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Abstract: Cybersecurity breach probability functions describe how cybersecurity investments im-
pact the actual vulnerability to cyberattacks through the probability of success of the attack. They
essentially use mathematical models to make cyber-risk management choices. This paper provides
an overview of the breach probability models that appear in the literature. For each of them, the
form of the mathematical functions and their properties are described. The models exhibit a wide
variety of functional relationships between breach probability and investments, including linear,
concave, convex, and a mixture of the latter two. Each model describes a parametric family, with
some models have a single parameter, and others have two. A sensitivity analysis completes the
overview to identify the impact of the model parameters: the estimation of the parameters which
have a larger influence on the breach probability is more critical and deserves greater attention.
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1. Introduction

Cyberattacks are continuously increasing, as highlighted by several sources. The COVID-19
pandemic over the last three years accelerated an existing trend, as highlighted in the
survey by Georgescu (2021). The number of companies experiencing more cybersecu-
rity incidents is up to 60%. In particular, a 13% increase in ransomware was observed
Verizon Risk Team (2022). Moreover, a threefold increase in Remote Desktop Protocol
(RDP) attacks occurred Georgescu (2021). Though the shift to remote work during the
pandemic may be considered the trigger for many of the latest trends, the rising trend of
cybersecurity incidents has been going on for several years. After analyzing data provided
by Advisen, a US-based organization that acquires and sells cyberloss and incident data
to insurers, it was found that reinsurers, brokers, and cybermodeling firms, Palsson et al.
(2020) experienced a steady increase in cyberincidents over the years, covering since 2018.
Xu et al. (2018) tried to find a model for the time series of hacking breaches, observing a
sharp decrease in the interarrival time of incidents (hence, an increase in their frequency)
starting in 2016. Going a bit backwards, Wheatley et al. (2016) highlighted that the overall
frequency of large data breaches has increased in the period ending in 2015 (due especially
to outside-the-US events), driving the growth in the overall volume of breached records.
Finally, Maillart and Sornette (2010) identified faster-than-exponential growth from 2000
to 2006, i.e., roughly twenty years ago. That marks a very long period of practically uninter-
rupted growth of cybersecurity issues. It has to also be noted that not all cyberincidents are
reported: Sangari and Dallal (2022) have proposed an approach to estimate unaccounted in-
cidents and correct the count of incidents. Bothos et al. (2021) adopt an econometric model
to predict the probability of an attack, considering bug bounties and the prizes offered
for white-hat hackers in a time series model. A contagion model for the attack is instead
suggested by Chiaradonna and Lanchier (2021), where contagion spreads through the edge
of the network, moving with different probabilities towards lower-level and higher-level
assets. Contagion is similarly analyzed by Xu and Hua (2019), where both Markovian and
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non-Markovian models are employed. Machine learning is instead employed to predict
attacks in (Yeboah-Ofori et al. 2021).

Aside from the technical disruption caused by cyberattacks, their economic conse-
quences have been a significant issue of concern in cybersecurity management since long
ago, as reported in the economic-grounded cyber-risk management framework put forward
by Jerman-Blažič et al. (2008); Rodrigues et al. (2019). Costs related to cybercrime belong to
several categories, as listed by Eling and Wirfs (2019). The measurement (or estimation)
of the losses caused by cyberattacks has been addressed by several authors. The use of
Value-at-Risk as a metric for cyberlosses has been advocated by Erola et al. (2022). A similar
approach addressing extreme risks is considered by Strupczewski et al. (2018), who exploit
the SAS OpRisk Global Database. Additional metrics, such as the risk-adjusted return on
security investment and risk-adjusted return on capital, have been proposed by Orlando
(2021). Giudici and Raffinetti (2022) proposed the use of ordinal regression and Shapley val-
ues instead to describe the level of cyber-risk as a means to progress towards explainability.
In addition to the immediate consequences of attacks, being exposed to cyberattacks has
far-reaching consequences on the market value of companies, as investigated by Arcuri
et al. (2017) and Hovav and D’Arcy (2003). Lin et al. (2021) have reversed this point of view,
using the public stock market response to estimate cyberlosses. A similar reverse approach
has been put forward by Woods et al. (2021), who use particle swarm optimization to
derive a cyberloss distribution from cyberinsurance prices. The estimation of the actual
costs is a research theme itself, as shown in several papers, e.g., by Hua and Bapna (2013);
Kamiya et al. (2020); Poufinas et al. (2018); World Economic Forum (2015) and The Ponemon
Institute (2016). An econometric approach relating cyberlosses to company size has been
proposed by Yamada et al. (2019). The availability of data, especially through open access
databases, has been highlighted as a further problem that hampers all attempts to tackle
cyber-risk and devise a proper cyber-risk management strategy Cremer et al. (2022).

From an economic point of view, strategies to manage cyber-risks have the natural aim
of minimizing the overall loss, where the term overall implies that we must factor in the eco-
nomic values of many terms in the budget equation. Under this aspect, the set of strategies
that we may consider in cyber-risk management is not at all different from the taxonomy of
strategies available for general risk management Scala et al. (2019), i.e., the three categories
of risk avoidance, risk transfer, and risk mitigation (or a combination thereof), as described
by Paté-Cornell et al. (2018) and Refsdal et al. (2015). A historical survey of cyber-risk
management with an eye on the future is reported by McShane et al. (2021).

While risk avoidance is not a viable option in many cases, since it would imply a
significant sacrifice of usability, as shown by Murphy and Murphy (2013), we can focus on
the latter two.

Risk transfer is typically carried out by buying an insurance policy, where risk is trans-
ferred from the insured to the insurer upon paying a premium. Several efforts have been
devoted to premium computation formulas. An approach based on the first two statistical
moments of loss (mean–variance) has been employed by Mukhopadhyay et al. (2019),
while an approach based on a more accurate (and demanding) statistical characterization
of losses (up to the fourth moment) has been proposed by Naldi and Mazzoccoli (2018) and
Mazzoccoli and Naldi (2020a). Instead, Young et al. (2016) have proposed incorporating
a discount in premium formulas and incentivizing all actions aimed at reducing the loss.
That proposal has been advocated by Rosson et al. (2019) in the context of the power sector.
While these approaches assume loss to be known (or at least estimated), Antonio et al.
(2021) have proposed to incorporate the network structure into pricing to account for the
presence of clusters in the diffusion of attacks. Lopez and Thomas (2022) have analyzed the
possible use of parametric insurance, where a parameter related to the loss is employed
instead of the true loss to determine compensation; the parametric approach allows setting
up insurance policies when the amount of information about risk is limited. Moreover, the
adoption of security audits to design insurance contracts more accurately has been put for-
ward by Khalili et al. (2018). Additionally, the relationship between insurance and pricing
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sustainability has been investigated by Mastroeni et al. (2019). The traditional distinction
between insured and insurer is abandoned in (Vakilinia and Sengupta 2018), where a
coalitional approach is proposed, with organizations playing the role of insured and insurer
at the same time, adopting crowdfunding, or outsourcing a common insurance platform.
An excellent survey of cyberinsurance has been carried out by Marotta et al. (2017).

