Affine mortality models are well suited for theoretical and practical application in pricing
and risk management of mortality risk. They produce consistent, closed-form stochastic survival
curves allowing for the efficient valuation of mortality-linked claims. We model USA age-cohort
mortality data using five multi-factor affine mortality models. We focus on three-factor models and
compare four Gaussian models along with a model based on the Cox–Ingersoll–Ross (CIR) process,
allowing for Gamma-distributed mortality rates. We compare and assess the Gaussian Arbitrage-Free
Nelson–Siegel (AFNS) mortality model, which incorporates level, slope and curvature factors, and
the canonical Gaussian factor model, both with and without correlations in the factor dynamics.
We show that for USA mortality data, the probability of negative mortality rates in the Gaussian
models is small. Models are estimated using discrete time versions of the models with age-cohort
data capturing variability in cohort mortality curves. Poisson variation in mortality data is included
in the model estimation using the Kalman filter through the measurement equation. We consider
models incorporating factor dependence to capture the effects of age-dependence in the mortality
curves. The analysis demonstrates that the Gaussian independent-factor AFNS model performs well
compared to the other affine models in explaining and forecasting USA age-cohort mortality data.

Keywords: mortality models; continuous time; cohort curve; affine rates; Kalman filter

JEL Classification: G22; C13; C22; C52; J11

1. Introduction

Longevity risk is the now well-recognised risk that the overall survival probability
of a reference population is higher than expected (Cairns et al. 2006a). Improvements
in mortality experienced in recent decades show significant volatility, as evidenced by
the impact of COVID-19. Life insurance companies and pension funds, as the holders of
substantial longevity risk, are significantly impacted by mortality trends and uncertainty
(Blake et al. 2014). The Continuous Mortality Investigation (2018) highlighted the potential
impact of the underestimation of longevity risk, estimating that an extra $450 billion would
be required in pension payments per year (The Joint Forum 2013). Mortality uncertainty
requires increase capital requirements for insurers (Barrieu et al. 2012). The quantification
of longevity risk is fundamental to the successful operation of life insurance companies
and pension funds.

Insurers and pension funds can manage the risk of mortality uncertainty by transfer-
ring longevity risk to counterparties using longevity swaps and to capital markets using
securitization (The Joint Forum 2013). Capital markets are expected to be increasingly
important in longevity risk management, arising from the potential for a more efficient
and effective approach (Blake et al. 2018). Longevity-linked securities, including longevity
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bonds (Blake and Burrows 2001), longevity swaps (Dowd et al. 2006), and q-forwards
(Coughlan et al. 2007), have been proposed. Risk quantification and fair pricing are chal-
lenging aspects of these developments. The Life and Longevity Markets Association (2010)
acknowledges that mortality improvements and uncertainty are important inputs in pricing
longevity risk, but modelling and forecasting improvement trends and uncertainty continue
to attract significant research interest.

Stochastic mortality models capture the stochastic evolution of mortality rates at an
aggregate population level. Models include the single-factor Lee–Carter model (Lee and
Carter 1992) and numerous extensions and improvements. Cairns et al. (2009) provide a
comprehensive summary and comparison of these extensions. The Cairns–Blake–Dowd
model (Cairns et al. 2006b), a two-factor model, and the age-period-cohort model (Renshaw
and Haberman 2006) are popular models. Many of these models do not have closed-form
solutions for survival curves, requiring simulation to compute future expected survival
probabilities for applications.

Continuous-time affine mortality models, based on mathematical finance models for
interest rate and credit risk, were introduced in Milevsky and Promislow (2001), Dahl
(2004), and Cairns et al. (2006a), amongst others. Continuous-time mortality models apply
diffusion processes to the dynamics of mortality intensities. They are designed to be
incorporated into the modelling of longevity risk using consistent model frameworks
for mortality and financial risks with applications in the valuation of longevity-linked
securities (Jevtic et al. 2013). A general framework for continuous time mortality models
for multiple populations is provided in Jevtić and Regis (2019) with applications in UK and
Dutch mortality data.

We confine our comparison of mortality models to the continuous-time arbitrage-free
modelling framework. The Lee–Carter model is a popular, simple, one-factor model (which
is affine in the log mortality rates). A comparison of the Lee–Carter model with three
continuous time models, which include two single factor affine mortality models, is found
in Novokreshchenova (2016). The single-factor affine mortality models in that study have
lower mean absolute prediction error for UK and Australian mortality data compared
with the Lee–Carter model. We consider three factor affine mortality models that provide
better fit and prediction compared to single-factor models. SriDaran et al. (2022) consider
extensions to the Lee–Carter mortality model in the form of generalized age-period-cohort
mortality models using regularization to select factors from a large number of factors. The
empirical results show that a combination of level, slope, and curvature factors can explain
the dynamics of many of the countries in the Human Mortality Database. Although these
models differ from ours, the results motivate our use of affine mortality models and the
inclusion of an affine mortality model with level, slope, and curvature factors .

Affine mortality models apply concepts underlying Affine Term Structure Models
(ATSMs) for interest rate modelling, as in Duffie and Kan (1996) and Dai and Singleton
(2000), to mortality rates. Affine mortality models are similar to interest-rate models,
provide an integrated pricing framework (Barrieu et al. 2012), and allow the derivation
of closed-form solutions for survival probabilities (Dahl 2004). Affine processes provide
flexibility and analytical tractability. We develop models with consistency between the
dynamics and the functional form of the survival curve. We also impose consistency in the
cross-sectional survival probabilities through the arbitrage-free assumption applied to these
probabilities. Models that satisfy a consistency requirement (Björk and Christensen 1999)
have stable parameters and ensure consistency between the dynamics of mortality rates and
the functional form for the survival curve. Projected survival curves are consistent with the
dynamics of mortality rates as discussed in De Rossi (2004) and demonstrated empirically
in Blackburn and Sherris (2013). Survival curves are exponential affine functions of factors,
with factor loadings determining how the risk factors impact differing ages through time.

Pricing of longevity-linked cash flows requires risk-adjusted survival probabilities
for a cohort in a reference population (Xu et al. 2020a). Affine mortality models have
been predominantly considered for capturing the mortality dynamics of a single cohort,
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as in Dahl and Møller (2006), Biffis (2005) and Luciano et al. (2008). Affine models have
been calibrated to age-period mortality data for a reference population, as in Schrager
(2006). Gaussian affine mortality models fit age-period mortality data well, although less
so at older ages Blackburn and Sherris (2013). Blackburn and Sherris (2013) shows how
three-factor affine mortality models in canonical form capture older-age mortality variation
better than two-factor models. Gaussian models do not capture mortality heterogeneity at
older ages (Pitacco 2016). Alai et al. (2019) show that the Gamma distribution fits mortality
intensities well, which is consistent with mortality heterogeneity, suggesting non-Gaussian
models may improve model fit at older ages. Jevtić and Regis (2021) develop square-root
latent factor affine mortality models and show how these models provide a good fit to UK
mortality data. Cohort effects have been observed in age-period data for many countries,
as discussed, for example, in Willets (2004), Cairns et al. (2009) and Gallop (2008).

This motivates our modelling of age-cohort mortality data. We focus on a single-cohort
mortality curve. Extensions to multiple-cohort affine age-cohort mortality models are found
in Jevtic et al. (2013), Chang and Sherris (2018), Jevtić and Regis (2019), Xu et al. (2020a),
and Jevtić and Regis (2021). We model the older ages of a single cohort using age-cohort
mortality data. We develop mortality models in a risk-adjusted framework and, through a
change of measure, mortality dynamics that can be calibrated to real-world or historical
data. We estimate and compare five continuous-time affine cohort mortality models using
age-cohort mortality data from the USA for males from ages 50 to 100 for cohorts with
complete data born from 1883 to 1915. Blackburn and Sherris (2013) shows how three-factor
models perform well in explaining mortality variations at the ages we consider, so we focus
on three-factor affine mortality models.

The five models we consider and compare include a canonical affine mortality model;
an Arbitrage-Free Nelson–Siegel (AFNS) mortality model (Christensen et al. 2011) with
identifiable factors of level, slope, and curvature of the mortality curve; and a mortality
model based on the Cox–Ingersoll–Ross (CIR) model (Cox et al. 1985; Jevtić and Regis
2021), allowing for a gamma distribution for mortality rates. We also investigate the impact
of incorporating factor dependence to capture correlations for the Gaussian mortality
models, giving another two models. We capture cohort effects directly using age-cohort
data to calibrate and assess the model survival curve fit and forecasting performance. The
continuous dynamics of mortality rates are discretized for estimation and implementation.
Maximum likelihood with a Kalman filter are used to estimate model parameters. We
estimate parameters for the factor dynamics in the real world or historical measure and the
cross sectional survival curve parameters in the Q, or pricing measure, in the Kalman filter
measurement equation.

Our contributions to mortality modelling are to provide empirical support for Gaus-
sian affine mortality models based on USA data, to provide a detailed comparison of a
number of multi-factor affine mortality models for the first time, and to investigate how
modelling age-cohort data with affine mortality models can capture mortality dynamics.
We show that, empirically, the independent-factor AFNS mortality model performs well. It
better captures the variation in cohort mortality rates in USA data and produces a better
fit at older ages than the independent-factor canonical Blackburn–Sherris model. Incor-
porating dependence in the factors for the Blackburn–Sherris mortality model improves
in-sample model fit and out-of-sample forecasting performance. We also show that, for
the 1916 birth cohort, the independent-factor AFNS mortality model has better predictive
performance compared to the other models. Negative mortality rates, a potential limitation
of Gaussian mortally models, have very low empirical probabilities for the AFNS mortality
models. The CIR mortality model has the best in-sample model fit but performs poorly in
predictive performance for the 1916 birth cohort.

