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Abstract: The time series movements of Bitcoin prices are commonly characterized as highly 

nonlinear and volatile in nature across economic periods, when compared to the characteristics of 

traditional asset classes, such as equities and commodities. From a risk management perspective, 

such behaviors pose challenges, given the difficulty in quantifying and modeling Bitcoin’s price 

volatility. In this study, we propose hybrid analytical techniques that combine the strengths of the 

non-stationary properties of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

models with the nonlinear modeling capabilities of deep learning algorithms, such as Long Short-

Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (BiLSTM) algorithms 

with single, double, and triple layer network architectures to forecast Bitcoin’s realized price 

volatility. Our findings, both in-sample and out-of-sample, show that such hybrid models can 

generate accurate forecasts of Bitcoin’s price volatility.  
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1. Introduction

The rapid development of technology has spurred changes in the structure of 

financial markets and payment systems. In recent years, global financial markets have 

become increasingly digital, supporting cashless payment systems across our society. 

Present-day technology allows people to invest and generate their own money through 

virtual currency, known as cryptocurrency (Pabuçcu et al. 2020).  

Bitcoin is the most popular and commonly utilized among the cryptocurrencies 

available on the crypto market. Bitcoin’s market capitalization has exceeded USD 600 billion 

as of January 2021 (Aysan et al. 2021). Since Bitcoin’s inception in 2009, its price has 

experienced volatility, unlike anything we have witnessed from traditional asset classes, 

such as equities and commodities (Pabuçcu et al. 2020).  

These irregular Bitcoin price spikes are a common feature of the extreme volatility that 

is regularly witnessed in cryptocurrency markets (Gbadebo et al. 2021). This heightened 

volatility in cryptocurrency markets also indicates that traders might quickly make or lose 

a significant amount of money as investor sentiment and risk aversions change (Koutmos 

2022). This is one of the reasons why much of the research has focused on Bitcoin’s price 

volatility and the degree to which price movements can be exploited (Wellenreuther and 

Voelzke 2019; Al-Yahyaee et al. 2019). In addition, there is a growing interest in how 

cryptocurrencies’ unique microstructures, such as their coin mining methods, can play a 

role in their price behaviors (Bowden et al. 2021; King et al. 2021). 

The Generalized Autoregressive Conditional Heteroscedastic (GARCH) model has 

been widely used in financial economic research to model asset price volatility. Many 

extensions of the plain vanilla GARCH model have been proposed by researchers to better 

capture the stylized facts of the returns of a variety of assets and markets (Lim and Sek 2013; 
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Koutmos 2015; Kyriazis 2021). Bouoiyour and Selmi (2016) examined the volatility 

dynamics of Bitcoin using several types of asymmetric GARCH models and concluded that 

the Component with Multiple Threshold (CMT-GARCH) model properly reflects the 

dynamic aspects of Bitcoin price volatility. Katsiampa (2017) argues that the Autoregressive-

Component GARCH (AR-CGARCH) best fits the GARCH family models for modeling 

Bitcoin volatility. Similarly, Chu et al. (2017) concluded that the IGARCH (1,1) model 

provides a good fit for the volatilities of cryptocurrencies. Conrad et al. (2018) found that 

the GARCH-MIDAS (Mixed Data Sampling) model improves Bitcoin’s long-term volatility 

modeling. Baur and Dimpfl (2018) investigated the asymmetric volatility characteristic in 

different cryptocurrencies by applying the threshold GARCH (TGARCH) model. Charles 

and Darné (2019) studied GARCH-type models to assess the volatility of Bitcoin by 

considering different stylized facts. Similarly, Gyamerah (2019) discovered that asymmetric 

GARCH models with long-memory and heavy-tailed error distributions accomplish better 

volatility forecasts for Bitcoin as well as other cryptocurrencies. Zahid et al. (2022) applied 

Realized HA-GARCH-type models with jumps and inverse leverage effect to model and 

forecast the realized volatility of Bitcoin. 

The successful development of machine learning (ML) techniques in time series has 

encouraged analysts to apply these techniques for modeling the dynamics of financial 

markets. This has also motivated researchers to apply ML models for predicting 

cryptocurrencies (Shen et al. 2021). Unlike traditional models, ML approaches do not require 

strict assumptions. While conventional time series and econometrics models look at the 

whole data, ML models split the data into training and testing datasets. These models aim 

to increase the accuracy by decreasing predefined loss functions (Butner et al. 2019; 

Makridakis et al. 2018). The ML models have generally performed better than traditional 

models when specially developed to deal with the particular problems of big datasets 

(Pabuçcu et al. 2020). 

Recently, many researchers have introduced hybrid methods by combining ML 

methods, such as Artificial Neural Networks (ANN) and Support Vector Regression (SVR), 

with GARCH-type models to improve the volatility forecasts of cryptocurrencies. For 

instance, Kristjanpoller and Minutolo (2018) demonstrated that an ANN-GARCH model 

improves the volatility of Bitcoin prices. On the other hand, Peng et al. (2018) found that the 

SVR-GARCH model performs better and outperforms asymmetric GARCH models. Seo 

and Kim (2020) emphasized that the GARCH hybrid with Higher Order Neural Network 

(HONN) provided more accurate forecasts than the GARCH-ANN model. 

In recent years, experts from various financial sectors have shifted their focus away 

from machine learning and onto its more sophisticated form, deep learning (DL). While ML 

algorithms, such as feed-forward neural networks, excel in forecasting nonlinear series, they 

are limited in understanding temporal dependencies within the data. Recurrent Neural 

Networks (RNNs) are a different class of neural networks suited for modeling time series 

problems because they can learn the temporal correlations between sequential and time 

series data. DL approaches are regarded as extremely effective in recognizing the financial 

market’s chaotic characteristics (Kamnitsas et al. 2017; Lahmiri and Bekiros 2019). 

Explanatory factors are input information to improve the neural network models’ volatility 

estimates. 

Hinton and Salakhutdinov (2006) proposed the DL method and developed its various 

extensions to deal with classification and regression problems. These methods reflect the 

human brain processes information and strengthen the ANN by using a series of hidden 

layers, improving models’ forecasting ability. The DL algorithm is also modified into 

different architectures, providing a novel perspective on financial time series (Feuerriegel 

and Fehrer 2016). 