Risk mitigation is instead carried out by investing in tools and procedures that can
help to reduce the probability of success for cyberattacks and/or the extent of losses when
cyberattacks succeed. Mayadunne and Park (2016) have related those investment decisions
to the risk-taking attitude of the company. Naldi et al. (2018) have investigated the liability
consequence of not investing enough in security. The optimization of investment has been
the subject of many papers, which mainly differ on the relationship between investment and
security performance. The seminal paper for such an approach is due to Gordon and Loeb
(2002). A mixed-integer linear programming formulation has been adopted in the context of
Industry 4.0 supply chains by Sawik (2020). Instead, most papers adopt a straightforward
net profit maximization. Wu et al. (2015) employ a game-theoretic approach to analyze the
investment strategies of two interconnected firms under different types of attack (targeted
vs opportunistic). The optimal trade-off between investing in knowledge and expertise
versus investing in deploying mitigation measures has been investigated by Wang (2019).
The spread of attacks is described through a Susceptible–Infected–Susceptible (SIS) model
in Mai et al. (2021), where security investment, recovery costs, and economic losses are
considered.

The mixed approach, consisting in investing in reducing the vulnerability and buying
an insurance policy to cover the residual risk, was first dealt with by Young et al. (2016),
and has been further explored by Mazzoccoli and Naldi (2020b), who have examined
the robustness of risk management strategic choices when the information about the
system under attack is uncertain. Skeoch (2022) has also embraced a similar approach, but
employing a utility function (either logarithmic or exponential) and adopting a percentage
premium. The analysis has then been extended by Mazzoccoli and Naldi (2021) to the case
of a firm with multiple branches and interdependencies, chasing the problem introduced by
Xu et al. (2019). The importance of interdependencies is also examined by Uuganbayar et al.
(2021), who examine the possible incentivizing impact that cyberinsurance has on security
investments in the case of interdependence. While these studies are concerned either with
the variety of attacks or the variety of targets, a slightly different subject is analyzed by
Yaakov et al. (2019), who consider choosing among a variety of countermeasures, i.e.,
including specific mitigation tools (such as intrusion detection systems and firewall) and
reporting the results of a game played by fictional decision makers.

When pursuing a mitigation approach (or a mixed one), a crucial role is played by the
so-called security breach function, i.e., the function describing the impact of investments on
the probability that the attack is successful. Since that function returns a probability value,
modeling the vulnerability through the security breach probability function allows us to
fulfill the risk description step, which is the third step involved in any risk analysis process,
as set in Aven (2011). Moreover, it allows us to evaluate the risk through the computation of
the expected value of losses when we associate a loss with each breach event. The choice of
a suitable model for the security breach probability function is then a fundamental step in a
probabilistic risk assessment (PRA) approach to risk analysis. Though several functions
have been proposed for that task, we cannot list a single attempt to line them up and
examine them using the same systematic approach. The correct choice of the function, often
tailored to the specific type of attack, is essential to properly choose the amount to invest in
security. In this paper, we propose a description and analysis of all the breach probability
functions that appeared in the literature by adopting a unifying approach. In particular, we
provide the following contributions:

• We propose a list of properties that a breach probability function might/should have
(Section 2.2);

• We report the breach probability functions appearing in the literature (Sections 2.3–2.11);



Risks 2022, 10, 220 4 of 29

• We analyze their properties as above (Sections 2.3–2.11);
• We examine the impact of their parameters (Section 3);
• We report a comparison of models through different aspects with the purpose of

helping the reader choose the most suitable for the case at hand (in the Conclusions).

It is to be noted that we strongly advocate the principle that there is no one size fits all.
The range of investment choices may be very large, since they may differ not just for their
size (monetary value) but also by the device (e.g., investing in antivirus software rather
than in a network firewall), the technology employed (e.g., adopting a software based on
known malware signatures rather than on a machine learning approach), or the system
location where the security devices are placed (e.g., on any single machine or through a
centralized approach). Moreover, the impact of each investment choice depends on the
type of attack, so some choices are better suited to defend against a specific type of attack.

2. Security Breach Probability Models

The security breach probability function describes how the vulnerability of the system
(here embodied by the probability of a breach) is reduced when the company invests in
security, i.e., the relationship between investments and security levels. Though several
models have been proposed for that function, there are some common features that those
models share, i.e., some fundamental properties. In this section, we first outline those
properties that any security breach probability function should possess and then provide a
detailed survey of the models proposed in the literature.

2.1. Definitions

Before dealing with the properties of the security breach function, we define what it
describes more precisely. We adopt the glossary provided by the Society for Risk Analysis
Aven et al. (2018), but we provide a bridge with the terms employed in the cybersecurity
literature where the standards in the two communities differ.

The event of interest here (see the Definition 1.7 of Aven et al. (2018)) is a data breach,
i.e.,1 “an incident where information is stolen or taken from a system without the knowledge
or authorization of the system’s owner.” This definition is consistent with what the authors
of the three papers providing the model described here state. Namely, Gordon and Loeb
define the security breach probability function as the function providing the probability
that an information set is breached Gordon and Loeb (2002). Hausken and Wang follow
suit, providing alternative models for exactly the same event Hausken (2006); Wang (2017).
For all purposes, the information set breach they consider can be considered a synonym of
a data breach.

We do not deal here with the adverse consequences of that breach. The severity of
the damage could be quantified (as Gordon and Loeb do) by the amount of money that
is lost as a consequence of the breach (see Definition 1.8 of Aven et al. (2018)). As an
example of studies considering the influence on consequences other than vulnerability,
Wang (2019) analyze separately the role of investments in separately reducing threats (i.e.,
the probability of an attack), vulnerability (i.e., the probability that an attack succeeds), and
impact (i.e., the loss if an attack succeeds).

The threat here is represented by the intention of the attacker (who wishes to get hold
of the data) to initiate an attack (see the Definition 1.18 of Aven et al. (2018)).

The vulnerability in the risk analysis context (as reported in the Definition 1.19 of
Aven et al. (2018)), i.e., conditional on the risk event, is the probability that a data breach
occurs. In the cybersecurity economics literature Gordon and Loeb (2002); Hausken (2006);
Wang (2017), a distinction is made between the vulnerability when an investment in
security is made (which is the breach probability function for which we later provide the
relevant models) and the vulnerability when no investments are made (which is simply
called vulnerability in the cybersecurity economics literature). For the sake of maintaining
the distinction while employing the SRA terminology, we refer to the breach probability
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function as simply the vulnerability, and use the term a priori vulnerability to denote the
vulnerability in the absence of investments.

The vulnerability is expected to be lower than the a priori one, as investments are made
in cybersecurity. If we indicate the investment by z ∈ R+, and the a priori vulnerability as
v ∈ [0, 1], the resulting vulnerability is S(z, v), also known as as security breach probability
function. Its notation explicitly shows that it is a function of both the a priori vulnerability
and the investment. Both the a priori vulnerability and the vulnerability are measured as
probabilities. Its range is then defined as S : R+ × [0, 1]→ [0, 1].

The way we act on the risk here is just through mitigation (see Definition 3.5 of the
SRA glossary Aven et al. (2018)). Risk is not canceled but just reduced. No risk avoidance
or risk transfer measures are contemplated here. We can envisage several mechanisms
to reduce risks. Money can be spent on any of the countermeasures typically adopted to
prevent breaches from occurring. For example, data breaches may be reduced by:

• Purchasing antivirus software;
• Installing firewalls inside the network;
• Deploying tighter access control policies;
• Renewing and updating the ICT infrastructures;
• Having employees attend training courses to increase their awareness of cybersecurity

risks and develop more cautious behavior.

