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Abstract: Data breach incidents result in severe financial loss and reputational damage, which raises
the importance of using insurance to manage and mitigate cyber related risks. We analyze data breach
chronology collected by Privacy Rights Clearinghouse (PRC) since 2001 and propose a Bayesian
generalized linear mixed model for data breach incidents. Our model captures the dependency
between frequency and severity of cyber losses and the behavior of cyber attacks on entities across
time. Risk characteristics such as types of breach, types of organization, entity locations in chronology,
as well as time trend effects are taken into consideration when investigating breach frequencies.
Estimations of model parameters are presented under Bayesian framework using a combination of
Gibbs sampler and Metropolis–Hastings algorithm. Predictions and implications of the proposed
model in enterprise risk management and cyber insurance rate filing are discussed and illustrated.
We find that it is feasible and effective to use our proposed NB-GLMM for analyzing the number of
data breach incidents with uniquely identified risk factors. Our results show that both geological
location and business type play significant roles in measuring cyber risks. The outcomes of our
predictive analytics can be utilized by insurers to price their cyber insurance products, and by
corporate information technology (IT) and data security officers to develop risk mitigation strategies
according to company’s characteristics.

Keywords: cyber risk; generalized linear mixed model; Bayesian; Markov chain Monte Carlo;
Metropolis–Hastings algorithm

1. Introduction

With borderless network thoroughly covered nearly every terminal in the world, it is
crucial to maintain security on digital assets/property and identify vulnerable data resi-
dencies in time. Industries, companies and organizations have been increasingly suffered
by cyber breaches, which have posed serious risks to their business operations over last
decades. For instance, a ransomware attack paralyzed at least 200 U.S. companies via
Kaseya, a globally used software supplier on 3 July 2021 (BBC News 2021). It was a colossal
and devastating supply chain attack and has the potential to spread to any size or scale
business through cloud-service providers. Several federal legislations (e.g., Data Security
and Breach Notification Act 2015 and Data Accountability and Trust Act 2019) have been
introduced in the U.S. to enhance the cyber security and data protection. The Federal
Bureau of Investigation (FBI) set up an Internet Crime Complaint Center (IC3) (FBI 2000)
in 2000 with a trustworthy source for information on cyber criminal activities to combat
through criminal and cyber investigative work. In 2020, IC3 received a total of 791,790
cyber crime records from American public with reported losses exceeding USD 4.1 billion,
which is a 69% increase in total complaints and about 20% increase in loss amount from
2019. Over the years from 2016 to 2020, IC3 received over two million complaints, reporting
a nearly USD 13.3 billion (Internet Crime Report 2020) total loss. Those complaints address
a wide array of Internet scams affecting victims across the globe. Recently, IBM Security
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published the Cost of Data Breach Report 2021 IBM (2021) that analyzed 537 real data
breaches across 17 counties and different industries. Data breaches refer to unauthorized
access and manipulation on exposed confidential data (information). The report shows a
10% increase in average total cost of a breach incident from 2020 to 2021 with USD 1.07 mil-
lion cost difference where remote work was a key factor in causing the data breaches and a
10.3% increase in average per record cost of a data breach from 2020 to 2021. This increasing
trend in breach frequency and average cost raises the importance of cyber insurance for
business and organizations to protect themselves against data breach losses/liabilities. A
recent industry survey Rudolph (2022) indicates that cyber/networks has been listed as
number one or two among the top five notable emerging risks in their 2018–2021 surveys.

Cyber insurance is emerging as an important tool to protect organizations against
future cyber breach losses and its institutional pillars are progressively evolving and
reinforcing one another (Kshetri 2020). By analyzing the U.S. cyber insurance market,
Xie et al. (2020) find that professional surplus insurers and insurers with surplus insurer
affiliation demonstrate a competitive advantage in cyber insurance participation. According
to an NAIC report (NAIC 2020), U.S. domiciled insurers writing cyber coverage had USD
2.75 billion of direct premium written in 2020 (increased by 21.7% and 35.7%, respectively,
from the year of 2019 and the year of 2018). The top 20 groups in the cyber insurance
market reported average direct loss ratios 66.9% up from 44.6% in 2019 and 35.3% in 2018.
The report also points out that changes in cyber insurance loss ratios are not driven by
premium growth but by claim frequency and severity growth, implying the significance of
cyber insurance policy designs.

Cyber risk has become an increasingly important research topic in many disciplines.
Recently, Eling (2020) present a comprehensive review of the academic literature on cyber
risk and cyber insurance in actuarial science and business related fields including economics,
finance, risk management, and insurance. Here, we briefly review recent research in the
actuarial science literature on modeling and analyzing data breach related cyber risks.
Maillart and Sornette (2010) reveal an explosive growth in data breach incidents up to
July 2006 and a stable rate thereafter. Wheatley et al. (2016) focus on the so called extreme
risk of personal data breaches by detecting and modeling the maximum breach sizes
and show that the rate of large breach events has been stable for U.S. firms under their
study. Edwards et al. (2016) find that daily frequency of breaches can be well described
by a negative binomial distribution. Eling and Loperfido (2017) implement frequency
analyses on different levels of breach types and entities through multidimensional scaling
and multiple factor analysis for contingency tables, while Eling and Jung (2018) extend
former work by implementing pair copula construction (PCC) and Gaussian copula to deal
with asymmetric dependence of monthly losses (total number of records breached) in two
cross-sectional settings. Fahrenwaldt et al. (2018) develop a mathematical (network) model
of insured losses incurred from infectious cyber threats and introduce a new polynomial
approximation of claims together with a mean-field approach that allows computing
aggregate expected losses and pricing cyber insurance products. Jevtić and Lanchier (2020)
propose a structural model of aggregate cyber loss distribution for small and medium-
sized enterprises under the assumption of a tree-based local area network (LAN) topology.
Schnell (2020) shows that the frequently used actuarial dependence models, such as copulas,
and frequency distributions, such as Poisson distribution, would underestimate the strength
and non linearity of dependence.

The purpose of this paper is to provide predictive analytics based on historical data
on cyber incidents frequency aiming to help insurance companies examine, price, and
manage their cyber related insurance risks. This analysis may be used by organizations
as a reference in balancing their prevention costs with premiums according to their entity
types and locations. We make use of related factors from cyber breach data and perform
Bayesian regression techniques under generalized linear mixed model (GLMM). GLMM
is one of the most useful structures in modern statistics, allowing many complications
to be handled within linear model framework (McCulloch 2006). In the actuarial science
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literature, Antonio and Beirlant (2007) use the GLMMs for the modeling of longitudinal data
and discuss the model estimation and inference under the Bayesian framework. Recently,
Jeong et al. (2021) study the dependent frequency and severity model under the GLMM
framework, where the aggregate loss is expressed as a product of the number of claims
(frequency) and the average claim amount (severity) knowing the frequency. The GLMM
has also been used in studying the credibility models; see, for example, Antonio and
Beirlant (2007) and Garrido and Zhou (2009). Generally, a generalized regression model
is used to describe within-group heterogeneity of observations, and a sampling model is
used to describe the group specific regression parameters. A GLMM can handle those
issues by not only accommodating non-normally distributed responses and specifying a
non-linear link function between response mean and regressors but also allowing group
specific correlations in the data.

