
Citation: Jose, Alex, Angus S.

Macdonald, George Tzougas, and

George Streftaris. 2022. A Combined

Neural Network Approach for the

Prediction of Admission Rates

Related to Respiratory Diseases. Risks

10: 217. https://doi.org/10.3390/

risks10110217

Academic Editors: Gian Paolo

Clemente, Nino Savelli and Diego

Zappa

Received: 29 September 2022

Accepted: 7 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

A Combined Neural Network Approach for the Prediction of
Admission Rates Related to Respiratory Diseases
Alex Jose *, Angus S. Macdonald, George Tzougas and George Streftaris

School of Mathematical and Computer Sciences, Heriot-Watt University, and Maxwell Institute for Mathematical
Sciences, Edinburgh EH14 4AS, UK
* Correspondence: aj61@hw.ac.uk

Abstract: In this paper, we investigated rates of admission to hospitals (or other health facilities) due
to respiratory diseases in a United States working population and their dependence on a number of
demographic and health insurance-related factors. We employed neural network (NN) modelling
methodology, including a combined actuarial neural network (CANN) approach, and model admission
numbers by embedding Poisson and negative binomial count regression models. The aim is to explore
the gains in predictive power obtained with the use of NN-based models, when compared to commonly
used count regression models, in the context of a large real data set in the area of healthcare insurance.
We used nagging predictors, averaging over random calibrations of the NN-based models, to provide
more accurate predictions based on a single run, and also employed a k-fold validation process to
obtain reliable comparisons between different models. Bias regularisation methods were also developed,
aiming at addressing bias issues that are common when fitting NN models. The results demonstrate that
NN-based models, with a negative binomial distributional assumption, provide improved predictive
performance. This can be important in real data applications, where accurate prediction can drive both
personalised and policy-level interventions.

Keywords: statistical models for insurance; machine learning and data science in insurance; predic-
tive modelling; neural network; actuarial; morbidity; CANN; k-fold validation; nagging predictor

1. Introduction

Chronic respiratory diseases (CRDs) remain one of the main causes of morbidity and
mortality worldwide. The World Health Organization (WHO) reports that hundreds of
millions of people worldwide suffer from preventable CRDs, and these diseases cause
around four million deaths each year (Bousquet et al. 2007). Asthma, chronic obstructive
pulmonary disease (COPD), and occupational lung disease are some of the major diseases
classified under preventable CRDs. As per the WHO, 262 million people have asthma
globally, and over 3 million people die each year from COPD, which accounts for nearly
6% of deaths around the world (WHO 2022b). The recent COVID-19 pandemic has once
again put CRDs in the limelight due to the notion that people with pre-existing respiratory
conditions are at a high risk for COVID-related health complications and death. Although
some studies, such as Aveyard et al. (2021), support this, owing to the lack of data, the
extent of higher risks from COVID for individuals with CRDs is still unclear (WHO 2022a).
Most CRDs are preventable through early detection and intervention, which require pre-
cise identification and understanding of the key risk factors and their association with
the incidence and prevalence of these diseases. Previous studies, such as Doney et al.
(2014) and CDC (2012), have explored the prevalence of COPD among the US population,
whereas Blanc et al. (2019) focused on the relationship between workplace exposure and
respiratory diseases.

Ever since generalised linear models (GLMs) were introduced by Nelder and Wed-
derburn (1972), they have been at the forefront of predictive modelling in all areas of

Risks 2022, 10, 217. https://doi.org/10.3390/risks10110217 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks10110217
https://doi.org/10.3390/risks10110217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0003-4072-1454
https://orcid.org/0000-0002-5821-9588
https://doi.org/10.3390/risks10110217
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks10110217?type=check_update&version=3


Risks 2022, 10, 217 2 of 35

research. Details regarding numerous applications of GLMs for tackling insurance-related
actuarial problems in both life and non-life sectors are described in Haberman and Ren-
shaw (1996), De Jong and Heller (2008), Frees (2009), and Ohlsson and Johansson (2010).
The advancement in computational capabilities and the development of software, such
as Bayesian inference using Gibbs sampling (BUGS), have further facilitated the Bayesian
implementation of GLMs. For instance, in an insurance-related context of morbidity studies,
Ozkok et al. (2014) adapted Bayesian methodologies for modelling claim diagnosis rates of
critical illness; more recently, Arık et al. (2021) conducted a population study for assessing
the socioeconomic disparities in cancer incidence and mortality in England.

Improvements in the ease of access to fast computing over the last few decades have
paved the way for the extensive adaptation of machine learning approaches in many
research and practice areas. The same pattern has been observed in the insurance field,
particularly in recent years. There is an increasing trend in applying machine learning
approaches for addressing various insurance-specific problems. Blier-Wong et al. (2020) pro-
vided a detailed description of recent adaptions of different machine learning approaches
in the actuarial field, particularly for pricing and reserving. Ferrario et al. (2020) detailed
the adaptation of neural network regression models for modelling claim rates using the
French motor third-party liability (MTPL) insurance data set. The approach facilitates the
embedding of traditional regression models for count data into a neural network frame-
work using a class of feed-forward neural network (FFNN) models. For the rest of the
paper, we refer to the FFNN and neural network (NN) indifferently. The approach was
further extended by Schelldorfer and Wuthrich (2019) to develop the combined actuarial
neural network (CANN) approach (see Section 3.3 for details), which showed superior
performance in comparison to the previous NN model. Tzougas and Li (2021) added
to the approach by developing both NN and CANN models under a negative binomial
distributional assumption.

In this work, we developed an ensemble of statistical predictive models that can
accurately predict admission rates to hospitals (or other health facilities) related to respira-
tory diseases in a US population. In what follows, we outline the main contributions of
the paper.

• First, we investigated the efficiency of the Poisson and negative binomial CANN
models for predicting admission rates related to respiratory diseases in a United
States (US) working population. In particular, we began by considering Poisson
NN models, including a CANN model, and developed modifications based on early
stopping and dropout techniques, which improve their performances. Subsequently,
motivated by the suitability of the negative binomial distribution when data are over-
dispersed, we also developed negative binomial NNs and compared their predictive
performances to those of the Poisson models. NN-based models were trained by
minimising the corresponding deviance loss functions and compared using the testing
data loss. Models under the negative binomial distributional assumption led to
superior forecasting performances. The same result was obtained when we eventually
compared the Poisson CANN to the negative binomial CANN. Furthermore, it is
worth noting that while machine learning approaches and CANN models, under both
Poisson and negative binomial distributional assumptions, have been explored for
data-driven applications in the field of non-life insurance, to the best of our knowledge,
this is the first paper that considered employing such methods for morbidity modelling
in an insurance context.

• Second, we considered the bias-regularised version of the negative binomial NN and
CANN models by modifying the intercept of their output layers following the ap-
proach of Wüthrich (2020). Additionally, we also addressed bias issues on a population
level by extracting the last hidden layer of the NN and CANN models, fitting the
corresponding negative binomial regression models and, therefore, controlling the
portfolio bias by adjusting the intercept.



Risks 2022, 10, 217 3 of 35

• Third, following the setup of Richman and Wüthrich (2020), we determined a nagging
predictor in the case of the negative binomial NN and CANN models for taking
advantage of the randomness of neural network calibrations to provide more stable
predictions than those under a single neural network run.

• Finally, for providing reliable comparisons between the performance of the regression,
NN, and CANN models under the negative binomial assumption, k-fold validation
was carried out to allow us to evaluate the model’s predictive ability when different
data configurations were considered for training and prediction purposes.

The rest of this article is as follows: in the next section, we present a description of
the data used in this paper and we provide details of the exploratory analysis that was
carried out for summarising the main data characteristics. A number of data considera-
tions, prior to undertaking any modelling approaches, are also discussed. In Section 3, we
provide a detailed description of the regression, NN, and CANN models that were used
for modelling the admission rates. In Section 4, we present hyperparameter tuning and
determine the approach that was followed for fitting the network-based models. Various
model improvement approaches, such as regularisation, dropout, and early stopping, were
adopted for the network models, and are presented in Section 5. In Section 6, a compari-
son of the predictive performance of the competing models under Poisson and negative
binomial distributional assumptions is presented, along with bias-regularised versions and
a nagging predictor for the negative binomial NN and CANN models. Furthermore, an
evaluation of the performance of the negative binomial regression, NN, and CANN models
via k-fold validation is carried out in Section 7. Finally, concluding remarks are provided
in Section 8.

2. Data

The admission data for respiratory diseases were constructed using the Commercial
Claims and Encounters Database of Merative MarketScan Research Databases provided by
Merative (previously called IBM Watson Health). The data set contains individual-level
information regarding admissions to hospitals and other health facilities, along with the
claims and encounter data over time, linked with patient information and service provider
details. For categorizing the admissions with respect to the primary cause of admission,
the International Statistical Classification of Diseases and Related Health Problems 10th
Revision—Clinical Modification (ICD-10-CM) groupings were used (see Table A1). The
data set was constructed by combining the admission information and the enrollment
details for the year 2016, and the details of the different variables in the data set constructed
are given in Table 1.

The ENROLID is a unique identifier assigned to each individual. The EMPREL variable
specifies the individual’s relationship to the primary beneficiary/employee. The different
plan types defined by the PLANTYP variable vary in terms of their characteristics, such as
incentives for using specific service providers, deductibles, copay, etc. . . . For more details
regarding the different plan types, see Table A3. The geographical variable EGEOLOC
gives more granular information regarding the primary beneficiary’s residence location
than the REGION variable. The UR variable was created using the Metropolitan Statistical
Area (MSA) variable by assigning value 1 (rural) if the primary beneficiary resides in a
non-MSA or rural area and value 2 (urban) if the primary beneficiary resides in MSAs.
The EECLASS and EESTATU variables give information regarding the employment of the
individual. The DATATYP indicates whether the individual’s health plan operates as a
fee-for-service plan or a capitation plan. The difference is that the fee-for-service works on
a reimbursement basis while the encounter record arises from fully or partially capitated
managed care plans. The prepaid capitation amount paid by the employer or the health
plan to the service provider could either be on an individual basis or a bulk basis. The
details of the primary beneficiary are assigned to the spouse and other dependents as well.
Prior to undertaking any modelling, several data considerations and feature preprocessing
were undertaken, details of which are described in the following subsections.



Risks 2022, 10, 217 4 of 35

Table 1. Description of variables in the admission data set.