Coming back to the security breach probability function, it may be more convenient
to deal with the normalized breach probability function, since we are mainly interested in
how investments reduce the breach probability down from v:

S∗(z, v) =
1
v

S(z, v). (1)

2.2. Fundamental Properties

We expect any security breach probability function to possess several essential char-
acteristics. Here, we consider a superset of those established in Gordon and Loeb (2002),
which we may include some alternatives. These properties are reported hereafter in full:

P1: S(z, 0) = 0, ∀z ≥ 0;
P2: S(0, v) = v, ∀v;
P3: lim

z→∞
S(z, v) = 0, ∀v ∈ (0, 1)

P4: ∂S(z,v)
∂z < 0, ∀v ∈ (0, 1) and ∀z > 0;

P5.1: ∂2S(z,v)
∂z2 > 0, ∀v ∈ (0, 1) and ∀z ;

P5.2: ∂2S(z,v)
∂z2

{
< 0 if z < zi
> 0 if z > zi

∀v ∈ (0, 1)

P5.3: ∂2S(z,v)
∂z2 < 0, ∀v ∈ (0, 1);

P5.4: ∂2S(z,v)
∂z2 = 0, ∀v ∈ (0, 1) and ∀z.

Property P1 concerns the impact of the a priori vulnerability. If the information set
is completely invulnerable, it will remain perfectly protected for any information security
investment, including a zero investment.

Property P2 concerns the behavior of the system if no investment in security is made.
In that case, the vulnerability of the system equals its a priori vulnerability v.

Property P3 states that the probability of a security breach can be made to be arbitrarily
close to zero by investing sufficiently in security.

Property P4 embodies the general requirement that information is made more secure
as the company invests more in security.

Properties P5.x all concern the second derivative, i.e., the change in the decay of the
breach probability as the company invests more in security. It is to be noted that these
properties are alternative to each other.
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Under Property P5.1, the vulnerability decreases at a slower rate as the investment
grows. This property embodies the law of diminishing returns. If the breach probability
follows this property, investing beyond a certain threshold does not pay because the
reduction in the expected loss due to the cyberattack is not enough to justify the additional
investment.

Property P5.2 again concerns the rate at which the effectiveness of security investments
changes. In this case, the breach probability decreases first at a slow rate (when investments
are very low) but then gathers momentum and is significantly abated as the investment
grows to end up approaching zero slowly when investments get even bigger.

Under Property P5.3, the negative slope of the security breach function becomes even
more negative as investments grow. Coupling Property P4 with P5.3, we obtain a concave
breach probability function, where investments have larger effectiveness as they grow.
Of course, a continuing concavity would bring the breach probability below zero, which
would violate probability principles, so that this model is valid up to the value z∗ such that
S(z∗, v) = 0.

Finally, Property P5.4 simply embodies the case of a linear breach probability function.
In the literature, we found nine functions that possess all these properties (i.e., Proper-

ties P1 through P4 and one of the P5.x alternatives):

• Gordon–Loeb Class One;
• Gordon–Loeb Class Two;
• Hausken Class Three;
• Hausken Class Four;
• Hausken Class Five;
• Hausken Class Six;
• The Exponential Power Class;
• The Proportional Hazard Class;
• The Wang Transform Class.

In the following subsection, we describe each of them and analyze their properties.
For each model, we roughly follow the same pattern: (a) introducing the mathematical
function that describes the model; (b) checking that it possesses the five fundamental
properties; (c) identifying the functional formal that relates the breach probability to the a
priori vulnerability and investments; and (d) describing the role of parameters.

2.3. Gordon–Loeb Class One Model

The first security breach probability function we examine is the Gordon–Loeb Class
One function (GL1 for short), introduced by Gordon and Loeb (2002). It has the following
expression

SGL1(z, v) =
v

(α1z + 1)α2
(2)

where the parameters α1 > 0 and α2 ≥ 1 measure of the productivity of information
security.

This function possesses Properties P1− P4 and Property P5.1:

P1: SGL1(z, 0) = 0
(α1z+1)α2 = 0;

P2: SGL1(0, v) = v
(α1·0+1)α2 = v;

P3: limz→∞ SGL1(z, v) = limz→∞
v

(α1z+1)α2 = 0;

P4: ∂SGL1(z,v)
∂z = − α1α2v

(α1z+1)α2+1 < 0;

P5.1: ∂2SGL1(z,v)
∂z2 =

α2
1α2

2v
(α1z+1)α2+2 > 0.

The model is graphed in Figure 1. It depends linearly on the a priori vulnerability. The
relationship with investments is a bit more complex since we have a modified (scaled and
shifted) power-law functional form.
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Figure 1. Impact of the investment in security z on the normalized GL1 security breach probability
function.

The two parameters α1 and α2 modulate the relationship with the investments. Val-
ues provided for them in the seminal paper by Gordon and Loeb (2002) are α1 = 10−5

and α2 = 1. It is to be noted that, since α1 acts as a scaling factor for z, its value also
depends on the unit of measurement chosen for the investment (which is dollars in
Gordon and Loeb (2002)).

A special form of the GL1 model (namely, when α2 = 1) has been independently
derived by Huang and Behara (2013) for the case of targeted attacks on a particular node
(one-to-one attacks). The mathematical equivalence of the GL1 model and the model
proposed by Huang and Behara has been proven by Naldi et al. (2018). In their paper,
Huang and Behara (2013) employ the value α1 = 5× 10−6.

This model was used by Mayadunne and Park (2016) to analyze the information
security investment through the simplified functional form of the security breach proba-
bility function used in Huang and Behara (2013). The GL1 model was also employed by
Hua and Bapna (2013) to determine the sensitivity of the investment in security. Then,
it was employed by Gao et al. (2015), who extended the GL1 model, combining the lat-
ter function with factors that took into account risk and investment correlation among
multiples companies. Gordon et al. (2015) used this function to analyze the investment in
security considering some target level of cybersecurity. In the same year, Wu et al. (2015)
demonstrated, using this model, that the optimal security investment level of an intercon-
nected firm against targeted attacks is different from that against opportunistic attacks
and discussed two economic incentives to motivate firms, or rather liability and security
information sharing. Recently, this model was used in a risk management framework by
Gordon et al. (2020) to derive a cost-effective spending level on cybersecurity activities. A
dynamic extension has also been proposed by Krutilla et al. (2021). Mai et al. (2021) employ
a simplified version of this model, where v = 1 and α2 + 1.

2.4. Gordon–Loeb Class Two Model

The second security breach probability function is again due to Gordon and Loeb. It
was introduced along with the GL1 model in their seminal paper (Gordon and Loeb (2002)).
Accordingly, we call it the Gordon–Loeb Type Two function (GL2 model for short). Its
mathematical expression is

SGL2(z, v) = vβz+1, (3)

where β > 0 is a coefficient that measures the effectiveness of security investments: the
larger β is, the more effective the investment. The coefficient β roughly plays the same role
as α1 in the GL1 model, i.e., a scaling factor for the investment z. It is, however, the only
parameter in the function, while the GL1 model has two.

Unlike the GL1 model, the GL2 model bears a nonlinear relationship with both the
investment, and the a priori vulnerability v.
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As in the case of the GL1 model, the GL2 model possesses all the properties of P1− P4
and P5.1:

P1: SGL2(z, 0) = 0βz+1 = 0;
P2: SGL2(0, v) = v0+1 = v;
P3: limz→∞ SGL2(z, v) = limz→∞ vβz+1 = 0;

P4: ∂SGL2(z,v)
∂z = β ln(v)vβz+1 < 0 since ln(v) < 0;

P5.1: ∂2SGL2(z,v)
∂z2 = β2 ln2(v)vβz+1 > 0.