The DL models are commonly employed to forecast financial assets such as bonds and 

stocks. These methods are useful in predicting prices, volatility, and directional movements 

or trends (Singh and Srivastava 2017; Sim et al. 2019; Zhang et al. 2019; Makinen et al. 2019). 

However, according to a survey, just 13.8 percent of academics who researched 

https://www.aimspress.com/article/doi/10.3934/QFE.2020031?viewType=HTML#b11
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cryptocurrencies between 2013 and 2019 used DL techniques (Fang et al. 2022). Most 

researchers forecasted cryptocurrency prices rather than volatility using various DL 

approaches. Shen et al. (2021) compared the RNN and GARCH models for forecasting 

Bitcoin’s volatility. 

GARCH-type models generally outperform neural networks for forecasting the 

volatility of financial assets. This is because neural networks perform best in nonlinear 

environments and require large data to approximate the estimated function (Laily et al. 

2018). The DL models, however, can capture short-term and long-term features by learning 

complex and nonlinear relationships in financial time series data (Vidal and Kristjanpoller 

2020). The DL models capture market dynamics more efficiently than traditional and ML 

models and, in some cases, can even be used to create automated trading systems 

(Jeenanunta et al. 2018).  

Due to the rapid advancement of DL algorithms in time series forecasting, researchers 

have begun to utilize them alone or in combination with one or more classical approaches 

to enhance forecasts. However, a limited number of studies have integrated GARCH-type 

models with the DL algorithm in cryptocurrency price modeling. We believe that merging 

volatility models with an RNN can help improve volatility forecasts by appropriately 

modeling volatility processes using the sequence-based learning capabilities of RNNs. 

Additionally, combining the strengths of the two models may result in more precise 

volatility projections by combining the data derived by GARCH models and using it as 

input data to enable RNNs to adjust to volatility processes. Future studies on GARCH-DL 

hybrid models may use this study’s findings as a motivation. 

This research contributes to the existing literature on the hybrid DL model in the 

following ways. Firstly, it combines various GARCH models with DL algorithms such as 

Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM 

(BiLSTM) algorithms with single, double, and triple layer network architectures to forecast 

the realized volatility of Bitcoin. Secondly, it utilizes the parameters of GARCH models, 

daily log-returns, squared log-returns, and volatility indicators, such as the relative 

volatility index (RVI) and relative strength index (RSI), as inputs into the DL algorithms to 

improve the volatility forecasts of Bitcoin. These combinations of hybrid models and 

indicators have yet to be considered extensively for forecasting the realized volatility of 

Bitcoin’s price movements.  

In our study, a combination of hybrid models was used to forecast realized Bitcoin 

price volatility at multiple time horizons (7-, 14-, and 21-day-ahead) using a rolling window 

technique, and whereby the performance was assessed using loss functions such as the 

Heteroscedasticity-Adjusted Mean Absolute Error (HMAE), and Heteroscedasticity-

Adjusted Mean Squared Error (HMSE) loss functions, as well as the Model Confidence Set 

(MCS) procedure. These contributions have the potential to have a significant impact on the 

field of Bitcoin volatility forecasting. The hybrid models considered in this study may 

encourage practitioners and investors to get accurate and reliable volatility estimates, 

thereby improving risk management initiatives. 

The remainder of this study is structured as follows: Section 2 provides the 

specification of DL and hybrid models and Section 3 discusses the data, methods, and 

evaluation measures, respectively. Section 4 provides a discussion of the findings, while 

Section 5 concludes our study. 

2. Model Specifications 

2.1. Volatility Models 

The standard GARCH model and two asymmetric GARCH models were used to 

model the volatility of Bitcoin. The GARCH model of Bollerslev (1986) has been 

considered one of the most popular volatility models. In this model, conditional variance 

is defined as a function of the historical values of both the squared residuals and the 

conditional variance. Leptokurtosis and volatility clustering are both captured by the 
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GARCH model, but time-dependent asymmetry, which is regarded as a key stylized 

aspect of volatility, is frequently left out (Kim and Won 2018). Hence, the GARCH model 

considers the shock’s magnitude but not the positive or negative direction (Muhammed 

and Faruk 2018). Various extensions of the standard GARCH model have been proposed 

to accommodate this asymmetric volatility characteristic.  

Nelson’s (1991) Exponential GARCH (EGARCH) model accurately depicts the 

asymmetric effect of both positive and negative shocks on volatility. The parameters can 

be unconstrained in this model’s logarithmic form while still maintaining a positive 

conditional variance. Additionally, the conditional variance is a function of prior 

standardized innovations rather than using past innovations (Naimy et al. 2021). The GJR 

model of Glosten et al. (1993), which is comparable to the EGARCH model in that it 

additionally takes into account the asymmetric impact of positive and negative shocks, is 

another widely used asymmetric GARCH model. 

2.2. Recurrent Neural Networks  

The RNN is generally suited for processing sequential problems (Siegelmann and 

Sontag 1991). It is a specific type of ANN that consists of multiple layers, known as 

recurrent layers. These layers operate sequentially and map the sequences to other 

sequences, resulting in a network with a higher overall performance than ANN. The RNN 

retains information in its internal state, referred to as a memory cell. The output of RNN 

networks at a specific time interval depends on the input at that time interval and the 

network’s state in the preceding time interval. The network, however, either stops 

learning or keeps learning at a very high learning rate; as a result, it is unable to grasp the 

concept of the smallest error. This vanishing gradient problem makes it more difficult to 

train the network. (Mehtab et al. 2020). 

On the other hand, RNN is incapable of storing long-term memory (Moghar and 

Hamiche 2020). Therefore, its performance is not considered adequate when the learning 

requires long-term sequential dependencies and is hence considered incapable of 

forecasting samples with long-time data (Hochreiter and Schmidhuber 1997). The RNN 

architecture is presented in Figure 1. 

 

Figure 1. Long Short-Term Memory cell. 

2.3. Long Short-Term Memory  

The LSTM is a particular type of RNN that deals with sequential data (Hochreiter 

and Schmidhuber 1997). It consists of a memory cell and different gates; the former store 

the information while later updates it (Kraus and Feuerriegel 2017). The LSTM often 

provides better predictions than the RNN for long sequential data. The structure or 

architectures of LSTM networks make it possible to forget past irrelevant information, 

thus resolving the vanishing gradient problem. Hence, such networks are very suitable 

for modeling complex time series. Each memory cell has three sigmoid layers and one 
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tanh layer (Mehtab et al. 2020). Figure 2 displays the structure of the LSTM cell, including 

three special gates: forget gate, input gate, and output gate. The output of the LSTM unit 

is represented by ℎ𝑡, while 𝑐𝑡 represents the value of the memory cell. 