Variable Description Comment Categories

ENROLID Unique ID for individual ID variable -

AGE Age of the last birthday of the individual ∈[30, 65] -

SEX Gender of the individual Factor w/2 categories 1: Male, 2: Female

EMPREL Relation to the primary beneficiary Factor w/3 categories 1: Employee, 2: Spouse, 3: Child/Other

PLANTYP Type of health plan individual is part of Factor w/8 categories

2: Comprehensive Plan,
3: Exclusive Provider Organization Plan,

4: Health Maintenance Organization Plan,
5: Non-Capitated (Non-Cap)

Point-of-Service, 6: Preferred Provider
Organization Plan, 7: Capitated (Cap) or

Partially Capitated (PartCap)
Point-of-Service Plan, 8: Consumer-Driven

Health Plan, 9: High-Deductible
Health Plan

REGION Geographical region of residence Factor w/5 categories 1: Northeast, 2: North Central, 3: South,
4: West, 5: Unknown

EGEOLOC Geographic location based on postal code
of individual’s residence Factor w/53 categories See Table A2

UR Urban/ rural indicator based on
individual’s residence Factor w/2 categories 1: Rural, 2: Urban

EECLASS Employee classification Factor w/9 categories

1: Salary Non-union, 2: Salary Union,
3: Salary Other, 4: Hourly Non-union,

5: Hourly Union, 6: Hourly Other,
7: Non-union, 8: Union, 9: Unknown

EESTATU Status of employment Factor w/9 categories

1: Active Full Time, 2: Active Part Time or
Seasonal, 3: Early Retiree, 4: Medicare

Eligible Retiree, 5: Retiree (status
unknown), 6: Comprehensive Omnibus

Budget Reconciliation Act (COBRA)
Continuee, 7: Long-Term Disability,

8: Surviving Spouse/Depend, 9: Unknown

INDSTRY Industry where the primary beneficiary is
employed in Factor w/10 categories

1: Oil & Gas Extraction, Mining,
2: Manufacturing, Durable Goods,

3: Manufacturing, Nondurable Goods,
4: Transportation, Communications,
Utilities, 5: Retail Trade, 6: Finance,
Insurance, Real Estate, 7: Services,
A: Agriculture, Forestry, Fishing,
C: Construction, W: Wholesale

HLTHPLAN Whether the data are provided by the
employer or a health plan Factor w/2 categories 0: Employer, 1: Health plan

DATATYP Whether the plan is on reimbursement or
capitation basis Factor w/2 categories 1: Fee for service, 2: Encounter

EXPOSURE Period of enrollment- yearly exposure ∈(0, 1] -



Risks 2022, 10, 217 5 of 35

2.1. Data Description

The admissions records of an individual within two days were treated as a single
admission. Data variables with a high proportion of missing data (e.g., INDSTRY) were
excluded. For the other variables, only complete cases were considered as the propor-
tion of missingness was less than 2%. Variables, such as HLTHPLAN, DATATYP, and
REGION were excluded due to the high level of relationship with other variables. The
HLTHPLAN variable had a high level of association with EECLASS and EESTATU vari-
ables. The employment-related information, particularly the employment classification,
was only available if the data came from the employer (HLTHPLAN = 0). Hence, for all the
individuals whose data came from health plans, the EECLASS was unknown (category 9).
The association between PLANTYP and DATATYP arises since the value of the DATATYP
variable is 2 (Encounter) only for individuals under the Health Maintenance Organization
plan (PLANTYP = 4) and Capitated (Cap) or Partially Capitated (PartCap) Point-of-Service
plan (PLANTYP = 7). The EGEOLOC variable was chosen over the REGION variable as it
gives more granular information regarding an individual’s location of residence.

After the above-mentioned data considerations, the data for the age range 30–65
comprises 2,050,100 records, with 1,902,840 unique individuals and 100,212 admissions
due to various diseases. The age range selection of 30 to 65 was used as the focus is
on the working population and 30–65 seemed to be a reasonable choice for working
age. The circumstances of some individuals changed over the year and, hence, their risk
characteristics changed as well. Multiple records with different risk characteristics exist
for those individuals for the corresponding period. This results in having more records
than the number of unique individuals. Although multiple records might exist for some
individuals, the sum of the exposure over different records for any given individual is less
than or equal to one year. The distribution of admissions over the different ICD chapters is
shown in Figure 1.

Figure 1. Distribution of admissions over different ICD chapters (details about chapters in Table A1).

Among these 100,212 admissions, 4525 were related to respiratory diseases (ICD
chapter 10), and some individuals had more than one admission. The most prominent
cause of admission was pregnancy and childbirth (ICD chapter 15), followed by diseases
related to the musculoskeletal system and connective tissue (ICD chapter 13), diseases of the
circulatory system (ICD chapter 9), and diseases of the digestive system (ICD chapter 11).
Admission frequencies due to respiratory diseases are given in Table 2, and the age-wise



Risks 2022, 10, 217 6 of 35

crude rates of admission for different categories of the variables such as SEX, UR, and
EECLASS are shown in Figure 2.

(a) (b)

(c)

Figure 2. Age-wise crude rates of admission due to respiratory diseases: (a) male, female; (b) urban
and rural areas; (c) categories of EECLASS.

Table 2. Frequency of number of admissions related to respiratory diseases for individuals under the
age range 30–65.

Number of Admissions Frequency

0 2,046,167
1 3527
2 292
3 77
4 14
5 14
6 7
7 1
8 1

As unusually high numbers of individual admissions are often the result of common
healthcare data practices, the ceiling for the number of admissions for an individual was set
as five in the current analysis. Hence, the final data set involves 4513 admissions related to



Risks 2022, 10, 217 7 of 35

respiratory diseases. In order to determine whether to use EXPOSURE as an offset variable,
an exploratory analysis similar to the one mentioned in Ferrario et al. (2020) was carried
out. The records were categorised using an additional ‘Exposure group’ variable defined

by Ek =
(

k−1
10 , k

10

]
with k = 1, . . . 10, which indicated that a significant proportion of the

2,050,100 records belonged to group E10 with exposure ei ∈ (0.9, 1]. A group-wise empirical

frequency was also calculated by f̄k =
∑n

i=1 Yi1{ei∈Ek}
∑n

i=1 ei1{ei∈Ek}
where Yi represent the number of

admissions for the ith record (see Table 3).

Table 3. Relative number of records and empirical frequency for each exposure group.

Exposure Group Ek 1 2 3 4 5 6 7 8 9 10

relative no. of records 5.07% 3.39% 3.24% 2.87% 5.03% 4.40% 2.36% 2.58% 2.40% 68.66%
empirical frequency f̄k 0.85% 0.71% 0.60% 0.48% 0.53% 0.35% 0.42% 0.36% 0.39% 0.24%

Even though the empirical frequencies of exposure groups give no evidence of sus-
pecting the non-linearity of exposure, to identify any potential relationship between the
exposure and other features, the distribution of exposure over other variables was also
investigated (see Figure 3).

(a) (b)

(c) (d)
Figure 3. Cont.



Risks 2022, 10, 217 8 of 35

(e) (f)

(g) (h)
Figure 3. Distribution of exposure over different variables: (a) over PLANTYP variable; (b) over UR
variable; (c) over EECLASS variable; (d) over EESTATU variable; (e) over EMPREL variable; (f) over
SEX variable; (g) over AGE variable; (h) over EGEOLOC variable.

Although the analysis indicates a slight variation in the exposure composition over
different levels of some variables, the evidence is not strong enough to consider alternative
treatments of the exposure variable. For instance, for the EESTATU variable, unlike the other
categories, for category six (Comprehensive Omnibus Budget Reconciliation Act (COBRA)
continues), the exposure seems to be evenly distributed. COBRA allows employees and
their dependents to continue with a health plan provided by an employer for a particular
period even after the cessation of their employment with that employer. Individuals with
EESTATU six (COBRA) may have reached the end of that specified period sometime during
the year of the study (2016). Although this could be a case of right censoring, we lack
sufficient information to confirm this. Hence, it was decided to proceed with treating
exposure as an offset variable.

2.2. Data Pre-Processing

The full data set was randomly split into a learning set D and a testing set T . The
learning set and testing set were created using a 90:10 split, comprising 1,845,090 and
205,010 records, respectively. All models were fitted using the learning data set, and the
performances of the models were evaluated on the testing set under the assumption that
the underlying modelling assumptions held for both sets of data.

As discussed by Ferrario et al. (2020), the proper working of the gradient descent
methods (GDMs) used for neural network model fitting required the different feature
components to be on an identical scale. In order to adjust the scaling, for the continuous
and binary variables, such as AGE, SEX, and UR, a min–max scaler was adopted, which
transformed the variable to a scale of [−1, 1] using the formula:

xj 7→ x∗j =
2(xj −mj)

Mj −mj
− 1 ∈ [−1, 1] (1)



Risks 2022, 10, 217 9 of 35

where mj and Mj represent the minimum and maximum values of variable xj. For the
binary variables SEX and UR, the values would have been replaced by either−1 or 1. For all
remaining categorical variables, since they were nominal in nature, a dummy encoding
was used. Under dummy encoding, a categorical variable with l levels was represented
using a (l− 1) dimensional feature vector, with a reference category and value 1 being used
to identify the actual level for a data record (see Equation (2)). An alternative option was
to use one-hot encoding, which would have resulted in an (l) dimensional feature vector
without a reference level (Equation (3)). For a categorical variable xj, with l categories
c1, c2, .., cl , treating cl as the reference level, dummy encoding is given by

xj 7→
(
1{xj=c1}, . . . ,1{xj=cl−1}

)T
∈ Rl−1 (2)

whereas one-hot encoding would take the form

xj 7→
(
1{xj=c1}, . . . ,1{xj=cl}

)T
∈ Rl . (3)

As both approaches increase the dimension of the feature space, for neural network models,
data embedding was implemented using an embedding layer, which facilitated a lower
dimensional representation of the categorical variables. The embedding layer approach
was proposed by Bengio et al. (2000) and was adopted in an insurance context by Richman
and Wüthrich (2021). The embedding layer maps a categorical variable xj with l levels to a
low dimensional real-valued vector of dimension v ((v < l) (i.e., f : xj 7→ Rv). The value of
v, which is treated as a hyperparameter, needs to be decided, taking into consideration that
it impacts the complexity of the model. In the current context, we chose v = 2 for creating
the embedding layers for categorical variables (see Figure 4).

Figure 4. A sample representation of a feed-forward neural network with embedding layers and
three hidden layers with 20,15,10 neurons in each layer.

3. Models
3.1. Regression Models

We first consider a Poisson GLM and a negative binomial regression model, for
modelling count data (e.g., Frees 2009; Hardin et al. 2007). For the Poisson GLM, we assume
that for i = 1, . . . , n, n being the number of records in the learning data set D, admission
numbers, Yi, follow a Poisson distribution with

Yi ∼ Poisson(λiei) (4)



Risks 2022, 10, 217 10 of 35

where the mean (µPois
i = λiei) depends on the policyholder’s characteristics xi through

λi = exp(β>xi), and the exposure ei. By choosing the logarithmic link function, which
is, in fact, with the canonical link function for the Poisson GLM, we have a predictor of
the form

µPois
i : X 7→ R+, (oi, xi) 7→ log(µPois

i ) = oi + β>xi = oi + 〈β, xi〉, (5)

where X ⊂ Rq is the feature space with xi = (xi,1, . . . , xi,q)
> giving the feature information.

oi = log(ei) is the offset term, and β = (β11, .., βq1) is the unknown vector of coefficients to
be estimated. The 〈β, xi〉 represent the inner products of vectors β and xi and are equivalent
to β>xi; both notations are used interchangeably in this paper.

Similarly, for the negative binomial regression model, admission numbers, Yi,
i = 1, . . . , n, are assumed to follow a negative binomial distribution with a dispersion
parameter φ > 0:

Yi ∼ NB(µNB
i , φ) (6)

with

E[Yi] = µNB
i and V(Yi) = µNB

i +
µNB

i
2

φ
. (7)

For a logarithmic link function, the predictor µNB
i has the form

µNB
i : X 7→ R+ µNB

i = exp(oi + 〈β, xi〉). (8)

3.2. Neural Network Model

In what follows, we consider the basic feed-forward neural network (FFNN) model.
Generally, a FFNN comprises an input layer, one or more hidden layers, and an output layer.
The feature space X makes up the input layer, and each of the hidden layers comprises a
set number of neurons. The output from a given hidden layer acts as the input for the next
layer. The output from a neuron depends on the linear combination of the output from the
previous layer and the choice of activation function assigned to the layer that it is part of
(see Section 4 for more details on activation function). The number of hidden layers d ∈ N
is treated as a hyperparameter and is also referred to as the depth of the network. The last
layer of the architecture, which is connected to the last hidden layer, is the output layer. In
a neural network architecture, each layer is a function of the previous layer (see LeCun et al.
(2015) and Ferrario et al. (2020) for more details). The mth hidden layer z(m), 1 ≤ m ≤ d
with dimension qm ∈ N can be defined as

z(m) : Rqm−1 → Rqm , z 7→ z(m)(z) = (1, z(m)
2 (z), . . . , z(m)

qm (z))>, (9)

where the neurons z(m)
j , 2 ≤ j ≤ qm, are given by

z(m)
j (z) = ψ

(
〈β(m)

j , z〉
)

, (10)

with ψ : R→ R, being the activation function and β
(m)
j ∈ Rqm−1 the network parameters.

In addition to the first intercept component, z(m) depends on
(

β
(m)
2 , . . . , β

(m)
qm

)
∈ Rqm−1.