Similarly to the GL1 model, Huang and Behara (2013) derived a model whose mathe-
matical expression is identical to the GL2 model for attacks that propagate epidemically
over a scale-free network (opportunistic attacks). Again, the equivalence of the GL2 model
and that proposed by Huang and Behara (2013) was proven by Naldi et al. (2018).

The model is graphed in Figure 2.

0 0.2 0.4 0.6 0.8 1
·106

0

0.5

1

Investment z

S∗ 2
(z

,v
)

Figure 2. Impact of the investment in security z on the normalized GL2 security breach probability
function.

This model was used, e.g., by Gordon et al. (2015); Mayadunne and Park (2016);
Mazzoccoli and Naldi (2020b); Rosson et al. (2019); Sawik (2020); Wu et al. (2015); Xu
et al. (2019); Young et al. (2016) and Mazzoccoli and Naldi (2021). Young et al. (2016),
Rosson et al. (2019), and Mazzoccoli and Naldi (2020b) used this model to evaluate the
optimal investment in security together with the presence of insurance coverage against
cyber-risks, either through simulation or through closed mathematical formulas. As for
the first model, Gordon et al. (2015) use this function to analyze the optimal investment in
security for some target level of cybersecurity. Mayadunne and Park (2016), as with the
GL1 model, used this function to estimate investment in security by the functional form
employed in Huang and Behara (2013). Wang (2019) also adopted this model to describe the
impact of investments on vulnerability alone. Sawik (2020) presented a mixed-integer linear
programming formulation for the optimization of cybersecurity investment in Industry
4.0 supply chains. He employed this security breach probability function to transform a
nonlinear stochastic combinatorial optimization model into its linear equivalent using a
recursive linearization procedure. Mazzoccoli and Naldi (2021) extended the structure of
the optimization model used in Mazzoccoli and Naldi (2020b) for a single firm, considering
a multi-branch firm in which branches have a risk and investment correlation with the
headquarters.

2.5. Hausken Class Three Model

Hausken (2006) introduced an alternative breach probability function that replaces
one assumption of both GL models, namely the law of diminishing returns embodied by
Property P5.1. That assumption is replaced by Property P5.2, where small investments
have a very small impact, but vulnerability is greatly lowered when investments reach a
critical mass. If investments get even bigger, the law of diminishing returns applies again
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in full. The model proposed by Hausken, called by Hausken himself Class Three (hereafter
H3 model for short) to follow the numbering initiated by Gordon and Loeb, is

SH3(z, v) =
v

1 + γ1(eγ2z − 1)
(4)

where γ1 > 0 and γ2 > 0 are coefficients that measure the productivity of the information
security. Again, the coefficient γ2 is a scaling coefficient for the investment and plays
then the same role as α1 in the GL1 model and β in the GL2 model. The resulting breach
probability function follows a logistic decrease, as can be seen in Figure 3.

0 0.2 0.4 0.6 0.8 1
·106

0

0.5

1

Investment z

S∗ 3
(z

,v
)

Figure 3. Impact of the investment in security z in the Hausken Class Three model.

This function satisfies Properties P1− P4:

P1: SH3(z, 0) = 0
1+γ1(eγ2z−1) = 0;

P2: SH3(0, v) = v
1+γ1(eγ20−1)

= v;

P3: limz→∞ SH3(z, v) = limz→∞
v

1+γ1(eγ2z−1) = 0;

P4: ∂SH3(z,v)
∂z = − vγ1γ2eγ2z

(1+γ1(eγ2z−1))2 < 0.

As hinted, it also possesses Property P5.2 in place of P5.1. The intermediate investment
zi appearing in Property P5.2 can be found by zeroing the second derivative with respect
to the investment z of the security breach probability function:

∂2SH3(z, v)
∂z2 = 0

− γ1γ2
2veγ2z(1− γ1eγ2z − γ1)

(1 + γ1(eγ2z − 1))3 = 0

zi =
1

γ2
ln
(

1− γ1

γ1

)
(5)

This security breach probability function was used by Hua and Bapna (2013) to
determine the sensitivity of the optimal investment in security to confront losses caused by
cyberterrorists and hackers, similarly to what they did for the GL1 model.

2.6. Hausken Class Four Model

This is again a model proposed by Hausken (2006) and is called Class Four, following
the numbering initiated by Gordon and Loeb.

Its mathematical expression is

SH4(z, v) =

{
v(1− εzφ) if z ≤ zu := ε

− 1
φ

0 if z > zu
(6)
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where φ ∈ (0, 1) and ε > 0.
The model is graphed in Figure 4. It combines some functional relationships seen in

the previous models since it is linear in the a priori vulnerability but exhibits a shifted-and-
scaled power-law dependence on the investment. A new feature is, however, the possibility
of achieving total invulnerability (i.e., zero breach probability) if the investment is large
enough (namely larger than zu). Hausken himself admitted that such total invulnerability
is quite unrealistic, which leads to two conclusions: (a) the threshold zu must be set at very
high values; (b) the interesting part of the model is that where z < zu.

0 0.2 0.4 0.6 0.8 1
·106

0

0.5

1

Investment z

S∗ 4
(z

,v
)

Figure 4. Impact of the investment in security z in Hausken Class Four model.

Keeping in mind condition (b), the properties stated in Section 2.2 must be checked
under the hypothesis that z < zu. In that case, we see that the Hausken Class Four model
possesses Properties P1− P4 and, again, P5.1, as the GL1 and GL2 models:

P1: SH4(z, 0) = 0(1− εzφ) = 0;
P2: SH4(0, v) = v(1− ε0φ) = v;
P3: limz→∞ SH4(z, v) = SH4(z, v)|z>zu = 0;

P4: ∂SH4(z,v)
∂z = −εφvzφ−1 < 0;

P5.1: ∂2SH4(z,v)
∂z2 = −εφ(φ− 1)vzφ−2 > 0.

2.7. Hausken Class Five Model

Here, we again have a model proposed by Hausken (2006). The breach probability
appears to have the same mathematical expression as the Hausken Class Four model:

SH5(z, v) =

{
v(1−ωzk) if z ≤ zu := ω−

1
k

0 if z > zu
(7)

The coefficient ω plays the same role of scaling the contribution of the investment as α1 in
GL1, β in GL2, and γ2 in H3. In addition, it assumes again (as in the H4 model) that the
system can be made invulnerable by investing enough in security. Namely, the threshold
beyond which the breach probability is zero is zu. However, the exponent k now lies in
the k > 1 range, which has an impact on the sign of the second derivative of the breach
probability function.

This function possesses the properties P1− P4 plus P5.3:

P1 : SH5(z, 0) = 0(1−ωzk) = 0;
P2 : SH5(0, v) = v(1−ω0k) = v;
P3 : SH5(z, v) = 0 when z > zu;

P4 : : ∂SH5(z,v)
∂z = −vωkzk−1 < 0;

P5.3 : ∂2SH5(z,v)
∂z2 = −vωk(k− 1)zk−2 < 0.
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Small investments are then relatively ineffective but become increasingly effective as
they grow, till reaching the point of complete invulnerability when z > zu, as can be seen
in Figure 5.
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Figure 5. Impact of the investment in security z on Hausken Class Five model.