The forget gate determines which cell state information is deleted from the LSTM 

unit. It is employed to weed out extraneous memories from the past and retain only 

knowledge pertinent to the present situation. The memory cell accepts the output ℎ𝑡−1 of 

the previous moment and the external information represented by 𝑋𝑡  of the current 

moment as inputs and combines them in a long vector [ℎ𝑡−1, 𝑋𝑡] by σ transformation to 

become a forget gate:  

𝑓𝑡 = 𝜎 (𝑊𝑐[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐) (1) 

In Equation (1), 𝑊𝑐, 𝑏𝑐  represent the weight matrix and bias of the forget gate, 

respectively, and σ is the sigmoid function. The forget gate’s main function is to record 

how much the cell state 𝐶𝑡−1of the previous time is reserved for the cell state 𝐶𝑡 of the 

current time.  

The input gates control the new information that acts as the input to the current state 

of the network. It reserved the current input  𝑋𝑡 and passes it into the cell state 𝐶𝑡 which 

prevents insignificant content from entering the memory cells. It has two functions; one is 

to find the state of the cell which must be updated and the updated value is selected by 

the sigmoid layer, as in Equation (2), and the other function is to update the information 

in the cell state. The input gate determines how updated the cell state is:  

𝑖𝑡 = 𝜎 (𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖 ) (2) 

Meanwhile, a new candidate vector 𝐶̂𝑡 is created through the tanh layer to control 

how much new information is added, as presented in Equation (3):  

𝐶̂𝑡 = tanh (𝑊𝑐[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐) (3) 

Finally, Equation (4) is used to update the cell state of the memory cells:  

𝐶𝑡 = (𝑓𝑡 ∗ 𝐶𝑡−1)+ (𝑖𝑡 ∗ 𝐶̂𝑡) (4) 

The old cell state, the forget gate, the input gate, and the intermediate cell state are 

added. The new state is then calculated using the operation’s result. Thus, LSTM is ideal 

for sequence prediction thanks to this enhanced cell with four interacting layers instead 

of just one sigma cell or tanh in RNN (Struga and Qirici 2018).  

The output gate determines the LSTM cell’s next hidden state. A sigmoid layer 

determines the output information first, and the cell state is processed by tanh and 

multiplied by the sigmoid layer’s output to generate the final output component. Finally, 

the output gates serve to output the network’s output at the specified time (Qiu et al. 

2020): 

Output gate: 𝑜𝑡 = 𝜎 (𝑊𝑜ℎ𝑡−1, 𝑋𝑡  + 𝑏𝑜 ) (5) 

The final output value of the cell is defined as follows:  

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

The output can be considered as the forecasted value computed by the model for the 

current state (Struga and Qirici 2018). 
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Figure 2. The architecture of the Gated Recurrent Unit. 

2.4. Gated Recurrent Unit 

This is a more recent alteration of LSTM introduced by Cho et al. (2014) to analyze 

sequential data. It combines the forget gate and input gate into a single update gate, 𝑧𝑡, 

and merges the cell state 𝐶𝑡 and hidden state ℎ𝑡. The GRU structure is simple compared 

to the LSTM. The hidden state ℎ𝑡 generated at each time step 𝑡 is defined as follows:  

𝑧𝑡 = 𝜎 (𝑤𝑧[ℎ𝑡−1, 𝑥𝑡] ) (7) 

𝑟𝑡 =  𝜎 (𝑤𝑧[ℎ𝑡−1, 𝑥𝑡] ) (8) 

ℎ̂𝑡 = tanh (𝑤. [ 𝑟𝑡∆ℎ𝑡−1 , 𝑥𝑡 ]) (9) 

ℎ𝑡 = (1 − 𝑧𝑡) ∆ ℎ𝑡−1 + 𝑧𝑡 ∆ ℎ̂𝑡 (10) 

GRU might be able to learn the data at the combined gate by streamlining the LSTM’s 

architectural design. This single update gate, though, might not be able to fully uncover 

some hidden information. Consequently, the effectiveness of GRU networks may be 

diminished when attempting to forecast long-term time series (Vo et al. 2019). 

The GRU has fewer tensor operations; therefore, they are faster to train than LSTM. 

Researchers usually try both to determine which one works better for analyzing different 

financial markets and their unique data sets.  

2.5. Bidirectional LSTM 

Graves and Schmidhuber (2005) introduced the BiLSTM model, a bidirectional RNN 

variant that combines a forward and backward unidirectional LSTM as expressed in 

Equation (11). 

Concatenate (ℎ𝑡) = [ℎ⃡𝑡  ℎ⃖ 𝑡] (11) 

In contrast to BiLSTM, which uses the combined two hidden layers, unidirectional 

LSTM can only store long-term information from prior observations. As shown in Figure 

3, it divides the RNN’s neurons in two directions. While the other makes use of forward 

states or positive time directions, the first is for backward states or negative time 

directions. As a result, this technique uses two-time directions and input data from the 

past and future of the current time frame (Schuster and Paliwal 1997). 



Risks 2022, 10, 237 7 of 18 
 

 

Figure 3. The architecture of BiLSTM Cell. 

3. Data and Methodology 

3.1. Data Description    

The data used in this study consists of daily Bitcoin closing prices from 1 January 

2015, to 31 March 2021, a total of 2283 observations. The data were extracted from 

www.Bitcoincharts.com (accessed on 5 April 2022). The log-returns are calculated as: 

 𝑟𝑡 = log(𝑝𝑡) − log(𝑝𝑡−1), (12) 

where 𝑝𝑡 is the closing price of Bitcoin at time 𝑡, and 𝑝𝑡−1 represents the closing price of 

Bitcoin at a previous time. The realized variance was calculated by aggregating the 

squares of Bitcoin log-returns:  

Realized variance = ∑ 𝑟𝑡
2𝑛

𝑖=1  (13) 

where  𝑟𝑡
2  represents the square of log-returns, and n represents the number of 

observations within a day. The square root of the realized variance is known as realized 

volatility:  

𝑅𝑉𝑡 = √∑ 𝑟𝑡
2𝑛

𝑖=1  (14) 

The initial 𝑁 observations were considered for the in-sample period to estimate the 

parameters, while the remaining observations, from 15 June 2020, through 31 March 2021, 

which resulted in approximately 287 observations, were left for the forecast evaluation. 