For q0 = q, with q being the dimension of the feature space X , the network parameter
β =

(
β
(1)
2 , . . . , β

(q)
qd , β(d+1)

)
∈ Rr will have dimension r where

r =
d

∑
m=1

qm−1(qm − 1) + qd. (11)

A diagrammatic representation of a feed-forward neural network with an embedding layer
and three hidden layers with 20,15,10 neurons in each layer, are shown in Figure 4.



Risks 2022, 10, 217 11 of 35

Under a neural network regression model, the predictors µPois and µNB of the tradi-
tional Poisson and negative binomial regression models are replaced by the neural network
predictors µPoisNN and µNBNN . To illustrate the structure of the network-based model, we
will refer to the models under the Poisson distributional assumption. For an FFNN model
with depth d under the Poisson assumption, the predictor is of the form

(oi, xi) 7→ log(µPoisNN
i ) = oi + 〈β(d+1), (z(d) ◦ · · · ◦ z(1))(xi)〉, (12)

for i = 1, . . . , n, where β(d+1) ∈ Rqd are the weights that map the neurons of the last hidden
layer zd to the output layer R+.

3.3. CANN

As mentioned earlier, the CANN model has an additional regression function nested
into the model predictor using a skip connection. Under the Poisson distributional assump-
tion, the model predictor of the CANN model with depth d ∈ N has the form

(oi, xi) 7→ log(µPoisCANN
i ) = oi + 〈βPois, xi〉+ 〈β(d+1), (z(d) ◦ · · · ◦ z(1))(xi)〉, (13)

with i = 1, . . . , n and parameter vector β =
(

βPois, β(d+1)
)>
∈ Rq0+r. The βPois vector

represents the parameters associated with the skip connection. The three terms on the
right-hand side of Equation (13) represent the offset, regression function/skip connection,
and the network function, respectively. A schematic representation of a sample CANN
model with three hidden layers and 20,15,10 neurons in each layer is shown in Figure 5.

Figure 5. An illustration of a sample CANN model with three hidden layers and 20,15,10 neurons in
each layer.

As shown in Figure 5, feature space X is directly linked to the output layer. Different
variants of CANN exist depending on whether the weights in the regression part are
updated or not whilst training the model (Schelldorfer and Wuthrich 2019). Owing to the
ease of implementation and following the literature, we focus on the variant in which the
weights of the regression component are kept fixed as the iterated weighted least squares
(IWLS) estimate β̂Pois from the regression model. This particular variant of the CANN can
be implemented by replacing the offset term oi in Equation (13) with

oCANN
i = log

(
ei exp 〈β̂Pois, xi〉

)
. (14)



Risks 2022, 10, 217 12 of 35

The approach can be enacted indifferently under both Poisson and negative binomial
distribution assumptions by adjusting the likelihood function under each model and
altering the sample code given in Listing A1. For the models under the Poisson distribution
assumption, with yi being the response variable and µi the mean (µPois

i for regression,
µPoisNN

i for FFNN and µPoisCANN
i for CANN), the log-likelihood is of the form

l(µ; y) =
n

∑
i=1
{yi ln (µi)− µi − ln Γ(yi + 1)}. (15)

Likewise, for the negative binomial models, under the NB2 parameterisation (Hardin et al.
2007), the log-likelihood is given by

l(µ; y, φ) =
n

∑
i=1

{
yi ln

( φµi
1 + φµi

)
− 1

φ
ln (1 + φµi)

+ ln Γ
(

yi +
1
φ

)
− ln Γ

(
yi + 1

)
− ln Γ

( 1
φ

)}
.

(16)

The details of the fitting of the different models discussed so far are discussed in detail in
the next section.

4. Model Fitting

The different data considerations and exploratory analysis described in the earlier
sections, as well as the development of models described in the previous section, were
carried out using the programming language R using RStudio IDE (R Core Team 2021;
RStudio Team 2021). The Poisson and negative binomial regression models were fitted
using the glm() function in the stats package and the gamlss() function in the gamlss
package. The glm() uses the IWLS method whereas gamlss() function uses the Rigby
and Stasinopoulos (RS) algorithm, for estimating the model coefficients β (R Core Team
2021; Rigby and Stasinopoulos 2005). The two main packages utilised for developing the
neural-network-based models are keras and TensorFlow packages, details of which can
be found in the respective manuals Allaire and Chollet (2021) and Allaire and Tang (2021).
The important snippets of code developed for implementing NN and CANN models, as
well as the different model improvement approaches, are given in the Appendix A.

4.1. Hyperparameters

The development of the network-based models was carried out in different stages. The
first step of constructing the models involves determining the hyperparameters, such as the
number of hidden layers, choice of activation function, and the gradient descent method
(GDM) used for model training. In terms of the aspects mentioned above, following earlier
work by Ferrario et al. (2020) in a similar context, the following assumptions were made:

• Number of hidden layers: the number of hidden layers was kept at three.
• Activation function: for hidden layers, the hyperbolic tangent function, ψ(x) = tanh(x),

was used. Any alternate non-linear activation function would work. The motivation
behind a non-linear activation function is that a non-linear activation function allows
for a non-linear model space, reducing the number of nodes needed and allowing
the network to automatically capture the interaction effect of different features. For
the output layer, an exponential function was used, which is the inverse of the link
function (g(.) = ln()) and, therefore, is in line with the underlying distributional
assumption.

• Gradient descent method: the neural network training utilises a gradient descent opti-
misation algorithm for estimating the model weights. Ferrario et al. (2020) compared
different GDMs in terms of performance and identified the Nesterov-accelerated
adaptive moment estimation (Nadam) method as performing better compared to
other similar methods. Hence, we also adapted the Nadam as the choice of GDM.



Risks 2022, 10, 217 13 of 35

An overview of the different GDMs is given in Ruder (2016), and additional details
regarding the ‘Nadam’ method could be found in Dozat (2016).

• Validation set: the training of neural network models requires further splitting the
learning set into a training set, D(−), and a validation data set, V . The validation data
set is used as the evaluation set during the iterative process for estimating the model
weights. In other words, V tracks possible overfitting of the model to D(−). For the
network-based models discussed here, and an 80:20 split was used for the training
and validation data sets. Once the training is complete, the final performance of the
fitted model is assessed using the testing set.

• Loss function: the loss function is the objective function that the GDM algorithm
minimises in order to estimate the model weights (Goodfellow et al. 2016). Numerous
options exist in terms of the choice of the loss function. For instance, mean squared
error (MSE), mean absolute error (MAE), and deviance loss are some of the popular
choices of loss functions used in a regression problem. For our context, we adapted
deviance loss as the loss function. The motivation behind the particular choice is
that minimising the deviance loss is equivalent to maximising the corresponding
log-likelihood function, which gives the MLE. The deviance loss is defined as the
difference between the log-likelihood of the saturated or full model and the fitted
model, and for a data set A the Poisson deviance loss is given by

LA(β) = 2 ∑
i∈A

(
yi log yi − yi − yi log µ̂i + µ̂i

)
, (17)

where µ̂i denotes the fitted mean and yi the observed number of admissions for i =
1, . . . , n. Similarly, for models under the negative binomial distributional assumption,
the deviance loss function has the form:

LA(β) = 2 ∑
i∈A

(
yi log yi−(yi + φ) log(yi + φ)

− y log µ̂i + (yi + φ) log(µ̂i + φ)
)

.
(18)

The GDM estimates the model weights by minimising the deviance loss LD for the learning
set, and the performance of the thus fitted models can be compared using the deviance
loss LT for the testing set. As described earlier, the GDM updates model weights with an
improved choice in an iterative manner. The iterative updation of model weights under the
GDM could be represented as

β[t] 7→ β[t+1] = β[t] − ρt+1∇βL(D
(−)
s , β[t]), (19)

where [t] indicates the algorithmic step, and ρt+1 > 0 gives the learning rate and D(−)
s are

the mini-batches or batches (see next section for more details on batches). The learning
rate determines the size of each step and influences the speed of movement towards the
optimal model weights. Since the primary focus of this work is the predictive modelling of
admission rates, more details relating to the functionalities of the neural network model
training are not discussed further (see, e.g., Russell 2010; Goodfellow et al. 2016).

4.2. Batch Size and Epochs

In addition to the model choices discussed above, the other main model attributes that
need to be determined are the number of neurons in each layer, batch size, and epochs. Due
to the computational burden of considering a large data set at once, during the training
of a neural network, the data in the training set D(−) are considered in smaller batches
(D(−)

1 , . . . ,D(−)
S ) created randomly, having approximately the same size b ∈ N . The batch

size b refers to the size of the smaller batches created. Epochs give the number of times
that the full learning data set is iteratively considered during training (Ferrario et al. 2020).



Risks 2022, 10, 217 14 of 35

The ideal choice of batch size must be determined in conjunction with the epochs as it
determines the total number of GDM steps undertaken during model training, which
impacts the model performance. Due to the size of the data in this work, we determined
the batch size and epochs using trial and error. Two approaches, outlined below, were
undertaken to determine a reasonable choice of batch size, epochs, and network architecture.
The two approaches were considered using a Poisson NN with seven different model
architectures of varying complexity. For all seven architectures, three hidden layers were
used (100,75,50), with (75,50,25), (50,35,25), (35,25,20), (25,20,15), (20,15,10), and (15,10,5)
neurons in each of the three hidden layers. The choice of the batch size epoch and network
architecture thus identified from the exercise was then adopted for Poisson CANN and the
network-based models under negative binomial distribution assumption.

Approach 1: batch size is varied, keeping the epochs fixed; then, for the batch size giving the
best performance, different epochs are considered.

• Step 1: Initially, for different model architectures of varying complexities, different
batch sizes were considered, keeping the number of epochs fixed to 1000. All consid-
ered models involve three layers, with a different number of nodes in each layer. The
different model architectures were fitted using batch sizes of 10,000, 30,000, 50,000,
75,000, 100,000, 175,000, 250,000, 500,000, and 750,000. The performances of the mod-
els were compared using the testing (out-of-sample) loss LT , i.e., the deviance loss
(Equation (17)) under the testing data set. The results are shown in Tables A4 and A5
and illustrated in Figure 6. The tables also show the learning (in-sample) deviance
loss, LD, and the portfolio average, i.e., the average fitted mean µ̂ for the full data set
under the considered models.

(a) (b)

Figure 6. Performance of the different models under the initial step of approach 1, under varying
batch sizes: (a) testing loss for the Poisson NN models under different architectures. The red line
shows the testing loss for the Poisson regression model; (b) change in the testing loss for the Poisson
NN models under different architectures as the batch size increases.

All models, irrespective of their level of complexity, performed well with a batch size
of 175,000. As anticipated, complex models had a higher testing loss with smaller
batch sizes due to over-fitting. In general, the testing loss presented a decreasing
trend for all considered models as the batch size increased from 10,000 to 175,000. For
batch sizes greater than 175,000, both testing loss and learning loss for simpler models
started to rise. This indicates under-fitting and shows that for batch sizes greater than
175,000, the complexity of simpler models with fewer neurons in the hidden layers
is insufficient to fit the data effectively. Hence, this analysis suggested choosing a
batch size of 175,000. Nevertheless, as all models had a comparable testing loss for
batch size 175,000, three of the simpler models

(
NN (25,20,15), NN (20,15,10), and NN

(15,10,5)
)

were considered further for identifying the optimal number of epochs.



Risks 2022, 10, 217 15 of 35

• Step 2: in order to find the optimal number of epochs, the NN (25,20,15), NN (20,15,10),
and NN (15,10,5) models were fit using different choices of epochs

(
100, 250, 500, 1000,

1500, and 2000
)
, keeping the batch size fixed at 175,000. The results of these models

are given in Table 4.

Table 4. The testing loss, learning loss, and portfolio average of the Poisson neural network models
with (25,20,15), (20,15,10), and (15,10,5) architectures for different choices of epochs.