This paper is structured as follows. Section 2 summarizes the framework for affine
mortality models and specifies the structure of the continuous-time cohort mortality models.
Section 3 describes the US mortality data we use for calibration. Section 4 outlines the
estimation methodology using the Kalman filter and provides an analysis of the estimation
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results and model comparison. In Section 5, we estimate the out-of-sample expected
survival probabilities for the latest cohort with full mortality data and assess the out-of-
sample forecasting ability of the different models. In Section 6, we discuss the implications
of the results for mortality modelling as well as further research. Section 7 concludes the
paper with a summary and major findings.

2. Affine Mortality Models

Our model is initially developed in an arbitrage-free valuation framework. This is
then linked to the historical dynamics through a change in measure. We first outline the
continuous-time model framework of affine mortality models, then introduce the AFNS
and the CIR mortality models. We discuss the incorporation of factor dependence in the
affine models. We initially derive the mortality models in a financial modelling setting with
a risk-neutral pricing measure. This allows the derivation of an expression for the risk-
neutral survival probabilities that is consistent with the dynamics assumed for the latent
factors driving mortality rates. We then give the link between the risk-neutral dynamics
and the real-world dynamics, which allows us to calibrate the models to historical mortality
data while preserving cross sectional consistency in survival curves. The arbitrage-free
model assumption ensures consistency between the dynamics of the mortality rates and
the functional form for the cross-sectional survivor curve as well as ensuring consistency in
the arbitrage-free cross-sectional survival probabilities

2.1. Mortality Model Framework

The models are formally defined based on a filtered probability space (Ω,F ,F, P),
where Ω is the set of possible states of nature and F = {Ft}0≤t≤T , where Ft = HtVMt is
the combined filtration for both the term structure of interest rates and mortality, assumed
to satisfy the conditions of right continuity; Ht is the filtration generated by the term
structure of interest rates up to time t; andMt is the filtration containing all the information
generated by the evolution of the mortality rates and survival curves for mortality up to
time t.

With an incomplete market for longevity risk, there exists no unique risk-neutral
measure Q for pricing mortality linked cash flows (Xu et al. 2020a). In pricing longevity risk
and longevity-linked financial products, the risk-neutral measure Q is defined in terms of a
zero-coupon longevity bond (Cairns et al. 2006a; Bauer et al. 2008; Blackburn and Sherris
2013). The real-world measure P reflects the best estimate of mortality, which is estimated
from historical mortality data (Bauer et al. 2008).

We use S̃(t, T, x) to denote the survival probability of an individual aged x at time t
surviving to time T (T ≥ t). The price of a zero-coupon bond paying $1 at time T is denoted
as P(t, T). The price of a longevity bond at time t that pays the amount S̃(t, T, x) at time T
is denoted by P̃(t, T, x). Under the measure Q, equivalent to the real-world measure P for
all t, T, and x, for an arbitrage-free financial market, we have

P(t, T) = EQ
[

exp
(
−
∫ T

t
rudu

)∣∣∣∣Ht

]
, (1)

P̃(t, T, x) = EQ
[

exp
(
−
∫ T

t
rudu

)
S̃(t, T, x)

∣∣∣∣Ft

]
. (2)

Assuming independence between interest rates and mortality, the price of a zero-
coupon longevity bond can be written as:

P̃(t, T, x) = EQ
[

exp
(
−
∫ T

t
rudu

)∣∣∣∣Ht

]
EQ
[
S̃(t, T, x)

∣∣∣Mt

]
= P(t, T)S(t, T, x), (3)

where S(t, T, x) is the risk-neutral survival probability used for pricing survival contin-
gent claims.
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The instantaneous mortality intensity for any age x at time t is defined as an affine
function of latent factors, with

µx(t) = ρ′1Xt, (4)

where ρ1 ∈ Rn, and Xt ∈ Rn is a vector of n latent factors that are assumed to drive the
mortality intensity.

We consider a single cohort so that the subscript x indicates the age of the cohort
at time t and individuals age as time increases in the cohort. We will later fix the initial
age of a cohort at 50 for cohorts with birth years ranging from 1883 to 1915, and the age-
cohort mortality rates for each cohort will be from ages 50 to 100. The historical age-cohort
mortality rates are single-cohort curves differing by the birth year of the cohort.

The dynamics of the latent factors Xt are given by the following system of stochastic
differential equations (SDEs) under the risk-neutral measure Q (Duffie and Kan 1996;
Christensen et al. 2011):

dXt = KQ
[
θQ − Xt

]
dt + ΣD(Xt, t)dWQ

t , (5)

where KQ ∈ Rn×n is the mean reversion matrix, θQ ∈ Rn is the long-term mean, Σ ∈ Rn×n

is the volatility matrix, WQ
t ∈ Rn is a standard Brownian motion, and D(Xt, t) is a diag-

onal matrix with the ith diagonal entry as
√

αi(t) + βi
1(t)x1

t + . . . + βi
n(t)xn

t . α and β are
bounded continuous functions. Instantaneous changes in the latent factors are modelled as
stationary processes.

Under these dynamics, the risk-neutral survival probabilities for a specified age x at
time t to time T are given by (Blackburn and Sherris 2013):

S(t, T, x) = EQ
[

exp
(
−
∫ x+T−t

x
µ(s)ds

)]
= exp

(
B(t, T)′Xt + A(t, T)

)
, (6)

where B(t, T) and A(t, T) are the solutions to the following system of ordinary differential
equations (ODEs):

dB(t, T)
dt

= ρ1 +
(

KQ
)′

B(t, T), (7)

dA(t, T)
dt

= −B(t, T)′KQθQ − 1
2

3

∑
j=1

(
Σ′B(t, T)B(t, T)′Σ

)
j,j

, (8)

with boundary conditions B(T, T) = A(T, T) = 0.
The average force of mortality over the duration (T − t) for age x is affine in the latent

factors and is defined as (Blackburn and Sherris 2013; Xu et al. 2020a):

µ̄(t, T, x) = − 1
T − t

log[S(t, T, x)] = −B(t, T)′

T − t
Xt −

A(t, T)
T − t

. (9)

2.2. Multi-Factor Affine Cohort Mortality Models

We present the dynamics of the latent factors in three-factor affine models. For the
different models, we specify the dynamics for Equations (4) and (5) and give the solutions
to the ODEs for Equations (7) and (8).

2.2.1. Independent Factor Models with Gaussian Processes

We first consider three-factor affine mortality models with factors following Gaussian
processes. We consider the three-factor independent model in Blackburn and Sherris (2013)
(hereafter the Blackburn–Sherris model). We also consider an affine mortality model based
on the AFNS interest-rate term structure model with the survival curve driven by factors
for level (Lt), slope (St), and curvature (Ct).
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Table 1 summarises the assumptions of these models. We show both the Q and P dy-
namics and will cover the P dynamics in Section 2.3. The independent factor models have
an identity matrix for D(Xt, t) in Equation (5). The long-term mean θQ in the models is as-
sumed to be a vector of zeros for both models, as explained in Blackburn and Sherris (2013).

The model dynamics are given as follows:

• The independent Blackburn–Sherris model has instantaneous mortality rate given by

µ(t) = X1
t + X2

t + X3
t , (10)

with ρ1 = (1, 1, 1)T and Xt =
(
X1

t , X2
t , X3

t
)

in Equation (4).
The dynamics of the state variables Xt have the following form under the risk-neutral
measure Q dX1

t
dX2

t
dX3

t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33


 X1

t
X2

t
X3

t

dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW1,Q

t
dW2,Q

t
dW3,Q

t

. (11)

• The independent AFNS mortality model has an instantaneous mortality rate given by

µ(t) = Lt + St, (12)

with ρ1 = (1, 1, 0)T and Xt = (Lt, St, Ct) in Equation (4).
The dynamics of the factors under the Q-measure are given by: dLt

dSt
dCt

 = −

 0 0 0
0 δ −δ
0 0 δ

 Lt
St
Ct

dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW1,Q

t
dW2,Q

t
dW3,Q

t

. (13)

Table 1. Affine Mortality Models—Independent Factor Model Specifications.