The dataset we examine in this paper is from Privacy Rights Clearinghouse (PRC)
(PRC 2019). It is primarily grant-supported and serves individuals in the United States.
This repository keeps records of data breaches that expose individuals to identity theft
as well as breaches that qualify for disclosure under the state laws. Chronology includes
the type of breaches, type of organization, name of company and its physical location,
date of incidents, and number of records breached. It is the largest and most extensive
dataset that is publicly available and has been investigated by several research papers from
various perspectives. Below are notable studies based on this dataset. Edwards et al. (2016)
develop Bayesian generalized linear models to investigate trends in data breaches. Eling
and Loperfido (2017) investigate this dataset under the statistical and actuarial framework;
multidimensional scaling and goodness-of-fit tests are used to analyze the distribution
of data breach information. Eling and Jung (2018) propose methods for modeling cross-
sectional dependence of data breach losses; copula models are implemented to identify the
dependence structure between monthly loss events (frequency and severity). Carfora and
Orlando (2019) propose an estimation of value at risk (VaR) and tail value at risk (TVaR). Xu
et al. (2018) model hacking breach incident inter-arrival times and breach sizes by stochastic
processes and propose data-driven time series approaches to model the complex patterns
exhibited by the financial data. Recently, Farkas et al. (2021) present a method for cyber
claim analysis based on regression trees to identify criteria for claim classification and
evaluation, and Bessy-Roland et al. (2021) propose a multivariate Hawkes framework for
modeling and predicting cyber attacks frequency.

In this study, we propose a Bayesian negative binomial GLMM (NB-GLMM) for the
quarterly cyber incidents recorded by PRC. The quarter specific is one of the variations of
random effects explained by the quarterly hierarchical panel data. Regression models on
covariate predictors can capture variations of within-quarter heterogeneity effects. More-
over, GLMMs outperform the generalized linear model (GLM) by reveling features of the
random effects distribution and allowing subject-specific predictions based on measured
characteristics and observed values among different groups, while most studies on mod-
eling cyber risk related dependencies in the literature are geared toward cross-sectional
dependence using copulas (see, for example, Eling and Jung (2018) and Schnell (2020), and
references therein), our approach models the dependence between the frequency and sever-
ity under the widely known generalized linear framework, which excels in interpreting
the directional effect of features, along with the GLMM that deals with hierarchical effects
and dependent variables using general design matrices (McCulloch and Searle 2004) The
Bayesian approach and Markov chain Monte Carlo (MCMC) method are utilized to obtain
posterior distributions of parameters of interest. Specifically, our hierarchical structure
of Bayesian NB-GLMM requires Metropolis–Gibbs (M-G) sampling schemes working on
regression mean related parameters, and conditional maximum likelihood estimates of the
dispersion parameter.

The significant findings of our study are the following. (1) It is effective to use of
the complex NB-GLMM for analyzing the number of data breach incidents with uniquely
identified risk factors such as type of breaches, type of organizations, and their locations.
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(2) It is practical to include in our model the notable correlation detected between the
number of cyber incidents and average severity amount (the number of data breached), as
well as the time trend effects impacted on the cyber incidents. (3) It is efficient to use the
sophisticated estimation techniques for our analysis, including Bayesian approach, MCMC
method, Gibbs sampling, and Metropolis–Hastings algorithm. (4) Using the frequency–
severity technique, it is feasible to use our predictive results for pricing the cyber insurance
products with coverage modifications.

Our contributions to related research areas can be described as follows. In modeling
the dependence between frequency and severity of cyber risks, we investigate the use
of average severity as one of subject-specific covariates via GLMM regression process.
Meanwhile, we model time trend effects as a group-specific factor in order to explain
the change in data breach incidents over time. Besides examining fixed effects, we adopt
MCMC method to extract random effects working on several different explanatory variables.
We estimate parameters of GLMM under the NB distribution with a non-constant scale
parameter by combining the maximum likelihood estimation with the MCMC method. We
add to the existing literature the implementation of our proposed estimation procedure in
the actuarial context, which may be of interest to other researchers and practitioners in the
related fields.

The rest of this paper is structured as follows. In Section 2, we introduce our database
and present empirical data analysis. Section 3 presents the NB-GLMM for our breach data
and the parameter inferences under Bayesian framework. Section 4 shows the MCMC
implementation and inference of the posterior distribution of parameters, followed by a sim-
ulation study and cross validation test against testing dataset to assess model performance
in Section 5. Model applications in industry risk mitigation and premium calculations are
discussed and illustrated in Section 6. Finally, in Section 7 we provide further discussions
on aggregating total claim costs.

2. Chronology of Data Breaches from PRC Dataset
2.1. Data Description

Our research is data-driven based on PRC chronology database which contains cyber
breach incidents between years 2001 and 2018. The data is recorded under case unit with
breach types, business types, incident entities, and their geological location; these variables
could be valuable predictors while generating regression models and making predictions.
We model PRC quarterly counts as a function of breach type, breach entity, and location,
which can be linear predictors of target variable via general design matrices. Moreover,
we model relationships among risk exposure characteristics via matrix design by taking
all featured combinations as different risk exposures. In order to lower the dimension of
parameter matrix, reduce the volatility of data and stable the rates overtime, we further
combine levels with similar information into new representative levels of three categorical
variables under clustering analysis (Jain et al. 1999): South, West, Northeast, and Midwest
(according to U.S. Census Bureau) under location; external and internal under breach type;
and business and non-business under organization type for non-medical organizations as
an example showed in Table 11.

As a result, the original case unit basis dataset is manipulated as a hierarchical dataset
with quarterly counts on uniquely identified 16 level combinations. These combinations
divided the dataset into three dimensional augmentations.

Besides targeting counts variable and designing covariate matrix described above,
it is worth mentioning the following features of the PRC empirical breach frequency
distribution. Figure 1 shows the empirical quarterly counts between years 2001 and 2018
density performance of non-medical organizations (left) and medical organizations (right).
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Table 1. Covariate level combination.

Chronology Legend Labels Statistical Inputs

CARD Fraud Involving Debit and Credit Cards ExternalHACK Hacked by an Outside Party or Infected by Malware
INSD Insider

Internal
PHYS Physical Paper Documents
PORT Portable Device
STAT Stationary Computer Loss
DISC Other Disclosure

UNKN Not Enough Information about Breach –

BSF Businesses (Financial and Insurance Services)
BusinessesBSR Businesses (Retail/Merchant including Online Retail)

BSO Businesses (Other)
EDU Educational Institutions

Non-BusinessesGOV Government and Military
NGO Nonprofits

UNKN Not Enough Information about Breach –

Figure 1. Histograms on different organizations.

Frequency counts are aggregated on quarterly interval of specific combination subjects.
Both plots reflect the fact that there exists a portion of zero incidents and dispersion on
a wide range. It is noteworthy that, although density plots for non-medical and medical
organizations share overall similarities, the detailed performances between two plots are
different showing the cyber related risk nature differences between the non-medical and
medical organizations. For instance, the proportion of zeros is higher for non-medical
organizations and the scale for non-medical distributions is more centered. These observa-
tions follow the current trending that medical identity theft and medical data breaches are
vividly rising at disproportionate rates compared with other attacked industries (Rathee
2020). NAIC 2020 Cybersecurity Report (NAIC 2020) points out that healthcare breaches
grew by 33.3% higher than breaches from other type of organizations. All these suggest that
it may be necessary to separately analyze of data breaches happened to the non-medical
organizations and that to the medical organizations.

2.2. Empirical Data Analysis

In this subsection we perform exploratory data analysis on breach incident counts
(frequency) that helps gain insights into the distribution of our target variable. Our study
is based on the latest available PRC data breach chronology downloaded with 9012 breach
observations happened in the U.S. After we remove incomplete and inconsistent observa-
tions, 8095 incidents include 4161 medical incidents and 3934 non-medical incidents are
investigated and modeled. Table 2 displays the summary statistics of quarterly number of
breach incidents that the non-medical and medical organizations incurred between years
2001 and 2018. The incidents of the medical subset is more widespread ranging from 0 to
37 whereas that of the non-medical ranges from 0 to 20 only. Both of them are right skewed
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with mean greater than median and the medical subset has a heavier tail and shows over
dispersion with a large variance. Both quarterly count frequencies contain a proportion
of zeros which means some characteristic combinations do not incur breach incidents at
these quarters.

Table 2. Summary statistics.