3.2. Evaluation Measures 

Two nonlinear loss functions, HMSE and HMAE used in this study (Kristjanpoller 

and Minutolo 2016; Kim and Won 2018; Fuertes et al. 2009) to assess the forecasting 

performance of models. The mathematical formulas of loss functions are given as follows:  

HMSE= 
1

𝑛
 ∑ (1 − 𝜎𝑡/𝑅𝑉𝑡)

2𝑛
𝑡=1  (15) 

HMAE= 
1

n
∑ |1 − 𝜎𝑡/𝑅𝑉𝑡|

𝑛
𝑡=1  (16) 

In these equations, 𝑅𝑉𝑡  and 𝜎𝑡  represent the observed and forecasted realized 

volatility, respectively, while 𝑛  represents the out-of-sample size. The relative 

importance of the models was evaluated and MCS selected the best model. The MCS 

process consists of a series of tests that, by accepting the equal predictive ability (EPA) 

null hypothesis at a specified confidence level, enable the building of a set of superior 

models. This procedure evaluates the EPA statistic for loss functions, HMSE, and HMAE 

(Shang and Haberman 2018).  

3.3. Experiments 

Three GARCH-type models (GARCH, EGARCH, and GJR) and three DL models 

(LSTM, BiLSTM, and GRU) were used to model the realized volatility of Bitcoin. First, 

volatility estimates from GARCH-type models were obtained. These volatility estimates 

http://www.bitcoinchart.com/
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were fed into DL models as input variables. The single, double, and triple GARCH-type 

models were then combined with LSTM, BiLSTM, and GRU models with different layers 

to improve the volatility forecasts of Bitcoin. More specifically, a single GARCH model 

with single, double, and triple layer DL models (GARCH-LSTM1, GARCH-BiLSTM1, 

GARCH-GRU1, GJR-LSTM1,…, GARCH-LSTM2, …, EGARCH-LSTM3, etc.), double 

GARCH models with single, double and triple layer DL models (GARCH-GJR-LSTM1, 

GARCH-GJR-BiLSTM1, GARCH-GJR-GRU1, GJR-EGARCH-LSTM1, …, GARCH-GJR-

LSTM2, …, GJR-EGARCH-LSTM3, etc.) and triple GARCH models with single, double and 

triple layer DL models (GARCH-GJR-EGARCH-LSTM1, GARCH-GJR-EGARCH-

BiLSTM1, GARCH-GJR-EGARCH-GRU1,…, GARCH-GJR-EGARCH-LSTM2, …, GARCH-

GJR-EGARCH-LSTM3, etc.). In this way, a total of 75 models were fitted to the in-sample 

data, and forecasts of 7-, 14-, and 21-day-ahead realized volatility of Bitcoin were obtained. 

In the GARCH-LSTM1 model, the estimated volatility of the GARCH model was used as 

an input to the single-layer LSTM models along with other inputs, such as daily log-

returns, squared log-returns volatility indicators RSI and RVI, in order to get better 

forecasts of the Bitcoin volatility. This strategy can more effectively capture volatility 

clustering, leptokurtosis, and the leverage effect of the returns. 

For training the DL models, the network architecture was specified to have at most 

three LSTM/BiLSTM/GRU layers with 128, 64, and 32 neurons and a dense layer. The 

Adam optimizer was used for training the network and a dropout of 0.3 was added 

between the first and second layers. All the networks were trained for 150 epochs. The 

architecture was kept the same for all DL and hybrid models to allow for a more even 

assessment of the forecasts under the same network architecture. For initial training of the 

DL models, the rolling window was set at (𝑡 −  12)  to forecast (𝑡 +  𝑛) -day-ahead 

realized volatility, with 𝑛 = 7, 14, and 21. All the models were fitted using Python. 

4. Results and Discussion 

Table 1 summarizes the summary statistics of Bitcoin closing prices, Bitcoin log-

returns, Bitcoin squared log returns, and volatility indicators RSI and RVI. The Bitcoin 

closing prices showed a large mean value, high standard deviation, positive skewness, 

and high kurtosis, which are commonly observed in financial time series. Other 

researchers have also observed these anomalies in cryptocurrency prices (see Phillip et al. 

2020; Zahid et al. 2022, among others). To fit an ARCH method, stationary and normal 

data are required. The Jarque–Bera (JB) and Augmented Dickey-Fuller (ADF) tests were 

used to analyze the two conditions. A highly significant value (20,227) of the JB test, at a 

5% significance level, confirmed the non-normality in the Bitcoin prices. The ADF statistic 

of −4.89 at a 5% significance level showed that the series was not stationary for ARCH 

modeling.  

Furthermore, the ARCH-LM test with a highly significant value (243.5) at a 5% 

significance level indicated strong autoregressive conditional heteroscedastic effects in the 

residual variances. The ADF test on log-returns rejected the null hypothesis of a unit-root 

process. The JB test rejected the hypothesis that the log returns distribution was normal. 

Similarly, the ARCH-LM test at 12 lags was also rejected, indicating heteroscedasticity in 

Bitcoin log-returns. The Ljung-Box test up to the lag 20 was also rejected. It revealed that 

Bitcoin log-returns were appropriate for fitting the GARCH model. 

Figure 4 shows the charts of daily prices, log-returns, squared log-returns, and 

realized volatility of Bitcoin from 1 January 2015, to 31 March 2021. It can be observed 

from the figure that the price of Bitcoin started increasing in the mid of 2017 with slight 

variations till 2020 until it reached its top value at the start of 2020. The daily log-returns 

of Bitcoin show volatility clustering.  
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(a) (b) 

  

(c) (d) 

Figure 4. Bitcoin (a) daily closing prices, (b) log-returns, (c) squared log-returns, and (d) realized 

volatility from 1 January 2015 to 31 March 2021. 

Figure 5 compares Bitcoin’s log-returns with the estimated volatility of GARCH-type 

models.  

 

Figure 5. Actual Bitcoin returns and GARCH-type models’ estimated volatility from 1 January to 31 

March 2021. 