Model Factors Xt ρ1 KQ KP Σ

Blackburn–Sherris Model

 X1
t

X2
t

X3
t

  1
1
1

  δ1 0 0
0 δ2 0
0 0 δ3

  kP
1 0 0
0 kP

2 0
0 0 kP

3

  σ11 0 0
0 σ22 0
0 0 σ33


AFNS Model

 Lt
St
Ct

  1
1
0

  0 0 0
0 δ −δ
0 0 δ

  kP
1 0 0
0 kP

2 0
0 0 kP

3



The solutions for the survival curve require B(t, T), the factor loadings, and A(t, T)
from Equations (7) and (8), which can be explicitly solved. The results are as follows:

• The independent Blackburn–Sherris model (Blackburn and Sherris 2013)

Bj(t, T) = −1− e−δjj(T−t)

δjj
, j = 1, 2, 3, (14)

A(t, T) =
1
2

3

∑
j=1

σ2
jj

δ3
jj

[
1
2

(
1− e−2δjj(T−t)

)
− 2
(

1− e−δjj(T−t)
)
+ δjj(T − t)

]
. (15)

• The independent AFNS model (Christensen et al. 2011)

B1(t, T) = −(T − t), B2(t, T) = −1− e−δ(T−t)

δ
,

B3(t, T) = (T − t)e−δ(T−t) − 1− e−δ(T−t)

δ
,

(16)
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A(t, T)
T − t

= σ2
11
(T − t)

6
+ σ2

22

[
1

2δ2 −
1
δ3

1− e−δ(T−t)

T − t
+

1
4δ3

1− e−2δ(T−t)

T − t

]
+

σ2
33

[
1

2δ2 +
1
δ2 e−δ(T−t) − 1

4δ
(T − t)e−2δ(T−t) − 3

4δ2 e−2δ(T−t)

− 2
δ3

1− e−δ(T−t)

T − t
+

5
8δ3

1− e−2δ(T−t)

T − t

]
.

(17)

The independent Blackburn–Sherris model factor loadings all have the same functional
form but differ in the values of the fitted δjj. This parameter results in different factor
impacts across ages for the cohort mortality curve. The independent AFNS model’s factor
loadings have direct interpretation. B1(t, T), the level factor, is constant, so it has the same
impact on all ages in the cohort mortality curve. B2(t, T), the slope factor, is increasing, so
it impacts mortality rates at older ages more than at younger ages, resulting in changes
in slope. B3(t, T), the curvature factor, is decreasing and, along with the other factors,
produces curvature in the dynamics of the survival curve through time.

The selection of ρ1 and the structure of the mean reversion matrix KQ in Equation (13)
ensures that the factor loadings − B(t,T)

T−t (Equation (9)) of the AFNS model have a consistent
Nelson–Siegel structure through time with the latent factors interpreted as level, slope, and
curvature factors driving changes in the mortality curves (Diebold and Li 2006; Diebold
and Rudebusch 2013). Since the AFNS model is based on the ATSM in Duffie and Kan
(1996), this model maintains an arbitrage-free affine structure when applied to available
longevity linked market prices, making it suitable for financial and pricing applications
(Christensen et al. 2011).

Björk and Christensen (1999) argues that the Nelson–Siegel model does not satisfy
the consistency requirement (proposed by Björk and Christensen 1999). However, Diebold
and Rudebusch (2013) explain that not meeting the consistency requirement is met by the
AFNS model through the yield-adjustment term, which is − A(t,T)

T−t .

2.2.2. Dependent Factor Models with Gaussian Processes

Dependent factor models can improve how the models capture the correlation in
mortality rate dynamics between different ages. We set out the factor dynamics with
solutions to the dependent factor models for our Gaussian models. The Blackburn–Sherris
model and the AFNS model assume that the volatility matrix Σ is lower-triangular, allowing
correlated shocks in the models. Correlation can also be incorporated through KQ; however,
for the AFNS model, the structure of KQ has to be the same as for the independent factor
model to preserve the Nelson–Siegel structure for the model factors.

The risk-neutral dynamics of the dependent factor models are

• The dependent Blackburn–Sherris model dX1
t

dX2
t

dX3
t

 = −

 δ11 0 0
δ21 δ22 0
δ31 δ32 δ33


 X1

t
X2

t
X3

t

dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW1,Q

t
dW2,Q

t
dW3,Q

t

. (18)

• The dependent AFNS model dLt

dSt

dCt

 = −

 0 0 0
0 δ −δ

0 0 δ


 Lt

St

Ct

dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW1,Q

t
dW2,Q

t
dW3,Q

t

. (19)

The factor loadings B(t, T) and A(t, T) for the dependent Blackburn–Sherris model
are provided in Appendix A. For the dependent AFNS model, the factor loadings B(t, T)
are the same as for the independent factor model and an explicit expression for A(t, T) is
given in Christensen et al. (2011).
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2.2.3. The Cox–Ingersoll–Ross Mortality Model

To date, the Gaussian models allow mortality rates to become negative, although,
as we will show later, this effect is empirically small for the models we consider. We
also consider a multi-factor affine mortality model with each factor following a square-
root process, based on the Cox–Ingersoll–Ross model (CIR) (Cox et al. 1985) frequently
used as affine term structure models for interest rates and credit risk to avoid negative
mortality rates.

The Cox–Ingersoll–Ross model (CIR) model can also be seen as a model that can
capture the effect of mortality heterogeneity. For the CIR mortality model, mortality rates
follow a non-central Chi-square distribution and are asymptotically Gamma distributed
(Cox et al. 1985).

Following Chen and Scott (2003) and Geyer and Pichler (1999) for interest rates, we
define the instantaneous mortality intensity to be affine with:

µi
x(t) = ρ′1Xt = X1

t + X2
t + X3

t , (20)

where Xt =
(
X1

t , X2
t , X3

t
)

are the state variables that are driving the mortality intensity and
ρ1 is assumed to be (1, 1, 1)T .

The factor dynamics driving the mortality survival curve are then given by the follow-
ing system of SDEs under the risk-neutral measure Q: dX1

t
dX2

t
dX3

t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33



 θQ

1
θQ

2
θQ

3

−
 X1

t
X2

t
X3

t


dt

+

 σ11 0 0
0 σ22 0
0 0 σ33



√

X1
t 0 0

0
√

X2
t 0

0 0
√

X3
t


 dW1,Q

t
dW2,Q

t
dW3,Q

t

.

(21)

Each factor follows a single-factor CIR square-root process. The matrix D(Xt, t) in

Equation (5) is defined as a diagonal matrix with the j-th element on the diagonal as
√

X j
t

(j = 1, 2, 3).
The explicit expressions for B(t, T) and A(t, T) are

Bj(t, T) = −
2
(

eγj(T−t) − 1
)

(
δjj + γj

)(
eγj(T−t) − 1

)
+ 2γj

, j = 1, 2, 3, (22)

A(t, T) =
3

∑
j=1

2δjjθ
Q
j

σ2
jj

ln

 2γj exp
(
(δjj+γj)(T−t)

2

)
(
δjj + γj

)(
eγj(T−t) − 1

)
+ 2γj

, (23)

with γj =
√

δ2
jj + 2σ2

jj, j = 1, 2, 3 (Duan and Simonato 1999; Chen and Scott 2003; Geyer
and Pichler 1999).

2.3. Real-World Dynamics and Change of Measure

We develop the affine mortality models under the risk-neutral measure Q. Since we
fit the models using historical data, we change this measure to the real-world measure
P. From Girsanov’s theorem, the relationship between the dynamics under the P and Q
measure is given by:

dWQ
t = dWP

t + Λtdt, (24)

where Λt is the risk premium vector.
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To specify the structure of the risk premium of longevity risk, we adopt the essentially
affine model proposed by Duffee (2002). The essentially affine model removes the strong
link between the factor loadings − B(t,T)

T−t and the drift term under the real-world measure
(Blackburn and Sherris 2013) and preserves the affine dynamics under the P-measure
(Christensen et al. 2011).

The form of the risk premium is (Duffee 2002):

Λt =

{
λ0 + λ1Xt, for models with Gaussian processes;
D(Xt, t)λ0, for the CIR model.

(25)

where Λt ∈ Rn×1, λ0 ∈ Rn×1 and λ1 ∈ Rn×n.
With these assumptions, the SDEs for factors under the measure P can be written as:

dXt =

{
KP[θP − Xt

]
dt + ΣdWP

t , for models with Gaussian processes;
KP[θP − Xt

]
dt + ΣD(Xt, t)dWP

t , for the CIR model.
(26)

The forms of KP and θP are derived in Appendix B. In the essentially affine model, we
are free to choose the mean reversion matrix KP and the mean vector θP.

Under the real-world measure P, the dynamics of the factors in each model that we
will estimate from historical mortality data are:

• The independent Blackburn–Sherris model (Blackburn and Sherris 2013) dX1
t

dX2
t

dX3
t

 = −

 kP
11 0 0
0 kP

22 0
0 0 kP

33


 X1

t
X2

t
X3

t

dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW1,P

t
dW2,P

t
dW3,P

t

. (27)

• The independent AFNS model (Christensen et al. 2011) dLt

dSt

dCt

 = −

 kP
11 0 0
0 kP

22 0
0 0 kP

33


 Lt

St

Ct

dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW1,P

t
dW2,P

t
dW3,P

t

. (28)

• The dependent Blackburn–Sherris model dX1
t

dX2
t

dX3
t

 = −

 kP
11 0 0
0 kP

22 0
0 0 kP

33


 X1

t
X2

t
X3

t

dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW1,P

t
dW2,P

t
dW3,P

t

. (29)

• The dependent AFNS model dLt

dSt

dCt

 = −

 kP
11 0 0
0 kP

22 0
0 0 kP

33


 Lt

St

Ct

dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW1,P

t
dW2,P

t
dW3,P

t

. (30)

• The CIR model dX1
t

dX2
t

dX3
t

 = −

 kP
11 0 0
0 kP

22 0
0 0 kP

33

 θP
1

θP
2

θP
3

−
 X1

t
X2

t
X3

t

dt

+

 σ11 0 0
0 σ22 0
0 0 σ33



√

X1
t 0 0

0
√

X2
t 0

0 0
√

X3
t


 dW1,P

t
dW2,P

t
dW3,P

t

.