Entity Type Minimum Maximum Mean Median Variance Proportion of Zeros

Non-Medical 0 20 2.277 2 6.014 0.267
Medical 0 37 4.762 3 22.274 0.096

With these features, we fit the Poisson, negative binomial (NB), zero-inflated Poisson,
and zero-inflated NB distributions to both the medical and non-medical counts subdatasets,
respectively, while the Poisson and NB distributions are commonly used in modeling the
claim counts in actuarial field, the NB distribution could be a conservative model choice as
it can handle over-dispersion and its zero-inflated version could be appropriate due to the
appearance of heavy zeros observed in the non-medical subdataset. When several models
are available, one can compare the model performance based on statistical likelihood
measures; here we use AIC (Akaike information criterion, Bozdogan 1987) to testify which
distribution preliminarily describes best the breach incident frequencies with uniquely
identified risk features. Table 3 shows the AIC values for the distributional models that
we fit.

Table 3. Goodness-of-fit results.

Entity Type Non-Medical Medical

Poisson 7617 5947
Negative Binomial 6739 4552

Zero-inflated Poisson 7165 5657
Zero-inflated Negative Binomial 6941 4555

Based on these values, we find that the NB model fits both the medical and non-
medical data best. Our findings actually coincide with the conclusions from several studies
of cyber incidents in the literature. For example, Edwards et al. (2016) model the frequency
of data breaches with the NB distribution under Bayesian approach. Joe and Zhu (2005)
provide helpful insights, besides the likelihood metrics, in selecting a better fitting NB
distribution for modeling count data with long right tails. Proceeding along similar lines,
we adopt the NB as the target regression distribution of GLMM model based on natures of
PRC dataset, which is discussed in Section 3.

3. Generalized Linear Mixed Model for Data Breaches

In this section, we start with introducing our GLMM under the NB target variable
distribution. Instead of letting only one covariate contain random effects, we consider
that the random effects rely on all the risk characteristic features derived from raw factors.
Besides hierarchical structure variations, the time trend effects are considered as fixed
effects in the portion of the mean of GLMM. We then investigate unknown parameters
under Bayesian framework combined with prior and posterior distributions. Finally, we
introduce parameter inferences on hyper parameters using MCMC and M-G algorithms.

3.1. Model Formulation

We first introduce notations before a GLMM (McCulloch 2006) for modeling the
quarterly number of data breaches is formulated for our study. Assume that the total
number of combinations is I and the total number of quarters is J. Let Yij be a random
variable representing the number of data breach incidents of ith combination in jth quarter,
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where i = 1, 2, . . . , I and j = 1, 2, . . . , J. Let µij be the mean of Yij conditional on β j and
b, where β j = (β1,j, β2,j, . . . , βH,j)

T is a H-dimensional vector of regression coefficients
for the jth quarter, and b = (b1, b2, . . . , bG)

T is a G-dimensional vector of regression co-
efficients. Furthermore, let xij = (x1,ij, x2,ij, . . . , xH,ij)

T be a H-dimensional vector and
zij = (z1,ij, z2,ij, . . . , zG,ij)

T be a G-dimensional vector, which are measured covariates for
the ith combination in the jth quarter.

Assume that {Yij, i = 1, 2, . . . , I} are conditionally independent given β j and b, and
follow a distribution with probability density function f (·|β j, b) and mean µij, i = 1, 2, . . . , I,
respectively. Let g(·) be a link function. Then our model, for i = 1, 2, . . . , I and j = 1, 2, . . . , J,
can be described as

Yij|β j, b i.i.d.∼ f (yij|β j, b), i = 1, 2, . . . , I

E[Yij|β j, b] = µij,

g(µij) = ηij = xT
ij β j + zT

ijb,

β j
i.i.d.∼ N (θ, Σ), j = 1, 2, . . . , J

(1)

in which the heterogeneity among the regression coefficients β1, . . . , β J is described by a
multivariate normal distribution with mean θ and a variance–covariance matrix Σ = (σij)

with σii = σ2
i . Note that random vector variable β j reflects the within group variations

for the jth group (quarter), while the i.i.d. multivariate normal random vector variables
β1, . . . , β J reflect the between group variations for total of J groups (quarters).

In fact, the model (1) can be written as a standard GLMM format using the notations
and formulations given in (McCulloch 2006). Let ηj = (η1j, . . . , ηI j)

T , Xj = (xT
1j, . . . , xT

Ij)
T

and Zj = (zT
1j, . . . , zT

Ij)
T , and write β j = θ+ uj. Then the explanatory variable structure ηj

given in (1) can be rewritten as a sum of fixed effects and random effects components via
the treatment design (Stroup 2012):

ηj = Xjβ j + Zjb

= Mjγ + Xjuj,

uj
i.i.d.∼ N (0, Σ),

(2)

where Mj = [Xj, Zj] is a I × (H + G) covariate matrix and γ = [θT , bT ]T is a (H + G)-
dimensional vector. Clearly, in (2) Mjγ represents the fixed effects component of the mean
vector, while Xjuj represents the random effects component of the mean vector, for which a
multivariate normal distribution with mean 0 and variance–covariance matrix Σ is assigned
to uj for all j. This shows that between group effects and within group effects can be
separated for a given information about the hierarchical data.

As suggested by our empirical study showed in Section 2.2, we assume that Yij given
β and bj follows a NB distribution and a log link is used, namely, for i = 1, 2, . . . , I,
j = 1, 2, . . . , J and yij = 0, 1, . . .

f (yij|µij, αj) =
Γ(yij + α−1

j )

Γ(α−1
j )Γ(yij + 1)

(
1

1 + µijαj

)α−1
j
(

µij

α−1
j + µij

)yij

, (3)

where µij is the mean of Yij as denoted in (1) such that ln(µij) = ηij = xT
ij β j + zT

ijb, and
αj(> 0) is the dispersion parameter used in the variance expression of Yij, which is µij +

αjµ
2
ij. Here we take the type II NB distribution, termed as NB2 (Hilbe 2011) due to the

quadratic natural of its variance function. The NB2 distribution can be generated from
the Poisson-gamma mixture model and is also a member of exponential family. This
formulation is adopted because it allows the modeling of within group heterogeneity using
a gamma distribution.



Risks 2022, 10, 224 8 of 23

In our data breach frequency data analysis, the recorded information from the PRC
dataset on the type of breaches, type of organizations and entity location, when a data
breach incident occurs, are used as covariates. We also take into consideration the variations
in average severity (the number of data breaches caused by data breach events) of each
combination and the time trend. We consider the parameters corresponding to type of
breaches, type of organizations, entity location, and average severity as both fixed and
random effects, and consider the parameters for time trend as fixed effects. We thus have
H = 6 for xij and β j, and G = 3 for zij and b under cubic polynomial assumption for the
time trend; the corresponding dimension of fixed effects covariates (type of breaches, type
of organization, location, average severity, time trend) in (2) is thus 9 and that of random
effects covariates (type of breaches, type of organization, location, average severity) is 6.
More details on the GLMM for the PRC frequency dataset are presented in Section 4.

3.2. Parameter Inference under Bayesian Framework

The GLMM has been specified in Section 3.1. We now in this subsection consider
the inferences about the built-in process that generates the data. There are various
ways to approximate the likelihood used for estimating GLMM parameters, including
pseudo and penalized quasilikelihood (PQL) (see, for example, Schall 1991, Wolfinger and
O’connell 1993, and Breslow and Clayton 1993 among others), Laplace approximations
(Raudenbush et al. 2000), Gauss–Hermite quadrature (GHQ) (Pinheiro and Chao 2006) and
Markov chain Monte Carlo (MCMC) algorithms (Gilks 1996). First three methods explicitly
integrate over random effects to compute the likelihood, whereas the MCMC method gener-
ates random samples from the distributions of parameters for fixed and random effects. We
adopt the MCMC method in this study, because it can be easily used in considering multiple
random effects on part of explanatory variables for our dataset. MCMC algorithms are
normally used under a Bayesian framework which incorporates prior information based
on previous knowledge about the parameters or specifies uninformative prior distributions
to indicate lack of knowledge. Parameter estimations are made through the posterior
distribution which is computed using Bayes’ theorem, which is the cornerstone of Bayesian
statistics and provides an effective approach in making inferences (Dempster 1968).