Model Epochs Learning Loss Testing Loss Portfolio Average

NN (25,20,15) 100 2.8021 2.6751 0.0033
NN (25,20,15) 250 2.7207 2.5843 0.0029
NN (25,20,15) 500 2.6910 2.5668 0.0028
NN (25,20,15) 1000 2.6713 2.5621 0.0028
NN (25,20,15) 1500 2.6509 2.5480 0.0029
NN (25,20,15) 2000 2.6212 2.5770 0.0028

NN (20,15,10) 100 2.8200 2.6968 0.0038
NN (20,15,10) 250 2.7433 2.6092 0.0031
NN (20,15,10) 500 2.6983 2.5707 0.0029
NN (20,15,10) 1000 2.6719 2.5634 0.0027
NN (20,15,10) 1500 2.6505 2.5582 0.0028
NN (20,15,10) 2000 2.6420 2.5872 0.0028

NN (15,10,5) 100 3.3765 3.2795 0.0097
NN (15,10,5) 250 2.8166 2.6936 0.0035
NN (15,10,5) 500 2.7434 2.6171 0.0033
NN (15,10,5) 1000 2.6704 2.5641 0.0028
NN (15,10,5) 1500 2.6517 2.5407 0.0027
NN (15,10,5) 2000 2.6457 2.5723 0.0028

For the models considered in step 2, the testing loss was lowest when the number of epochs
was 1500. Hence, the combination of the batch size equal to 175,000 and 1500 epochs was
deemed optimal under this approach.

Approach 2: epochs number is varied, keeping the batch size fixed; then, for the epochs
number giving the best performance, different batch sizes are considered. The same steps
as those followed in Approach 1 were carried out under this approach as well but in an
alternate order. Model architectures, batch sizes, and numbers of epochs are also the same
as in Approach 1.

• Step 1: we now initially alter the number of epochs, keeping the batch size fixed
at 30,000. The results of this step are given in Table A6. For all considered model
architectures, except for NN (100,75,50), the testing loss was lower than that for the
Poisson regression model, when the number of epochs was 250. Moreover, the testing
loss was lowest for all considered model architectures when the number of epochs
was 250 (see Figure 7). Hence, the number of epochs was chosen as 250.



Risks 2022, 10, 217 16 of 35

Figure 7. Change in the testing (out-of-sample) loss for Poisson neural network models with different
architectures as epochs increase.

• Step 2: For all model architectures other than (100,75,50), different batch sizes were con-
sidered with the number of epochs fixed at 250. The results are given in Tables A7 and A8
and illustrated in Figure 8. With a batch size of 30,000, all models, except for NN
(15,10,5), had testing losses lower than that for the Poisson regression model. When
the batch size increased to 50,000, the NN (50,35,25) also had a similar testing loss.
However, a batch size of 30,000 was chosen, as all models performed well under this
choice. The combination of a batch size of 30,000 and 250 epochs was deemed optimal
under the second approach.

Figure 8. Change in the deviance testing (out-of-sample) loss for the Poisson neural network models
with different architectures as batch size increases.

4.2.1. Comparison of Approaches

The two approaches yielded different combinations of batch sizes and epochs. Under
Approach 1, the best batch size and epoch number combination was (175,000, 1500), whereas
Approach 2 identified (30,000, 250) as the best combination. In order to compare these
combinations, results from 50 separate calibrations with different starting points for GDM
were considered for the NN (30,25,20), NN (25,20,15), NN (20,15,10), and NN (15,10,5)
models (see Figure 9). The motivation behind considering different calibrations is the
inherent randomness in the results of neural network models. Several aspects of the
neural network model fitting contribute to this randomness and are discussed in detail



Risks 2022, 10, 217 17 of 35

in Section 6.2. Different calibrations were implemented by altering the seed value for the
random number generator, which determines the initial value of model weights under
GDM (see Section 6.2 for more details).

Figure 9. Performance from 50 different calibrations for Poisson NN models under different architec-
tures on testing data set, for the best combination of batch sizes and epochs identified in Approach 1
(175,000, 1500) and Approach 2 (30,000, 250). The horizontal red line shows the deviance loss value
for the Poisson regression model.

The graphs clearly show that the combination of a batch size of 30,000 and 250 epochs
performs better than a batch size of 175,000 and 1500 epochs, in terms of testing loss. The
results also indicate that both (25,20,10) and (20,15,10) architectures have similar predictive
performances. Hence, we consider both these architectures while investigating additional
model improvements discussed in the following section.

5. Model Improvements
5.1. Approaches for Preventing Over-Fitting

One of the most significant aspects that need to be addressed while training a neural-
network model is the overfitting of the model to the learning set, D, which may poten-
tially affect the predictive performance of the model. Three of the most commonly used
approaches for preventing over-fitting were considered here, i.e., regularisation, early
stopping, and dropout. For comparing the different improvement approaches, Poisson NN
models with (25,20,10) and (20,15,10) architectures were used.

5.1.1. Regularisation

Under this approach, a penalty function is considered for the loss function, con-
trolled by a regularisation parameter that is added to the network parameters. Following
(Ferrario et al. 2020), the modified loss function for the Poisson NN is given by

LA(β; η) = 2 ∑
i∈A

(
yi log yi − yi − yi log µ̂i + µ̂i

)
+ η||θ−||

p
p (20)

where η is the regularisation parameter and θ− is the subset of network parameters
considered for regularisation; ||θ−||p is the `p-norm and gives

(
∑

j∈θ−
|θj|p

)1/p. Ridge regu-

larisation (p = 2) was selected over LASSO (least absolute shrinkage and selection operator
regression) regularisation (p = 1), as the former penalises the parameters depending upon
their values and not on the same scale (Ferrario et al. 2020). Following the literature,
Hastie et al. (2009) and Ferrario et al. (2020), regularisation was applied to all network
parameters except for the intercepts and the last output layer. The main criticism that regu-



Risks 2022, 10, 217 18 of 35

larisation faces is that it is heavily influenced by the choice of the regularisation parameter.
For each of the (25,20,10) and (20,15,10) architectures, four choices of the regularisation
parameter η were considered (η = 10−1, η = 10−3, η = 10−5 and η = 10−8) and the results
are shown in Table 5 (see Listing A2 for the sample code).

Table 5. Testing loss, learning loss, and portfolio average of the Poisson neural network models
((20,15,10), and (25,20,15) architectures) with regularisation (η = 10−1, η = 10−3, η = 10−5, η = 10−8),
and without regularisation (η = 0).

Model η value Learning Loss Testing Loss Portfolio Average

NN (25,20,15) η = 0 2.6614 2.5354 0.0027
NN (25,20,15) η = 10−1 2.8052 2.6787 0.0029
NN (25,20,15) η = 10−3 2.8045 2.6767 0.0027
NN (25,20,15) η = 10−5 2.6827 2.5536 0.0028
NN (25,20,15) η = 10−8 2.6614 2.5354 0.0027

NN (20,15,10) η = 0 2.6584 2.5380 0.0027
NN (20,15,10) η = 10−1 2.8049 2.6781 0.0028
NN (20,15,10) η = 10−3 2.8045 2.6767 0.0027
NN (20,15,10) η = 10−5 2.6817 2.5550 0.0028
NN (20,15,10) η = 10−8 2.6585 2.5380 0.0027

From the results, it is evident that for both model architectures, the testing loss de-
creased (improvement in predictive performance) when the η value decreased from 10−1

to 10−8. Nevertheless, for η = 10−8, both architectures had the same testing loss as that of
the model without regularisation, indicating non-improvement of the predictive perfor-
mance under regularisation. In order to further assess the effectiveness of regularisation
while accounting for the inherent randomness in the results, multiple calibrations of both
architectures were considered with η = 10−8 (see Section 5.1.4).

5.1.2. Early Stopping

Generally, a neural network model starts to over-fit after a particular number of epochs.
This is related to work in Section 4.2 on identifying the ideal number of epochs for a given
batch size. The logic behind the early-stopping approach is to identify the ideal number of
epochs above which the model starts to over-fit. In other words, the aim is to identify the
number of epochs beyond which the validation loss starts to increase since an increase in
validation loss indicates over-fitting of the model. Numerous ways of implementing early
stopping exist, the details of which are discussed by Prechelt (1998). Our implementation
employs a callback approach, which initially lets the model train for a large epoch. When
the training is over, the model weights that gave the lowest value for the loss function on
the validation set, are retrieved.

The early-stopping approach was implemented for both (25,20,15) and (20,15,10)
architectures with a batch size of 30,000 and 1000 epochs. As anticipated, the models with
early stopping performed better (see Table 6). For both model architectures, the ideal
number of epochs that gave the best validation loss was around 250 (231 for (25,20,15) and
272 for (20,15,10)). Both models gave similar results as that of the already identified choice
of 30,000 batch size and 250 epochs. The results indicate that the early-stopping approach
is desirable over the version without early stopping (see Listing A3 for sample code). In
the current context, since the early stopping was implemented using the callback approach,
this overcomes the hurdle of identifying the optimal number of epochs and allows to have
an arbitrarily large number of epochs (e.g., 500 epochs).



Risks 2022, 10, 217 19 of 35

Table 6. The testing loss, learning loss, and portfolio average of the Poisson neural network models
((20,15,10), and (25,20,15) architectures) with and without early stopping.

Model Epochs Learning Loss Testing Loss Portfolio Average

NN (25,20,15) early stopped 2.6654 2.5456 0.0025
NN (25,20,15) 1000 epochs 2.5635 2.6704 0.0028
NN (20,15,10) early stopped 2.6623 2.5403 0.0025
NN (20,15,10) 1000 epochs 2.5865 2.6216 0.0027

5.1.3. Dropout

Under this approach, for each step of the gradient descent (50 GDM steps within each
of the 250 epochs), each neuron is dropped with a probability p, independently of other
neurons creating a thinned network. The model weights are shared among the different
thinned networks considered and make up the final unthinned neural net. In other words,
for a GDM step involving thinned network, the gradient of the weights of the dropped
neurons is zero Srivastava et al. (2014). See Figure 10 for a sample representation of the
dropout process for a NN (20,15,10) architecture.

Figure 10. An illustration of dropout process for a sample NN model with three hidden layers and
20,15,10 neurons in each layer. The gray crossed-out circles in each layer represent the neurons that
were randomly dropped with probability p.

A fixed dropout rate was used for neurons in all three layers. Dropout rates of
1%, 2%, 5%, and 10% were considered for both model architectures. The results are shown
in Table 7. When the dropout rate was 2%, the testing loss for the (25,20,15) architecture
was similar to that of the implementation without dropout, whereas for the (20,15,10)
architecture, the testing loss decreased (see Listing A4 for sample code). The portfolio
average for all the models with dropout is slightly different from the data indicating bias
at the portfolio level (see Section 6.1 for more details on the portfolio level bias of NN
models and approaches for addressing it). Since the dropout rate of 2% performed better in
comparison to 1%, 5%, and 10%, the former was adopted for further comparison where the
randomness in the model results is also taken into consideration (see Section 5.1.4).



Risks 2022, 10, 217 20 of 35

Table 7. Testing loss and learning loss of the Poisson neural network models ((20,15,10) and (25,20,15)
architecture) with dropout rates of 0%, 1%, 2%, 5% and, 10%.

Model Dropout Rate Learning Loss Testing Loss Portfolio Average

Data 0.0027

NN (25,20,15) no dropout 2.6581 2.5416 0.0027
NN (25,20,15) p=1% 2.6563 2.5437 0.0025
NN (25,20,15) p=2% 2.6571 2.5418 0.0025
NN (25,20,15) p=5% 2.6622 2.5484 0.0023
NN (25,20,15) p=10% 2.6708 2.5441 0.0022

NN (20,15,10) no dropout 2.6625 2.5458 0.0026
NN (20,15,10) p=1% 2.6594 2.5478 0.0025
NN (20,15,10) p=2% 2.6606 2.5411 0.0024
NN (20,15,10) p=5% 2.6726 2.5554 0.0022
NN (20,15,10) p=10% 2.6756 2.5566 0.0021

5.1.4. Comparison of Model Improvement Approaches for Avoiding Over-Fitting

The model improvement approaches discussed above are subject to the inherent
randomness in neural network training. Hence, for comparing the different approaches,
50 different calibrations were considered under each approach for both (25,20,15) and
(20,15,10) architectures. The results from these different runs are illustrated in Figure 11.