(31)



Risks 2022, 10, 183 10 of 28

3. Mortality Data

We use USA age-cohort mortality data, as opposed to age-period data, from the
Human Mortality Database (2018) (HMD) to calibrate and compare the mortality models.
Our focus is on actuarial and financial applications, which generally require age-cohort
mortality models rather than age-period models (Blackburn and Sherris 2013; Xu et al.
2020a; Chang and Sherris 2018). Age-period models are often modified to include a cohort
factor to capture cohort effects. Our approach is to model age-cohort data directly.

We use mortality data for males from ages 50 to 100 for the cohorts born from 1883 to
1915, since these are the complete cohort data we have available. We are interested in the
older ages for post-retirement applications and require full mortality-rate data for all ages
for each complete cohort. Cohort death rates are derived from the age-period mortality
rates by using the diagonals.

Historical survival probabilities, Si(x; t, T), are derived from the data along with
historical average forces of mortality µ̄i(x; t, T) over the period τ = T − t for each cohort i
aged x at time t, using:

Si(x; t, T) =
T−t

∏
s=1

[
1− qi(x + s− 1, t + s− 1)

]
, (32)

µ̄i(x; t, T) = − 1
T − t

log
[
Si(x; t, T)

]
, (33)

where qi(x, t) is the one-year death probability for an individual aged x at time t in cohort i.
Figure 1 gives the average force of mortality for cohorts born between 1883 and 1915,

aged 50 to 100. Mortality improvement across cohorts is seen from the downward trend of
the average force of mortality at each age. The rate of mortality improvement differs by
age. The average force of mortality of each cohort grows exponentially in each cohort.

Figure 2 gives a principal component analysis (PCA) for the change in mortality
intensity for all cohorts as they age. The first three principal components are able to explain
approximately 90% of the total variance. This is consistent with the results in Blackburn
and Sherris (2013) and supports our choice of three-factor affine mortality models.

0

1920

0.05

1910 100

0.1

90

Cohort

1900 80

Age

0.15

701890
60

1880 50

Figure 1. Average Force of Mortality for Males Born from 1883 to 1915.
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Figure 2. Fractions (%) of Variance Explained by Each of the First 7 Principal Components.

4. Model Assessment and Comparison

We use the Kalman filter to estimate the model parameters for all the models. We then
compare the fitted models using a number of model selection criteria. When using the
Kalman filter, we estimate the parameters of the latent factor dynamics in the real-world or
historical measure and estimate the Q measure parameters in the measurement equation
that links the cross-sectional survival probabilities to the latent factors.

4.1. Parameter Estimation

We follow Christensen et al. (2011) and Blackburn and Sherris (2013) and use the
Kalman filter with maximum-likelihood estimation to estimate the parameters in the affine
mortality models. Our models capture the volatility of the underlying mortality rates
but observed deaths are used to estimate historical mortality rates from the data. These
historical mortality rates also include Poisson variation based on the number of individ-
uals in each age. Our model needs to include this. We do so by including an exponen-
tially increasing Poisson variation term in the measurement equation of the Kalman filter
(Xu et al. 2020b).

The estimation process is as follows:

1. Represent the affine mortality models in the state space form, which consists of two
components, the measurement equation and the state transition Equation (Xu et al.
2020a; Shumway and Stoffer 2017).
The measurement equation describes the affine relationship between the average force
of mortality and the state variables (Xu et al. 2020a; Durbin and Koopman 2012). Based
on Blackburn and Sherris (2013) and Xu et al. (2020a), the measurement equation in
terms of the average forces of mortality is

µ̄(t, T) = −B(t, T)′

T − t
Xt −

A(t, T)
T − t

+ εt, εt ∼ N(0, H), (34)

where the measurement error εt is independently and identically distributed noise
with the covariance matrix of the measurement error, H, being diagonal. We use the Q
or pricing measure parameters in the measurement equation to ensure cross-sectional
consistency in the survival probabilities.
To capture the increasing nature of the Poisson variation, the parametric form assumed
for the diagonal of the covariance matrix H is

H(t, T) =
1

T − t

T−t

∑
i=1

[
rc + r1er2i

]
, (35)
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where the values of rc, r1 and r2 are estimated from the data.
The state transition equation represents the unobserved dynamics of the state variables
(Xu et al. 2020a; Durbin and Koopman 2012) and is given by:

Xt = exp
(
−KP

)
Xt−1 + ηt, ηt ∼ N(0, R), (36)

where ηt is the transition error vector with diagonal matrix R, the covariance matrix
of the transition error. We use the real-world or historical parameters for the latent
factor dynamics in the state transition equation to capture the real-world dynamics.
The matrix R has the following structure:

R =
∫ t

t−1
e−KP(t−s)ΣΣ′e−(KP)

′
(t−s)ds. (37)

2. Use the Kalman filter to evaluate the likelihood function of affine mortality models
and to extract the values of the state variables. The information available at time t is
denoted by Yt = (y1, . . . , yt), and the model parameters are given by ψ.
In the forecasting step, we use the state update Xt−1 and its mean square error Σt−1
obtained at t− 1 to obtain

Xt|t−1 = E[Xt|Yt−1] = Φ(ψ)Xt−1, (38)

Σt|t−1 = Φ(ψ)Σt−1Φ(ψ)′ + R(ψ), (39)

where Φ = exp
(
−KP).

In the update step, the information at time t, Yt, is used to update the forecasts Xt|t−1,
and we obtain:

Xt = E[Xt|Yt] = Xt|t−1 + Σt|t−1B(ψ)′F−1
t νt, (40)

Σt = Σt|t−1 − Σt|t−1B(ψ)′F−1
t B(ψ)Σt|t−1, (41)

where
νt = yt − E[yt|Yt−1] = yt − A(ψ)− B(ψ)Xt|t−1, (42)

Ft = cov(νt) = B(ψ)Σt|t−1B(ψ)′ + H(ψ). (43)

3. Evaluate the following log-likelihood function with the values obtained in the previ-
ous step:

log L(y1, . . . , yt; ψ) =
T

∑
t=1

(
−N

2
log(2π)− 1

2
log |Ft| −

1
2

ν′t Ftνt

)
, (44)

where N is the number of observed average forces of mortality.
The log-likelihood function is maximized with respect to ψ to obtain the optimal
parameter set. For the CIR mortality model we use quasi-maximum likelihood esti-
mation. Jevtić and Regis (2021) estimate similar models using the Kalman filter and
quasi-maximum likelihood estimation. The estimation uses the Gaussian Kalman filter
with the moments from the CIR model in the likelihood for parameter estimation.

4.2. Model Parameter Estimation Results

Parameter estimates for each model, along with the standard errors are summarized
in Table 2. Risk neutral model parameter values are reported along with the historical or
real world parameter values. Transitions are based on the historical parameters to reflect
the dynamics driving the underlying factors and the measurement equation is based on
measurement equation to ensure the arbitrage-free structure of the survival curves.
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Table 2. Estimated Parameters.

The Blackburn–Sherris Model The AFNS Model
The CIR Model

Independent Factor Dependent Factor Independent Factor Dependent Factor

δ11
(AFNS: δ)

−0.01106
(0.00123)

−0.20183
(2.944× 10−5)

−0.08348
(1.580× 10−4)

−0.04725
(8.096× 10−5)

−0.09652
(2.513× 10−4)

δ21 -
0.56206

(4.091× 10−5) - - -

δ22

0.07484
(0.00432)

−0.07092
(1.766× 10−5) - -

0.12627
(2.412× 10−3)

δ31 -
0.24075

(1.555× 10−5) - - -

δ32 -
0.80809

(4.102× 10−5) - - -

δ33

−0.06883
(2.452× 10−4)

0.77825
(1.461× 10−5) - -

−0.11153
(3.060× 10−4)

kP
11 0.38753 −0.04248 0.18793 0.01810 0.00077

kP
22 0.13910 0.01869 0.01361 0.02002 0.59402

kP
33 0.00718 0.01827 0.02701 0.04972 0.06842

σ11 0.00782 7.557× 10−11 9.593× 10−4 0.00400
0.00265

(6.894× 10−5)

σ21 - 0.01110 - −0.00387 -

σ22 0.00125 3.370× 10−11 1.120× 10−4 0.00091
0.02848

(1.250× 10−3)

σ31 - −0.01190 - −0.00183 -

σ32 - 0.00047 - 0.00123 -

σ33 5.409× 10−4 0.00029 3.549× 10−5 0.00023
0.01360

(9.494× 10−5)

r1 1.071× 10−11 4.337× 10−8 1.422× 10−10 6.272× 10−8 5.498× 10−10

r2 0.37797 0.11375 0.17784 0.10742 6.646× 10−7

rc 4.360× 10−8 5.705× 10−8 4.963× 10−7 4.636× 10−13 3.410× 10−7

The CIR Model

θQ
1 0.00080 θQ

2 0.01010 θQ
3 0.00137

θP
1 0.00697 θP

2 0.00415 θP
3 0.00356

The δ parameters in KQ determine the impact of each of the factors and the signifi-
cance of the factor loadings for mortality rates at different ages. We see that the diagonal
components are largely negative. The δ′s in the dependent-factor AFNS model are smaller
in absolute value than for the independent-factor AFNS model. For the two AFNS models,
δ′s are both negative, impacting the sensitivity for the slope factor at older ages.