2.8. Hausken Class Six Model

Here, we have the last of the models proposed by Hausken (2006), which we call
hereafter H6 for brevity. The breach probability is a linear function of the investment

SH6(z, v) =

{
v(1− λz) if z ≤ zu := 1/λ

0 if z > zu
(8)

This model can be seen as a special case of the H4 model, with the simple name change
in the scaling coefficient µ = λ, and when we remove the limitation on the exponent k and
set it as k = 1. The model is graphed in Figure 6.
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Figure 6. Impact of the investment in security z in Hausken Class Six model.

The H6 model keeps the same assumption as models H4 and H5 that total invulnera-
bility can be achieved if investments are large enough, namely beyond the threshold zu. As
in the previous cases, we are interested in examining the properties of this function when it
still exhibits a degree of vulnerability, i.e., when z < zu.

It possesses the following properties:

P1 : SH6(z, 0) = 0(1− λz) = 0;
P2 : SH6(0, v) = v(1− λ0) = v;
P3 : SH6(z, v) = 0 when z > zu;

P4 : : ∂SH6(z,v)
∂z = −λv < 0;

P5.4 : ∂2SH6(z,v)
∂z2 = 0.
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2.9. The Exponential Power Class Model

This model is one of the three proposed by Wang (2017). Its formulation is a bit
different from the models examined so far, since Wang assumes that the system is totally
vulnerable if there is no investment in security, i.e., v = 1. In addition, Wang considers a
benchmark investment B and defines the breach probability as a function of the normalized
investment ẑ = z/B. His breach probability function is then

ŜEP(ẑ) = ŜEP(1)ẑη
. (9)

where η > 0.
The model is plotted in Figure 7.
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Figure 7. Impact of the investment z on the W1 security breach probability function.

We can safely remove the former assumption to make the model more general. Since
removing the assumption that v = 1 is akin to removing the normalization concerning
the a-priori vulnerability, the breach probability function SEP(z, v) can be seen as the
un-normalized version of the original function proposed by Wang:

SEP(z, v) = vŜEP(z/B) = vŜEP(1)(
z
B )

η

= vζzη
,

(10)

where ζ = ŜEP(1)(
1
B )

η

.
Similarly to the Hausken Class Three model, the Exponential Power Class possesses

Properties P1− P4 and P5.2

P1: SEP(z, 0) = 0 · ζzη
= 0;

P2: SEP(0, v) = vζ0 = v;
P3: limz→∞ SEP(z, v) = limz→∞ vζzη

= 0 since ζ < 1;

P4: ∂SEP(z,v)
∂z = ηv ln(ζ)zη−1ζzη

< 0, again since ζ < 1;

P5.2: ∂2SEP(z,v)
∂z2 = vηζzη

zη−2 ln ζ[η ln ζzη + η − 1] ≷ 0.

As to Property P5.2, we note that the term preceding the square bracket is always
negative, since ζ < 1, so that the second derivative is negative if η ln ζzη + η − 1 > 0, i.e., if
the investment is

z <

(
1− η

η ln ζ

)1/η

(11)

We then have a breach probability function that is concave for low investments and con-
vex (concave upward) for high investments; the marking point between low and high
investments being given by Equation (11). This inflection point marks the switch to a lower
marginal impact of investments.
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The Exponential Power Class function has been employed by Feng et al. (2020) to
investigate the competition between two cloud providers trying to sell their cloud security
services while optimizing their investments to maximize their profits. Feng et al. (2020)
adopted ŜEP(1) = 0.5 and η = 0.5 as example values for the model parameters.

Wang (2019) derived an optimal mix of cybersecurity investments in knowledge and
expertise versus deploying mitigation measures using this function.

2.10. The Proportional Hazard Class Model

Wang (2017) introduced a second model, which he called the Proportional Hazard
class, again adopting normalized investment as the independent variable (with the same
benchmark investment B as a normalization parameter). Its form is

ŜPH(ẑ) = (1− (1− ŜPH(1))ẑ−η
), (12)

the parameter η > 0 is the same as that appearing in the Exponential Power Class and is
invariant to changes in the benchmark investment B. The model is graphed in Figure 8.
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Figure 8. Impact of the investment z on the W2 security breach probability function.

Following the same transformation indicated in the first step of Equation (10), we
obtain the breach probability function exponential power class

SPH(z, v) = vŜPH(z/B)

= v
{

1−
[
1− ŜPH(1)

]( z
B )
−η
}

= v
(

1− ξz−η
)

(13)

where ξ = [1− ŜPH(1)](
1
B )
−η

.
The security breach probability function follows properties P1− P4 and P5.2, since

the domain of this function is z 6= 0. The Property P2 must be verified computing the limit
in z = 0

P1 : SPH(z, 0) = 0 ·
(

1− ξz−η
)
= 0;

P2 : SPH(0, v) = limz→0 v
(

1− ξz−η
)
= v since ξ < 1;

P3 : limz→∞ SPH(z, v) = limz→∞ v
(

1− ξz−η
)
= v · 0 = 0, again since ξ < 1;

P4 : ∂SPH(z,v)
∂z = vηz−η−1 ln(ξ)ξz−η

< 0;

P5.2 :∂
2SPH(z,v)

∂z2 = vη ln(ξ)[(−η − 1)z−η−2ξz−η

− ηz−2η−2 ln(ξ)ξz−η
] = −vη ln(ξ)ξz−η

z−η−2

× [η + 1 + ηz−η ln(ξ)] ≷ 0.
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The second derivative in Property P5.2 is negative if η + 1 + ηz−η ln(ξ) > 0, i.e., if the
investment is:

z =

(
− η + 1

η ln(ξ)

)−1/η

(14)

It has been employed by Feng et al. (2020).

2.11. The Wang Transform Class

The last security breach probability function we analyze employs the Wang Transform.
It was introduced by Wang (2017) and then used in the paper by Feng et al. (2020), WT, and
has the form

SWT(z, v) = vΦ[Φ−1(ŜWT(1))− η ln(z)]

= vΦ[Φ−1(ρ)− η ln(z)]
(15)

where ρ = ŜWT(1), Φ(∗) is the cumulative distribution function for the standard normal
distribution, and η > 0 has the same meaning as in the Exponential Power and the
Proportional Hazard classes. The model is plotted in Figure 9.
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Figure 9. Impact of the investment z on the W3 security breach probability function.

This function possesses the four fundamental properties P1− P4 and P5.2

P1 : SWT(z, 0) = vΦ[Φ−1(ρ)− η ln(z)]
0 ·Φ[Φ−1(ρ)− η ln(z)] = 0;

P2 : SWT(0, v) = limz→0 vΦ[Φ−1(ρ)− η ln(z)] = v;
P3 : limz→∞ SWT(z, v) = limz→∞ vΦ[Φ−1(ρ)− η ln(z)] = vΦ(−∞) = 0;

P4 : ∂SWT(z,v)
∂z = − vη√

2πz
e−

1
2 [Φ

−1(ρ)−η ln(z)]2 < 0;

P5.2 :∂
2SWT(z,v)

∂z2 = − vη

z
√

2π
e−

1
2 [Φ

−1(ρ)−η ln(ρ)]2

× {−1 + η[Φ−1(ρ)− η ln(z)]} ≷ 0.

Additionally, zeroing the second derivative with respect to the investment z of the security
probability breach function, the intermediate investment z can be found

z = exp
{

1
η

[
Φ−1(ρ)− 1

η

]}
. (16)

This model has been employed by Feng et al. (2020).