Table 1. Summary statistics of Bitcoin closing prices, volatility indicators, Bitcoin log-returns, and 

square log-returns.  

 Mean Std. Dev. Skewness Kurtosis JB ADF ARCH(12) 𝑸𝟐(𝟐𝟎) 

Bitcoin closing prices 6698.595 9279.506 3.290 13.017 20,227.478 −4.897 243.488 *** 38,493.172 *** 

RSI 55.674 16.669 0.072 −0.4301 19.576 −6.936 2107.303 *** 17,499.154 *** 

RVI 55.908 15.739 0.053 −0.073 1.590 −8.594 1763.135 *** 8421.058 *** 

Bitcoin log-returns 0.00 4 3.229 15.820 923.830 2968.189 −31.786 243.488 *** 159.362 *** 

Bitcoin squared log-

returns 
10.472 28.344 7.441 85.787 720,809.075 −6.713 86.503 *** 512.371 *** 

ARCH (·) and JB denote the ARCH-LM test statistic and Jarque-Bera normality test statistics, 

respectively, while 𝑄2(20) denotes the Ljung-Box (𝑄-statistics) for the squared error terms up to 

lag 20, *** denotes the significance of the test at the 1% level. 
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Figure 6 utilizes proxies of Bitcoin squared return, also called RV, and compares it 

with GARCH-type model volatility. RV values seem close to volatility estimated by the 

GARCH type model and visualized. 

 

Figure 6. Bitcoin’s realized volatility and GARCH-type models’ estimated volatility from 1 January 

2015 to 31 March 2021. 

In Figure 7, the probability plot of the Bitcoin log-returns confirms the results of Table 

1. Similarly, Q and ADF statistics indicated statistical significance, as in Table 1. The 

autocorrelation plot showed that the first five lags, such as 1, 10. 20, 28, and 45 seem 

significant, while the consecutive lags approached the significant line. This confirms the 

stationarity of the time series. On the other hand, partial autocorrelations at lags 1, 10, and 

28 were found statistically significant. The subsequent lags are near the significance line. 

As a result, the PACF suggested fitting a first-order autoregressive model. 

 

Figure 7. Bitcoin log-returns, Q-Q plot, autocorrelation, and partial autocorrelation plots. 

4.1. Estimation Results 

Three GARCH-type models (GARCH, GJR, and EGARCH) were fitted to the in-

sample data and the results of the parameters estimates, along with their standard errors, 

are presented in Table 2. All three GARCH models’ estimated parameters were highly 
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significant, with the GJR and EGARCH models confirming the leverage effect in log-

returns of Bitcoin. 

Table 2. Parameters estimates of the GARCH-type models. 

Model 𝝎  𝜶  𝜸  𝜷  

GARCH(1,1) 
0.1347 *** 

(0.008) 

0.1758 *** 

(0.0003) 
–  

0.8242 *** 

(0.0004) 

GJR(1,1) 
0.1150 *** 

(0.0008) 

0.1907 *** 

(0.0004) 

−0.0511 *** 

(0.0003) 

0.8340 *** 

(0.0005) 

EGARCH(1,1) 
0.1083 *** 

(0.0004) 

0.3744 *** 

(0.0008) 

0.0245 *** 

(0.0002) 

0.9824 *** 

(0.0001) 

Standard error in parenthesis. *** means significance at a 1% level. 

4.2. Out-of-Sample Forecast Results  

This section presents the results of out-of-sample forecasts of models considered in 

this study. For the sake of brevity, the results of models with better performance are 

presented. Table 3 shows the result of out-of-sample forecasts of GARCH models and 

single GARCH models combined with two layers of DL models. 

It was observed from this table that the EGARCH model has a lower HMAE and 

HMSE than GARCH and GJR models. The EGARCH model exhibited 1.57%, 2.24%, and 

2.37% improvement in HMAE, whereas it attained 2.86%, 3.08%, and 3.14% improvement 

in HMSE against the GARCH model at 7-, 14- and 21-day-ahead forecasts, respectively. 

Similarly, the EGARCH achieved 1.66%, 1.76%, and 1.87% improvement in HMAE, while 

it attained 2.61%, 2.55%, and 3.13% in HMSE from the GJR model at selected days ahead 

forecasts, respectively 

Next, we combined single GARCH models with two-layer DL models to investigate 

whether including single GARCH volatility as inputs to DL models improves the 

volatility forecasts based on the HMAE and HMSE loss functions at the selected time 

horizons. The results are tabulated in Table 3 and show that the EGARCH-LSTM2 model 

had the minimum errors in a class of single hybrid models. This model exhibited 4.45%, 

4.85%, and 5.58% relative improvement in HMAE, while 5.5%, 5.78%, and 6.06% in HMSE 

against the E-GARCH model at 7-, 14-, and 21-day-ahead ahead forecasts, respectively. 

Even the single hybrid models, which showed the worst performances in a class of 

the LSTM2, had improved performances over the E-GARCH model. The GARCH-LSTM2 

improved the performances by 1.93%, 2.35%, and 3.09% in HMAE and 2.45%, 3.23%, and 

3.10% in HMSE against the E-GARCH model. Similarly, the GJR-LSTM2 was shown to 

have an improvement of 1.94%, 2.36%, and 3.10% in HMAE and 3.22%, 3.36%, and 3.64% 

in HMSE at 7-, 14-, and 21-day-ahead forecasts, respectively. 

These results revealed that a single GARCH-type model hybrid with DL improved 

the volatility forecasts and that adding other features, such as RSI and RVI, further 

strengthened the predictability of Bitcoin price volatility. The performance of E-GARCH-

LSTM2 was found better in a class of single GARCH-type models hybrid with the DL 

algorithm. 

Table 3. Out-of-sample forecast results for GARCH-type and hybrid models. 