3.2.1. Prior and Posterior Distribution

In addition to Bayesian flavor and well posed statistical model, MCMC involves
possibly challenging technical details including choosing appropriate priors and efficient
algorithms for large problems. The Bayesian approach also requires the specification of
prior distributions of all model parameters. Note that in Bayesian GLMM analysis, it
normally assumes that the prior distribution of coefficient vector is multivariate normal
distributed and the variance-covariance matrix is inverse Wishart distributed. Under our
model described by (1), the prior distributions for θ and Σ are assumed and their posterior
distributions are discussed in the following.

We first present the prior and posterior distribution of θ assuming that the variance-
covariance matrix Σ is known. Suppose that the mean vector θ is multivariate normal
distributed with mean vector µ0 and variance–covariance matrix Λ0, that is,

θ ∼ N (µ0, Λ0),

which is actually a conjugate prior distribution of θ as in this case it is well known that the
corresponding posterior distribution is also multivariate normal distributed. Following
Hoff (2009), the full conditional (posterior) distribution of θ, given a sample of regression
coefficients β1, . . . , β J and Σ, can be easily derived as

[θ | β1, . . . , β J , Σ] ∼ N (µJ , ΛJ), (4)
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where µJ is the conditional mean vector and ΛJ is the variance–covariance matrix, given by

µJ = (Λ−1
0 + JΣ−1)−1(Λ−1

0 µ0 + JΣ−1β̄),

ΛJ = (Λ−1
0 + JΣ−1)−1,

in which β̄ =
(
(1/J)∑J

j=1 β1j, . . . , (1/J)∑J
j=1 βHj

)T
is a H-dimensional vector average.

We now discuss the prior and posterior distribution of Σ. Having information of Σ

helps us in detecting group variance caused by group specific features, especially the rela-
tionship between covariates which could be evaluated with correlation
coefficient ρij = σij/

√
σ2

i σ2
j . In Bayesian statistics, in the context of the multivariate normal

distribution, the Wishart distribution is the semi-conjugate prior to the precision matrix
Σ−1 (Chatfield and Collins 2018), and hence the inverse-Wishart distribution is the semi-
conjugate prior distribution for the variance-covariance matrix Σ. Assume now a conjugate
inverse-Wishart prior distribution for Σ,

Σ ∼ W−1
(

ν0, S−1
0

)
,

where ν0 is the hyper-parameter and S−1
0 is a symmetric positive definite matrix. Based

on (1) that regression coefficients β j, j = 1, . . . , J, are multivariate normal distributed, the
conditional posterior distribution of Σ, given a sample of regression coefficients β1, . . . , β J
and θ, can be written as

[Σ | β1, . . . , β J , θ] ∼ W−1
(

ν0 + J, [S0 + Sθ]
−1
)

(5)

where ν0 + J is the hyper-parameter and [S0 + Sθ]
−1 is the covariance matrix, in which Sθ

is the matrix of residual sum of squares with respect to mean vector θ, given by

Sθ =
J

∑
j=1

(β j − θ)(β j − θ)T .

Detailed derivations can be found in Hoff (2009).
The maximum likelihood estimation for the dispersion or heterogeneity parameter

from a NB distribution is discussed with details in Piegorsch (1990). Under our GLMM
setting, αj is the dispersion parameter for jth quarter in (3) which scales the population
variance. In our model, the generalized linear regression algorithm on target NB2 distribu-
tion with a log link function leaving heterogeneity parameter to be entered into GLMM
model as a constant (Hilbe 2011). As it can be seen in the estimation algorithm presented in
the next subsection, parameter α = {α1, . . . , αJ} are estimated outside and subsequently
entered into the GLMM algorithm.

The log-likelihood function from a sample of i.i.d. response variables for jth quarter
over all combinations based on (1) is derived as

`(αj|{yij}, {µij}) =
I

∑
i=1

{
yij ln(µij) + yij ln(αj)−

(
yij +

1
αj

)
ln
(
1 + αjµij

)
+ ln Γ

(
yij + α−1

j

)
− ln Γ(yij + 1)

}
− I ln Γ

(
α−1

j

)
, (6)

where µij = exp(xT
ij β j + zT

ijb). During the Metropolis–Hastings (M-H) approximation
process, β j is generated from a multivariate normal distribution and b is generated under
regression model conditioning on known β j values at every iteration. Together with xij and
zij, we can obtain the mean parameter µij. Maximum likelihood estimation of αj can then
be obtained by unidimensional numerical maximization of `(αj|{yij}, {µij}) given by (6).
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In each iteration, αj is recalculated together with θ and Σ from Gibbs sampling. All the
newly generated parameter samples then provide a decision criteria in M-H algorithm.

3.2.2. Markov Chain Monte Carlo for Parameter Estimations

In this subsection, we implement Markov chain Monte Carlo (MCMC) methods to
explore and summarize posterior distributions in Bayesian statistics described in Section 1.
Introduced by Metropolis et al. (1953) and Hastings (1970), MCMC has been a classical and
general method for stochastic process simulation given probability density functions. It
has been widely applied especially under Bayesian algorithm (Gamerman and Lopes 2006).
Since it is not always feasible to find analytical expressions under Bayes theorem for the
posterior distribution of model parameters, Monte Carlo method (Metropolis and Ulam
1949) has been brought up to estimate features of the posterior or predictive distribution of
interest by using samples drawn from that distribution. One is able to simulate dependent
samples from an irreducible Markov chain and treat stationary numerical approximations as
empirical distribution. Since M-H algorithm provides dependent chains, iteration samples
require to be large enough in order to be independent.

In general, generating samples directly from a high dimensional joint distribution
is unlikely possible. It is feasible to sample each parameter from the full conditional
distribution via Gibbs sampler algorithm(Geman and Geman 1984). As an indirect sampling
approach, Gibbs sampler has become an increasingly popular statistical tool in both applied
and theoretical research. Casella and George (1992) analytically establish its properties
and provide insights on complicated cases. Smith and Roberts (1993) review the use of
the Gibbs sampler for Bayesian computation and describe the implementation of MCMC
simulation methods.

Based on the generalized parameterization scheme for our GLMM given by (1) and (3),
{θ, Σ, b, αj} is a set of unknown parameters for jth quarter. The joint posterior distribution
does not have a standard form and hence it is difficult to sample directly from it. Instead
of obtaining a joint distribution of unknown parameters, we can construct a full condi-
tional distribution p(θ, Σ, b, αj|y1, . . . , yJ) by Gibbs sampler under M-H algorithm giving a
MCMC approximation, where yj = {y1j, . . . , yI j} represents a collection of data for the jth
quarter. Iterated samplers from the full conditional distribution of each parameter generate
a dependent sequence that converges to the joint conditional posterior distribution. The
respective full conditional distributions of θ and Σ rely only on β1, . . . , β J as shown in (4)
and (5) no matter what target distribution for Yij is chosen. Parameter b depends on the
target distribution and is updated using given β1, . . . , β J in each iteration. The remaining
unknown dispersion parameter αj is affected by the chosen NB-GLMM and its full con-
ditional distribution, f (yij|µij, αj), can be obtained once the mean parameter µij has been
generated.