3. Sensitivity of the Security Breach Probability Functions

As summarized in Table 1, all the security breach probability models reviewed in
Section 2 depend on either a single parameter or two parameters. Though those param-
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eters do not change the functional relationship between the breach probability and the
investments, their correct determination is essential for the accurate representation of
reality. Some effort has been devoted to their correct calibration, e.g., by Naldi and Flamini
(2017). Similarly, some effort should be spent on analyzing how their value influences the
above relationship, i.e., the sensitivity of the breach probability to those parameters. Any
calibration task is unavoidably marred by a degree of incertitude on the correct value of the
parameters. Those parameters that bear a greater impact on the breach probability must be
determined with greater accuracy. In this section, we analyze the sensitivity of the breach
probability functions to their parameters in all the models examined. For that purpose, we
employ the quasi-elasticity function. After defining that function, we evaluate it for all the
models described in Section 2.

Table 1. Summary of security breach probability models.

Model Formulation Num. of Parameters

Gordon and Loeb (GL1) v
(α1z+1)α2 2

Gordon and Loeb (GL2) vβz+1 1
Hausken (H3) v

1+γ1(eγ2z−1) 2

Hausken (H4)





v(1− εzφ) if z < ε
− 1

φ

0 if z > ε
− 1

φ
2

Hausken (H5)

{
v(1−ωzk) if z < w−

1
k

0 if z > w−
1
k

2

Hausken (H6)

{
v(1− λz) if z < 1

λ

0 if z > 1
λ

2

Exponential Power (EP) vŜEP(1)(
z
B )

η
1

Proportional Hazard (PH) v[1− (1− ŜPH(1))(
z
B )
−η
] 1

Wang Transform (WT) vΦ[Φ−1(ŜWT(1))− η ln( z
B )] 1

In the following, we use the values reported in Table 2 to plot the quasi-elasticity
functions. Unless otherwise stated, we assume v = 0.65 and z = 105.

Table 2. Values of the parameters used.

Class Parameter Value

GL1 α1 2.7× 10−5

α2 0.5
GL2 β 2.7× 10−5

H3 γ1 0.2
γ2 2.7× 10−5

H4 ε 0.08
φ 0.2

H5 ω 1.89× 10−7

k 1.2
H6 λ 2.5× 10−6

EP η 4.5
PH η 1.8
WT η 1.2

3.1. Quasi-Elasticity

The notion of sensitivity in economics has typically been measured through elasticity,
i.e., the measure of the percentage change in the response variable when an input variable
changes by 1%. The description is well reported in textbooks, such as in Chapter 17 of
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Arnold (2008) or Chapter 6 of Krugman and Wells (2009). It has been widely employed in
the context of cybersecurity risk to measure the sensitivity of the optimal investment with
respect to the two parameters in the GL1 model in Mazzoccoli and Naldi (2020b).

However, here we are concerned with the sensitivity of the breach probability function,
which intrinsically lies in the [0,1] range, so it is more appropriate to employ the quasi-
elasticity instead, which measures the absolute change in the response variable when the
input variable undergoes a relative change. Quasi-elasticity has been employed by Naldi
et al. (2019) to measure the trade-off between fairness and profit in project selection.

In our case, we define the quasi-elasticity of the security breach probability function
with respect to a generic parameter x of the breach probability function:

εx = x
∂S
∂x

. (17)

By multiplying the quasi-elasticity by 100, we obtain the change in the security breach
probability due to a 1% increase in the breach probability function parameter.

3.2. Gordon–Loeb Class One Model Elasticity

Since the Gordon and Loeb Type One model is governed by two parameters (α1 and
α2), we compute the quasi-elasticity function according to Equation (17) for both.

The resulting quasi-elasticity for α1 takes the following form

εGL1
α1

= α1
∂SGL1

∂α1
= − α1α2vz

(α1z + 1)α2+1 (18)

From this formula, we already see that the quasi-elasticity is always negative: the
breach probability decreases when α1 grows. However, the rate of change depends very
much on the other parameter. In Figure 10, we see that α1 plays an ever more important
role as α2 grows, but it does not alter the breach probability significantly. In that picture,
as well as in the following 3D pictures representing quasi-elasticity values, the colour
coding describes the level of quasi-elasticity, with red representing regions of insensitivity
(quasi-elasticity close to zero) and blue representing the opposite extreme, i.e., regions of
high sensitivity.

Figure 10. Quasi-elasticity in the GL1 model with respect to α1.

We now turn to the other parameter (α2). The quasi-elasticity is

εGL1
α2

= α2
∂SGL1

∂α2
= −α2v ln(α1z + 1)

(α1z + 1)α2
(19)

Again, we have a negative quasi-elasticity: the breach probability decreases when α2
grows. In Figure 11, we also see that the dependence on α1 is very small.
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We can then confirm that the parameter α2 is by far the most critical between the two,
especially at its lowest values.

Figure 11. Quasi-elasticity in the GL1 model with respect to α2.

3.3. Gordon–Loeb Class Two Model Elasticity

In the GL2 model, we have a single parameter (β). If we recall the breach probability
function of Equation (3), we can compute the quasi-elasticity

εGL2
β = β

∂SGL2

∂β
= βzvβz+1 ln v, (20)

which is always negative. Again, larger parameter values lead to a lower breach probability.
In Figure 12, we see that the elasticity is not monotone and exhibits a negative peak

(which, by the sign of the quasi-elasticity, implies the maximum influence), slightly above
β = 2× 10−5 in the picture.

Risks X, 0, 0 17 of 30

Figure 11. Quasi elasticity in the GL1 model with respect to α2

0.2 0.4 0.6 0.8 1
·10−4

−0.2

−0.1

β

εG
L2

β

Figure 12. Impact of the effectiveness of security investment β in the GL2 model

εGL1
α2

= α2
∂SGL1

∂α2
= −α2v ln(α1z + 1)

(α1z + 1)α2
(19)

Again we have a negative quasi-elasticity: the breach probability decreases when α2
grows. In Figure 11, we also see that the dependence on α1 is very small.

We can then confirm that the parameter α2 is by far the most critical between the two,
especially at its lowest values.

3.3. Gordon-Loeb Class two model elasticity

In the GL2 model, we have a single parameter (β). If we recall the breach probability
function of Equation (3, we can compute the quasi-elasticity
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β = β

∂SGL2

∂β
= βzvβz+1 ln v, (20)

which is always negative. Again, larger parameter values lead to a lower breach
probability.

In Figure 12, we see that the elasticity is not monotone and exhibits a negative peak
(which, by the sign of the quasi-elasticity, implies the maximum influence), slightly above
β = 2 · 10−5 in the picture.

By exploiting the very same breach probability function of Equation (4), we can derive
that βz = ln S/ ln v− 1 and rewrite the quasi-elasticity as

εGL2
β = (ln S− ln v)S. (21)

Figure 12. Impact of the effectiveness of security investment β in the GL2 model.

By exploiting the very same breach probability function of Equation (4), we can derive
that βz = ln S/ ln v− 1 and rewrite the quasi-elasticity as

εGL2
β = (ln S− ln v)S. (21)

By taking a look at Figure 13, we see that the influence of β reaches a maximum for an
intermediate value of the breach probability. Precisely, we have the maximum influence
when ∂εGL2

β /∂S = 0, i.e., when the breach probability is reduced to S = v/e. The correct
estimation of β is then least critical when the investment is either small or large (which
means that the reduction in the breach probability is, respectively, minimal or so large as to
be beyond the 1/e factor).
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By taking a look at figure 13, we see that the influence of β reaches a maximum for an
intermediate value of the breach probability. Precisely, we have the maximum influence
when ∂εGL2

β /∂S = 0, i.e., when the breach probability is reduced to S = v/e. The correct
estimation of β is then least critical when the investment is either small or large (which
means that the reduction of the breach probability is respectively minimal or so large as to
be beyond the 1/e factor).