 
7-Day-Ahead 

Forecast 

14-Day-Ahead 

Forecast 

21-Day-Ahead 

Forecast 

Models HMAE HMSE HMAE HMSE HMAE HMSE 

GARCH 0.40406 0.40106 0.40857 0.39108  0.41220 0.40008 

GJR 0.40445 0.39999 0.40657 0.38999 0.41009 0.40001 

EGARCH 0.39770 0.38956 0. 39940 0.37999 0.40240 0.38750 

GARCH-LSTM2 0.39001 0.38001 0.38995 0.36700 0.38995 0.37550 
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GARCH-GRU2 0.39450 0.38303 0.39545 0.39303 0.41692 0.39663 

GARCH-BiLSTM2 0.39455 0.38362 0.39551 0.39463 0.42082 0.39620 

GJR-LSTM2 0.38794 0.37699 0.38798 0.36720 0.38991 0.37340 

GJR-GRU2 0.39650 0.38079 0.39740 0.39977 0.39920 0.37998 

GJR-BiLSTM2 0.39555 0.38270 0.39605 0.39621 0.41805 0. 38721 

EGARCH-LSTM2 0.37998 0.36799 0.37999 0.35800 0.37991 0.36400 

EGARCH-GRU2 0.39705 0.38354 0.39905 0.37655 0.40002 0.38632 

EGARCH-BiLSTM2 0.39736 0.38680 0.39740 0.38759       0.39748 0.38498 

HMAE: Heteroscedasticity-adjusted mean absolute errors; HMSE: Heteroscedasticity-adjusted 

mean squared error; bold values represent the least value for each column. 

Next, we combined double and triple GARCH models with two-layer DL models to 

investigate whether including double and triple GARCH volatility as inputs to DL models 

improves the volatility forecasts. Volatility indicators such as RSI and RVI were also 

added as input variables to further improve the volatility forecast of hybrid models. Table 

4 presents the out-of-sample forecasts for double and triple GARCH-type models 

combined with two layers of DL models along with the volatility indicators.  

Table 4. Out-of-sample forecasts results for GARCH-type double and triple models, hybrid with DL 

models. 

 
7 Days Ahead 

Forecast 

14 Days Ahead 

Forecast 

21 Days Ahead  

Forecast 

Models HMAE HMSE HMAE HMSE HMAE HMSE 

GARCH-GJR-LSTM2 0.35505 0.33935 0.35400 0.32940 0.35301 0.33440 

GARCH-GJR-GRU2 0.37876 0.33511 0.37881 0.33447 0.37901 0.33373 

GARCH-GJR-BiLSTM1 0.37801 0.34511 0.37825 0.34541 0.37900 0.34722 

GARCH-EGARCH-LSTM2 0.34601 0.33250 0.34440 0.32150 0.34240  0.32650 

GARCH-EGARCH-GRU2 0.37581 0.34303 0.37602 0.34325 0.37102 0.34563 

GARCH-EGARCH-BiLSTM1 0.37660 0.35505 0.37851 0.35461 0.37952 0.35561 

GJR-EGARCH-LSTM2 0.35105 0.33835 0.35100 0.32740 0.35001 0.33240 

GJR-EGARCH- GRU2 0.37400 0.33851 0.37756 0.33457 0.41373 0.33650 

GJR-EGARCH-BiLSTM1 0.37410 0.33789 0.33889 0.33889 0.38405 0.33884 

GARCH-GJR-EGARCH-LSTM2 0.33280 0.30281 0.33282 0.30110 0.32002 0.30020 

GARCH-GJR-EGARCH-GRU2 0.34325 0.30380 0.35914 0.30604 0.35942 0.30098 

GARCH-GJR-EGARCH-BiLSTM2 0.33809 0.30381 0.34250 0.30241 0.35010 0.30491 

HMAE: Heteroscedasticity-adjusted mean absolute errors; HMSE: Heteroscedasticity-adjusted 

mean squared error; bold values represent the least value for each column. 

The results indicate that double GARCH-type models hybrid with DL models were 

statistically better than single GARCH-type models hybrid with DL models. More 

specifically, the GARCH-EGARCH-LSTM2, combining the GARCH and EGARCH models 

with a two-layer LSTM model, had the minimum errors in a class of double GARCH-type 

models. This model achieved 8.94%, 9.36%, and 9.87% improvement in HMAE for a 7-, 

14-, and 21-day-ahead forecasts, respectively, when benchmarked against the best-

performing single GARCH hybrid model (which was the EGARCH-LSTM2 model). 

Similarly, this model attained 9.64%, 10.19%, and 10.30% improvement in HMSE against 

the best single GARCH hybrid model for 7-, 14-, and 21-day-ahead forecasts, respectively.  

Other double GARCH-type hybrid models, such as GARCH-GJR-LSTM2 and GJR-

EGARCH-LSTM2, also performed better than the single EGARCH-LSTM2. The GARCH-

GJR-LSTM2 was shown to have an improvement of 6.56%, 6.83%, and 7.08% in HMAE 

and 7.36%, 7.53%, and 8.41% in HMSE. Similarly, compared to the EGARCH-LSTM2 

model, the forecasting performance of GJR-EGARCH-LSTM2 increased by 7.61%, 7.63%, 

and 7.87% in HMAE and 8.05%, 8.55%, and 8.68% in terms of HMSE for 7-, 14-, and 21-

day-ahead forecasts, respectively.  
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The results of triple GARCH models combined with DL models are also presented in 

Table 4. These hybrid models were found to be better than the single and double GARCH-

type models hybrid with DL models. More specifically, GARCH-GJR-EGARCH-LSTM2 

(which combines the GARCH, GJR and EGARCH models with a two-layer LSTM) had the 

minimum errors in a class of triple GARCH-type models. This model attained 18.61%, 

19.88%, and 20.51% improvement in HMAE and 20.04%, 19.88%, and 20.51% 

improvement in HMSE for 7-, 14-, and 21-day-ahead forecasts when benchmarked against 

the best performing single GARCH-hybrid model (which was the EGARCH-LSTM2). On 

the other hand, the GARCH-GJR-EGARCH-LSTM2 achieved 10.62%, 11.59%, and 11.80% 

improvement in HMAE and 11.50%, 11.89%, and 11.80% improvement in HMSE for 7-, 

14-, and 21-day-ahead forecast, respectively, when benchmarked against the best 

performing double GARCH-type models (which was the GARCH-EGARCH-LSTM2). 

These results showed that combinations of double and triple GARCH-type models with 

DL models, along with other features such as RSI and RVI, further improved the forecasts 

of Bitcoin price volatility.  