Given a set of starting values {Σ(0), β
(0)
1 , . . . , β

(0)
J , b(0)}, the Gibbs sampler gener-

ates (s + 1)th set of parameters {θ(s+1), Σ(s+1), α
(s+1)
1 , . . . , α

(s+1)
J } from {θ(s), Σ(s), β

(s)
1 , . . . ,

β
(s)
J , b(s)}, s = 0, 1, . . . . The logic of the Gibbs sampler updating algorithm can be described

as follows.

1. Sample θ(s+1) from full conditional distribution (4):

(a) Compute µ
(s)
J and Λ(s)

J from {Σ(s), β
(s)
1 , . . . , β

(s)
J }, where

µ
(s)
J = (Λ−1

0 + J(Σ(s))−1)−1(Λ−1
0 µ0 + J(Σ(s))−1β̄(s)),

Λ(s)
J = (Λ−1

0 + J(Σ(s))−1)−1;

(b) Sample θ(s+1) ∼ N
(

µ
(s)
J , Λ(s)

J

)
.

2. Sample Σ(s+1) from full conditional distribution (5):
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(a) Compute S(s)
θ from {θ(s+1), β

(s)
1 , . . . , β

(s)
J }, where

S(s)
θ =

J

∑
j=1

(β
(s)
j − θ(s+1))(β

(s)
j − θ(s+1))T ;

(b) Sample Σ(s+1) ∼ W−1
(

ν0 + J,
[
S0 + S(s)

θ

]−1
)

.

3. Obtain maximum likelihood estimate of α(s+1) = {α(s+1)
1 , . . . , α

(s+1)
J } from the condi-

tional log-likelihood function (6), given {β(s)
1 , . . . , β

(s)
J , b(s)}.

Such iterative algorithm constructs a dependent sequence of parameter values whose
distribution converges to the target joint posterior distribution with a sufficiently large
number of iterations. As seen from the algorithm, parameters {θ(s+1), Σ(s+1), α(s+1)} are
sampled from the full conditional distributions or estimated from their log-likelihood
functions; the set of parameter values are thus also samples from the joint distribution.

Given that θ and Σ are estimated using conjugate prior distributions, their posterior
distributions can be approximated with Gibbs sampler as described in Section 3.2.1. How-
ever, a conjugate prior distribution on {β1, . . . , β J} is not available due to high dimensions
and full conditional distributions of the parameters do not have a standard form due to
unknown sampling parameters. In this case, M-H algorithm can be a generic method to ap-
proximate the posterior distribution. M-H is named after Nicholas Metropolis (Metropolis
et al. 1953) and W.K. Hastings (Hastings 1970), which is a powerful Markov chain method to
simulate multivariate distributions. Chib and Greenberg (1995) provide a tutorial introduc-
tion to the M-H algorithm and show examples on Gibbs sampler, a special case of the M-H
algorithm. In our GLMM model, since the dominating density is not explicitly available,
the M-H algorithm can be used under an acceptance-rejection scheme (Tierney 1994). In
acceptance-rejection step, we can generate candidates using Gibbs sampler from suitable
generating density, and accept or reject observations from proposal distributions by imple-
menting generation from a uniform distribution. Each step of the Gibbs sampler generates
a proposal from full conditional distribution and then accept it. The Metropolis step gener-
ates proposals from population distribution and accepts them with some probability. M-H
algorithm combines both approaches and allows arbitrary proposal distributions. Different
from Metropolis’s, acceptance ratio of Metropolis–Hastings is the probability of generating
the current value from proposed to the probability of generating the proposed value.

For each j ∈ {1, . . . , J}, Metropolis step for updating β
(s)
j by proposing a new value β∗j

from the multivariate normal distribution with the current mean value β
(s)
j and variance–

covariance matrix Σ(s) and accepting or rejecting it with appropriate probability described
below. Then, b(s) is to be updated by newly accepted {β(s+1)

1 , . . . , β
(s+1)
J }.

1. Generate β∗j ∼ N (β
(s)
j , Σ(s)).

2. Compute the acceptance ratio

rj =

[
∏I

i=1 f (yij|µ∗ij, αj)
]

f (β∗j |θ(s), Σ(s))[
∏I

i=1 f (yij|µ
(s)
ij , αj)

]
f (β

(s)
j |θ(s), Σ(s))

,

where µ∗ij = exp(xT
ij β
∗
j + zT

ijb
(s)) and µ

(s)
ij = exp(xT

ij β
(s)
j + zT

ijb
(s)).

3. Sample u ∼ uniform(0, 1). Set β
(s+1)
j to β∗j if u < r, or to β

(s)
j if u > r.

4. Update b(s+1), given {β(s+1)
1 , . . . , β

(s+1)
J , y1, . . . , yJ}, under our regression model given

by (1) using the maximum likelihood algorithm.

In this way, the Gibbs sampler and Metropolis step described above are combined as
an iterative algorithm to generate a Markov chain that can be used to approximate the joint
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posterior distribution of {θ, Σ, b, α}. As iteration times go large enough so that the auto
correlation effects are reduced, those sets of generated samples can be used to approximate
the joint posterior distribution of all the parameters.

4. Analysis of Frequencies of Data Breaches

Followed by empirical analysis presented in Section 2.2 and GLMM structure proposed
in Section 3, we examine the manipulated PRC frequency dataset with unique subjective
combinations. As mentioned in Section 2, the medical and non-medical portion (organi-
zation) of the data breach dataset are analyzed separately in our study. Since the only
difference we treat between partitioned medical organization subdataset and non-medical
organization subdataset is whether to include type of organizations as one of the covariates
(we do not further partition medical organizations), we thus focus on the analysis of the
non-medical portion of the PRC dataset with type of organizations factor in the rest of
this paper.

4.1. Specification of Priors and Parameters

Quarterly counts of data breaches are modeled as a regression function of breach
type, organization entity, entity location, and overall quarterly average severity with
specific identities under NB-GLMM. The effects due to potential trends overtime are
also taken into consideration. We analyze in total 69 quarters (between years 2001 and
2018) of non-medical data breach incidents data in this section. Recall that in Section 2.1
levels of categorical covariates have been combined so there are 16 uniquely identified
combinations (observations) within the non-medical subdataset. Therefore, among 69
investigated quarters, each quarter has 16 uniquely identified combinations that represent
different cyber risk subjects, namely, unique type of data breaches, type of organizations,
and location of the entity that the breach incident occurs. Each combination can be treated
as unique risk features/subjects corresponded to quarterly counts.

In order to detect the inner relationships between incident frequency and other features,
a box plot is drawn in Figure 2 on frequency counts upon uniquely identified categorical
level combinations for all the quarters under observation; it shows 16 boxes with each one
representing the simplified distribution of 69 quarterly counts of that combination plotted
upon uniquely identified level combinations. By examining these 16 distribution patterns
of different combinations, we find that these count distributions differ significantly. For
example, the 3rd and 8th combinations have higher log values of incident counts compared
to other combinations, whereas the 12th combination has the lowest log median value of
incident counts among all combinations.

Figure 2. Quarterly frequency counts on specified combinations.
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We also observe a correlation between quarterly counts and their corresponding
average severity of combinations. Note that the severity here means the number of data
breached caused by the data breach incident. It is observed that a quarter with high
frequency counts often contains more incidents with a relatively large severity. Figure 3a is
made up with scatter points of quarterly frequency (in rhombus) and corresponding average
severity (in circle) showing that the dependence exists between counts and severity for
most of combinations. This suggests that the average quarterly severity may be used as one
of the covariates that impact on the quarterly counts of uniquely identified combinations.

(a) (b)

Figure 3. Effects decomposition, (a) Scaled frequency and severity, (b) Polynomial time trend effect.

Relationships between breach counts and classified characteristic combinations and
severity dependency are significant among quarters. In this regard, we investigate the
group specific variations by treating related covariate coefficients as multivariate normal
random variables centering around a mean showed in (1). Coefficients can be decomposed
into fixed effects representing overall magnitude for a given quarter and random effects
representing the quarterly variation among quarters.