3.4. Hausken Class Three model elasticity

With the Hausken Class Three model, described in Section 2.5, we return to a two-
parameter model like the GL1. The two parameters are here named γ1 and γ2. After
recalling the definition of Equation (4), we can compute the quasi-elasticity for γ1, which is

εH3
γ1

= γ1
∂SH3

∂γ1
= − γ1v(eγ2z − 1)

[1 + γ1(eγ2z − 1)]2
. (22)

The relative relevance of the two parameters follows what we have already seen for
the GL1 model. In Figure 14, we see that the sensitivity to γ1 is quite driven by γ1 itself
and becomes heavier when γ1 grows.

We can also analyse the regions of greatest sensitivity by rewriting Equation 22 as a
function of the breach probability S. After a few algebraic manipulations, we get

εH3
γ1

= −S
(

1− S
v

)
, (23)

which is plotted in Figure 15 for two values of the a-priori vulnerability v. As observed in
the Gordon-Loeb model, we see that the peak of sensitivity occurs for intermediate values

Figure 13. Quasi-elasticity with respect to β in the GL2 model as a function of S.
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With the Hausken Class Three model, described in Section 2.5, we return to a two-
parameter model such as the GL1. The two parameters are here named γ1 and γ2. After
recalling the definition of Equation (4), we can compute the quasi-elasticity for γ1, which is

εH3
γ1

= γ1
∂SH3

∂γ1
= − γ1v(eγ2z − 1)

[1 + γ1(eγ2z − 1)]2
. (22)

The relative relevance of the two parameters follows what we have already seen for
the GL1 model. In Figure 14, we see that the sensitivity to γ1 is quite driven by γ1 itself
and becomes heavier when γ1 grows.
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when ∂εGL2

β /∂S = 0, i.e., when the breach probability is reduced to S = v/e. The correct
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.

We can also analyze the regions of greatest sensitivity by rewriting Equation (22) as a
function of the breach probability S. After a few algebraic manipulations, we obtain

εH3
γ1

= −S
(

1− S
v

)
, (23)

which is plotted in Figure 15 for two values of the a priori vulnerability v. As observed in
the Gordon–Loeb model, we see that the peak of sensitivity occurs for intermediate values
of the breach probability (between 0.4 and 0.6). We can obtain the precise location of the
peak by zeroing the derivative

∂εH3
γ1

∂S
= −

(
1− S

v

)
− S

(
−1

v

)
= −1 + 2

S
v
= 0, (24)
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which gives us

S =
v
2

(25)

The maximum influence of γ1 on the breach probability function S is reached when the
investments are such as to reduce the vulnerability by half.

Risks X, 0, 0 19 of 30

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

S

εH
3

β
v = 0.9 v = 0.95

Figure 15. Quasi-elasticity with respect to γ1 in the H3 model as a function of S

0.2
0.4 6

8
10

·10−5

−2

0

·10−5

γ1
γ2

εH
3

γ
1

Figure 16. Quasi elasticity εH3
γ2

of the breach probability (between 0.4 and 0.6). We can get the precise location of the peak
by zeroing the derivative

∂εH3
γ1

∂S
= −

(
1− S

v

)
− S

(
−1

v

)
= −1 + 2

S
v
= 0, (24)

which gives us

S =
v
2

(25)

The maximum influence of γ1 on the breach probability function S is reached when the
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which is plotted in Figure 16. We see that γ2 is most influential when both parameters are
large.
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3.5. Hausken Class Four Model Elasticity

Here, we have another two-parameter model. The parameters are now ε, not to be
confused with the symbols used for the quasi-elasticity, which is always accompanied by
the variable, the model, and φ.

By recalling the definition of the breach probability function in Equation (6), we have

εH4
ε = ε

∂SH4

∂ε
=

{
−εvzφ if z < ε−1/φ

0 if z > ε−1/φ
(27)

εH4
φ = φ

∂SH4

∂φ
=

{
−φvεzφ ln(z) if z < ε−1/φ

0 if z > ε−1/φ
(28)
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We have a negative quasi-elasticity again for both parameters, excepting the regions
where the quasi-elasticity is null because the breach probability function is null itself
(actually, the model validity stops when z > zu, since the mathematical expression would
lead to a negative breach probability function).

We examine first the sensitivity with respect to ε. In Figure 17, we see that the
sensitivity to that parameter grows with both parameters in such a way that keeping either
parameter very low makes the breach probability function nearly inelastic to ε.

Figure 17. Quasi-elasticity εH4
ε .

We can also find for which investment range the choice of ε may be more critical. If we
use the breach probability function definition in Equation (6), we obtain εvzφ = v− SH4, so
that the quasi-elasticity can be expressed as

εH4
φ = −(v− SH4) z < ε−1/φ (29)

A linear relationship appears, which means that the sensitivity to ε is very small when
investments are small (so that the reduction in vulnerability is itself small) but gradually
grows when investments increase.

If we turn to the effect of φ, we see similar behavior in Figure 18: the quasi-elasticity
becomes significant when both parameters grow.

Figure 18. Quasi-elasticity εH4
φ .

3.6. Hausken Class Five Model Elasticity

As shown in Section 3.6, the H5 model has the same mathematical expression as the H4
model, but they differ in the parameter range for k. Hence, we obtain the same expression
for the quasi-elasticity. Since the models assume that we can reach complete invulnerability,
the limiting value for the investment z = ω−1/k is due to the mathematical need to avoid
negative values for the breach probability. The expressions for the quasi-elasticity are then
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εH5
ω = ω

∂SH5

∂ω
=

{
−ωvzk if z < ω−1/k

0 if z > ω−1/k (30)

εH5
k = k

∂SH5

∂k
=

{
−kvωzk ln(z) if z < ω−1/k

0 if z > ω−1/k (31)

In Figure 19, we see that the sensitivity to ω grows rapidly when the other parameter
k exceeds 1.2 roughly and ω is itself in the higher range (ω > 2 roughly).

Figure 19. Quasi-elasticity εH5
ω .

Quite a similar behavior is observed for the quasi-elasticity with respect to k, as can be
observed in Figure 20.

Figure 20. Quasi-elasticity εH5
k .

Given the identity of the mathematical expressions of the breach probability function
of the H4 and H5 models, we can write the quasi-elasticity with respect to ω as

εH5
ω = −(v− SH5) z < ω−1/k, (32)

which shows again a linearly growing sensitivity when the breach probability reduces due
to larger investments.

3.7. Hausken Class Six Model Elasticity

We consider here what is probably the simplest breach probability model, described
by the linear relationship with a single parameter (λ) shown in Equation (8).

The computation of the quasi-elasticity gives us again a linear function:

εH6
λ = λ

∂SH6

∂λ
=

{
−λvz if z < 1

λ

0 if z > 1
λ

(33)
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The quasi-elasticity function is amenable to be expressed as a function of the breach
probability function. After a few simple manipulations, we obtain again, however, a linear
function, as we did for the H4 and H5 models:

εH6
λ = −(v− SH6). (34)

Hence, the impact of the parameter is stronger when investments are so large as to
reduce the breach probability down to low values.