The mean reversion KP parameters, giving the speed of reversion to long-term means,
vary across the models. There are different rates of mean reversion in the real world
measure. There are negative correlations between factors in the two dependent-factor
models, which only impacts the adjustment term A(t, T).

All the long-term mean θ parameters in the CIR model are positive. This ensures the
factors are positive and positive mortality rates in the model. The second factor, X2, has the
largest mean reversion speed, kP

22, and largest volatility, σ22. This factor has more impact on
the short term (Geyer and Pichler 1999). The mean reversion rate kP

11 and the volatility σ11
of X1 are lowest, compared with the other two factors, so the first factor has less impact on
mortality dynamics and is less volatile.

As seen in the structure of the measurement error matrix H in Equation (35), the
measurement errors are age-dependent and exponentially increasing with age. For the
r2, the scalar in the exponential function in matrix H, the independent-factor Blackburn–
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Sherris model has the largest r2, and the largest estimated measurement error volatility. For
the CIR model, the values of all the parameters in matrix H are negligible. These smaller
measurement errors reflects in a better in-sample model fit.

4.3. Assessing Model Goodness-of-Fit

Table 3 shows, for each model, the Root Mean Square Error (RMSE), the Akaike
information criterion (AIC), and the Bayesian information criterion (BIC). Since the models
with Gaussian processes allow for negative mortality, we show the probabilities of negative
mortality for these models.

Table 3. Comparison of Affine Mortality Models.

The Blackburn–Sherris Model The AFNS Model
The CIR Model

Independent Factor Dependent Factor Independent Factor Dependent Factor

Log Likelihood 9896.419 9938.696 9665.801 9887.878 10,045.70
RMSE 0.00250 7.601× 10−4 6.856× 10−4 9.160× 10−4 5.227× 10−4

No. of Parameters 12 18 10 13 18
AIC −19,570.837 −19,643.392 −19,113.602 −19,551.757 −19,857.40
BIC −18,968.292 −19,008.277 −18,521.914 −18,943.783 −19,222.29

Probability of Negative Mortality 0.02700 1.011× 10−32 1.722× 10−31 4.34× 10−14 -

The CIR model has the highest log-likelihood and the smallest RMSE. Although it has
more parameters, the AIC and the BIC of the CIR model indicate this is a better model. As
noted earlier, the CIR model precludes the probability of negative mortality.

We note that the Gaussian models perform well, particularly the dependent-factor
models. The dependent factor Blackburn–Sherris model and the AFNS models all have low
probabilities of negative mortality rates. The dependent-factor Blackburn–Sherris model
has the largest log-likelihood and better AIC and BIC than the other Gaussian models.

4.4. Factors and Factor Loadings

It is interesting to consider the factors and the factor loadings for the cohort survival
curves for the independent AFNS mortality model, where the factors for level, slope, and
curvature have a direct interpretation, and the CIR mortality model which, based on the
criteria used, is the best-performing model.

Figures 3 and 4 show the fitted values of the factors and factor loadings of the inde-
pendent AFNS model. For the factor loading B1, the impact of the level factor L is constant
across all ages. We see an increase in the factor level for all ages for the cohorts born around
1900 onwards. This increase in the level factor is offset by the reduction in the slope factor.
The interaction is impacted by the factor loadings for these factors and the resulting changes
in mortality curves for cohorts born later.

The slope factor loading B2 increases exponentially, so it impacts older ages more than
younger ages. Mortality rates at older ages are more sensitive to the slope factor S. For
cohorts born after 1900, corresponding to the rise in the level factor L, there is a decline
in the slope factor S. These factors interact to fit the changes in the historical age-cohort
survival curves.

The factor loading B3 is negative and decreasing across all ages. As a result, the
convexity of the survival curve at older ages decreases faster than at younger ages. For
cohorts born after 1900, the decline in C results in mortality rate curves that are less convex
across age. As a result, mortality improvement at older ages is larger than for the younger
ages in the age-cohort curves.

The adjustment term A in the survival curve is negative and decreasing.
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Figure 3. Factors in the Independent AFNS Model.

The estimated latent factors and factor loadings for the CIR mortality model are shown
in Figures 5 and 6. As expected, the factors and factor loadings differ from those of the
independent AFNS mortality model, reflecting the different model assumptions.

The first factor X1 is relatively stable for cohorts born before 1900, then increases,
followed by a moderate decline for cohorts born around 1910 and after. The factor loading,
B1, is positive and increases with age. The interaction between the factor dynamics and
the factor loading for the first factor X1 results in older ages in the age-cohort mortality
curve being affected more by the first factor than for younger ages. Since X1 is the largest
factor throughout the time period and the factor loadings are largest for this factor, it is the
dominant factor impacting changes in mortality in the CIR model.

The second factor X2 has a downward trend over time. The factor loading B2 is
decreasing with age and smaller than B1. As a result, younger ages have mortality improve-
ment from the second factor, but the size of improvement from this factor is smaller than
for the first factor. As a result, it has a much smaller overall impact compared to X1.
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Figure 4. Factor Loadings in the Independent AFNS Model.

The third factor X3 is relatively constant for cohorts born before 1900, decreasing
afterwards, with a reduction in the rate of decrease for cohorts born after around 1910.
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The factor loading B3 has a convex shape, is positive, and impacts older ages more than
younger ages. This results in curvature changes in the age-cohort survival curve.

The adjustment term A, which produces the consistency in the age-cohort survival
curves, is negative and, following a small increase for younger ages, is then decreasing.

The combination of the factor dynamics for all the factor dynamics along with the
factor loadings determine the shape and dynamics of the age-cohort survival curves. These
dynamics are estimated from the age-cohort mortality data and allow an analysis of the
underlying trends and changes in the age-cohort survival curve over time. The more
complex dynamics than single factor models explain the variation at older ages better.
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Figure 5. Factors in the CIR Model.
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Figure 6. Factors Loadings in the CIR Model.

4.5. Residual Analysis

The residuals or the affine mortality models are shown in Figure 7. The residuals
shown are the differences between the average force of mortality from the historical mor-
tality data and those determined from the fitted mortality models. Plots are on the same
scale on the z-axis, except for the independent Blackburn–Sherris model, which has large
residuals at older ages, reflecting a poorer fit at these ages.
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Figure 7. Residuals of Affine Mortality Models.

Excluding the independent Blackburn–Sherris model, all of the other affine age-cohort
mortality models show similar residuals. With three factors for level, slope, and curvature,
we see that the independent AFNS model (Figure 7c) fits well. The AFNS model reduces the
magnitude of residuals at the older ages compared to the independent Blackburn–Sherris
model without adding additional parameters. This shows how, by using factors for level,
slope, and curvature factors, the mortality model can capture variation in mortality curves,
especially at older ages.

We see how factor dependence in the Blackburn–Sherris model produces a better
fitting model, reducing the size of residuals, and accounting better for mortality variation at
older ages. This is seen by comparing the dependent Blackburn–Sherris model (Figure 7b)
with the independent model (Figure 7a). Although including dependence in the factors of
the Blackburn–Sherris model improves the residuals of the model fit, we do not see this for
the independent AFNS model in Figure 7c. The residuals in the dependent AFNS model
(Figure 7d) are larger, particularly at older ages. This highlights how the independent
AFNS model captures mortality variability better than the dependent AFNS model, in
contrast to the dependent Blackburn–Sherris model.

The CIR model has lower residuals at older ages and residuals similar to those of the
independent AFNS model in Figure 7c. The CIR model has slightly smaller residuals at
older ages and ages younger than 60, compared with the other models.

We see a hump shape running diagonally across the cohorts in all of the residual
plots. Diagonal effects in an age-cohort model correspond to period effects. The residuals
highlight a period mortality effect that impacts all of the cohorts around the year 1970. This
corresponds to when period mortality improvement trends in age-period models showed a
change to a higher level of improvement. We also see that for later cohorts at older ages,
the residuals are higher, which would be indicative of a slowing of mortality-improvement
rates in recent years.

4.6. In-Sample Analysis

We now consider an in-sample model performance analysis. We compare estimated
cohort survival probabilities from the fitted mortality models with the cohort survival
probabilities from the historical data. Figure 8 summarizes the in-sample model fit using
the Mean Absolute Percentage Error (MAPE) for each age across all cohorts. The scale of the
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percentage error is different above and below age 85 because of the significant differences
in the size of the errors.
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Figure 8. MAPE of Affine Mortality Models. (a) The Models with Gaussian Processes. (b) The CIR
Model, the Dependent Blackburn–Sherris Model and the Independent AFNS Model.

Figure 8a shows the MAPE for the affine mortality models with Gaussian processes.
Below age 85, all models have similar performance, and the differences between the percent-
age errors of the different mortality models are relatively small. What is more interesting
is the fit above age 85. The independent Blackburn–Sherris model has significantly larger
percentage errors. The other affine age-cohort Gaussian mortality models, the dependent
Blackburn–Sherris model and the independent AFNS model, have similar and improved
model fit at these older ages.