Besides within quarter fixed effects and among quarter random effects, there is poten-
tially a time series relationship if we treat quarterly counts in a sequence timely manner.
Figure 3b shows breach counts upon total 69 quarters in time sequence. The time series
effect shows a polynomial trend which could be modeled by cubic polynomial time covari-
ates. Cubic time trend is treated with only fixed effects with the remaining systematic noise
being explained by random effects of quarterly variations.

Based on the findings showed above, we choose the following covariate manipulations
for the generalized linear model used in (1):

g(µij) = xT
ij β j + zT

ijb =
6

∑
l=1

xl,iβl,j +
3

∑
k=1

zk,jbk, (7)

where {x1,i, x2,i, x3,i} are the non-base level dummy variables of four regions under location
covariate for the ijth count (ith combination in jth quarter), {x4,i} is the non-base level
categories of type of breach for the ijth count, {x5,i} is the non-base level category of
organization type and {x6,i} is the average severity of ith combination, {z1,j, z2,j, z3,j} =
{j, j2, j3} are time, squared time and cubic time terms, measured in quarters. Here the effect
of quarterly average severity is used by a numerical indicator to reveal the dependency
between the frequency and severity. Details on the specific regions, types of data breaches
and types of organizations can be found in Section 2.1. Regarding fix effects and random
effects in (2), we assume random effects work on 6 factors which means Mj (for fixed
effects) are different for different j’s and Xj = X (for random effects) is the same for all j’s,
and uj follows a 6-dimensional multivariate normal distribution with mean 0 and covariate
matrix Σ. Such a parameterization allows us not only to consider subject specific and group
specific effects, but also to contain random effects on quarterly related factors other than
time trends.
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4.2. Posterior Results and Diagnoses

In this subsection, the proposed NB-GLMM is used to analyze the quarterly data
breach incidents recorded by PRC database using the M-G sampling algorithm under
the Bayesian framework as described in Section 3.2.2. As discussed in Section 3.2.1, a
multivariate normal distribution and an inverse-Wishart distribution are chosen as the
prior distributions for θ and Σ, respectively. The starting values of hyper-parameters of
both prior distributions are showed in Table 4.

Table 4. Simulation starting values.

Parameter Distribution Starting Value

θ N (µ0, Λ0) µ0 = β̄GLM; Λ0 = ΣβGLM

ine Σ W−1
(

ν0, S−1
0

)
ν0 = p + 2; S0 = ΣβGLM

The values for µ0 are set as the mean of negative binomial regression coefficients
without intercept, denoted by β̄GLM, and for ν0 is set as 8, which is the number of parameters
p = 6 plus 2. Both Λ0 and S0 are set as the empirical variance–covariance matrix of
regression coefficients, denoted by ΣβGLM . The starting values of β1, . . . , β J , b and α used in
the MCMC procedure are the negative binomial regression estimates. A total of 69 Markov
chains representing 69 quarters are generated at the same time in a matrix form in the model
estimation process with 100,000 iterations. In order to reduce autocorrelation, a thinning
factor 10 is used. The first 200 iterations are discarded as burn-in samples and the remaining
iterations are used for estimating the model parameters. A trace plot and autocorrelation
function (ACF) are used to verify the proper convergence of simulation runs.

Table 5 displays the information about the posterior summary statistics of model
parameters θ and regression coefficients b, including the posterior mean, standard error,
and highest posterior density (HPD) intervals; the posterior means of the elements of the
variance-covariance matrix Σ can be found in Appendix A. The results show that West
region has the largest effects on number of counts per quarter. This may be because major
tech companies are headquartered along the Pacific Coast where valuable gathered data
are stored and shared over Internet. External breach type has a higher impact on breach
frequency possibly because attackers tend to seek some types of benefit from breaching the
victim’s network. Business organizations receive more cyber breaches than non-business
organization, which may be resulted from the reality that business organizations have
various types of valuable information properties than non-business organizations do. As
for the influence of average size, one unit increase in logarithm average severity causes a
0.8437-unit increase in breach counts on average.

Table 5. Posterior summary and interval statistics.

Regressor Symbol Mean Standard Error 95% HPD Interval

South θ1 1.2536 0.0015 0.4053 2.2278
West θ2 2.2002 0.0011 1.4898 2.9617

Northeast θ3 0.7115 0.0011 0.0141 1.3812
ine Internal θ4 −1.4176 0.0011 −2.0852 −0.8232

ine Non-Business θ5 −0.2181 0.0011 −0.9858 0.3756
ine Ave-Size θ6 −0.1699 0.0001 −0.2322 −0.1103

ine Time1 b1 0.5892 9.0579× 10−5 0.5355 0.6997
Time2 b2 −1.4591× 10−2 2.7746× 10−6 −1.6347× 10−2 −1.2929× 10−2

Time3 b3 1.0075× 10−4 2.4653× 10−8 8.5920× 10−5 1.1628× 10−4

Note: Time1, Time2 and Time3 represent the Time to the power 1, 2 and 3, respectively.

For each of the GLMM model parameters, MCMC generates a convergence diagnostic
panel, which includes a trace plot, autocorrelation plot and a kernel density plot. We first
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assess if chains have run long enough for reliable estimations by monitoring convergence
of iterative simulations (Brooks and Gelman 1998), and then examine these diagnostic plots.
Figures 4 and 5 show selected diagnostics for the slope coefficients θ4 and b2. Figure 4a,b
are trace plots that show the number of iterations on the horizontal axis, plotted against
the value of accepted coefficient of internal breach type θ4 and b2 on the vertical axis,
respectively. Since there are no long term trends in these trace plots and the mixing is
moving efficiently, we can affirm that the MCMC iteration converges. Figure 5a,b display
the ACF values (Cowles and Carlin 1996) of accepted coefficients θ4 and b2, respectively,
at lag k on the vertical axis and k on the horizontal axis. Ideally, the autocorrelation at
any lag should not be statistically significantly different from zero. It can be seen from
the plot that the autocorrelations of θ4 and b2 are not significantly far from zero and the
estimated autocorrelations are within the 95% confidence interval. These results support
the conclusion that our MCMC iterations have converged.

(a) (b)

Figure 4. Trace plots, (a) trace plot for θ4, (b) trace plot for b2.

(a) (b)

Figure 5. Autocorrelation plots, (a) autocorrelation plot for θ4, (b) autocorrelation plot for b2.

5. Simulation Study and Validation Test

We design a simulation study to verify the accuracy and effectiveness of the parameter
estimations and the model predictability. The exploratory data analysis showed in this
section should provide supports for the proposed NB-GLMM model. The simulation model
is established in accordance with similar assumptions and design scheme of our analytical
model. For demonstration purpose, this simulation study uses the same multivariate
normal distribution estimated from Section 4.2. Given the sets of coefficients from multi-
variate normal distribution, we can generate target variable counts from generalized linear
relationships. True values of model parameters are taken from Table 5 and Appendix A.
According to the hierarchical requirements, we first draw 69 βs from a 6-dimensional
multivariate normal model with mean θ and variance Σ; together with posterior mean of
b, they consist 69 sets of independent quarter coefficients. Multiplying 69 sets of coeffi-
cients to the manipulated covariates using (7) leads to 69 logarithm mean of the negative
binomial distribution. Combining those mean parameters with dispersion parameters we
estimated previously, we generate 16 observations on uniquely identified combinations
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for each quarter, which results a total of 1104 observations. In this way we make sure
that the simulated data follows the same patterns as experimental data. The new data set
of 1104 testees is generated using the MCMC estimates obtained on the original dataset.
Taking these observations as one dataset, we further generate 100 datasets following the
same algorithm. Simulated datasets are then investigated under the same procedure as
presented in Section 3.2. The estimated hyper-parameters are determined using MCMC and
M-G methodologies, as well as maximum likelihood estimation under Bayesian framework.
Here the MCMC analyses utilize the same prior distributions and the starting values are
the same as obtained from the empirical estimation.