3.8. Exponential Power Class Elasticity

If we write the breach probability function as

S = vγ(
z
B )

η

, (35)

where γ is the breach probability obtained when the investment equals some benchmark
value B, we can compute the quasi-elasticity with respect to the exponent η.

After a few algebraic manipulations, we obtain

εEP
η = η

∂SEP

∂η
= ηvγ(

z
B )

η

ln γ
( z

B

)η
ln
( z

B

)
(36)

In Figure 21, we see again the pattern where the sensitivity is higher for intermediate
values of investments. If we push investments still further to reduce the breach probability,
the influence of η goes down till becoming negligible.

We can also analyze the regions of greatest sensitivity by rewriting Equation (36) as a
function of the breach probability S. We first derive the following relationship by taking
the logarithm of both sides of Equation (35):

ln S = ln v +
( z

B

)η
ln γ→

( z
B

)η
=

ln(S/v)
ln γ

(37)

After some algebraic manipulation, we obtain

εEP
η = S ln

(
S
v

)
ln

(
ln( S

v )

ln(ζ)

)
(38)

In Figure 22, we see the same pattern as in the GL2 model, though a significant
asymmetry is observed here, with the maximum influence taking place for lower values of
the breach probability.
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Figure 21. Quasi-elasticity εEP
η .
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Figure 22. Quasi-elasticity with respect to η as a function of S in the Exponential Power Class model.

3.9. Proportional Hazard Class Elasticity

Here, we have again a two-parameter model, whose breach probability function is
reported as Equation (12). First, we obtain the quasi-elasticity with respect to the parameter
η as

εPH
η = η

∂SPH

∂η
= ηv(1− γ)(

z
B )
−η

× ln(1− γ)
( z

B

)−η
ln
( z

B

)

= −v(1− S/v) ln(1− S/v) ln
(

ln(1− S/v)
ln(1− γ)

)
(39)

The resulting function is plotted in Figure 23, where we observe a pattern similar to
that of the Exponential Power Class, i.e., the greatest sensitivity for intermediate values of
the parameter η.
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Figure 23. Quasi-elasticity εPH
η .

If we write the breach probability function in its original form

S = v[1− (1− γ)(
z
B )
−η
], (40)
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where γ is the breach probability function when the investment z equals the benchmark
value B, we can derive the following relationship, which proves useful to express the
quasi-elasticity in a suggestive way:

(
1− S

v

)
= (1− γ)(

z
B )
−η

→
( z

B

)−η
=

ln(1− S/v)
ln(1− γ)

(41)

By exploiting this relationship and recalling Equation (39), we obtain

εPH
η = −v(1− S/v) ln(1− S/v) ln

(
ln(1− S/v)

ln(1− γ)

)
(42)

In Figure 24, we find the same trend as in the Exponential Class.
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Figure 24. Quasi-elasticity with respect to η as a function of S in the Proportional Hazard Class
model.

3.10. Wang Transform Class Elasticity

Finally, we conduct the same analysis for the Wang Transform model, which is a two-
parameter model. As in the EP and PH models, however, we focus on η. The pertaining
quasi-elasticity is

εWT
η = η

∂SWT

∂η
= −η

ln(z)√
2π

× exp
{
−Φ−1(γ)− η ln(z)

2

} (43)

We find the same pattern as seen for the EP and the PH model, i.e., a peak of sensitivity
followed by a fast retreat to zero sensitivity as η grows, as can be observed in Figure 25.
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Figure 25. Quasi-elasticity εWT
η .

If we write the breach probability function as

S = vΦ[Φ−1(γ)− η ln(z)], (44)

we find the following relationship:

− η ln(z) = Φ−1(S/v)−Φ−1(γ), (45)

which proves useful to express the quasi-elasticity as a function of the breach probability.

εWT
η =

Φ−1(S/v)−Φ−1(γ)√
2π

e−
1
2 (Φ

−1(S/v))2
(46)

In Figure 26, we see a trend again similar to what we found in the EP and PH models.
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Figure 26. Quasi-elasticity with respect to S as a function of S in the Wang Transform Class.

4. Conclusions

We provided a presumably complete view of the breach probability functions proposed
in the literature to model the effect of cybersecurity investments on the actual vulnerability
to cyberattacks. The variety of forms taken by these functions allows us to be reasonably
confident that they can be used to fit many contexts adequately.

We can take different approaches to compare them and choose what is probably the
best for us. In this conclusion, we examine all of them.

First, we can examine the properties they exhibit. In Table 3, we report how the
different models comply with the properties we set in Section 2.2. We notice that all models
exhibit Properties P1 through P4, i.e., all models assume that investing in security does
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always improve the robustness of the system till the point of turning mitigation into a nearly
complete shield against attacks. However, they differ in the additional impact that further
investments get. We have just one model (H6) assuming that returns on investments are
linear: the same additional investment leads to the same vulnerability decrease, regardless
of the initial situation. All other models assume that the impact of further investments
depends on the starting point. Both the models by Gordon and Loeb and the Hausken
Class Four consider diminishing returns, which inevitably leads to a point after which it
does not pay to invest more in security. On the other end of the spectrum, we have the
Hausken Class 5, which implies a snowball effect: we obtain a more-than-proportional
reduction in vulnerability by investing more. In between, all other models (H3, EP, PH, and
WT) predict a strong initial reduction in vulnerability, followed by diminishing returns.

A major element to assess the importance of those models is their usage. In the
literature, we found applications reported for the GL1, GL2, H3, PH, and WT models.
Aside from their proponents, we did not find applications of H4 through H6, or EP models,
which have yet to prove their relevance.

An additional way to compare them is to look at the complexity of the model, as
embodied by the number of parameters. This is actually a two-sided argument. When
the number of parameters grows, we obtain more parameters to estimate, but the model
becomes more flexible at the same time. Anyway, in the array of models we examined, the
number of parameters is two at most. We have three models that are fully characterized
through a single parameter: Gordon–Loeb Class 2, Hausken Class 6, and Wang Transform.
All other models have two parameters. In the case of two-parameter models, one is typically
more critical than the other, since their influx on the overall breach probability is larger,
requiring more attention in their estimation.

Table 3. Comparison of properties.

GL1 GL2 H3 H4 H5 H6 EP PH WT

P1 X X X X X X X X X
P2 X X X X X X X X X
P3 X X X X X X X X X
P4 X X X X X X X X X

P5.1 X X X
P5.2 X X X X
P5.3 X
P5.4 X

A fundamental limitation of the models presented here is that they are all derived from
first principles. A strong trend in risk analysis is the shift to a more data-centric approach
Aven and Flage (2020), as underlined by Ale (2016), Choi and Lambert (2017), and Nateghi
and Aven (2021). Unfortunately, data are still scarcely available in the cybersecurity world.
In addition, the models should be developed using a counterfactual approach, comparing
the outcome of the investments in cybersecurity with what would have happened if no
investments were carried out. An attempt to calibrate a security breach probability function
by relating the investment with the resulting vulnerability has been proposed in Naldi and
Flamini (2017).

In addition, all the current models are of the one size fits all kind. They do not differ-
entiate among cybersecurity countermeasures: an investment in a firewall is considered as
valuable as an investment of the same amount in antivirus software or one in cybersecurity
education. The time has come to progress towards a finer description of the return on
security, considering the different possibilities that a cybersecurity officer has.

Though the current models have opened the path to a greater awareness of the
economic trade-offs of investing in security, the increase in spending, dictated by the
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growth of cyberthreats, calls for more careful investment decisions, which in turn requires
more accurate models if they have to become operational tools rather than just indicative.
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