Figure 11. Performance from 50 different calibrations of the Poisson NN model under (25,20,15) and
(20,15,10) architectures on testing and learning data sets for different model improvement approaches.

Comparisons among these approaches indicated that the early stopping and dropout
approaches significantly improved predictive performance. Since both approaches can be
applied on the same run, it was decided to adopt both simultaneously as well. For the
(25,20,15) architecture, the combination of dropout and early-stopping approaches had a
similar performance as that of the two approaches when applied individually. In contrast,
the (20,15,10) architecture showed improvement in the predictive performance when both
approaches were applied simultaneously (see Figure 11). Hence, it was decided to proceed
by adopting the combined improvement approach (early stopping and dropout).



Risks 2022, 10, 217 21 of 35

6. Negative Binomial Neural Network Models

A comparison was carried out between the different models under Poisson and
negative binomial distribution assumptions. For the network-based models, a single
calibration with the combined improvement approach (early stopping and dropout) was
considered to directly compare with the regression models (see Table 8). For the network-
based models,(25,20,15) and (20,15,10) architectures were used with a batch size of 30,000
and 500 epochs for training the model.

Table 8. Testing loss, learning loss, portfolio average of regression, and network-based models under
the Poisson and negative binomial distributional assumptions.

Model Learning Loss Testing Loss Portfolio Average

Data 0.0027

Pois. reg 2.6835 2.5388 0.0027
NNPois (20,15,10) 2.6726 2.5160 0.0028

CANNPois (20,15,10) 2.6708 2.5118 0.0027
NNPois (25,20,15) 2.6686 2.5171 0.0026

CANNPois (25,20,15) 2.6682 2.5181 0.0028

NB.reg 1.0599 1.0599 0.0028
NNNB (20,15,10) 1.0381 1.0251 0.0028

CANNNB (20,15,10) 1.0435 1.0168 0.0028
NNNB (25,20,15) 1.0424 1.0298 0.0029

CANNNB (25,20,15) 1.0454 1.0150 0.0029

The models under the negative binomial distribution assumption show better predictive
performance than those under the Poisson assumption. The main difference between the mod-
els under Poisson and negative binomial assumption is the additional dispersion parameter φ
in the negative binomial distribution. The dispersion parameter is not trained as part of the
neural network model fitting and is considered separately. For training the network-based
models, the dispersion parameter determined from the negative binomial regression model is
used as the initial value, and the parameter is adjusted once separately after the first round of
model training. The adjustment factor used to update the dispersion parameter is the ratio
between the testing loss of the best neural network model and the regression model. Once
the dispersion parameter is modified by multiplying with the adjustment factor, the model is
freshly trained using the new value of the dispersion parameter.

From the results shown in Table 8, it is evident that the models under the negative
binomial distribution assumption have lower testing loss indicating a much better predic-
tive performance compared to models under the Poisson assumption. It is true for NN and
CANN models of 25,20,15 and 20,15,10 architectures. The results also show that the CANN
model performed better than the NN model under the negative binomial assumption for
both 25,20,15, and 20,15,10 architectures. The same is true for 20,15,10 architecture under
the Poisson assumption. For the 25,20,15 architecture, the Poisson NN model had a slightly
lower testing loss than the Poisson CANN model. The portfolio average from the different
network-based models was slightly different compared to the actual data. This points
toward the network-based model’s failure to balance property at the portfolio level and is
discussed in the section below.

6.1. Bias Regularisation

One main criticism faced by neural network models is that the balance property fails
to hold on a population level: although the model gives accurate results on granular
individual-level data, unbiasedness (or the balance property) fails on a portfolio level. In
actuarial applications, this presents an important concern as the model can potentially lead
to substantial mispricing at a population level. The root cause is the limited number of steps
in gradient descent algorithms, which may restrict the parameter estimates from reaching
the critical points of the Poisson deviance loss function Wüthrich (2020). For models under



Risks 2022, 10, 217 22 of 35

the negative binomial distributional assumption, the adopted log link function (which is
not the canonical link function for the negative binomial distribution), can also contribute
to bias in the results (Hilbe 2011).

A common bias regularisation approach is to adjust the intercept β
(d+1)
0 in the lin-

ear function from the last layer of the neural network, which can be implemented by
multiplying the results with a constant c given by

c =
µ̄

µ̂
, (21)

where µ̂ is the mean of the predicted values µ̂i and µ̄ is the mean of the observed admission
numbers yi (Tzougas and Li 2021). This will ensure that the means of the modified predicted
values are the same as the means of the observed values yi, such as

1
n ∑ cµ̂i = c

1
n ∑ µ̂i =

µ̄

µ̂
µ̂ = µ̄. (22)

As an alternative approach, the GLM regularisation method was also considered. Under
this approach, a GLM is added after the last hidden layer in the neural network. In essence,
the neural network acts as a pre-process and the output from the last hidden layer is used
to fit a GLM to predict the response. The last hidden layer z(d) is considered a learned
representation of the feature space X created by the network

X 7→ z(d) (23)

which could be viewed as a new augmented data set (D̂ = yi, z(d)i : i = 1, ..n) for modelling
admission counts with n being the number of records in the original data set (Ferrario et al.
2020). In other words, the GLM produces IWLS estimates for the weights in the last layer,
thereby ensuring unbiasedness and balance. The sample code for implementing this ap-
proach is given in Listing A5. For further discussion regarding the portfolio level unbalance
of network results and details regarding the different bias regularisation approaches, we
refer to Wüthrich (2021) and Wüthrich (2020). The GLM bias regularisation approach was
considered using NN (20,15,10) and CANN (20,15,10) models under the negative binomial
distribution assumption. This presents room for further potential improvement due to the
choice of the log link function in the regression implemented for bias regularisation. Hence,
the simple bias regularisation approach was also adopted, together with the regression
bias regularisation method. In particular, for both the NN and CANN models, the bias
regularisation was implemented by extracting their last hidden layers and feeding them
into the corresponding negative binomial regression models for which their intercepts were
adjusted in order to control the portfolio bias. Moreover, not that the bias regularisation ap-
proaches were applied in addition to the model improvement approaches of early stopping
and dropout, with a batch size of 30,000 and 500 epochs. Table 9 shows the performance of
the different models with and without bias-regularisation. Bias-regularisation has a clear
impact, with the portfolio average of the relevant methods being the same as that of the
observed data.



Risks 2022, 10, 217 23 of 35

Table 9. Testing loss, learning loss, and portfolio average of regression and network-based models
under negative binomial distributional assumptions with and without bias regularisation.

Model Learning Loss Testing Loss Portfolio Average

Data 0.0027

NB.reg 1.0599 1.0599 0.0028
NB.reg w/bias regu 1.0600 1.0595 0.0027

NNNB (20,15,10) 1.0381 1.0251 0.0028
NNNB (20,15,10)

w/bias regu 1.0379 1.0244 0.0027

CANNNB (20,15,10) 1.0435 1.0168 0.0028
CANNNB (20,15,10)

w/bias regu 1.0431 1.0176 0.0027

NNNB (25,20,15) 1.0424 1.0298 0.0029
NNNB (25,20,15)

w/bias regu 1.0418 1.0271 0.0027

CANNNB (25,20,15) 1.0454 1.0150 0.0029
CANNNB (25,20,15)

w/bias regu 1.0442 1.0115 0.0027

6.2. Nagging Predictor

As mentioned in Section 4.2.1, one of the main issues associated with neural network
models is that results can vary among repeated runs. Aspects that can bring out this
randomness are discussed in detail by Richman and Wüthrich (2020), and can include:

• The split of the learning data into training and validation sets;
• The split of the training data into mini-batches;
• Model initialisation.

These aspects are influenced by the choice of a random seed value for running the
associated algorithms, and different seed values can potentially give slightly different
results. Although the differences might be small, they should not be ignored in the
context of applications of incidence rate models. The nagging predictor proposed by
Richman and Wüthrich (2020) acts as a sensible approach to tackle this. The approach
acts similar to the traditional bagging and aggregating approach (bagging), but without
re-sampling. In other words, the aggregation occurs over the network, i.e., over different
calibrations (seed values) rather than by re-sampling. The data composition in terms of the
split between learning and testing data remains the same for all the calibrations, whereas
the aspects of randomness, such as the ones mentioned above, vary. For the ith observation
in the out-of-sample data, the nagging predictor is given by

¯̄µ(M)
i =

1
M

M

∑
t=1

µ̂
(t)
i =

1
M

M

∑
t=1

µ(xi, β̂(t))

where µ̂
(t)
i is the predictor obtained for the ith observation with the tth network calibration

(e.g., as given in Equation (12)) and M is the number of calibrations (seed) values considered.
The testing (out-of-sample) loss for the nagging predictors is given by:

L
(
T ; ¯̄µ(M)

i=1,...,n
)
=

1
n

n

∑
i=1

δ
(
Yi, ¯̄µ(M)

i
)

where n is the number of observations in the testing data set and δ(Yi, ¯̄µ(M)
i ) represents

the unit deviance. The nagging predictor approach was applied on top of the already
identified improvement approaches (early stopping and dropout) and bias regularisation.
The nagging predictors for M = 1, 2, 3 . . . , 50 were calculated for both the NN and CANN



Risks 2022, 10, 217 24 of 35

models under the negative binomial distributional assumption. Due to computational
limitations, we only considered a (20,15,10) architecture for the NN and CANN models,
and the results are shown in Table 10 and illustrated in Figure 12.

Table 10. Testing loss, learning loss, and portfolio average of the nagging predictor (M = 50) for the
NN (20,15,10) and CANN (20,15,10) models under the negative binomial distributional assumption.

Model Index M Learning Loss Testing Loss Portfolio Average

NNNB (20,15,10) M = 50 1.0570 1.0647 0.0027
CANNNB (20,15,10) M = 50 1.0605 1.0503 0.0027

Figure 12. Testing loss for the nagging predictors under the negative binomial NN and CANN
models, using (20,15,10) architecture.

The results suggest that the nagging predictor under the CANN approach performs
better than the NN approach in terms of testing loss. Moreover, under both the NN and
CANN approaches, as M increases, the testing loss starts to converge to a stabilised value,
demonstrating a reduction in the variability of the prediction outcomes.

7. K-Fold Validation

In this section, we address the issue of potential variations in the NN model results,
arising from the choice to split the data into learning and testing sets. The nagging predictor,
presented in Section 6.2, does not account for this variability as it considers only those
sources of randomness that arise once this split is done. Here, we consider a k-fold cross-
validation approach to analyse the impact of the learning/testing split on the results
and compare the performance of different models. Under the k-fold cross-validation
approach introduced by Geisser (1975), the full data set is initially split into k roughly
equal sets. The models under consideration are then trained using the k − 1 set and
validated/evaluated using the remaining set. The process is then repeated k times, altering
the choice of validation set (Jung (2018)). In the current context, The value of k was set
as k = 10 to maintain the 90:10 split of learning and testing data. Here, we used cross-
validation as a model selection procedure as discussed by Arlot and Celisse (2010) and not
for training the model. The different models were compared using the average deviance
loss value from the 10 folds (e.g., as in Equation (17)). As the models under the negative



Risks 2022, 10, 217 25 of 35

binomial distribution assumption demonstrated better predictive performances in our
earlier analysis, compared to those under the Poisson assumption, only the former were
considered in the k-fold validation. A nagging predictor (M = 25), together with the model
improvement approaches discussed earlier (early stopping and dropout), was considered
here for the network-based models. Bias regularisation was also applied, implementing
both approaches as described in Section 6.1. The average testing and learning loss over the
ten different folds are given in Table 11.

Table 11. Average of testing loss, learning loss, and portfolio average of regression and network-based
models under negative binomial distributional assumptions from the 10 different folds.