The estimated posterior means of coefficient parameters and the relative differences
(errors) between the true and estimated values obtained under our modeling and estimation
procedures are displayed in Table 6, where the relative error is calculated by dividing the
difference of the estimated value and its corresponding true value by its true value (used
for simulation). As seen from Table 6, differences between the true value and the estimated
posterior means, illustrated by relative errors, are all relatively small, implying that these
estimated posteriors are all centered compactly around their true values. On the other hand,
all the estimated results from our simulation study have over 99% confidence intervals
where the true values fall into. All these imply that our estimation algorithm is effective
and estimation results are satisfied in terms of their accuracy.

Table 6. Simulation summary results.

Regressor Parameter True Values Estimated Mean Relative Error

South θ1 1.2536 1.2018 −0.0413
West θ2 2.2002 2.2524 0.0237

Northeast θ3 0.7115 0.7429 0.0442
ine Int. θ4 −1.4176 −1.5368 0.0841

ine Non-Bus. θ5 −0.2181 −0.2335 0.0708
ine Ave-Size θ6 −0.1699 −0.1742 0.0255
ine Time1 b1 0.5892 0.5809 −0.0141

Time2 b2 −1.4591× 10−2 −1.4202× 10−2 −0.0267
Time3 b3 1.0075× 10−4 0.9913× 10−4 −0.0161

Note: Time1, Time2 and Time3 represent the Time to the power 1, 2 and 3, respectively.

To examine the model predictability and its accuracy under our GLMM settings, we
employ 5-fold cross-validation procedure to have an objective evaluation of the prediction
performance. Cross-validation was first applied when evaluating the use of a linear
regression equation for predicting a criterion variable (Mosier 1951). It provides a more
realistic estimate of model generalization error by repeating cross-validations based on the
same dataset with large calibration/training samples and small validation/test samples. In
particular, we randomly divide the dataset 10 times into five folds; four of them are used
to train the GLMM and remaining one is used to compare its predicted values and actual
ones. The performance of the test datasets should be similar to that of the training datasets.
Our purpose of conducting cross validations is to ensure that our model has not over-fitted
the training dataset and that it performs well on the test dataset. In order to testify our
GLMM prediction accuracy, we also fit our training dataset to Poisson and NB regression
models, respectively. The root mean squared error (RMSE) metric is taken as a summary fit
statistic, which can provide useful information for quantifying how well that our GLMM
fits the dataset. A good performance with a relative low RMSE indicates that our proposed
GLMM is fine-tuned. RMSE values are calculated by

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2
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where n is the number of tested observations, yi is the ith actual target value, and ŷi is the
ith predicted value based on trained model.

Table 7 gives summary fit statistics for Poisson regression, NB regression, and NB-
GLMM on training dataset and test dataset. We first compare training set RMSEs for model
accuracy. The predicted accuracy of three models is compared under same training set
measured by RMSE. The lowest training RMSE value of GLMM implies that it has the
highest prediction level. We then compare GLMM RMSEs between the training set and the
test set to test over-fitting. According to our cross validation results, the training set has a
mean of 4.6384 RMSE which means that the average deviation between the 69 predicted
quarterly counts and the actual quarterly ones is 4.6384.

A 4.8481 RMSE of the test dataset is close enough to that of the training dataset, which
means that our model is not over-fitted. A higher RMSE of the test dataset is judged as an
improvement in model fit when using the training dataset to build the model. Given the
fact that two RMSEs do not have much difference, there is no evidence showing that our
GLMM is over-fitted. These two relatively low values of RMSE also show that our model,
GLMM, achieves the best model accuracy for frequency counts predictions among other
tested models.

Table 7. Summary fit statistics.

Partition Training Set Test Set

Model Poisson Negative Binomial GLMM GLMM
RMSE 5.1749 5.0516 4.6384 4.8481

6. Practical Implications

In this section, we discuss the potential applications and practical implications of
our modeling results in cyber risk mitigation and management. We have proposed a NB-
GLMM with group-specific fixed effects and among group random effects on some featured
variables including the type of breached, type of organizations and their geographical
location and associated average severity caused by data breaches under these uniquely
identified features. We also consider the impact of the trend over time on the breach
frequencies. In general, this study can increase the awareness that it is important to analyze
the growth trends of cyber incidents frequency among sub-characteristic groups. We
discuss below the impact of our modeling and predictive analytic approaches in relation
to cyber risks from both the perspective of the organization (potential insured) and the
insurance company (insurer), as well as other important stakeholders such as corporate
information technology (IT) and data security officers, and data scientists.

From the perspective of organizations, our results provide quantitative insights to
organizations with different entity types and locations, which encourages firms to adopt
new techniques and technologies in managing risks with respect to the cyber-related risks
they are facing. Gordon and Loeb (2002) present an economic model that can be used to
determine the optimal amount to invest to protect a given set of information. The model
takes into consideration the vulnerability of the information to a security breach and the
potential loss it may cause. Given a company’s physical and geographical characteristics,
our GLMM model is able to predict their estimated quarterly data breach frequencies so that
firms can determine whether to accept the risk or to seek out risk transformation in order to
mitigate risks. Mazzoccoli and Naldi (2020) propose an integrated cyber risk management
strategy that combines insurance and security investments, and investigate whether it can
be used to reduced overall security expenses. The optimal investment for their proposed
mixed strategy is derived under several insurance policies. This type of risk management
strategies could also include the consideration of the risk over a specified time horizon; our
model can provide an effective predictive guidance for managing cyber risks with respect
to data breach incidents occurred within a quarterly time interval. The organizations could
act based on our findings when they put cyber risk management into practice.
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In some cases, managing cyber risks through internal controls would be impractical
or too costly especially when organizations are facing high frequency of breach incidents.
Consequently, organizations may seek insurance coverage as alternative means to transfer
their cyber related risks. Reducing cyber risk exposures by purchasing insurance also
take advantage of reducing the capital that must be allocated to the cyber risk manage-
ment. In general, cyber insurance combined with adequate security system investments
should allow organizations to better manage their cyber-related risks. Young et al. (2016)
present a framework that incorporates insurance industry operating principles to support
quantitative estimates of cyber-related risk and the implementation of mitigation strategies.

From the perspective of insurance companies, besides those incentives from orga-
nizations to increase cyber insurance purchases, our results also encourage insurance
companies to think about how much premiums they want to collect because they expect
to be paid adequately to accept the risk. Current pricing of cyber insurance is based on
expert models rather than on historical data. An empirical approach to identifying and
evaluating potential exposure measure is important but challenging due to the current
scarcity of reliable, representative, and publicly available loss experience for cyber insur-
ance. This paper avoids this limitation by illustrating how to utilize available full exposure
data to obtain a quantitative idea of cyber premium pricing. We present a methodology
to rigorously classify different risk levels of insureds. Our modeling results can ease one
of the problems that cyber risk insurers face, the disparity in premiums with respect to
different characteristic groups, by forecasting loss frequency on different characteristic
segmentations. Geographical area is one of the most well-established and widely-used
rating variables, whereas business type is considered as one of the primary drivers of cyber
claims experience.