We compare the MAPE of these better performing Gaussian mortality models with
the CIR age-cohort mortality model in Figure 8b. We see that the CIR mortality model
and the independent AFNS mortality model are similar. The latter has only slightly larger
percentage errors at most ages. The dependent Blackburn–Sherris model is similar to the
CIR model below age 75, but the percentage errors increase after age 75 with values as high
as 10%.

Based on MAPE, we see that both the independent AFNS mortality model and the CIR
mortality model have similar and satisfactory performance for the historical age-cohort
data for complete cohorts in the USA historical mortality.

5. Forecasts of Survival Probabilities

We compare the predictive performance of the affine mortality models using an out-
of-sample forecast with the fitted parameter values estimated from the cohorts born 1883
to 1915 for ages 50 to 100 used to forecast the survival curve of the cohort born in 1916. For
this cohort we have full historical mortality data.

Following Christensen et al. (2011), who use optimal forecasts to predict yields to
maturity, we use optimal forecasts, also referred to as best-estimate forecasts, to project
average forces of mortality and survival probabilities.

At time t, the average force of mortality over τ = (T + 1)− (t + 1) periods at time
t + 1 for cohort i, µ̄i(t + 1, T + 1), is

µ̄i(t + 1, T + 1) = −B(t, T)′

T − t
E[Xt+1|Xt]−

A(t, T)
T − t

, (45)

where B(t, T) and A(t, T) only depend on τ = T − t .
The forecasts of survival probabilities are then

S(t + 1, T + 1) = exp
(

B(t, T)′E[Xt+1|Xt] + A(t, T)
)

. (46)
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Since the factor dynamics under measure P in the independent Blackburn–Sherris
model and the three-factor independent AFNS model are the same, the conditional expec-
tations of state variables for these two models are as follows:

E
[

X1
t+1|X1

t

]
= e−kP

11 X1
t , E

[
X2

t+1|X2
t

]
= e−kP

22 X2
t , E

[
X3

t+1|X3
t

]
= e−kP

33 X3
t . (47)

For the independent AFNS model, the conditional mean has the same structure but with
Xt = (Lt, St, Ct).

The SDEs describing the P-dynamics of the dependent Blackburn–Sherris model
and the dependent AFNS model are the same as for the independent factor model in
Equation (47).

The conditional mean of the CIR model is given in Geyer and Pichler (1999), so for the
mortality model:

E
[

X1
t+1|X1

t

]
= e−kP

11 X1
t + θP

1

(
1− e−kP

11

)
, E

[
X2

t+1|X2
t

]
= e−kP

22 X2
t + θP

2

(
1− e−kP

22

)
,

E
[

X3
t+1|X3

t

]
= e−kP

33 X3
t + θP

3

(
1− e−kP

33

)
.

(48)

The RMSE under each mortality model for projecting the 1916 cohort survival curve
are shown in Table 4. We see that the independent AFNS mortality model performs best on
these criteria. The dependent AFNS mortality model and the dependent Blackburn–Sherris
models perform similarly. In contrast, the independent Blackburn–Sherris mortality model
shows the poorest performance. Although the CIR mortality model has reasonable RMSE,
it is outperformed by the AFNS mortality models.

Table 4. RMSE by Comparing the Actual and Best-Estimate Survival Probabilities of the 1916 Cohort.

The Blackburn–Sherris Model The AFNS Model
The CIR Model

Independent Dependent Independent Dependent

RMSE 0.03197 0.00726 0.00668 0.00754 0.01835

To illustrate these differences, Figure 9 shows the survival probabilities for the dif-
ferent mortality models using the best estimate forecasts compared to the actual survival
probabilities from the historical mortality data. The models produce reasonable survival
curve fits, except the independent Blackburn–Sherris mortality model and the CIR mortality
model, which both underestimate the survival rates of the 1916 cohort.
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Figure 10 shows the absolute percentage errors across ages for all the mortality models.
This confirms the better forecasting performance of the independent AFNS mortality model.
The dependent Blackburn–Sherris mortality models performs better than the independent
Blackburn–Sherris mortality model, showing the benefit in forecasting of including cor-
relations between the factors in this model. The level, slope, and curvature structure of
the factors in the AFNS mortality model reduce the need for including dependence in the
factors as compared to the Blackburn–Sherris mortality model.
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Figure 10. Absolute Percentage Errors between Actual and Best-Estimate Survival Probabilities.

6. Discussion

We have shown how affine mortality models can be applied to age-cohort mortality
data using USA mortality data. We show that three-factor versions of these models fit the
data well; the Gaussian models produce low probabilities of negative mortality rates; and
the AFNS model, with level, slope, and curvature as factors, provides reliable forecasts
of full age-cohort survival curves. We model age-cohort data since age-cohort survival
curves are required for practical actuarial applications. Most other research uses age-period
mortality, often with a cohort effect adjustment. Our analysis has used USA mortality data
since the population is large and reflects many developments in mortality improvement
expected to be found in other developed countries.

We develop our models in an arbitrage-free pricing framework assuming indepen-
dence between interest rates and mortality. Correlation between interest rates and mortality
rates can be incorporated into the models by an appropriate change in measure. Calibrat-
ing the models and estimating the correlation between interest rates and mortality rates
would then require mortality-linked security prices that capture both interest rate and
mortality risk.

Our results provide interesting insights into age-cohort mortality curve dynamics.
Although we have focused on USA data, estimating and comparing age-cohort affine
mortality models for other countries will provide a deeper understanding of the models
and their ability to capture differing mortality dynamics.

There are a number of directions for which this research provides a foundation. We use
the Kalman filter with maximum likelihood to estimate parameters. An area of research that
would improve the model estimation is the development of efficient numerical estimation
processes for the Kalman filter along with developing code that can be used by other
researchers to estimate and implement the models.

We use only historical data for complete cohorts in our age-cohort mortality curve
modelling. Incorporating incomplete cohorts into the estimation will allow the use of
more recent age-cohort data in the model estimation and forecasting. Age-period data use
the latest calendar year mortality data, whereas age-cohort data for later calendar years
are incomplete.
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We do not focus on parameter stability, and although this has been considered in
(Blackburn and Sherris 2013), assessing this for several other countries would provide
additional support for the empirical performance of the multi-factor affine models.

Although we include dependence between the factors by incorporating correlation,
we do not include age effects in the factors. In the affine framework, it is possible to capture
age dependence in the factors to improve the model fit at older ages with potentially fewer
factors in the model. It is also possible to capture age correlations and cohort correlations
more effectively using age-dependent factors.

An important issue to also consider is the extension of the models to incorporate jump
events such as the COVID-19 pandemic. These events not only have an impact on all ages
to a greater or lesser extent in a particular number of periods, but can also have longer
lasting impacts, as is occurring with long COVID-19. The affine models we consider do
not account for larger jumps that impact several periods across all ages, as would be the
case for a pandemic. The models can incorporate jumps such as COVID-19 into the affine
mortality framework.

These extensions are all topics that current CEPAR actuarial research is investigating.

7. Conclusions

We have applied several continuous-time affine mortality models to age-cohort sur-
vival curve data using USA historical age-cohort data to fit and assess the mortality models.
We provide a comprehensive analysis and comparison of the models. We outline, com-
pare, and assess several independent-factor and dependent-factor affine mortality models
with Gaussian processes, including the Blackburn–Sherris mortality model (Blackburn and
Sherris 2013; Christensen et al. 2011), as well as an affine mortality model with square-root
processes (the CIR mortality model). The CIR mortality model precludes negative mortality
rates that can occur in the Gaussian models. The CIR latent factors and the mortality
intensity have non-central Chi-square distributions, which can better reflect mortality het-
erogeneity. We also assess the performance of an AFNS mortality model with interpretable
latent stochastic factors for level, slope, and curvature of the survival curve.

We incorporate dependence in the Blackburn–Sherris mortality model by including
correlation between the factors and show how this improves in-sample model fit and
out-of-sample forecasting performance. The CIR mortality model shows the best in-sample
model fit across a range of criteria, including model residuals. The superior in-sample
performance of the CIR mortality model is likely to reflect the more realistic assumption of
Gamma-distributed mortality rates compared to the Gaussian models.

We find that the independent-factor AFNS mortality model performs well. It better
captures the variation in age-cohort mortality rates in USA data and produces a better fit at
older ages than the independent-factor Blackburn–Sherris model. Negative mortality rates
have very low probability in the AFNS mortality models.

We project a complete cohort based on the fitted models to assess forecasting perfor-
mance of the models. We forecast the 1916 cohort in the USA data, for which we have a
complete cohort of mortality data. The independent-factor AFNS mortality model shows
better predictive performance compared to the other models.