Model Index M Learning Loss Testing Loss Portfolio Average

NB.reg 1.0664 1.0807 0.0027
NNNB (20,15,10) M = 25 1.0460 1.0645 0.0027

CANNNB (20,15,10) M = 25 1.0563 1.0722 0.0027

The results from the cross-validation indicate that the NN performed better than the
regression and CANN models.

8. Concluding Remarks

In this research, we developed an ensemble of models for predicting the rate of
admissions related to respiratory diseases in an insured US population. The results indicate
that the neural network-based models have better predictive performances compared to
traditional GLM-type models. A potential reason for this may be the ability of neural
network models to capture possible interactions of non-multiplicative types between the
different features. Although, in principle, these interactions could also be captured in GLM-
type models, they must be identified and specified explicitly within the model. Adapting
traditional approaches based on methods, such as step-wise Akaike information criterion
(AIC) or Bayesian information criterion (BIC) for identifying relevant interactions, can
be tedious and time-consuming for complex and large data sets, as in this case. Our k-
fold cross-validation indicated that under an underlying negative binomial distributional
assumption, the NN models gave better predictive performances, as determined by the
testing data loss, than the GLM-type and CANN models. The better performances of the
NN models compared to the CANN models could be partly due to the latter not involving
training processes for the regression parts of the models.

The comprehensive nature of the developed models allows them to be extended with
ease for modelling admission rates for other diseases, or other data in similar contexts
and applications. The additional model improvement approaches, such as early stop-
ping and dropout, further improved the predictive performances of the models. The
nagging predictor addresses the inherent randomness in neural network results, and the
adapted bias regularisation approach effectively resolved the population-level bias in the
model results.

A potentially interesting line of further research is to develop zero-inflated versions
of the NN-based models considered in this study, motivated by a high concentration of
zeros in data of this nature. Furthermore, the development of hyperparameter tuning
algorithms that can determine a range of different hyperparameters under a systematic
search approach would be beneficial, especially in the context of large volumes of data
involving high computational costs.

Finally, it should be noted that although NN-based models automatically capture gen-
eral and complex interaction effects among features, their outputs are not easy to interpret,
and variable selections are cumbersome. Therefore, a fruitful research avenue is to consider
recently developed explainable artificial intelligence (XAI) approaches for interpreting the
results from network-based models. For instance, Shapley Additive exPlanation (SHAP),
local interpretable model-agnostic explanations (LIME), and particularly the LocalGLMnet
methods are some promising XAI approaches that could be considered. The LocalGLMnet



Risks 2022, 10, 217 26 of 35

developed by Richman and Wüthrich (2022) proposes new network architectures that
share similar features with GLM-type models without compromising their predictive per-
formances. In the context of the health data considered in this paper, such approaches
can help toward deriving actionable data insights that can potentially guide healthcare
policies and intervention efforts, as well as the development and management of relevant
insurance products.

Author Contributions: Conceptualization, G.S., G.T., and A.S.M.; methodology, G.S., G.T., and
A.S.M.; software, A.J.; formal analysis, A.J.; investigation, A.J.; data curation, A.J.; writing—original
draft preparation, A.J.; writing—review and editing, A.J., G.S., and G.T.; visualization, A.J.; supervi-
sion, G.S., G.T., and A.S.M.; project administration, G.S.; funding acquisition, G.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Society of Actuaries, https://www.soa.org
(accessed on 19 October 2021), under a CAE research grant on “Predictive modelling for medi-
cal morbidity trends related to insurance”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. We are unable to
provide the data due to the data use agreement with Merative, who provided the data.

Acknowledgments: Certain data used in this study were supplied by Merative as part of one or more
Merative MarketScan Research Databases. The analyses, interpretations, or conclusions based on
these data are solely those of the authors and not Merative. We would also like to thank Ian Duncan
of the University of California, Santa Barbara for his immense support and guidance. Finally, we
thank the two anonymous reviewers for their very helpful comments and suggestions, which have
significantly improved this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CANN Combined Actuarial Neural Network
CRD Chronic respiratory diseases
COPD Chronic obstructive pulmonary disease
GLM Generalized linear model
BUGS Bayesian inference Using Gibbs Sampling
MTPL French motor third-party liability insurance
NN Neural network
FFNN Feed-forward neural network
ICD International Statistical Classification of Diseases
GDM Gradient descent methods
MSA Metropolitan Statistical Area
XAI Explainable Artificial Intelligence

Appendix A

Appendix A.1. ICD Chapters and Variable Lookup Tables

Table A1. Chapter-wise grouping of diagnosis codes for ICD-10 CDC (2016).

Chapter Codes Title

1 A00–B99 Certain infectious and parasitic diseases
2 C00–D49 Neoplasms
3 D50–D89 Diseases of the blood, blood-forming organs, and certain disorders involving the immune mechanism
4 E00–E89 Endocrine, nutritional, and metabolic diseases

https://www.soa.org


Risks 2022, 10, 217 27 of 35

Table A1. Cont.

Chapter Codes Title

5 F01–F99 Mental and behavioral disorders
6 G00–G99 Diseases of the nervous system
7 H00–H59 Diseases of the eye and adnexa
8 H60–H95 Diseases of the ear and mastoid process
9 I00–I99 Diseases of the circulatory system

10 J00–J99 Diseases of the respiratory system
11 K00–K95 Diseases of the digestive system
12 L00–L99 Diseases of the skin and subcutaneous tissue
13 M00–M99 Diseases of the musculoskeletal system and connective tissue
14 N00–N99 Diseases of the genitourinary system
15 O00–O9A Pregnancy, childbirth, and the puerperium
16 P00–P96 Certain conditions originating in the perinatal period
17 Q00–Q99 Congenital malformations, deformations, and chromosomal abnormalities
18 R00–R99 Symptoms, signs, and abnormal clinical and laboratory findings not classified elsewhere
19 S00–T88 Injury, poisoning, and certain other consequences of external causes
20 V00–Y99 External causes of morbidity and mortality
21 Z00–Z99 Factors influencing health status and contact with health services

Table A2. Lookup table for EGEOLOC variables.

Value Description

1 Nation, unknown region
4 Connecticut
5 Maine
6 Massachusetts
7 New Hampshire
8 Rhode Island
9 Vermont
11 New Jersey
12 New York
13 Pennsylvania
16 Illinois
17 Indiana
18 Michigan
19 Ohio
20 Wisconsin
22 Iowa
23 Kansas
24 Minnesota
25 Missouri
26 Nebraska
27 North Dakota
28 South Dakota
31 Washington, DC
32 Delaware
33 Florida
34 Georgia
35 Maryland
36 North Carolina
37 South Carolina
38 Virginia
39 West Virginia
41 Alabama
42 Kentucky
43 Mississippi
44 Tennessee
46 Arkansas



Risks 2022, 10, 217 28 of 35

Table A2. Cont.

Value Description

47 Louisiana
48 Oklahoma
49 Texas
52 Arizona
53 Colorado
54 Idaho
55 Montana
56 Nevada
57 New Mexico
58 Utah
59 Wyoming
61 Alaska
62 California
63 Hawaii
64 Oregon
65 Washington
97 Puerto Rico

Table A3. Details regarding the characteristics of different plan types.

PLANTYP
Incentive to Use

Certain
Provider

Primary Care
Physician (PCP)

Assigned?

Referrals from PCP
to Specialists

Required?

Out-of-Network
Services

Covered?

Partially or
Fully

Capitated?

2. Comprehensive plan No No n/a n/a No

3. Exclusive provider
organization plan Yes Yes Yes No No

4. Health maintenance
organization plan Yes Yes Yes No Yes

5. Non-capitated
(non-cap) point-of-service

plan
Yes Yes Yes Yes No

6. Preferred provider
organization plan Yes No n/a Yes No

7. Capitated (Cap) or
partially capitated

(part cap)
point-of-service plan

Yes Yes Yes Yes Yes

8. Consumer-driven
health plan Varies No n/a Varies No

9. High-Deductible
health plan Varies No n/a Varies No

Appendix A.2. Selection of Batch Size and Epochs

Table A4. The testing loss, learning loss, and portfolio average of Poisson regression model and the
Poisson neural network models with (100,75,50), (75,50,25), (50,35,25), (35,25,20), (25,20,15), (20,15,10),
and (15,10,5) architectures for 1000 epochs, and batch sizes 10,000 and 30,000.

Model Batch Size Learning Loss Testing Loss Portfolio Average

Data 0.0027

Pois. GLM 2.6811 2.5516 0.0027

NN (100,75,50) 10,000 2.0815 4.3194 0.0027



Risks 2022, 10, 217 29 of 35

Table A4. Cont.

Model Batch Size Learning Loss Testing Loss Portfolio Average

NN (75,50,25) 10,000 2.2348 3.3182 0.003
NN (50,35,25) 10,000 2.3546 3.0803 0.0029
NN (35,25,20) 10,000 2.4291 2.9139 0.0028
NN (25,20,15) 10,000 2.5097 2.8273 0.0029
NN (20,15,10) 10,000 2.5533 2.6676 0.0028
NN (15,10,5) 10,000 2.5902 2.6593 0.0028

NN (100,75,50) 30,000 2.1473 3.4493 0.0028
NN (75,50,25) 30,000 2.3359 2.9862 0.0027
NN (50,35,25) 30,000 2.4454 2.8612 0.0028
NN (35,25,20) 30,000 2.5116 2.6836 0.0028
NN (25,20,15) 30,000 2.5618 2.6794 0.0027
NN (20,15,10) 30,000 2.5917 2.6164 0.0026
NN (15,10,5) 30,000 2.619 2.5962 0.0026

Table A5. The testing loss, learning loss, and portfolio average of the Poisson neural network models
with (100,75,50), (75,50,25), (50,35,25), (35,25,20), (25,20,15), (20,15,10), and (15,10,5) architectures for
1000 epochs, and for batch sizes 50,000, 75,000, 100,000, 175,000, 250,000, 500,000, and 750,000.

Model Batch Size Learning Loss Testing Loss Portfolio Average

NN (100,75,50) 50,000 2.2604 3.2272 0.0029
NN (75,50,25) 50,000 2.4708 2.7257 0.0028
NN (50,35,25) 50,000 2.5367 2.6943 0.0028
NN (35,25,20) 50,000 2.5768 2.634 0.0029
NN (25,20,15) 50,000 2.6049 2.6244 0.0029
NN (20,15,10) 50,000 2.6146 2.6135 0.0029
NN (15,10,5) 50,000 2.6316 2.5788 0.0028

NN (100,75,50) 75,000 2.4316 2.8451 0.0031
NN (75,50,25) 75,000 2.5442 2.6493 0.0028
NN (50,35,25) 75,000 2.5761 2.635 0.0029
NN (35,25,20) 75,000 2.6098 2.601 0.0029
NN (25,20,15) 75,000 2.6376 2.5731 0.0027
NN (20,15,10) 75,000 2.638 2.5725 0.0027
NN (15,10,5) 75,000 2.6443 2.5701 0.0027

NN (100,75,50) 100,000 2.5945 2.6077 0.0029
NN (75,50,25) 100,000 2.6057 2.5973 0.0029
NN (50,35,25) 100,000 2.6376 2.564 0.0027
NN (35,25,20) 100,000 2.6492 2.545 0.0027
NN (25,20,15) 100,000 2.6514 2.5559 0.0028
NN (20,15,10) 100,000 2.6485 2.5516 0.0027
NN (15,10,5) 100,000 2.6551 2.548 0.0026

NN (100,75,50) 175,000 2.6591 2.5389 0.0028
NN (75,50,25) 175,000 2.6635 2.5484 0.0028
NN (50,35,25) 175,000 2.6666 2.5642 0.003
NN (35,25,20) 175,000 2.6725 2.5597 0.0029
NN (25,20,15) 175,000 2.6613 2.5418 0.0028
NN (20,15,10) 175,000 2.6662 2.5525 0.0028
NN (15,10,5) 175,000 2.665 2.5492 0.0028

NN (100,75,50) 250,000 2.6743 2.5565 0.0027
NN (75,50,25) 250,000 2.6757 2.5581 0.0028
NN (50,35,25) 250,000 2.6754 2.5542 0.0028
NN (35,25,20) 250,000 2.6777 2.5579 0.0028
NN (25,20,15) 250,000 2.6767 2.5592 0.0028
NN (20,15,10) 250,000 2.6836 2.5612 0.0028
NN (15,10,5) 250,000 2.7349 2.6092 0.0032



Risks 2022, 10, 217 30 of 35

Table A5. Cont.