Ideally, the cyber insurance rating system should consider various rate components,
such as business type and geographic location in our model, when calculating the overall
premium charged for cyber risks. The portion of the total premium that varies by risk
characteristics, shown as a function of the base rate and rate differentials, is referred to as a
variable premium (Werner and Modlin 2010). Our work can be directly applied in setting
variable premium factors by using posterior frequency distributions upon different risk
characteristic segments. The premium P under the standard deviation premium principle
(Tse 2009) for pricing variable premium, for example, is given by

P = E[S] + θ
√

Var(S),

where S is the aggregated total loss, and θ is the loading factor. To calculate the premium rate
P in this case, the first two moments of the distribution of S need to be determined. We use a
quarter as our investigation window period which is the same as our NB-GLMM frequency
time interval. The severity portion that we use to calculate the aggregate quarterly loss is
based on the latest three years quarterly average loss amount (number of data breaches
recorded) for the purpose of simplicity. Using the posterior frequency distributions on
characteristic segments obtained in Section 4.2, we generate a set of total 16 aggregate loss
distributions for all the level combinations. By using the frequency-severity technique, the
aggregated quarterly loss distribution S can be obtained. We then apply log-log model2

raised by Jacobs (2014) (also used in (Eling and Loperfido 2017) to estimate prices for cyber
insurance policies) to convert the number of records breached into its corresponding dollar
amount loss.

Let SL be the insurance payment per loss with policy limit u and deductible d. The kth
moment of SL can be calculated by

E
[(

SL
)k
]
=
∫ u

d
xk fS(x)dx + (d + u)k(1− FS(d + u))− dk(1− FS(d)), (8)

(Klugman et al. 2012). The mean and variance of SL, E[SL] and Var(SL), can be determined
by (8) using bootstrap from set of posterior distributions of coefficients.
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Table 8 lists predictions of next3 quarter aggregate monetary loss of internal breach
types on two representative geographical locations Northeast and West with or without
deductible (of amount USD 10,000) and/or policy limit (of amount USD 1 million).

Based on these results, we have several interesting findings from different perspec-
tives. Firstly, there is a significant difference in loss amount between the Northeast and
West regions. Estimated loss amount for Northeast region ranges from USD 197,891 to
USD 2,283,023, whereas that for West area ranges from USD 1,408,541 to USD 14,661,661.
Secondly, non-business organizations face much higher cyber risks than business organi-
zations do according to their more than 10 times estimated loss differences. Furthermore,
whether having deductibles makes no big difference in cyber losses as almost the same
estimated loss amount with and without a deductible (of amount USD 10,000) is observed.
Last but not least, setting a maximum coverage loss amount can reduce covered cyber
losses gigantically in non-business organizations compared with that in business organi-
zations. Those insights are worth to consider while setting premium rates and designing
insurance products in order to reach an equilibrium covering limited risk by sufficient
amount of premiums. These quantitative insights provide relative differential rates infor-
mation when setting adjusted manual rates in premium pricing. Insurance companies are
able to maintain high solvency in the differentiated pricing case compared to the case of
non-differentiated pricing (Pal et al. 2017).

Table 8. Quarterly aggregate loss in dollar amount.

Location Business Type Deductible Max. Coverage Estimated Loss

Northeast

Business

- - USD 197,891
USD 10,000 - USD 188,469

- USD 1M USD 197,891
USD 10,000 USD 1M USD 188,469

Non-Business

- - USD 2,283,023
USD 10,000 - USD 2,273,881

- USD 1M USD 1,164,335
USD 10,000 USD 1M USD 1,162,902

West

Business

- - USD 1,408,541
USD 10,000 - USD 1,398,568

- USD 1M USD 1,264,013
USD 10,000 USD 1M USD 1,260,245

Non-Business

- - USD 14,661,661
USD 10,000 - USD 14,651,699

- USD 1M USD 1,680,241
USD 10,000 USD 1M USD 1,680,149

In addition to a better idea of defining risk classes, the paper illustrates how to
work with current available data and update the model components and parameters by
collected cyber related data over time. Our model decomposes risk effects on cyber breach
frequencies into fixed effects and random effects based on classified characteristics, average
severity and non-linear time trend effects. Bayesian statistics are particularly useful in
simulating from the posterior distribution of the number of incidents (claims) in a future
quarterly based time period given risk characteristics. Due to the nature of Bayesian
methodology, some of the assumptions, such as the polynomial time trend, and parameters
choices might be updated in the future once suitable data is available. Moreover, individual
features of the model can be refined or replaced to incorporate properties of given internal
datasets without changing the overall model structure. The updates and modifications
enable our model to be a precise predictor for data breach frequencies.

7. Conclusions

This paper develops a statistical model for cyber breach frequencies that considers not
only characteristics such as risk profile, location and industry, but also average loss sizes and
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time effects. It provides an effective and comprehensive modeling approach for predictive
analytics due to the consideration of dependent and correlated risk aspects. We believe that
our study makes an important and novel contribution to the actuarial literature in the sense
that our NB-GLMM for cyber breach frequencies considers risk category, company census,
severity dependence and time trend effects together in quantifying and predicting quarterly
number of data breach incidents, a fundamental quantity for appropriately setting the
manual rates.

The study of cyber risks is important for insurance companies in mitigating and man-
aging their risks given that the functioning of the insurance business is a complex process.
In this view, our study is of practical value for insurance companies, since the consider-
ation of the most dangerous risks for each business entity will allow forming a relevant
information security for the company. Enterprises need to take several measures in dealing
with cyber risks: operations based on statistical modeling in actuarial analysis process,
ensuring the balance and adequacy of tariffs in pricing process and adjusting premium
rates in insurance marketing. Our research results can be used as a differential indicator on
different organization types and geographical locations. In addition, our study can also be
useful for data security officers and scientists, and other potential corporate stakeholders
for them to better understand the impact of the cyber risks for business operations.

Another important aspect of this study is the use of the publicly available PRC data on
developing actuarial approaches to quantify cyber loss frequencies. However, the quality
of available data and whether the data represents well cyber risks in general also lead
to a limitation of this paper. The fact that firms do not reveal details concerning security
breaches reduces data accuracy, and not voluntarily reporting cyber breaches leads to
data inadequacy. Moreover, Privacy Rights Clearinghouse has stopped updating latest
breach incidents since 2019, which causes data inconsistency in a time trend manner. The
availability of high-quality data such as policy or claim database in the future would
open up new research opportunities. Our model is subjective and can be modified to
accommodate the features of new dataset and the purpose of prediction.

Despite the limitations, the proposed NB-GLMM makes a notable methodological
contribution to the cyber insurance area as it provides a theoretically sound modeling
perspective in frequency quantification, and provides a practical and statistical framework
and approach for practitioners to customize and update based on their predictive needs. In
the next step of our research, we are going to analyze zero-inflated heavy tailed severity
(the number of data breached due to breach incidents and their corresponding monetary
losses incurred) using finite mixture model and extend the analysis using extreme value
theory. Together with GLMM frequency predictive model, we can simulate aggregate
full insurance losses for given characteristics. Moreover, we will use a numeric approach
to test predicted overall aggregate claim amounts under different factor combinations in
any projecting period in order to make characterization of premiums. For instance, pure
technical insurance premiums can be expressed as a VaR or TVaR metric and computed from
the loss distribution of each risk category. Lastly, this two-part severity-frequency actuarial
quantification method seeks to overcome some of above-mentioned data limitations such
as inadequacy and inconsistency.
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Appendix A. Posterior Estimation of Variance–Covariance Matrix

The posterior estimation of variance–covariance matrix Σ:

Σ̂ = (σ̂ij) =



0.0893 0.0513 0.0763 0.0041 −0.0002 −0.0061
0.0513 0.1005 0.0641 −0.0126 −0.0097 −0.0072
0.0763 0.0641 0.1166 0.0133 0.0066 −0.0084
0.0041 −0.0126 0.0133 0.0421 0.0115 −0.0008
−0.0002 −0.0097 0.0066 0.0115 0.0199 −0.0003
−0.0061 −0.0072 −0.0084 −0.0008 −0.0003 0.0008


where σ̂ij is the mean of posterior distribution of σij.

Notes
1 Unknown types of breach and business have been eliminated due to their incomplete information.
2 ln(dollar amount loss) = 7.68 + 0.76 · ln(records breached).
3 Since the available range of PRC dataset is from 2001 to 2018, here next quarter could be the next quarter after latest available

data.
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