4.3. Rolling Window Forecast Results 

In addition, this study adopted a rolling window approach for improving the 

performances of hybrid models. This approach used a fixed window length and generated 

a one-step-ahead forecast while dropping the oldest observation and including a new 

observation. The aforementioned models were estimated again and a one-step-ahead 

forecast was generated. In this way, 7-, 14-, and 21-day-ahead forecasts were made. The 

last 288 days were chosen as a test size for out-of-sample forecasting. The results of the 

rolling window forecasts are shown in Tables 5 and 6. 

Table 5 presents the out-of-sample forecast results for single GARCH-type models 

hybrid with DL models. It was observed from the table that the rolling window affected 

the model’s performances and reduced the HMAE and HMSE further, as compared to the 

results of Table 3. The EGARCH-LSTM2 was found to have lower HMSE and HMAE 

values. The EGARCH-LSTM2 was shown to have a relative improvement of 5.18%, 

10.56%, and 12.28% in HMAE and 8.71%, 11.41%, and 13.29% in HMSE for 7-, 14-, and 21-

day-ahead forecasts, respectively.  

Table 6 presents out-of-sample forecast results of double and triple GARCH-type 

models hybrid with DL models. The results indicated that the double GARCH-EGARCH-

LSTM2 improved by 9.83%, 11.70%, and 11.47% in HMAE and 16.00%, 16.41%, and 18.08% 

improvement as compared to its single benchmark (which is the EGARCH-LSTM2). 

The triple GARCH-type hybrid with DL models further improved the model’s 

forecasting performance by using a fixed rolling window scheme. More specifically, the 

triple GARCH-type models with two layers of LSTM (i.e., GARCH-GJR-EGARCH-

LSTM2) improved the performance by 14.45%, 14.64%, and 14.94% against the GARCH-

EGARCH-LSTM2 in terms of HMAE. Likewise, this model attained 16.27%, 17.51%, and 

19.53% enhancement over the GARCH-EGARCH-LSTM2 by employing a rolling window 

scheme for a one-day-ahead forecast at different time horizons. 

To focus more on predictive accuracy dynamics, the performance of GARCH-GJR-

EGARCH-LSTM2 was compared with EGARCH-LSTM2, which was shown to be the best-

performing model among a single class of models. This triple GARCH-LSTM model was 

shown to have an improvement of 22.86%, 24.63%, and 24.87% in HMAE. Similarly, this 

model attained 29.70%, 31.05%, and 33.92% in HMSE for 7-, 14-, and 21-day-ahead 

forecasts, respectively.   
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Table 5. Out-of-sample forecast results for single GARCH-type models hybrid with DL models, 

with fixed rolling-window size at different forecasts horizons. 

 

One Day Rolling 

Window at 7 Days 

Ahead Forecast 

One Day Rolling 

Window at 14 Days 

Ahead Forecast 

One Day Rolling 

Window at 21 Days 

Ahead Forecast 

Models HMAE HMSE HMAE HMSE HMAE HMSE 

GARCH-LSTM2 0.38890 0.38761 0.38892 0.38265 0.38895 0.37650 

GARCH-GRU2 0.39120 0.38000 0.39122 0.38102 0.39105 0.38202 

GARCH-BiLSTM1 0.39155 0.39263 0.39255 0.39264 0.39355 0.38421 

GJR-LSTM2 0.38120 0.36604 0.38122 0.36702 0.38225 0.36851 

GJR-GRU3 0.38704 0.37079 0.38854 0.37178 0.38902 0.37256 

GJR-BiLSTM2 0.38777 0.37217 0.38901 0.37122 0.38906 0.37522  

EGARCH-LSTM2  0.37707 0.35561 0.35720 0.33650 0.35299 0.33602 

EGARCH-GRU2 0.38706 0.36455 0.38746 0.36456 0.38801 0.38298 

EGARCH-BiLSTM2 0.38737. 0.38381 0.38740 0.38385 0.38902 0.38386 

HMAE: Heteroscedasticity-adjusted mean absolute errors; HMSE: Heteroscedasticity-adjusted 

mean squared error; bold values represent the least value for each column. 

Interestingly, it is also noteworthy that the models that accomplished the minimum 

errors by selected loss functions attained greater values of significance associated with 

their p-values than other models. To find a significantly better model, the analysis was 

further proceeded by applying the MCS procedure. Table 7 shows the results of the MCS. 

It compares the multiple forecasting models by generating a set of superior models and 

picking those models which are statistically significant. In this analysis, 24 models were 

assessed by the MCS. It was observable that 15 out of the 24 models were statistically 

significant. This represents 62% of the overall models that were statistically significant. 

The EGARCH-LSTM2 was found statistically significant among single GARCH 

family models hybrid with LSTM models at different forecast horizons. Similarly, the 

GARCH-EGARCH-LSTM2 model was shown to be statistically significant among double 

GARCH family hybrid with LSTM models. It was interesting to observe that triple 

GARCH hybrid with DL models attained the topmost count of statistically significant 

results compared to single and double GARCH hybrid with DL models. The MCS shows 

that the GARCH-GJR-EGARCH-LSTM2 is the best model for forecasting Bitcoin volatility 

at a selected time horizon by considering a p-value less than 0.01. 

Table 6. Out-of-sample forecast results for double and triple GARCH-type models hybrid with DL 

models, with fixed rolling window sizes at different forecasts horizons. 

 

One day 

Rolling Window at 7 Days 

Ahead Forecast 

One Day 

Rolling Window at 14 Days 

Ahead Forecast 

One Day 

Rolling Window at 21 Days 

Ahead Forecast 

Models HMAE HMSE HMAE HMSE HMAE HMSE 

GARCH-GJR-LSTM2 0.37430 0.29930 0.37200 0.28454 0.37250 0.28484 

GARCH-GJR-GRU2 0.37680 0.30210 0.37680 0.30247 0.37701 0. 30373 

GARCH-GJR-BiLSTM1 0.37600 0.29790 0.37620 0.30021 0.37700 0.30122 

GARCH-EGARCH-LSTM 0.34000 0.29857 0.31540 0.28125 0.31250  0.27527 

GARCH-EGARCH-GRU2 0.37380 0.29420 0.37400 0.30000 0.37102 0.30025 

GARCH-EGARCH-BiLSTM2 0.37460 0.29300 0.37750 0.29261 0.37752 0.29361 

GJR-EGARCH- LSTM2 0.37460 0.29450 0.37650 0.28454 0.37752 0.27650 

GJR-EGARCH- GRU2 0.37200 0.29650 0.377360 0.28257 0.41173 0.28180 

GJR-EGARCH-BiLSTM1 0.37210 0.29790 0.37220 0.30005 0.38205 0.30084 

GARCH-GJR-EGARCH-LSTM2 0.29085 0.25000 0.26921 0.23201 0.26580 0.22205 

GARCH-GJR-EGARCH-GRU2 0.33180 0.27000 0.29124 0.23301 0.24004 0.23101 

GARCH-GJR-EGARCH-BiLSTM2 0.30610 0.27080 0.30650 0.27141 0.30810 0.26991 

HMAE: Heteroscedasticity-adjusted mean absolute errors; HMSE: Heteroscedasticity-adjusted 