Model Batch Size Learning Loss Testing Loss Portfolio Average

NN (100,75,50) 500,000 2.6823 2.5558 0.0028
NN (75,50,25) 500,000 2.6871 2.5631 0.0028
NN (50,35,25) 500,000 2.6877 2.5603 0.0028
NN (35,25,20) 500,000 2.69 2.564 0.0028
NN (25,20,15) 500,000 2.6934 2.5642 0.0028
NN (20,15,10) 500,000 2.7624 2.6288 0.0029
NN (15,10,5) 500,000 2.8025 2.6763 0.0029

NN (100,75,50) 750,000 2.6825 2.5552 0.0028
NN (75,50,25) 750,000 2.6892 2.5605 0.0028
NN (50,35,25) 750,000 2.6889 2.56 0.0028
NN (35,25,20) 750,000 2.7007 2.5684 0.0028
NN (25,20,15) 750,000 2.7646 2.6296 0.003
NN (20,15,10) 750,000 2.7947 2.6707 0.0033
NN (15,10,5) 750,000 2.9142 2.8013 0.0051

Table A6. The testing loss, learning loss, and portfolio average of the Poisson neural network models
with different architectures for different choices of epochs.

Model Epochs Learning Loss Testing Loss Portfolio Average

Data 0.0027

Pois.GLM 2.6811 2.5516 0.0027

NN (100,75,50) 100 2.6866 2.563 0.0031
NN (75,50,25) 100 2.6836 2.5606 0.003
NN (50,35,25) 100 2.6869 2.5649 0.0032
NN (35,25,20) 100 2.6851 2.5611 0.0028
NN (25,20,15) 100 2.6917 2.568 0.0028
NN (20,15,10) 100 2.696 2.5687 0.0028
NN (15,10,5) 100 2.8045 2.6778 0.0029

NN (100,75,50) 250 2.6518 2.5527 0.0026
NN (75,50,25) 250 2.6589 2.5448 0.0028
NN (50,35,25) 250 2.6599 2.5454 0.0026
NN (35,25,20) 250 2.6615 2.5379 0.0028
NN (25,20,15) 250 2.6605 2.5404 0.0026
NN (20,15,10) 250 2.6627 2.541 0.0024
NN (15,10,5) 250 2.6618 2.5396 0.0025

NN (100,75,50) 500 2.4575 2.7481 0.0029
NN (75,50,25) 500 2.5440 2.6737 0.0028
NN (50,35,25) 500 2.6074 2.5824 0.0027
NN (35,25,20) 500 2.6256 2.5703 0.0028
NN (25,20,15) 500 2.6288 2.5703 0.0027
NN (20,15,10) 500 2.6452 2.5683 0.0028
NN (15,10,5) 500 2.6459 2.5569 0.0028

NN (100,75,50) 1000 2.1653 3.4808 0.0028
NN (75,50,25) 1000 2.3453 3.0112 0.0029
NN (50,35,25) 1000 2.4357 2.8469 0.0027
NN (35,25,20) 1000 2.5345 2.7145 0.0027
NN (25,20,15) 1000 2.5661 2.6647 0.0027
NN (20,15,10) 1000 2.5983 2.5962 0.0027
NN (15,10,5) 1000 2.6194 2.5996 0.0028



Risks 2022, 10, 217 31 of 35

Table A6. Cont.

Model Epochs Learning Loss Testing Loss Portfolio Average

NN (100,75,50) 1500 2.1123 4.2328 0.0029
NN (75,50,25) 1500 2.2884 3.4217 0.003
NN (50,35,25) 1500 2.3753 2.9564 0.0029
NN (35,25,20) 1500 2.4651 2.8431 0.0029
NN (25,20,15) 1500 2.5323 2.7397 0.0028
NN (20,15,10) 1500 2.5565 2.6925 0.0028
NN (15,10,5) 1500 2.6032 2.6234 0.0027

NN (100,75,50) 2000 2.105 4.8078 0.0029
NN (75,50,25) 2000 2.2302 3.631 0.0029
NN (50,35,25) 2000 2.3314 3.1311 0.0029
NN (35,25,20) 2000 2.4312 2.923 0.0028
NN (25,20,15) 2000 2.4837 2.764 0.0027
NN (20,15,10) 2000 2.5611 2.6882 0.0026
NN (15,10,5) 2000 2.5997 2.6522 0.0027

Table A7. The testing loss, learning loss, and portfolio average of the Poisson neural network models
with different architectures for 10,000, 30,000, 50,000, 75,000, 100,000, and 175,000 batch sizes.

Model Batch Size Learning Loss Testing Loss Portfolio Average

Data 0.0027

Pois.GLM 2.6811 2.5516 0.0027

NN (75,50,25) 10,000 2.5453 2.6831 0.0031
NN (50,35,25) 10,000 2.5917 2.6302 0.003
NN (35,25,20) 10,000 2.6184 2.6045 0.003
NN (25,20,15) 10,000 2.6305 2.5834 0.0029
NN (20,15,10) 10,000 2.631 2.574 0.0029
NN (15,10,5) 10,000 2.6469 2.561 0.0028

NN (75,50,25) 30,000 2.6565 2.5493 0.0028
NN (50,35,25) 30,000 2.6546 2.5515 0.0027
NN (35,25,20) 30,000 2.6594 2.5442 0.0027
NN (25,20,15) 30,000 2.6594 2.5463 0.0027
NN (20,15,10) 30,000 2.6602 2.5402 0.0025
NN (15,10,5) 30,000 2.6657 2.568 0.0025

NN (75,50,25) 50,000 2.6751 2.5518 0.0027
NN (50,35,25) 50,000 2.674 2.5484 0.0027
NN (35,25,20) 50,000 2.6748 2.5572 0.0026
NN (25,20,15) 50,000 2.6758 2.5533 0.0026
NN (20,15,10) 50,000 2.6786 2.556 0.0026
NN (15,10,5) 50,000 2.6824 2.5618 0.0027

NN (75,50,25) 75,000 2.6824 2.5575 0.0027
NN (50,35,25) 75,000 2.6773 2.5551 0.0027
NN (35,25,20) 75,000 2.6851 2.5633 0.0027
NN (25,20,15) 75,000 2.6857 2.5626 0.0028
NN (20,15,10) 75,000 2.6844 2.5642 0.0027
NN (15,10,5) 75,000 2.7231 2.5933 0.003

NN (75,50,25) 100,000 2.6839 2.5603 0.0027
NN (50,35,25) 100,000 2.6831 2.5586 0.0027
NN (35,25,20) 100,000 2.69 2.5652 0.0028
NN (25,20,15) 100,000 2.6877 2.5642 0.0028
NN (20,15,10) 100,000 2.7066 2.5724 0.0029
NN (15,10,5) 100,000 2.7639 2.6299 0.003



Risks 2022, 10, 217 32 of 35

Table A7. Cont.

Model Batch Size Learning Loss Testing Loss Portfolio Average

NN (75,50,25) 175,000 2.686 2.5582 0.0028
NN (50,35,25) 175,000 2.6912 2.5579 0.0028
NN (35,25,20) 175,000 2.6896 2.5591 0.0028
NN (25,20,15) 175,000 2.7061 2.5734 0.0028
NN (20,15,10) 175,000 2.7658 2.6331 0.0029
NN (15,10,5) 175,000 2.9795 2.8704 0.0059

Table A8. The testing loss, learning loss, and portfolio average of the Poisson neural network models
with different architectures for 250,000 and 500,000 and 750,000 batch sizes.

Model Batch Size Learning Loss Testing Loss Portfolio Average

NN (75,50,25) 250,000 2.6985 2.566 0.0028
NN (50,35,25) 250,000 2.702 2.5674 0.0028
NN (35,25,20) 250,000 2.7312 2.5956 0.003
NN (25,20,15) 250,000 2.7579 2.6222 0.003
NN (20,15,10) 250,000 2.8054 2.6816 0.0033
NN (15,10,5) 250,000 2.8716 2.7557 0.0046

NN (75,50,25) 500,000 2.721 2.5869 0.0029
NN (50,35,25) 500,000 2.7048 2.5666 0.0028
NN (35,25,20) 500,000 2.7868 2.6548 0.003
NN (25,20,15) 500,000 2.7821 2.6511 0.0031
NN (20,15,10) 500,000 2.8502 2.7323 0.0042
NN (15,10,5) 500,000 3.7937 3.7045 0.0131

NN (75,50,25) 750,000 2.7237 2.5909 0.003
NN (50,35,25) 750,000 2.7492 2.6152 0.0029
NN (35,25,20) 750,000 2.754 2.6209 0.0032
NN (25,20,15) 750,000 2.8334 2.7084 0.0039
NN (20,15,10) 750,000 2.8275 2.7067 0.0041
NN (15,10,5) 750,000 6.4324 6.3651 0.0317

Appendix A.3. Code

Listing A1: Code for implementing CANNNB.

1 # Negative binomial regression using gamlss
2 NBI.reg <- gamlss(AdmnNb ~ offset(logExp) + AGE + EGEOLOC + SEXRT + URRT +

EECLASS + EESTATU + EMPREL + PLANTYP , data = learn , family = NBI)
3

4 learn$NBI.reg <- fitted(NBI.reg)
5 test$NBI.reg <- predict(NBI.reg , newdata = test , type=" response ")
6

7 #replacing the offset term with working weight obtained from regression
8 LogVol.learn <- as.matrix(learn$NBI.reg))
9 LogVol.test <- as.matrix(log(test$NBI.reg))

10 model <- keras_model(inputs = c(Design , EECLASS , EESTATU , EMPREL , PLANTYP ,
EGEOLOC , LogVol), outputs = c(Response))

Listing A2: Code for implementing ridge regularisation with η = 10−5.

1 # Main architecture with three hidden layers
2 Network <- list(Design , EecEmb , EesEmb , EmpEmb , PlnEmb ,EgeEmb) %>%

layer_concatenate(name = ’concate ’) %>%
3 layer_dense(units = q1, kernel_regularizer = regularizer_l2 (0.00001) ,

activation = ’tanh ’, name = ’hidden1 ’) %>%
4 layer_dense(units = q2, kernel_regularizer = regularizer_l2 (0.00001) ,

activation = ’tanh ’, name = ’hidden2 ’) %>%
5 layer_dense(units = q3, kernel_regularizer = regularizer_l2 (0.00001) ,

activation = ’tanh ’, name = ’hidden3 ’) %>%
6 layer_dense(units = 1, activation = ’linear ’, name = ’Network ’)



Risks 2022, 10, 217 33 of 35

Listing A3: Code for implementing early stopping using callback.

1 CBs <-callback_model_checkpoint (" path0",
2 monitor = "val_loss",
3 save_best_only = TRUE ,
4 verbose = 1,
5 save_weights_only = TRUE)
6 fit <- model %>% fit(
7 list(Design.learn , Eec.learn , Ees.learn , Emp.learn , Pln.learn , Ege.learn ,

LogVol.learn), # all predictors
8 Ylearn ,
9 verbose = 1,

10 epochs = epochs ,
11 batch_size = batchsize ,
12 validation_split = 0.2,
13 callbacks = CBs)
14 load_model_weights_hdf5(model ,"path0")

Listing A4: Code for implementing dropout with dropout rate p = 2%.