Based on our detailed assessment and comparison of these affine age-cohort mortality
models, we show that, for USA age-cohort mortality data, the independent AFNS model
provides satisfactory model fit and satisfactory predictive performance. The model is
parsimonious relative to other models and can be readily estimated using the Kalman filter,
allowing for Poisson mortality variation in the measurement equation. The model has
intuitive factor interpretations in terms of level, slope, and curvature for the dynamics of
the mortality survival curve and is well suited for financial and insurance applications,
including pricing and longevity risk management.
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Appendix A. Solutions to the Ordinary Differential Equations

We have

d
dt

[
e(KQ)

′
(T−t)B(t, T)

]
= e(KQ)

′
(T−t) dB(t, T)

dt
−
(

KQ
)′

e(KQ)
′
(T−t)B(t, T), (A1)

and substituting Equation (7), we simplify to obtain∫ T

t

d
ds

[
e(KQ)

′
(T−s)B(s, T)

]
ds =

∫ T

t
e(KQ)

′
(T−s)ρ1ds, (A2)

which has the solution, after including the boundary conditions,

B(t, T) = −e(−KQ)
′
(T−t)

∫ T

t
e(KQ)

′
(T−s)ρ1ds. (A3)

With KQ in Equation (18) and ρ1 = (1, 1, 1)T in the Blackburn–Sherris model,

e(−KQ)
′
(T−s)ρ1 =

 a11 a21 a31
0 a22 a32
0 0 a33

 1
1
1

 =

 a11 + a21 + a31
a22 + a32

a33

 (A4)

where

a11 = eδ11(T−s), a21 = D1

(
eδ11(T−s) − eδ22(T−s)

)
,

a31 = (D4 + D1D5)eδ11(T−s) − D1D2eδ22(T−s) + (D2D3 − D4)eδ33(T−s),

a22 = eδ22(T−s), a32 = D2

(
eδ22(T−s) − eδ33(T−s)

)
, a33 = eδ33(T−s),

(A5)

and

D1 =
δ21

δ11 − δ22
, D2 =

δ32

δ22 − δ33
, D3 =

δ21

δ11 − δ33
, D4 =

δ31

δ11 − δ33
, D5 =

δ32

δ11 − δ33
.

https://www.mortality.org/
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Integrating each element in Equation (A4),

b1 =
∫ T

t
(a11 + a21 + a31)ds

= (1 + D1 + D1D5 + D4)
1− e−δ11(T−t)

−δ11
− D1(1 + D2)

1− e−δ22(T−t)

−δ22

+ (D2D3 − D4)
1− e−δ33(T−t)

−δ33
,

b2 =
∫ T

t
(a22 + a32)ds = (1 + D2)

1− e−δ22(T−t)

−δ22
− D2

1− e−δ33(T−t)

−δ33
,

b3 =
∫ T

t
a33ds =

1− e−δ33(T−t)

−δ33
.

Let

e(−KQ)
′
(T−t) =

 c11 c21 c31
0 c22 c32
0 0 c33

, (A6)

where

c11 = e−δ11(T−t), c21 = D1

(
e−δ11(T−t) − e−δ22(T−t)

)
,

c31 = (D4 + D1D5)e−δ11(T−t) − D1D2e−δ22(T−t) + (D2D3 − D4)e−δ33(T−t),

c22 = e−δ22(T−t), c32 = D2

(
e−δ22(T−t) − e−δ33(T−t)

)
, c33 = e−δ33(T−t).

(A7)

Equation (A3) now can be written as: B1(t, T)
B2(t, T)
B3(t, T)

 = −

 c11 c21 c31
0 c22 c32
0 0 c33

 b1
b2
b3

. (A8)

Therefore, the solutions of B(t, T) are

B1(t, T) = −E1
1− e−δ11(T−t)

δ11
+ E2

1− e−δ22(T−t)

δ22
− E3

1− e−δ33(T−t)

δ33
,

B2(t, T) = −(1 + D2)
1− e−δ22(T−t)

δ22
+ D2

1− e−δ33(T−t)

δ33
,

B3(t, T) = −1− e−δ33(T−t)

δ33
,

(A9)

where E1 = 1 + D1 + D1D5 + D4, E2 = D1(1 + D2), E3 = D2D3 − D4.
From Equation (8) and the boundary condition,

A(t, T) =
1
2

∫ T

t

3

∑
j=1

(
Σ′B(s, T)B(s, T)′Σ

)
j,j

ds

=
1
2

∫ T

t

[
σ2

11B1(s, T)2 +
(

σ2
21 + σ2

22

)
B2(s, T)2 +

(
σ2

31 + σ2
32 + σ2

33

)
B3(s, T)2

+2σ11σ21B1(s, T)B2(s, T) + 2σ11σ31B1(s, T)B3(s, T)

+2(σ21σ31 + σ22σ32)B2(s, T)B3(s, T)
]
ds.
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Terms with B(s, T) are expanded as follows:

B1(s, T)2 =
E2

1
δ2

11

(
1− e−δ11(T−s)

)2
+

E2
2

δ2
22

(
1− e−δ22(T−s)

)2
+

E2
3

δ2
33

(
1− e−δ33(T−s)

)2

− 2
δ11δ22

E1E2

(
1− e−δ11(T−s)

)(
1− e−δ22(T−s)

)
+

2
δ11δ33

E1E3

(
1− e−δ11(T−s)

)(
1− e−δ33(T−s)

)
− 2

δ22δ33
E2E3

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
,

B2(s, T)2 =
(1 + D2)

2

δ2
22

(
1− e−δ22(T−s)

)2
+

D2
2

δ2
33

(
1− e−δ33(T−s)

)2

− 2
δ22δ33

D2(1 + D2)
(

1− e−δ22(T−s)
)(

1− e−δ33(T−s)
)

,

B3(s, T)2 =
1

δ2
33

(
1− e−δ33(T−s)

)2
,

B1(s, T)B2(s, T) =
E1(1 + D2)

δ11δ22

(
1− e−δ11(T−s)

)(
1− e−δ22(T−s)

)
− E1D2

δ11δ33

(
1− e−δ11(T−s)

)(
1− e−δ33(T−s)

)
+

1
δ22δ33

(E2D2 + E3(1 + D2))
(

1− e−δ22(T−s)
)(

1− e−δ33(T−s)
)

− E2(1 + D2)

δ2
22

(
1− e−δ22(T−s)

)2
− E3D2

δ2
33

(
1− e−δ33(T−s)

)2
,

B1(s, T)B3(s, T) =
E1

δ11δ33

(
1− e−δ11(T−s)

)(
1− e−δ33(T−s)

)
+

E3

δ2
33

(
1− e−δ33(T−s)

)2

− E2

δ22δ33

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
,

B2(s, T)B3(s, T) =
1 + D2

δ22δ33

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
− D2

δ2
33

(
1− e−δ33(T−s)

)2
.

Collecting terms with
(

1− e−δjj(T−s)
)2

and
(

1− e−δii(T−s)
)(

1− e−δjj(T−s)
)

(i, j = 1, 2, 3 and i 6= j) and integrating,

A(t, T) =
1
2

[
F1

δ3
11

(
1
2

(
1− e−2δ11(T−t)

)
− 2
(

1− e−δ11(T−t)
)
+ δ11(T − t)

)
+

F2

δ3
22

(
1
2

(
1− e−2δ22(T−t)

)
− 2
(

1− e−δ22(T−t)
)
+ δ22(T − t)

)
+

F3

δ3
33

(
1
2

(
1− e−2δ33(T−t)

)
− 2
(

1− e−δ33(T−t)
)
+ δ33(T − t)

)

+
F4

δ11δ22

(
(T − t)− 1− e−δ11(T−t)

δ11
− 1− e−δ22(T−t)

δ22
− 1− e−(δ11+δ22)(T−t)

δ11 + δ22

)

+
F5

δ11δ33

(
(T − t)− 1− e−δ11(T−t)

δ11
− 1− e−δ33(T−t)

δ33
− 1− e−(δ11+δ33)(T−t)

δ11 + δ33

)

+
F6

δ22δ33

(
(T − t)− 1− e−δ22(T−t)

δ22
− 1− e−δ33(T−t)

δ33
− 1− e−(δ22+δ33)(T−t)

δ22 + δ33

)]
,

(A10)
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where

F1 = σ2
11E2

1 ,

F2 = σ2
11E2

2 − 2σ11σ21E2(1 + D2) +
(

σ2
21 + σ2

22

)
(1 + D2)

2,

F3 = σ2
11E2

3 − 2σ11σ21E3D2 +
(

σ2
21 + σ2

22

)
D2

2 − 2(σ21σ31 + σ22σ32)D2 + 2σ11σ31E3

+
(

σ2
31 + σ2

32 + σ2
33

)
,

F4 = −2σ2
11E1E2 + 2σ11σ21E1(1 + D2),

F5 = 2σ2
11E1E3 − 2σ11σ21E1D2 + 2σ11σ31E1,

F6 = −2σ2
11E2E3 + 2σ11σ21[E3(1 + D2) + E2D2]− 2σ11σ31E2 + 2(σ21σ31 + σ22σ32)(1 + D2)

− 2
(

σ2
21 + σ2

22

)
D2(1 + D2).