mean squared error; bold values represent the least value for each column. 
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With respect to existing studies, Hu et al. (2020) incorporated the GARCH forecasts 

with ANN, LSTM, and BiLSTM methods, along with a group of explanatory variables, to 

create hybrid models for assessing the volatility forecast of copper price futures. Unlike 

their study, this study incorporated the GARCH-type models’ forecasts with LSTM, 

BiLSTM, and GRU algorithms with different layers, along with explanatory variables, to 

generate hybrid models for the measurement of Bitcoin’s volatility forecast. This study 

also highlights that GARCH forecasts could serve as informative features to substantially 

boost the volatility prediction of asset prices. Our findings complement Kristjanpoller and 

Hernández (2017) as well as Verma (2021). Empirically, this study further elaborates the 

significance of multiple hybrid models by using another DL algorithm (i.e., GRU), which 

has been shown to be an advanced form of RNN in previous studies. 

Kim and Won (2018) combined the LSTM model with GARCH, E-GARCH, and 

Exponential Weighted Moving Average (EWMA) model to develop the GEW-LSTM 

hybrid model for assessing stock price volatility forecast. They compared hybrid model 

performance by analyzing the benchmark model as well as a deep-feed forward neural 

network (DFN) and E-DFN. In contrast, this study compared the performance of their 

benchmark model while considering measurement errors and also calculated the relative 

importance of models. They found that GEW-LSTM has the lowest prediction errors in 

terms of different measurement errors compared to other prescribed models. Somewhat 

consistent with their study, this study also found that a triple GARCH hybrid with LSTM 

attained minimum prediction errors in terms of measurement errors and was shown to be 

statistically significant. Our findings, along with Kim and Won (2018), show the 

importance of combining multiple traditional models with the DL algorithm rather than 

only a single traditional model to enhance prediction performance. 

Table 7. Model confidence test (MCS) for significance across forecasting models. 

Hybrid Models. Days Ahead Forecast HMAE HMSE Significance 

EGARCH-LSTM2 7 0.37707 0.35561 ** 

 14 0.35920 0. 33650 ** 

 21 0.35299 0.33602 * 

GARCH-EGARCH-LSTM2 7 0.34000 0.29857 * 

 14 0.31540 0.28125 ** 

 21 0.31250 0.27527 * 

GARCH-GJR-EGARCH LSTM2 7 0.29805 0.25000 ** 

 14 0.26921  0.23201  *** 

 21 0.26580 0.22205 * 

GARCH-GJR-EGARCH-GRU2 7 0.30180 0.27000 ** 

 14 0.29124 0.23301 ** 

 21 0.29008 0.23301 ** 

GARCH-GJR-EGARCH-BiLSTM2 7 0.30610 0.27080 ** 

 14 0.30650 0.27141 * 

 21 0.30810 0.27290 ** 

The significance level associated with the p-value of the MCS test is taken at 1%, 5%, and 10% levels, 

represented by ***, **, and *, respectively. HMAE denotes heteroscedasticity-adjusted mean absolute 

error and HMSE denotes heteroscedasticity-adjusted mean squared error. The bold value shows the 

best-performing models. 

5. Concluding Remarks 

Bitcoin volatility forecasting has emerged as a dominant research area within 

cryptocurrency research for academics, market participants, and regulators alike. This 

study builds and compares three forms of hybrid models by combining GARCH, 

EGARCH, and GJR-GARCH individually with DL algorithms and then combining single, 

double, and triple GARCH models with the DL algorithm in order to construct and assess 

volatility forecasts.  
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The presence of GARCH, EGARCH, and GJR-GARCH, in a hybrid model captured 

the well-known stylized facts, such as volatility clustering, leptokurtosis, and the leverage 

effect, more effectively, and then their forecasts were used as inputs into the LSTM, 

BiLSTM, and GRU models. These models were considered to assist in learning the high-

level temporal pattern in Bitcoin price data, therefore increasing the amount of 

information for RV to learn more effectively by considering the necessary features for 

prediction. The other features, such as RSI and RVI, which shared the correlation patterns 

with Bitcoin price volatility, were also used in DL algorithms to further improve the 

forecast of Bitcoin price volatility. The predictive performance of the best triple hybrid 

model (GARCH-GJR-EGARCH-LSTM2) compared to the best single hybrid model 

(EGARCH-LSTM2) improved by 18.61%, 19.88%, and 20.51% in HMAE, and 20.04%, 

19.88%, and 20.51% in HMSE, for the selected days-ahead forecasts.  

We further proceeded with our rolling window scheme to generate a one-day-ahead 

forecast and to investigate whether this approach minimizes the errors and improves 

model performance. This study achieved optimistic results and demonstrated that the 

prediction performance of the best triple hybrid model (GARCH-GJR-EGARCH- LSTM2) 

compared to the best single hybrid model (EGARCH-LSTM2) improved by 22.86%, 

24.63%, and 24.87% in terms of HMAE by using the fixed window size. Similarly, the best 

triple hybrid model attained 29.70%, 31.05%, and 33.92% in HMSE compared to the best 

single hybrid model, for the selected days-ahead forecasts, by applying the rolling 

window approach. 

The empirical results herein provide evidence that the GARCH-type model forecasts 

can serve as informative features, along with volatility indicators, to significantly improve 

the models’ predictive power. Moreover, integrating the GARCH-type model with the DL 

algorithm was found to be an effective approach to construct useful hybrid models to 

boost the forecast performance of Bitcoin price volatility. The findings of this study can 

assist regulators and other market participants in better modeling the volatility of 

cryptocurrencies using hybrid models rather than individual models.  
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