1 p<-0.02
2 Network <- list(Design , EecEmb , EesEmb , EmpEmb , PlnEmb ,EgeEmb) %>%

layer_concatenate(name = ’concate ’) %>%
3 layer_dense(units = q1,activation = ’tanh ’, name = ’hidden1 ’) %>%

layer_dropout(rate = p) %>%
4 layer_dense(units = q2,activation = ’tanh ’, name = ’hidden2 ’) %>%

layer_dropout(rate = p) %>%
5 layer_dense(units = q3,activation = ’tanh ’, name = ’hidden3 ’) %>%

layer_dropout(rate = p) %>%
6 layer_dense(units = 1, activation = ’linear ’, name = ’Network ’)

Listing A5: Code for implementing the GLM bias regularisation approach for Poisson
neuralnetwork model.

1 glm.fmla <- function(nb){
2 string <- "AdmnNb ~ z1"
3 if (nb >1){for (z in 2:nb){ string <- paste(string , "+z",z, sep ="")}}
4 string
5 }
6

7 zz <- keras_model(inputs=model$input , outputs=get_layer(model , ’hidden3 ’)
$output)

8 zz.learn <- data.frame(zz %>% predict(list(Design.learn , Eec.learn , Ees.
learn , Emp.learn , Pln.learn ,Ege.learn , LogVol.learn)))

9 colnames(zz.learn)<-c(paste0 ("z",1:q3))
10 zz.learn$AdmnNb <- learn$AdmnNb
11 zz.learn$Exposure <- learn$Exposure
12 zz.test <- data.frame(zz %>%predict(list(Design.test , Eec.test , Ees.test ,

Emp.test , Pln.test ,Ege.test , LogVol.test)))
13 colnames(zz.test)<-c(paste0 ("z",1:q3))
14 zz.test$Exposure <-test$Exposure
15 # perform GLM step on the last hidden layer
16 glm1 <- glm(as.formula(glm.fmla(q3)), data=zz.learn ,offset = log(Exposure),

family=poisson ())
17

18 nn<-paste("nnreg",batchsize ,epochs ,q1,q2,q3 ,sep="_")
19 # Predicted value of the admn numbers
20 learn[,nn] <- fitted(glm1)
21 test[,nn] <- predict(glm1 , newdata=zz.test , type=" response ")
22 # Record the loss in both learning and testing set
23 loss.table <- result.record(learn , test , loss.table , nn, dpois0)

References
Allaire, Joseph J, and François Chollet. 2021. Keras: R Interface to ‘Keras’. R Package Version 2.7.0. Available online: https:

//CRAN.R-project.org/package=keras (accessed on 9 January 2022).
Allaire, Joseph J., and Yuan Tang. 2021. Tensorflow: R Interface to ‘TensorFlow’. R Package Version 2.6.0. Available online:

https://CRAN.R-project.org/package=tensorflow (accessed on 9 January 2022).

https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=tensorflow


Risks 2022, 10, 217 34 of 35

Arık, Ayşe, Erengul Dodd, Andrew Cairns, and George Streftaris. 2021. Socioeconomic disparities in cancer incidence and mortality in
england and the impact of age-at-diagnosis on cancer mortality. PLoS ONE 16: e0253854. [CrossRef] [PubMed]

Arlot, Sylvain, and Alain Celisse. 2010. A survey of cross-validation procedures for model selection. Statistics Surveys 4: 40–79. [CrossRef]
Aveyard, Paul, Min Gao, Nicola Lindson, Jamie Hartmann-Boyce, Peter Watkinson, Duncan Young, Carol A. C. Coupland, Pui San Tan,

Ashley K. Clift, David Harrison, and et al. 2021. Association between pre-existing respiratory disease and its treatment, and
severe COVID-19: A population cohort study. The Lancet Respiratory Medicine 9: 909–23. [CrossRef]

Bengio, Yoshua, Réjean Ducharme, and Pascal Vincent. 2000. A neural probabilistic language model. In Advances in Neural Information
Processing Systems 13. Cambridge: MIT Press.

Blanc, Paul D., Isabella Annesi-Maesano, John R. Balmes, Kristin J. Cummings, David Fishwick, David Miedinger, Nicola Murgia,
Rajen N. Naidoo, Carl J. Reynolds, Torben Sigsgaard, and et al. 2019. The occupational burden of nonmalignant respiratory
diseases. an official american thoracic society and european respiratory society statement. American Journal of Respiratory and
Critical Care Medicine 199: 1312–34. [CrossRef] [PubMed]

Blier-Wong, Christopher, Hélène Cossette, Luc Lamontagne, and Etienne Marceau. 2020. Machine learning in P&C insurance: A review
for pricing and reserving. Risks 9: 4. [CrossRef] [CrossRef]

Bousquet, Jean, Nikolai Khaltaev, and Alvaro A. Cruz. 2007. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases.
Geneva: World Health Organization.

CDC. 2012. Chronic obstructive pulmonary disease among adults-United States, 2011. Morbidity and Mortality Weekly Report 61: 938–43.
CDC. 2016. ICD-10-CM International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). Available online:

https://www.cdc.gov/nchs/icd/icd-10-cm.htm (accessed on 12 December 2021).
De Jong, Piet, and Gillian Z. Heller. 2008. Generalized Linear Models for Insurance Data. Cambridge: Cambridge University Press.
Doney, Brent, Eva Hnizdo, Girija Syamlal, Greg Kullman, Cecil Burchfiel, Christopher J. Martin, and Priscah Mujuru. 2014. Prevalence

of chronic obstructive pulmonary disease among us working adults aged 40 to 70 years: National health interview survey data
2004 to 2011. Journal of Occupational and Environmental Medicine/American College of Occupational and Environmental Medicine
56: 1088. [CrossRef]

Dozat, Timothy. 2016. Incorporating nesterov momentum into adam. Paper presented at the 4th International Conference on Learning
Representations, San Juan, Puerto Rico, May 2–4.

Ferrario, Andrea, Alexander Noll, and Mario V. Wuthrich. 2020. Insights from inside neural networks. SSRN. Available online:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3226852 (accessed on 20 November 2021).

Frees, Edward W. 2009. Regression Modeling with Actuarial and Financial Applications. Cambridge: Cambridge University Press.
Geisser, Seymour. 1975. The predictive sample reuse method with applications. Journal of the American Statistical Association 70: 320–28.

[CrossRef]
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge: MIT Press.
Haberman, Steven, and Arthur E. Renshaw. 1996. Generalized linear models and actuarial science. Journal of the Royal Statistical Society:

Series D (The Statistician) 45: 407–36. [CrossRef]
Hardin, James W., James William Hardin, Joseph M. Hilbe, and Joseph Hilbe. 2007. Generalized Linear Models and Extensions. College

Station: Stata Press.
Hastie, Trevor, Robert Tibshirani, Jerome H. Friedman, and Jerome H. Friedman. 2009. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. New York: Springer, vol. 2.
Hilbe, Joseph M. 2011. Negative Binomial Regression. Cambridge: Cambridge University Press.
Jung, Yoonsuh. 2018. Multiple predicting k-fold cross-validation for model selection. Journal of Nonparametric Statistics 30: 197–215.

[CrossRef]
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521: 436–44. [CrossRef] [PubMed]
Nelder, John Ashworth, and Robert W. M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society: Series A

(General) 135: 370–84. [CrossRef]
Ohlsson, Esbjörn, and Björn Johansson. 2010. Non-Life Insurance Pricing with Generalized Linear Models. Berlin: Springer, vol. 2.
Ozkok, Erengul, George Streftaris, Howard R. Waters, and A. David Wilkie. 2014. Modelling critical illness claim diagnosis rates I:

Methodology. Scandinavian Actuarial Journal 2014: 439–57. [CrossRef]
Prechelt, Lutz. 1998. Early stopping-but when? In Neural Networks: Tricks of the Trade. Berlin: Springer, pp. 5–69.
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Richman, Ronald, and Mario V. Wüthrich. 2020. Nagging predictors. Risks 8: 83. [CrossRef]
Richman, Ronald, and Mario V. Wüthrich. 2021. A neural network extension of the Lee–Carter model to multiple populations. Annals

of Actuarial Science 15: 346–66. [CrossRef]
Richman, Ronald, and Mario V. Wüthrich. 2022. LocalGLMnet: Interpretable Deep Learning for Tabular Data. Scandinavian Actuarial

Journal 1–25. [CrossRef] [CrossRef]
Rigby, Robert A., and D. Mikis Stasinopoulos. 2005. Generalized additive models for location, scale and shape. Applied Statistics 54:

507–54. [CrossRef]
RStudio Team. 2021. RStudio: Integrated Development Environment for R. Boston: RStudio, PBC.
Ruder, Sebastian. 2016. An overview of gradient descent optimization algorithms. arXiv arXiv:1609.04747.
Russell, Stuart J. 2010. Artificial Intelligence a Modern Approach. Upper Saddle River: Pearson Education, Inc.

http://doi.org/10.1371/journal.pone.0253854
http://www.ncbi.nlm.nih.gov/pubmed/34260594
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1016/S2213-2600(21)00095-3
http://dx.doi.org/10.1164/rccm.201904-0717ST
http://www.ncbi.nlm.nih.gov/pubmed/31149852
http://dx.doi.org/10.3390/risks9010004
http://dx.doi.org/10.3390/risks9010004
https://www.cdc.gov/nchs/icd/icd-10-cm.htm
http://dx.doi.org/10.1097/JOM.0000000000000232
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3226852
http://dx.doi.org/10.1080/01621459.1975.10479865
http://dx.doi.org/10.2307/2988543
http://dx.doi.org/10.1080/10485252.2017.1404598
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.2307/2344614
http://dx.doi.org/10.1080/03461238.2012.728537
http://dx.doi.org/10.3390/risks8030083
http://dx.doi.org/10.1017/S1748499519000071
http://dx.doi.org/10.1080/03461238.2022.2081816
http://dx.doi.org/10.1080/03461238.2022.2081816
http://dx.doi.org/10.1111/j.1467-9876.2005.00510.x


Risks 2022, 10, 217 35 of 35

Schelldorfer, Jürg, and Mario V. Wuthrich. 2019. Nesting classical actuarial models into neural networks. SSRN. Available online:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525 (accessed on 15 December 2021).

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to
prevent neural networks from overfitting. The Journal of Machine Learning Research 15: 1929–58.

Tzougas, George, and Ziyi Li. 2021. Neural Network Embedding of the Mixed Poisson Regression Model for Claim Counts. Available
online: https://insurancedatascience.org/project/2021_london/ (accessed on 9 January 2022).

WHO. 2022a. Asthma and COVID-19: Scientific Brief. Available online: https://www.who.int/publications-detail-redirect/who-2019
-ncov-sci-brief-asthma-2021.1 (accessed on 19 April 2022).

WHO. 2022b. Heath Topics-Chronic Respiratory Diseases. Available online: https://www.who.int/health-topics/chronic-respiratory-
diseases#tab=tab_1 (accessed on 6 June 2022).

Wüthrich, Mario V. 2020. Bias regularization in neural network models for general insurance pricing. European Actuarial Journal 10:
179–202. [CrossRef]

Wüthrich, Mario V. 2021. The balance property in neural network modelling. Statistical Theory and Related Fields 6: 1–9. [CrossRef]

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525
https://insurancedatascience.org/project/2021_london/
https://www.who.int/publications-detail-redirect/who-2019-ncov-sci-brief-asthma-2021.1
https://www.who.int/publications-detail-redirect/who-2019-ncov-sci-brief-asthma-2021.1
https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_1
https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_1
http://dx.doi.org/10.1007/s13385-019-00215-z
http://dx.doi.org/10.1080/24754269.2021.1877960

	Introduction
	Data
	Data Description
	Data Pre-Processing

	Models
	Regression Models
	Neural Network Model
	CANN

	Model Fitting
	Hyperparameters
	Batch Size and Epochs
	Comparison of Approaches


	Model Improvements
	Approaches for Preventing Over-Fitting
	Regularisation
	Early Stopping
	Dropout
	Comparison of Model Improvement Approaches for Avoiding Over-Fitting


	Negative Binomial Neural Network Models
	Bias Regularisation
	Nagging Predictor

	K-Fold Validation
	Concluding Remarks
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