Appendix B. Real World Dynamics and Change of Measure

Appendix B.1. Models with Gaussian Processes

The market price of risk has the following form:

Λt = λ0 + λ1Xt, (A11)

where Λt ∈ Rn×1, λ0 ∈ Rn×1 and λ1 ∈ Rn×n.
With the above specification, the SDEs of the state variables Xt under the real-world

measure P are derived as follows:

dXt = KQ
[
θQ − Xt

]
dt + Σ

[
dWP

t + Λtdt
]

= KQ
[
θQ − Xt

]
dt + Σ

[
λ0dt + λ1Xtdt + dWP

t dt
]

=
[
KQθQ + Σλ0

]
dt−

[
KQ − Σλ1

]
Xtdt + ΣdWP

t

=
(

KQ − Σλ1
)[KQθQ + Σλ0

KQ − Σλ1 − Xt

]
dt + ΣdWP

t

= KP
[
θP − Xt

]
dt + ΣdWP

t ,

(A12)

where

KP = KQ − Σλ1, θP =
KQθQ + Σλ0

KQ . (A13)

Appendix B.2. The CIR Model

Following the essentially affine model structure in Duffee (2002), the market price of
longevity risk for the multi-factor CIR model is specified as:

Λt = D(Xt, t)λ0 =


√

X1
t 0 0

0
√

X2
t 0

0 0
√

X3
t


 λ0

1
λ0

2
λ0

3

, (A14)
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where Λt ∈ R3×1 represents risk premium and λ0 ∈ R3×1, and let

D2(Xt, t)λ0 =


√

X1
t 0 0

0
√

X2
t 0

0 0
√

X3
t



√

X1
t 0 0

0
√

X2
t 0

0 0
√

X3
t


 λ0

1
λ0

2
λ0

3



=

 X1
t 0 0

0 X2
t 0

0 0 X3
t

 λ0
1

λ0
2

λ0
3

 =

 λ0
1X1

t
λ0

2X2
t

λ0
3X3

t


=

 λ0
1 0 0

0 λ0
2 0

0 0 λ0
3

 X1
t

X2
t

X3
t

 = Λ0Xt.

(A15)

The SDEs of the state variables Xt under the real-world measure P are derived as following

dXt = KQ
[
θQ − Xt

]
dt + ΣD(Xt, t)

[
dWP

t + Λtdt
]

= KQ
[
θQ − Xt

]
dt + ΣD(Xt, t)

[
D(Xt, t)λ0dt + dWP

t dt
]

=
[
KQθQ − KQXt + ΣD2(Xt, t)λ0

]
dt + ΣD(Xt, t)dWP

t

=
[
KQθQ −

(
KQ − ΣΛ0

)
Xt

]
dt + ΣD(Xt, t)dWP

t

=
(

KQ − ΣΛ0

)[ KQθQ

KQ − ΣΛ0
− Xt

]
dt + ΣD(Xt, t)dWP

t

= KP
[
θP − Xt

]
dt + ΣD(Xt, t)dWP

t ,

(A16)

where

KP = KQ − ΣΛ0, θP =
KQθQ

KQ − ΣΛ0
. (A17)

References
Alai, Daniel, Katja Ignatieva, and Michael Sherris. 2019. The investigation of a forward-rate mortality framework. Risks 7: 61.

[CrossRef]
Barrieu, Pauline, Harry Bensusan, Nicole El Karoui, Caroline Hillairet, Stéphane Loisel, Claudia Ravanelli, and Yahia Salhi. 2012.

Understanding, modelling and managing longevity risk: Key issues and main challenges. Scandinavian Actuarial Journal 2012:
203–31. [CrossRef]

Bauer, Daniel, Matthias Börger, Jochen Ruß, and Hans-Joachim Zwiesler. 2008. The volatility of mortality. Asia-Pacific Journal of Risk
and Insurance 3. [CrossRef]

Biffis, Enrico. 2005. Affine processes for dynamic mortality and actuarial valuations. Insurance: Mathematics and Economics 37: 443–68.
[CrossRef]

Björk, Tomas, and Bent Jesper Christensen. 1999. Interest rate dynamics and consistent forward rate curves. Mathematical Finance 9:
323–48. [CrossRef]

Blackburn, Craig, and Michael Sherris. 2013. Consistent dynamic affine mortality models for longevity risk applications. Insurance:
Mathematics and Economics 53: 64–73. [CrossRef]

Blake, David, Tom Boardman, and Andrew Cairns. 2014. Sharing longevity risk: Why governments should issue longevity bonds.
North American Actuarial Journal 18: 258–77. [CrossRef]

Blake, David, and William Burrows. 2001. Survivor bonds: Helping to hedge mortality risk. Journal of Risk and Insurance 68: 339–48.
[CrossRef]

Blake, David, Nicole El Karoui, Stéphane Loisel, and Richard MacMinn. 2018. Longevity risk and capital markets: The 2015–16 update.
Insurance: Mathematics and Economics 78: 157–73. [CrossRef]

Cairns, Andrew J. G., David Blake, and Kevin Dowd. 2006a. Pricing death: Frameworks for the valuation and securitization of
mortality risk. ASTIN Bulletin 36: 79–120. [CrossRef]

Cairns, Andrew J. G., David Blake, and Kevin Dowd. 2006b. A two-factor model for stochastic mortality with parameter uncertainty:
Theory and calibration. Journal of Risk and Insurance 73: 687–718. [CrossRef]

http://doi.org/10.3390/risks7020061
http://dx.doi.org/10.1080/03461238.2010.511034
http://dx.doi.org/10.2202/2153-3792.1035
http://dx.doi.org/10.1016/j.insmatheco.2005.05.003
http://dx.doi.org/10.1111/1467-9965.00072
http://dx.doi.org/10.1016/j.insmatheco.2013.04.007
http://dx.doi.org/10.1080/10920277.2014.883229
http://dx.doi.org/10.2307/2678106
http://dx.doi.org/10.1016/j.insmatheco.2017.10.002
http://dx.doi.org/10.1017/S0515036100014410
http://dx.doi.org/10.1111/j.1539-6975.2006.00195.x


Risks 2022, 10, 183 27 of 28

Cairns, Andrew J. G., David Blake, Kevin Dowd, Guy D. Coughlan, David Epstein, Alen Ong, and Igor Balevich. 2009. A quantitative
comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial
Journal 13: 1–35. [CrossRef]

Chang, Yang, and Michael Sherris. 2018. Longevity Risk Management and the Development of a Value-Based Longevity Index. Risks 6:
10. [CrossRef]

Chen, Ren-Raw, and Louis Scott. 2003. Multi-factor Cox-Ingersoll-Ross models of the term structure: Estimates and tests from a
Kalman filter model. The Journal of Real Estate Finance and Economics 27: 143–72. [CrossRef]

Christensen, Jens H. E., Francis X. Diebold, and Glenn D. Rudebusch. 2011. The affine arbitrage-free class of Nelson–Siegel term
structure models. Journal of Econometrics 164: 4–20. [CrossRef]

Continuous Mortality Investigation. 2018. The CMI Mortality Projections Model, CMI2017. Working paper. London: The Institute and
Faculty of Actuaries.

Coughlan, Guy, David Epstein, Amit Sinha, and Paul Honig. 2007. q-Forwards: Derivatives for Transferring Longevity and Mortality Risks.
London: JPMorgan Pension Advisory Group

Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross. 1985. A theory of the term structure of interest rates. Econometrica 53: 385–407.
[CrossRef]

Dahl, Mikkel. 2004. Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts. Insurance:
Mathematics and Economics 35: 113–36. [CrossRef]

Dahl, Mikkel, and Thomas Møller. 2006. Valuation and hedging of life insurance liabilities with systematic mortality risk. Insurance:
Mathematics and Economics 39: 193–217. [CrossRef]

Dai, Qiang, and Kenneth J. Singleton. 2000. Specification analysis of affine term structure models. The Journal of Finance 55: 1943–978.
[CrossRef]

De Rossi, Giuliano. 2004. Kalman filtering of consistent forward rate curves: A tool to estimate and model dynamically the term
structure. Journal of Empirical Finance 11: 277–308. [CrossRef]

Diebold, Francis X., and Canlin Li. 2006. Forecasting the term structure of government bond yields. Journal of Econometrics 130: 337–64.
[CrossRef]

Diebold, Francis X., and Glenn D. Rudebusch. 2013. Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach. Princeton:
Princeton University Press.

Dowd, Kevin, David Blake, Andrew J. G. Cairns, and Paul Dawson. 2006. Survivor swaps. Journal of Risk and Insurance 73: 1–17.
[CrossRef]

Duan, Jin-Chuan, and Jean-Guy Simonato. 1999. Estimating and testing exponential-affine term structure models by Kalman filter.
Review of Quantitative Finance and Accounting 13: 111–35. [CrossRef]

Duffee, Gregory R. 2002. Term premia and interest rate forecasts in affine models. The Journal of Finance 57: 405–43. [CrossRef]
Duffie, Darrell, and Rui Kan. 1996. A yield-factor model of interest rates. Mathematical Finance 6: 379–406. [CrossRef]
Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods. Oxford: Oxford University Press, vol. 38.
Gallop, Adrian. 2008. Mortality projections in the United Kingdom. In Society of Actuaries Living to 100 Symposium. Chicago: Society of

Actuaries.
Geyer, Alois L. J., and Stefan Pichler. 1999. A state-space approach to estimate and test multifactor Cox-Ingersoll-Ross models of the

term structure. Journal of Financial Research 22: 107–30. [CrossRef]
Human Mortality Database. 2018. U.S.A. Life Tables. University of California, Berkeley (USA), and Max Planck Institute for

Demographic Research (Germany). Available online: http://www.mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=1
(accessed on 18 October 2018).

Jevtic, Petar, Elisa Luciano, and Elena Vigna. 2013. Mortality surface by means of continuous time cohort models. Insurance:
Mathematics and Economics 53: 122–33. [CrossRef]
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